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Lensed gravitational waves will offer new means to probe the distribution of matter in the Universe,
complementary to electromagnetic signals. Lensed continuous gravitational waves provide new challenges
and opportunities beyond those of transient compact binary coalescence. Here we consider continuous
gravitational waves emitted by isolated neutron stars and lensed by Sgr A�, the supermassive black hole at
the center of our Galaxy, a system observable by the next generation of gravitational wave detectors. We
analyze the signatures of this system in detail, addressing parameter estimation and model selection. Future
detectors can distinguish lensed continuous waves and measure their parameters with precision ∼1–10%
for sources within 2–4 Einstein radii of Sgr A�, depending on the source distance, thanks to the relative
motion of the observer-lens-source system. The chances of observing strongly lensed neutron stars increase
by one order of magnitude relative to previous estimates, thanks to the possibility of detecting lensed
systems at several Einstein radii. Multiple images can be resolved with an angular accuracy ∼10 mas,
comparable to the best optical telescopes. Image localization probes deviations from axial symmetry and
the existence of companions to Sgr A� in regions complementary stellar orbits and black hole imaging. Our
methods and many of our results extend to other lenses (e.g., Galactic substructure) and sources (e.g., long-
lived inspiralling binaries), rendering lensed continuous gravitational waves into versatile probes of
astrophysics and fundamental physics.
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I. INTRODUCTION

Gravitational lensing has become a powerful tool for
astrophysics and cosmology, for example in the search for
dark objects, exploration of the Universe’s large-scale struc-
ture and measurement of cosmological parameters [1–3].
With the recent rise of gravitational wave (GW)

astronomy, the lensing of GWs emitted by coalescing
binary black holes and neutron stars (NSs) has become
the subject of intense research. The coherence, low fre-
quency and frequency evolution of these sources enables
the observation of diffraction [4–9] and phase [10–12]
effects that are challenging to observe with electromagnetic
(EM) waves. While no detection of lensed GWs has yet

been made [13–16], the increasing rate of GWobservations
offers a promising future [17,18].
Besides transient signals produced by explosive binary

coalescences, detectors can observe long-lived signals with
a slow frequency evolution. Sources of these quasimono-
chromatic signals fall into two main categories: (1) stellar-
mass binaries well before coalescence, which will be
detectable by LISA [19–21], and exotic binaries, such as
subsolar primordial binary black holes, which can be
searched with ground-based detectors [22,23]; and (2) rap-
idly rotating nonaxisymmetric neutron stars with a quad-
rupolar deformation, producing continuous GWs (CWs),
observable by ground-based detectors. These signals have
been searched for in the LIGO-Virgo-Kagra data [24–26],
see Refs. [27–30] for reviews.
Isolated spinning NSs are expected to produce CWs in

the 102–103 Hz band through a variety of different mech-
anisms [28,29,31], and could be observed by future
ground-based detector campaigns. Neglecting the effect
of the frequency evolution and the detector’s motion and
response, the NS signal is monochromatic. For an estimate
of the total number of neutron stars that can be probed with
current and future detectors, we refer to [32,33].
The lensing of CWs presents interesting and distinct

characteristics. Specifically, due to the coherent nature of
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CWs, a gravitational lens can act as a diffractive barrier,
resulting in interference fringes on the detected signal when
the observer-lens-source system undergoes relative trans-
verse motion [34–38]. Additionally, CWs allow for very
precise sky localization, impossible with binary coales-
cence observations. Despite the promising prospects for
distinguishing between lensed and unlensed CWs, the
ability of observations to accurately infer the lens param-
eters remains an open question.
While no clear detection of CWs has been reported yet,

the sheer number of NSs in the Milky Way (MW) Galaxy,
estimated in ∼109 from population synthesis studies [39],
suggests that detection of lensed signals is plausible for
future observations. Motivated by such a prospect, we
study the phenomenology of strongly lensed CWs, the
inference of lens parameters and the potential for detection
by next-generation GW observatories.
For concreteness, we focus on monochromatic, isolated,

rotating NS moving at constant velocity and lensed by
Sgr A�, the supermassive black hole (BH) at the center of
the MW [40–42]. In fact, depending on their distribution, a
fraction of NSs in our Galaxy is expected to lie close to the
line of sight of Sgr A�. Moreover, they are expected to have
sizeable projected transverse velocities [43] due to either
natal kicks (∼400 km=s) [44], or the Solar System’s motion
in the Galaxy (∼200 km=s) [45–47]. These objects are the
subject of targeted CWs searches [48]. Sgr A� can act as a
foreground lens for sources sufficiently aligned with our
line of sight. Third-generation (3G) interferometers will be
able to observe up to ∼6 strongly lensed signals of rapidly
spinning NSs within the Einstein cone of Sgr A� [49], the
precise number depending on the NS properties and their
spatial distribution in the MW [32].
In this paper, we show that CWs lensed by Sgr A� can be

detected even when the source is located outside the
Einstein cone so that the expected number of detectable
sources increases by an order of magnitude with respect to
previous studies. Moreover, we show that it is possible to
sky localize the images from lensed CWs and quantify the
uncertainty for future detectors. Finally, we demonstrate
the potential use of lensed CWs to explore the structure of
the Galactic Center. While the Sgr A� scenario is compel-
ling, our methods and many of our conclusions extend to
other systems involving lensed CWs. The paper is struc-
tured as follows. Section II delves into the phenomenology
of gravitational waves lensing and explores its interaction
with standard search methods. In Sec. III, we demonstrate
that lens properties can be extracted from the observed
signals, even when the source and the lens are located at a
few Einstein radii apart. Additionally, we examine the
likelihood of such occurrences and highlight the feasibility
of resolving individual lensing images. Lastly, in Sec. IV,
we show that by resolving the images, it is possible to probe
the existence of additional objects in the vicinity of Sgr A�,

as they would cause a misalignment of image positions
with the optical axis.

II. STRONG LENSING IMPRINTS ON CWs

In this section, we discuss how gravitational lensing
alters CWs signals, in the regime of strong lensing. We will
first introduce the basics of gravitational lensing (Sec. II A).
We will then present the features that a moving lens
imprints on a CW signal (Sec. II B). Finally, we will
discuss the interplay between lensing and CWs search
methodologies (Sec. II C).

A. Gravitational lensing

Using spherical coordinates centered at the observer,
r⃗ ¼ ðr; θ;φÞ, we define the two-dimensional vector
θ ¼ θðcosφ; sinφÞ. We denote by θl and θs the observed
and true angular positions of the source, respectively.
Additionally, we use rl, rs, and rls to represent the
observer-lens, observer-source, and lens-source angular-
diameter distances, respectively, see Fig. 2.
In wave optics, the frequency-domain amplification

factor due to the presence of a lens at rest, F≡ h̃l=h̃0, is
given in the form of a diffraction integral [4,50],

Fðω; θsÞ ¼
ω

2πi
rlrs
rls

Z
d2θ exp½iωtðθ; θsÞ�: ð1Þ

Here we have defined

tðθ; θsÞ ¼
rlrs
2rls

jθ − θsj2 − ψ̂ðθÞ; ð2Þ

with the lensing potential given as ψ̂ðθÞ≡ R drUðr; θÞ. In
the limit of geometric optics (GO), which applies when
ωtðθ; θsÞ ≫ 1, the diffraction integral is dominated by the
stationary points of tðθ; θsÞ:

F≡ h̃lðfÞ
h̃0ðfÞ

¼
X
j

ffiffiffiffiffiffiffi
jμjj

q
exp½2πiðftj þ πnjÞ�: ð3Þ

Each addendum in the sum corresponds to a GO image, with
image position θj determined by the lens equation [51],

∇θt ¼ 0: ð4Þ

Moreover, for each image, αj ≡ rl
rls
ðθj − θsÞ denotes its

deflection angle, μjðθsÞ≡ detð∂θs=∂θjÞ−1 its magnification,
and tjðθsÞ≡ tðθj; θsÞ its timeof arrival,which is a solutionof
the above equation. TheMorse phase index, nj, is 0, π=2 or π
depending on whether the image corresponds to a minimum,
saddle point, or maximum of tðθ; θsÞ.
For convenience, we convert angles to dimensionless

coordinates, x, by normalizing by the Einstein angle
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θE ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GMlrls
rlrs

s
; ð5Þ

namely x≡ θ=θE. In particular, we indicate the j image’s
position as xj ≡ θj=θE and the dimensionless impact
parameter as y≡ θs=θE. We choose the horizontal axis
of our coordinate system to coincide with the optical axis,
i.e., y ¼ ðy; 0Þ. Moreover, we define the dimensionless
frequency, w≡ 4GMlω, where Ml is the lens mass.
Figure 1 shows jFj as a function of w and y for a point

lens and highlights the region where geometric optics
applies. A pointlike lens always splits the source into
two images, identified by þ and −, with [51]

μ−
μþ

¼
2 − y

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
− y
�

2þ y
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 4
p

þ y
� ;

Δtþ− ¼ 2GMl

"
y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

q
þ 2 log

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
þ yffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 4
p

− y

!#
;

x� ¼ 1

2

�
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

q �
;

α� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GMlrs
rlrls

s
x�;

where we denote by Δtþ− the time delay elapsed between
the two images. For example, at y ¼ 1 and rls=rl ¼ 1,

lensing by Sgr A� induces a Δtþ− ¼ 163.9 s and
Δαþ− ¼ 6.300. We will not consider the effects of external
convergence and shear [52], as they will produce negligible
corrections for Galactic lenses at y ∼Oð1Þ.

B. Lensing signatures in CWs

Lensed CWs can be determined via
(1) source frequency evolution,
(2) modulation due to transverse motion, or
(3) spatially resolved images.

In Fig. 1 we illustrate the modulation in amplification factor
produced in the first two cases. Typically, rapidly rotating
NSs have small period variations Ṗ≲ 10−18 s=s [53],
precluding frequency evolution from revealing lensed
systems. Below we discuss the transverse motion modu-
lation, leaving the discussion of spatially resolved images
for Sec. III C).
In the presence of transverse motion, the time delay of an

image j, tj, can be expanded at linear order in t around a
reference time t0, hence

tjðtÞ ¼ tjðt0Þ þ αjðt0Þ · vðt − t0Þ; ð6Þ

where αj ≡ rl
rls
ðθj − θsÞ is the deflection angle for the jth

image, and v is the projected transverse velocity, given
by [54]

v ¼ vl −
rl
rs
vs −

rls
rs

vo; ð7Þ

where vo, vl, and vs are the transversevelocity of the observer,
lens, and source in their respective planes. Projected trans-
verse motion results in a time variation of the lensing
functions. In fact, this is equivalent to considering a source
position that varies with time. Specifically, we have

yðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y20 þ

�
vðt − t0Þ
rlθE

�
2

s
; ð8Þ

where y0 is the impact parameter at t ¼ t0. In general, the
magnification and deflection angle of each image also
acquire a time dependency from the transverse motion,
but the effect is negligible for heavy lenses not closely
aligned with the sources, as considered here.
The time-varying time delay in Eq. (6) induces an

effective blue/redshift on each image’s frequency by a

zj ¼
d
dt

lnðtjÞ ¼ v · αj: ð9Þ

When two images i and j interfere in the detector, the strain
exhibits an amplitude and phase modulation arising from
the difference zi − zj, see Fig. 2. Given a lensing signal
with lens mass Ml, effective lens velocity v≡ jvj, and
impact parameter y0 ≡ yðt0Þ, potential information on these

FIG. 1. Amplification factor of a point lens as a function of the
dimensionless frequency w ¼ 8πGMlf and impact parameter
y ¼ jθsj=θE. Dashed gray contours correspond to the transition
between wave and geometric optics regimes (less than 10%
relative difference). Diffraction and wave effects can be observed
for chirping binaries (varying w and keeping y constant) or
moving lens systems (varying y and keeping w constant) as
explored in this work. Our fiducial system lies in geometric optics
with w ¼ 8πGMSgr A�f0 ≃ 103–104.
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parameters is contained in three features: (1) the modula-
tion period,

Tij ¼
1

f0vαij
¼ 2.4 d

�
1 kHz
f0

��
10−3

v

��
100

Δαij

�
; ð10Þ

where Δαij ¼ jαi − αjj; (2) the modulation amplitudeffiffiffiffiffiffiffiffiffiffiffi
μj=μi

p
, which depends purely on yðtÞ; and (3) the

modulation phase, given by Δtij ∝ Ml.
Additional effects on CWs (detector motion, source’s

frequency evolution or orbital motion, two overlapping
sources), can be corrected for, or distinguished from, the
modulation signature. We discuss them in the next section.

C. Interplay between lensing and CW searches

Now, we will briefly summarize the methodology of CW
searches and their interplay with the occurrence of lensed
signals in the datastream. The aim of this section is to show
that standard searches are able to capture lensed events.
In blind searches the data is preprocessed assuming

certain source properties (location, frequency evolution)
and then the monochromatic CW signals are searched via a
fast-Fourier transform [55] (we will follow Ref. [56],
Ch. 7). In particular, the preprocessing is necessary to
clean the signal from other sources of distortion such as the
orbital motion and frequency evolution of the signal, and
search for a monochromatic waveform:

h0ðt; rsÞ ¼
A
rs
e−iϕðtÞ; ϕðtÞ ¼ 2πf0tþ ϕ0; ð11Þ

where A depends on the source’s orientation and ϕ0 is the
phase value at t ¼ 0. The signal-to-noise ratio (SNR) of this
signal is (see the Appendix)

SNR ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

r2s

Tobs

Snðf0Þ

s
; ð12Þ

where Sn is the one-sided power spectral density and Tobs is
the observational time. The dominant mode of a CWemitted
by a NS has amplitude A ¼ 4π2GIzzf20ϵ, where Izz is the
moment of inertia of a perpendicular biaxial rotor spinning
with axis ẑ and the ellipticity parameter, ϵ ¼ ðIxx − IyyÞ=Izz,
describes the degree of anisotropy around the NS rotation
axis. To date, no CWs have been detected but frequency-
dependent upper limits on their amplitude and on ϵ at a fixed
distance were inferred [24,26,48]. We adopt ϵ ¼ 10−7 and
Izz ¼ 1038 kgm2 [24], compatible with data, theoretical
expectations [57,58] and the lower bound from popula-
tion-based studies, ϵ≳ 10−9 [59].
This scheme is referred to as coherent search. Under this

type of search, strongly lensed CWs would first appear as
two signals very close in frequency and sky localization.
The large number of unknown parameters and the large

observation time required for preprocessing signals make
coherent searches computationally infeasible. Instead,
searches are typically performed using a semicoherent
method [60], in which data streams are divided into
segments of duration Tcoh. These segments are processed
as described below and then combined incoherently, i.e.,
neglecting the relative phase between stacks. Therefore,
GW detectors are capable of observing NSs up to distances
of [56]

rhor ¼ 35 kpc ×

�
ϵ

10−7

��
f0

800 Hz

�
2
�
Tobs

10 yr

�
1=2

γ; ð13Þ

where we have defined an efficiency factor

γ ≡
�
3750

N

�
1=4
�

4

SNRthr

��
4.8 × 10−25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Snðf0Þ Hz

p �
;

using the reference numbers expected in next-generation
detectors [56]. Here, SNRthr is the SNR threshold of the
search, and N ¼ Tobs=Tcoh is the number of stacks in
which the data is divided. The signal’s amplitude has been
sky-averaged over the solid angle and polarization angle.
We stress that once a CW detection from the Galactic
Center has been confirmed, follow-up analyses can exploit
the full coherence of the signal, with no SNR loss. The
outcomes of our study hinge on this premise.

FIG. 2. Strong lensing of a quasimonochromatic source. Top:
gravitational lensing by Sgr A� forms two images of a rotating
NS. Here, η ¼ θsrs is the physical impact parameter in the source
plane, related to y by jηj ¼ yθErs. Middle: static case, hþ; h− are
magnified and delayed. Their interference at the detector is again
a monochromatic waveform. Bottom: moving case, the images
are additionally slightly red/blueshifted. Their interference pro-
duces a modulated signal (here exaggerated for illustrative
purposes).
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The first step in obtaining a monochromatic waveform is
a resampling of the signal to account for the detector’s
motion. This is done by a redefinition of the time variable:
t ¼ t0 þ n̂ · x⃗ðt0Þ þ ΔT [55]. Here, t0 is the observation
time, n̂ is the source’s direction, x⃗ is the detector’s position
relative to the Solar System barycenter and ΔT is the
relativistic time delay. The antenna pattern (given by n̂) has
been factored out of A. As discussed in Ref. [56] [see
Eq. (7.151)], resampling requires accuracy on the source’s
position at the level of δθ ≲ 220ð1d=TcohÞ2ðkHz=f0Þ, with
1d≲ Tcoh ≲ 102d. This limit corresponds to all-sky NS
searches, where a relatively low Tcoh allows computational
efficiency [55]. Since the separation between images is
jα�j ≲ 1000 data resampling is common to all images for
Tcoh ≲ 11 d. For larger coherence time, they will show up
in two different sky bins and fine sky localization can be
achieved (see Sec. III C).
An additional step is to correct the source’s frequency

evolution [55]. This is done by demodulating the signal via
a time coordinate redefinition t → t − t0 þ ḟ0=ð2f0Þðt−
t0Þ2 þ � � �, (f̈0 and higher derivatives can be considered at
this stage). Frequency evolution affects the CW’s phase on
a timescale ðḟ0=2Þ−1=2 ¼ 16.4 dð1 pHz=s

ḟ0
Þ1=2, making demod-

ulation a necessary step of the analysis. However, the
interplay between lensing and ḟ0 for rapidly rotating NSs is
typically negligible: it can produce additional modulation,
due to a phase difference between images on a timescale
of ðḟ0Δt�Þ−1 ¼ 317 yrð100 s

Δt�
Þð1 pHz=s

ḟ0
Þ. For ms pulsars

(ḟ ≲ 1 pHz=s) [59], this is much longer than Tobs and
treating frequency evolution as common to all images is an
excellent approximation. Hence, demodulation does not
affect the search of lensed CW or their analysis.

III. OBSERVING LENSED CWs

Let us now discuss the prospects for observing and
reconstructing lensed CWs. First, we will discuss that lens
parameters can be extracted from the observed signal
(Sec. III A) and that lensing images can be individually
resolved and localized (Sec. III C). Additionally, we discuss
the probability of detecting favorable events (Sec. III B).

A. Lens parameter reconstruction

Once a search detects the two images of a lensed CW
signal, it is possible to exploit the full-coherent datastream
to extract the lens parameters, Ml, y0, and v, from the
modulation of the lensed signal discussed in Sec. II B.
We assume a single Einstein Telescope detector and in-

band signal duration Tobs ¼ 10 yr. Parameter estimation will
improve using a global network of 3G detectors [22], with
increased SNR and sky coverage. As a fiducial setup, we
consider a pointlike lens with the measured mass of Sgr A�,
Ml ¼ 4.154 × 106M⊙ [61] and lens velocity v ¼ 10−3, at a
distance rl ¼ 8.178 kpc [61]. A point lens produces a

brighter and a fainter image, indicated respectively as
þ and −. The source is a spinning NS emitting CWs at a
frequency f0 ¼ 800 Hz and relative distance rls ¼ rl. We
will discuss how the results change away from these fiducial
values.
We follow a Bayesian approach and compute their

marginalized posteriors through numerical Monte Carlo
(MC) sampling. In particular, we sample the likelihood
function, which follows from the definition in Eq. (A3),
through the dynamic nested sampler DYNESTY [62]. Our
analysis is restricted to the source and lens parameters that
are potentially correlated. In particular, the source is
assumed to be purely monochromatic and modeled by
ðA=rs; f0;ϕ0Þ. The original sampled lensing parameters
are

u ¼
ffiffiffiffiffi
μ2
μ1

r
; k ¼ Δϕ21; z ¼ z2 − z1; ð14Þ

where Δϕ21 is the constant phase difference between the
two images. Initially, we use these model-independent
parameters to avoid complications that can arise from
the periodicity of the likelihood with respect to Ml and
v and from the unboundedness of y0. The numerical
samples are then converted to fMl; y0; vg.
The lens and source parameters can be accurately

measured, even at large impact parameter, despite degen-
erate posteriors. The three top panels in Fig. 3 show
68% C.L. limits on the lensing parameters from the one-
dimensional marginalized posteriors, obtained from the
MC samples, as a function of the initial impact parameter
y0 (fiducial setup). Since the mass of Sgr A� is known with
subpercent accuracy [61], we run two analyses: one with
the lens mass Ml treated as a free parameter, and another
with Ml fixed to its known value. In both cases, the lens
parameters can be extracted from the signal beyond y0 ¼ 1.
For example, for y0 ¼ 3 all parameters are constrained with
a relative error smaller than 50% at 1σ C.L. At large enough
y0, the sampled contours become consistent with μ2 ¼ 0
(i.e., no second image detected) and lens parameters cannot
be constrained. Note that, for strictly monochromatic
sources, Ml and v only enter the GW signal phase and
can be constrained only up to a periodic factor, see Eq. (3).
Figure 4 shows the 1D and 2D 95% C.L. marginalized lens
parameter posteriors from the MC samples. For a large
impact parameter, particularly noticeable in the y0 ¼ 3
contour, the posteriors deviate from Gaussian behavior. For
impact parameter y≳ 4, the lack of resolution of the small
amplitude modulation, i.e., the r contour being compatible
with r ¼ 0, prevents the reconstruction of the lensing
parameters (cf. Figs. 9 and 10 for the complete set of
1D and 2D marginalized 2-σ posteriors).
To assess our capacity to differentiate between the lensed

and null (i.e., unlensed) hypotheses, we compute the Bayes
ratio between the two models, denoted as BLU. The bottom
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panel in Fig. 3 shows its variation as a function of the initial
impact parameter for different distance ratios rls=rl (fidu-
cial setup). Very strong evidence for the lensed signal (i.e.,
logBLU > 10) can be robustly established for y0 ≤ ymax ≃
5 (2.2) for rls=rl ¼ 0.1 (2). A similar analysis for advanced
LIGO shows a more modest gain, with ymax ≃ 1.5, for
rls=rl ¼ 1. Note that the evidence for the unlensed and
static lens hypotheses are identical, as they are both
degenerate for a monochromatic signal.
We explored different setups varying the fiducial

parameters. In the Gaussian limit, the covariance
matrix scales as the inverse of the SNR ∼

ffiffiffiffiffiffiffiffiffi
Tobs

p
A=rs

[cf. Eq. (12)]. For fixed SNR, changing the frequency of
the source influences our results marginally, as long as the
modulation period in Eq. (10) is smaller than or compa-
rable to the observation time. Similarly, while parameter
estimation requires a nonzero v, the error and the evidence
for the lensed signal is rather insensitive to its exact value
as long as v ≳ 10−5 ≈ 3 km=s, which is high enough to
observe the modulation period. Thus, small velocities
are unlikely to prevent the observation of lensed NS.

Moreover, the sensitivity to very small velocities suggests
that CWs could also measure lens accelerations. The
parameter with the largest influence on the precision is
the distance ratio rls=rl, with smaller values leading to a
better parameter estimation and larger evidence.

B. Detection prospects

We will now estimate the probability of strong lensing
and compare it with previous results. We will follow the
source distribution proposed in Ref. [32] (also considered
in Ref. [49]),

dPsðr; zÞ
dV

¼ 1

2π

1

σ2r
e
− r2

2σ2r
1

2Δz
e−

jzj
Δz: ð15Þ

Here dV ¼ drrdϕdz is the volume element, σr ¼ 5 kpc is
the radial scatter of sources and Δz is the scatter
perpendicular to the Galactic plane. We will assume that
the Earth and any detectable lensed source deviate negli-
gibly from the Galactic plane, relative to Δz ∼ 0.1–1 kpc,
and set z ≈ 0.
The fraction of strongly lensed sources is

fl ≡ N̄l

N0

≈
Z

rhor

0

drlsrlsðrl þ rlsÞðθEymaxÞ2
dPs

dV
; ð16Þ

were N̄l is the average number of lensed sources and N0 is
the number of observable sources [49]. The integral is
performed up to a detection horizon rhor [cf. Eq. (13)] and
ymax is the highest value of the impact parameter for which

FIG. 4. 1D and 2D marginalized 1-σ C.L. posteriors of the lens
parameters, for different initial impact parameters (fiducial setup).

FIG. 3. MC results. For the fiducial setup, two cases are
considered: uniform prior on the lens mass (solid green line);
fixed lens mass (dashed green line). For variable mass, the
accuracy remains for very small relative velocity, v ¼ 10−5

(dotted). Top three panels: 68% C.L. marginalized error on Ml
(top), y0 (middle), and v (bottom), as a function of the initial
impact parameter y0. Bottom panel: Bayes’ ratio of lensed vs
unlensed hypothesis against the initial impact parameter for
multiple distance ratios, rls=rl. logBLU > 10 corresponds to
very strong evidence for the lensing hypothesis. The purple line
shows the case of advanced LIGO for rls=rl ¼ 1.
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very strong evidence for lensing can be established, see
Fig. 3. For rls=rl ≥ 0.5, ymax obeys a linear relation, which
we have extrapolated to the whole domain to compute the
integral above. This underestimates ymax close to the lens
(stars vs line in Fig. 5) and is thus a conservative assumption.
Figure 5 shows the fraction of lensed NSs with strong

evidence, fl½ymax�, as a function of rhor, where we also
show the fraction of sources within the Einstein radius,
fl½y ¼ 1�, obtained from setting ymax → 1 in Eq. (16). The
Einstein radius, source distribution and strong-evidence
parameter entering the calculation are also shown. For
rhor ≳ 1.5rl, the expected number of observed sources is

N̄L ¼ 3.36

�
0.1 kpc
Δz

��
N0

108

�
: ð17Þ

This is a factor ∼9.04 larger than the estimate obtained
setting ymax ¼ 1 in Eq. (16), as in the analysis of Ref. [49].
The number of detected sources is given by Poisson
statistics, with

PlðkÞ ¼
N̄k

l

k!
e−N̄l ; ð18Þ

where k is the number of detections. Hence, the probability
of detecting at least a single lensed event is Plðk ≥ 1Þ ¼
1 − e−Nl . The analysis in Ref. [49] uses N0 ¼ 109 as a
fiducial number of observable sources. In that case, and for
a narrow spread Δz ¼ 0.1 kpc, our study suggests that an
average of 34 strong-evidence lensed events would be
observed, with ∼2 × 10−15 chance of observing none.
Situations that mimic strongly lensed sources can be

ruled out. A source in a binary may exhibit an amplitude

modulation via precession [63,64]. However, this can be
distinguished from lensing through a periodic phase differ-
ence, which is absent for lensed sources moving at constant
velocity.
Finally, two unrelated sources may be close enough in

frequency and sky localization to appear as two images
of a strongly lensed signal. However, the chances of
such a coincidence are negligible: to mimic strong lensing,
their angular separation must be ≲1000 (cf. Fig. 7) and
their frequencies might differ by no more than Δf=f≲
10−7ðαij=1000Þðv=3 × 10−3Þ, see Eq. (10). Table I gives the
expected number of overlapping signals out of a total of
N0 ¼ 108 detectable sources. For the spatial overlap, we
consider sources randomly distributed in the sky, whose
rate of overlap is ∼N0δθ

2=4, as well as sources confined to
the Galactic disk ∼N0θ=2π [both cases corresponds to the
limit of large and small Δz in Eq. (15) below]. Regarding
the frequency, we will consider sources distributed homo-
geneously in the range logðf0Þ ¼ ½0.1; 1� kHz, so the
overlap rate is ∼N0Δf=ðf logð10ÞÞ. While the chance of
spatial or frequency overlap is sizeable, the probability of
both occurring simultaneously is negligible.
Additional information can be further used to constrain

this possibility, including the alignment of the images
relative to Sgr A�, the signals’ relative amplitude, and
the frequency evolution.

C. Angular resolution of GO images

CWs also enable accurate sky localization. In order to
identify a CW in a blind search, it is necessary to “undo”
the detector’s motion by redefining the time variable: t ¼
t0 þ n̂ · xðt0Þ þ ΔT [55]. Here t0 is the observation time, n̂ is
the source’s direction, x is the detector’s position relative to
the Solar System barycenter, and ΔT is the relativistic time
delay. Both Earth’s rotation and orbital motion contribute to
x, but the latter becomes dominant after an integration
period of a few days [56]. Once a signal is identified,
analysis exploiting the complete coherence of the signal
can accurately determine an image’s position, depending on
the source location.
We use Eq. (7.151) of Ref. [56] to estimate the sky

localization accuracy. This depends on the relative incli-
nation between the Earth’s orbital plane and the source
direction, so the resulting skymap is not isotropic. We
compute the mismatch between the two waveforms ðδhjδhÞ

FIG. 5. Expected fraction of NSs lensed by Sgr A� using the
strong-evidence cutoff (thick solid red) and the Einstein radius
cutoff (thick solid gray) as a function of rhor=rl − 1 for
Δz ¼ 0.1 kpc. Thin lines represent other quantities appearing
in Eq. (16), plotted as a function of rls=rl: Einstein angle
(dashed), source density (dash dotted), values of ymax interpolated
(dashed) from the results of the MC sampling (stars).

TABLE I. Expected number of overlapping signals that may
mimic strong lensing signatures. All these quantities scale with
the number of detectable NSs as N0=108.

Spherical Disk

Spatial 0.059 771.6
Frequency 7.02
Both 4.1 × 10−9 5.4 × 10−5
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[cf. Eq. (A4)]. In our case, δh is the difference between two
monochromatic waveforms resampled with different source
directions, ðn̂; n̂0Þ, so

ðδhjδhÞ ≃ 2ρ2
�
1 −

1

T

Z
T

0

dt cos ð2πf0xðtÞ · ðn̂ − n̂0ÞÞ
�
:

ð19Þ

Imposing the condition ðδhjδhÞ ¼ 1 returns the sky locali-
zation variance [65], σθ, as a function of the sky orientation
of the vector n̂ − n̂0.
In the context of lensed sources, the accuracy of

determining their sky localization varies by the SNR of
the observed images, ρi ¼ ffiffiffiffi

μi
p

ρ. Figure 6 shows the 1-σ
angular accuracy on the image sky position that can be
achieved for a CW signal lensed by Sgr A� for our fiducial
setup. The shape of the skymap is a squeezed cardioid that
is rescaled and flipped (because of spatial parity) between
the two images. We employed the module Astropy [66] to
model Earth’s orbital motion relative to Sgr A� position in
Eq. (19). Sgr A� is put at a right ascension of 17 h 45 m
40.0409 s and a declination of −29° 00 28.11800 [67].
In the inset of Fig. 7, the heart-shaped maps are tilted

with respect to the optical axis by an angle ϕsky that
encodes the source-galactic plane relative inclination, and
their size scales as ∝ 1=ð ffiffiffiffi

μi
p

SNRÞ.
A simple analytical estimate can be derived considering

the Earth to be on a circular orbit around the Sun, with
radius 1 AU, and the source direction on the orbital plane.
Then, an observation time of Tobs > 1 yr corresponds to an
angular accuracy of

σθ ≃ 21 masð60=SNRÞð1 kHz=f0Þ: ð20Þ

This is comparable to the mean angular accuracy of the
anisotropic setup.

In general, we expect to be able to individually resolve
the images for lenses with mass Ml > 1.2 × 103M⊙×
ðrl=8.18 kpcÞðrls=rsÞð60=SNRÞð1 kHz=f0Þ, at y ¼ 1.

IV. PROBING Sgr A� COMPANIONS

Let us consider the prospect of searching for additional
objects near the main lens via their effect on the image
positions. A smoking gun for such objects is a misalign-
ment between Sgr A� and the two lensing images, as this
would require breaking the axial symmetry. We first derive
the perturbation to the lensing observables (Sec. IVA)
induced by a perturber and discuss when its presence can be
probed through image misalignment (Sec. IV B).

A. Effects of a perturber on GO images

We first study how the presence of a pointlike perturber
near the lens affects the lensing observables. Let us
introduce the dimensionless lensing potential, the so-called
Fermat potential,

TðxÞ ¼ tðxÞ
4GMl

; ð21Þ

and consider the effect of a point lens perturber with mass

Mpert ¼ m ·MSgr A� , at xm ¼ ðxkm; x⊥mÞ (here x is defined by
normalizing to the Einstein angle of the unperturbed lensed,
as defined above). The total lensing potential is

TðxÞ ¼ Tð0ÞðxÞ þm logðjx − xmjÞ; ð22Þ

where Tð0ÞðxÞ is the unperturbed Fermat potential.

FIG. 6. Accuracy in resolving image sky positions. The figure
displays the 1-σ angular precision for determining the sky
position of images resulting from CWs sources lensed by
Sgr A�. The blue curve corresponds to the brighter image, while
the red curve to the fainter image. Both are rescaled by the
respective magnification factor. The resulting skymaps are shown
in the inset for illustrative purposes.

FIG. 7. Resolving individual images. The insets show the 68%,
95% C.L. localization regions (filled shapes), the unpertubed
images (crosses) and the projected lens-image axes (filled bands).
A ∼ 4 × 104M⊙ perturber at xm ¼ ð1.5;−0.5Þ displaces the
positive-parity image by ≳ ∼ 3σ away from the optical axis.
Einstein radii are shown in gray. The projected orbit of the S2 star
[68] and the image of Sgr A� [42] are shown for comparison.
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We will assume m ≪ 1 sufficiently small for a pertur-
bative treatment and y large enough for the source to be
outside the caustic network of the binary lens. Under our
assumptions, the system forms an additional image at

x3 ≈ xm −M−1 · Δym; ð23Þ

where the vector Δym is defined as

Δym ¼ y − xmð1 − x−2m Þ; ð24Þ

and the elements of the matrix M are given by

Mij ¼ δij

�
Δ2

ym

m
þ 1

x2m

�
−
2ximx

j
m

x4m
: ð25Þ

The third image will undergo a frequency shift and
induce an additional amplitude modulation, similar to the
interference effect described above. However, the ampli-
tude of the third image is typically very small, as
μ3 ∝ m2=jy − xmj4. Even for GWs,

ffiffiffiffiffiffiffiffijμ3j
p

h0 will most
likely be below the detection threshold. Moreover, the
existence of an additional image at arbitrary y is a feature of
point lenses and other very compact matter distributions,
while it is absent in generic extended lenses (cf. Ref. [8],
Sec. III A). We will thus focus on the perturber’s effect on
the position and time delay between the main images.
(Given that δμ�=μ� ∝ m=jy − xmj2, the effect on the
magnification is negligible in most cases.)
The leading-order effect on the Fermat potential of each

image is

T� − Tð0Þ
� ¼ m logðjx� − xmjÞ; ð26Þ

where we have used Fermat’s principle on the unperturbed

lens, i.e., ∇Tð0Þ
� ¼ 0. [A more accurate result follows from

evaluating the full Fermat potential (22) on the perturbed
image positions, Eqs. (29) and (30).] Hence, the time delay
between the images is proportional to

ΔT� ≈m log

�jxþ − xmj
jx− − xmj

�
: ð27Þ

Restoring the lens’ mass gives us the effect of a perturber
on the relative phase between the GO images:

k ¼ 8πGMlf0ΔT� ∼ 5.14 × 105
m
xm

�
f0
kHz

�
: ð28Þ

Therefore, a perturber with mass m can affect the phase
at observable levels up to xm ≲ 8 × 104m=σk, where σk ∼
0.3 (cf. Fig. 10) is the sensitivity to the phase. The expected
number of such objects scales as the projected density times
x2m and it is likely to be significant: a perturber with

m ∼ 2 × 10−6 (corresponding to a mass ∼10M⊙, for which
8πGMlf ∼ 1, i.e., at the WO diffraction limit for a 1 kHz
source) can influence the signal beyond the Einstein radius.
Nevertheless, the actual sensitivity will be much degraded
by the degeneracies between the lens mass and motion
parameters (velocity, acceleration), cf. Fig. 4. Therefore,
the contribution of light objects to the time delay will result
in a slight shift of these parameters posteriors, with relative
magnitude ∼

P
i mi ≪ 1.

B. Finding perturbers through image misalignment

Let us now turn to the effects of a perturber on the image
positions. In the absence of perturber, the positive/negative
parity images lie in the optical axis (i.e., the source-lens
axis) at x� ¼ ðx�; 0Þ. The perturber displaces the main
images by

Δxk� ≈
m

1þ x−2�

x� − xkm
ðx� − xmÞ2

; ð29Þ

Δx⊥� ≈
−m

1 − x−2i

xkm
ðx� − xmÞ2

: ð30Þ

The image displacement along the optical axis (29) can be
probed, but it is degenerate with the main lens parameters
(y andMl, rs via xE). In contrast, the off-axis displacement
(30) is a smoking gun for additional structure.
A perturber will generically produce an off-axis dis-

placement of the images,Δx⊥� ≠ 0. Because the optical axis
is not known, one can only measure a misalignment
between the two images and the black hole. If the sky
localization uncertainty were isotropic, then the uncertainty
in the� image displacement with respect to the optical axis
is given by

σ⊥� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2� þ ðx∓=x�Þσ2∓

q
¼ σ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx�=x∓Þ3

q
: ð31Þ

The first equality follows from adding in quadrature the
uncertainty on the image and the projected uncertainty of the
other image along the direction of the lens (see Fig. 7). The
second equality employs the scaling of an image’s localiza-
tion accuracy with the magnification, σ2� ¼ σ2∓μ∓=μ�, and
the fact that for a point lens μ−=μþ ¼ x−=xþ. Precision
degrades at large y because the negative parity image
becomes faint (poorly localized) and close to Sgr A�, thus
reducing the level arm.
To account for the anisotropic sky-localization uncer-

tainty σ� (see discussion in Sec. III C), we consider the
projected uncertainty in the image’s axis orientation
(through the angle with respect to Sgr A�) as φ�ðφ;ϕskyÞ ¼
arctanððx�þσ�ðϕskyÞÞ2

ðx�þσ�ðϕskyÞÞ1Þ. Here, φ is the angle that defines the

orientation of a vector θ ¼ ðθ1; θ2Þ in the lens plane, and
ϕsky is the angle that set the orientation of the optical axis
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with respect to the Earth’s orbital plane and of the shape of
the anistoropic sky map. Then the uncertainty in the
projection of the axes is given by σ⊥� ∈ ðminφðϕ�Þ;
maxφðϕ�ÞÞx�. In practice the þ image is always better
localized (both because μþ > jμ−j and xþ > jx−j).
Therefore, we can interpret the uncertainty σ⊥þ as associated
with the optical axis (i.e., measurement of ϕsky). The
(larger) uncertainty in the negative-parity image σ⊥− gives
the sensitivity to deviations from axial symmetry and the
presence of perturbers. Because uncertainties depend
strongly on the fiducial value of ϕsky, we will quote the
median sensitivities. Note, however, that the sensitivity
improves substantially for certain configurations, e.g.,
ϕsky ∼�π=2 (this information is available from the locali-
zation of the positive-parity image). Combining sky-
localization and time-domain analysis will further improve
the sensitivity.
Following the sky localization accuracy discussed above,

each image defines an axis through the known lens
position. Figure 7 illustrates this setup with an example
perturber leading to a ∼3σ measurable displacement. The
blue/red shaded regions represent the 1–2σ confidence
bands on the lens-image axis. In practice, the axis of the
positive parity image xþ determined more precisely due to
better intrinsic localization and larger level arm (i.e., both
jμþ=μ−j; jθþ=θ−j > 0). Therefore, we consider θþ to fix the
optical axis and its uncertainty, while θ− determines the
sensitivity to off-axis image displacement.
Figure 8 shows the 95% C.L. minimum detectable mass

via the offset between Sgr A� and the two images of a
rotating NS at y ¼ 0.5, 0.1 (with fiducial parameters), as a

function of the perturber’s position. Precision degrades at
large y, both because the negative parity image becomes
faint (poorly localized) and close to Sgr A�. For y≲ 1 the
area over which a perturber can be detected scales as ∼ m

y3,

increasing greatly for closely aligned systems. This analy-
sis is conservative, as combining sky localization with
time-domain information (cf. Fig. 3) will improve sensi-
tivity. This method is complementary to other probes of the
Galactic Center: analog constraints form pericenter passage
of the S2 star [68] probe the region near the star’s orbit,
rather than the GO images. Thus, lensed NSs are sensitive
to different regions in the Galactic Center. In addition,
gravitational lensing is sensitive to perturbers at intermedi-
ate distances (i.e., between the observer and lens or
between the lens and source).

V. DISCUSSION AND PROSPECTS

Lensed CWs offer strong complementarity to lensed EM
signals and GWs from compact binary coalescences,
bringing new challenges and opportunities. We have
established the prospect of reconstructing the lens param-
eters and further probing the lens by individually resolving
the images. We have focused on rotating NSs lensed by
Sgr A�, but our conclusions extend to other systems.
The prospect of identifying lens systems at several

Einstein radii leads to enhanced detection probabilities.
The number of potentially lensed sources scales with the
square of ymax, i.e., the maximum impact parameter within
which a detection can be established with strong evidence.
In Ref. [49], it was shown that 3G detectors can detect up to
∼6NSs within the Einstein radius of Sgr A�, corresponding
to ymax ¼ 1. Even when applying a stringent threshold for
strong evidence (cf. Fig. 3), we find that ymax can be as
large as ∼3. This increases in the number of detectable
sources by an order of magnitude compared to the estimate
based on ymax ¼ 1. While the ultimate prospects depend on
unknown astrophysics, a targeted search of NSs lensed by
Sgr A� is warranted.
Individual images can be resolved with ∼10 mas

accuracy (Fig. 7), comparable to the best optical telescopes.
As an application, we showed how lens-image misalign-
ment provides a smoking gun for additional structure
(Fig. 8), probing companion objects in regions comple-
mentary to stellar orbits [69–71] and BH imaging [42].
Future work will address additional signatures of these
objects and the benefits of combining timing and sky-
localization information.
CWs lensed by Sgr A� provide a novel probe of the

Galactic Center. Detection of lensed EM radiation from
objects closely aligned with Sgr A� is challenging due to
abundant stars, gas and dust in the central region of the
Galaxy [72]. In contrast, lensed CWs are negligibly
absorbed, providing a pristine view of the region near our
supermassive BH. CWs will complement other approaches
to probe the matter distribution around Sgr A�, test dark

FIG. 8. Minimum perturber mass producing a detectable lens-
image misalignment (2-σ, cf. Fig. 7), depending on its position in
the lens plane. The source is our fiducial setup at y ¼ 0.5, 0.1
(upper/lower), assuming the median error in sky localization.
Lines indicate 10%; 1%, and 0.1% of the mass of Sgr A�. Orange
lines centered around Sgr A� show the corresponding 95% C.L.
limits from the Schwarzschild precession of the star S2 [68],
assuming rls ¼ rl.
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matter scenarios [73–75] and GW propagation [76–80] in an
extreme environment.
This study is a first step towards understanding param-

eter reconstruction in lensed CWs. We have focused on NSs
lensed by Sgr A�, but our results apply to other lenses and
sources. Lensing of CWs from NSs in all-sky searches will
probe compact objects and Galactic substructure, enabling
novel tests of intermediate-mass black holes and the dark
matter distribution. Our treatment can be extended to other
long-lived sources, such as inspiraling compact binaries
observable by planned or proposed space detectors [19,81–
83]. Expanding beyond our simplifying assumptions—i.e.,
constant magnifications, geometric optics, and pointlike
lenses—will unveil the full potential of lensed CWs and
enable novel tests of astrophysics and fundamental physics.
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APPENDIX: PARAMETER INFERENCE

The signal observed at the detector, dðtÞ, is a super-
position between background noise and the true gravita-
tional waves signal,

dðtÞ ¼ hðt; θÞ þ nðtÞ: ðA1Þ

The vector θ includes the parameters that determine the
propagated waveform. For a stationary and Gaussian
distributed noise, a realization n0 has a probability

pðn0Þ ∝ exp

�
−
1

2

Z
df

jñoðfÞj2
SnðfÞ

�
; ðA2Þ

where the one-sided power spectral density of noise, SnðfÞ,
is the variance associated with the noise distribution.
The probability of observing d given θ, i.e., the like-

lihood of the parameters θ, is

logpðdjθÞ ∝ −
1

2
ðd − hðθÞ; d − hðθÞÞ; ðA3Þ

where the inner product for two signals f and g, in the
Fourier space, is defined as

ðf; gÞ ¼ 4Re

�Z
∞

0

df
h̃⋆ðfÞg̃ðfÞ
SnðfÞ

�
: ðA4Þ

For quasimonochromatic sources, the inner product in
Eq. (A4) can be equivalently defined in the time domain,
following Refs. [84,85], as

ðh; gÞ ¼ 2

Snðf0Þ
Z

Tobs

0

hðtÞgðtÞ; ðA5Þ

with Tobs the observational time. Hence, the SNR, which
measures the loudness of the signal, reads

ρ≡ ðhjhÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

r2s

Tobs

Snðf0Þ

s
: ðA6Þ

The posterior of θ is obtained from the likelihood using
Bayes’ theorem, i.e.,

pðθjdÞ ¼ pðdjθÞpðθÞ
pðdjMiÞ

; ðA7Þ

where pðθÞ is the parameter prior and pðdjMiÞ, namely the
evidence, is the marginal likelihood for a given modelMi:

pðdjMiÞ ¼
Z

dθpðdjθÞpðθÞ: ðA8Þ

In the Bayesian context, the marginalized posteriors are the
probability distribution functions of the parameters.
Given two models Mi and Mj, the ratio of their

evidence called the Bayes factor, is used as an index to
test different interpretations of the same data:

Bij ¼
pðdjMiÞ
pðdjMjÞ

: ðA9Þ

Following the empirical Jeffrey’s prescription [86], in
Table II we report the range of value of Bij and the
corresponding degree of evidence of the model Mi
over Mj.

TABLE II. Evidence against the null hypothesis compared to
ranges of Bayes factor.

logB10 B10 Evidence against H0

2–6 3–20 Positive
6–10 20–150 Strong
>10 >150 Very Strong
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FIG. 9. 1D and 2D marginalized 2-σ posteriors of the full set of source and lens parameters, for the fiducial setup discussed in the text.
Here, A≡A=rs.
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