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Plasma shaping may have a stronger effect on global turbulence in tight-aspect-ratio

tokamaks than in conventional-aspect-ratio tokamaks due to the higher toroidicity

and more acute poloidal asymmetry in the magnetic field. In addition, previous

local gyrokinetic studies have shown that it is necessary to include parallel magnetic

field perturbations in order to accurately compute growth rates of electromagnetic

modes in tight-aspect-ratio tokamaks. In this work, the effects of elongation and

triangularity on global, ion-scale, linear electromagnetic modes are studied at NSTX

aspect ratio and high plasma β using the global gyrokinetic particle-in-cell code

XGC. The effects of compressional magnetic perturbations are approximated via

a well-known modification to the particle drifts that was developed for flux-tube

simulations [N. Joiner et al., Phys. Plasmas 17, 072104 (2010)], without proof of its

validity in a global simulation, with the gyrokinetic codes GENE and GEM being

used for local verification and global cross-verification. Magnetic equilibria are re-

constructed for each distinct plasma profile that is used. Coulomb collision effects are

not considered. Within the limitations imposed by the present study, it is found that

linear growth rates of electromagnetic modes (collisionless microtearing modes and

kinetic ballooning modes) are significantly reduced in a high-elongation and high-

triangularity NSTX-like geometry compared to a circular NSTX-like geometry. For

example, growth rates of kinetic ballooning modes at high-β are reduced to the level

of that of collisionless trapped electron modes.

a)Electronic mail: asharma@pppl.gov
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I. INTRODUCTION

Spherical tokamaks, such as the National Spherical Torus Experiment1 (NSTX), its

Upgrade1,2 (NSTX-U), the Mega Ampere Spherical Tokamak3 (MAST), and its Upgrade4

(MAST Upgrade), could possibly be an attractive approach to magnetic fusion energy due

to their high normalized plasma pressure and high bootstrap current fraction. In order to

make experimental progress as efficiently as possible, numerical studies based on gyrokinetic5

equations can be helpful.

In this study, we use the global gyrokinetic particle-in-cell (PIC) code XGC6 to study

the effects of plasma shaping on electromagnetic mode stability in low-aspect-ratio toka-

maks, emphasizing the global nature of ion-scale modes, as well as a model that is presently

available for the inclusion of compressional magnetic perturbation effects. Most of the pre-

vious gyrokinetic studies on shaping effects at tight aspect-ratio have been studied either

with flux-tube codes7–9 or with global codes without compressional magnetic perturbation

effects,10 while the strongly varying magnetic field strength and curvature may imply im-

portance of both the global and compressional effects. The importance of compressional

magnetic perturbation effects for tight-aspect-ratio plasmas is demonstrated in Refs. 11–15.

XGC is capable of performing global total-f electromagnetic gyrokinetic simulations of

the whole tokamak plasma volume from the magnetic axis to the material wall. Only the δf

simulation capability16 is used in this work, and the scrape-off layer is not simulated. The

total-f electromagnetic gyrokinetic simulation capability for the whole plasma volume will

be reported elsewhere.17

While compressional modes are routinely included in local gyrokinetic simulations, a

global gyrokinetic simulation that includes compressional modes is difficult to perform,18,19

especially for a tight-aspect-ratio tokamak plasma. Instead, we utilize the well-known ap-

proximation that modifies the∇B-drift.7,13,18,20–24 This approximation has been verified with

flux-tube simulations, as described in Section III, but no strict verification comparing global

simulations with and without magnetic parallel fluctuations and correspondingly adjusted

drifts has yet been performed. The reason for this is the lack of available global gyrokinetic

codes that include δB‖. For example, the local version of the gyrokinetic code GENE25 in-

cludes δB‖, however, at the time of writing, the development of δB‖ in the global version of

GENE has not yet been completed. In addition, while the gyrokinetic code GTC19 includes
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Mode Type Diamagnetic direction Parity Driven by Stabilized by

ITG ES/EM Ion Ballooning ∇Ti β

KBM EM Ion Ballooning α β < βcrit

CTEM ES Electron Ballooning ∇Te,∇n Collisions

CMTM EM Electron Tearing β, ∇Te β < βcrit

TABLE I. Various properties8,30 of the collisionless electrostatic (ES) and electromagnetic (EM)

ion-scale modes considered in this work, where ∇Ti,e and ∇n are the ion and electron temperature

and density gradients, respectively, β and βcrit are the normalized plasma pressure and its critical

value,8 respectively, α = −2µ0q
2R0∇P/B2

0 is the normalized pressure gradient, µ0 is the vacuum

magnetic permeability, R0 is the tokamak major radius, P is the plasma pressure, and B0 is the

magnetic field strength on axis.

δB‖, it is presently only available for fluid electrons (and some of the approximations used

in the equations may not be valid for NSTX). Thus, this remains a caveat to the results of

the present study.

We consider only collisionless ion-scale modes in this work, such as ion temperature

gradient modes (ITGs),26 kinetic ballooning modes (KBMs),11 collisionless trapped electron

modes (CTEMs),27 and collisionless microtearing modes (CMTMs).28,29 For convenience, we

summarize some of the properties of these modes in Table I and, in addition, refer the reader

to References 8 and 30. All of these modes have ballooning parity, except for MTMs, which

have tearing parity. Modes with ballooning parity have a perturbed electrostatic potential

along a field line that is an even function of the poloidal angle, and a perturbed parallel

magnetic potential along a field line that is an odd function of the poloidal angle. Modes

with tearing parity have the opposite symmetry.

The remainder of this paper is organized as follows. In order to properly take into

account stabilizing, finite-pressure, “drift-reversal” effects,13,18,31 we use profile-consistent

magnetic equilibria throughout this work. This is described in Section II. Presently, there

are both explicit16 and implicit32 numerical scheme options in XGC that are capable of

electromagnetic simulations. We use the explicit option throughout this work. We present

local verification and global cross-verification of an approximation for the inclusion of com-

pressional magnetic perturbation effects in Section III. We then apply these developments
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to study electromagnetic mode stabilization by shaping effects at NSTX aspect ratio and

high plasma β using XGC. This is described in Section IV. Finally, we draw conclusions in

Section V.

II. USE OF PROFILE-CONSISTENT MAGNETIC EQUILIBRIA

Performing scans over the normalized plasma pressure parameter β allows for the study

of the transition from electrostatic to electromagnetic modes. As such, these scans have pre-

viously been used in the cross-verification of global electromagnetic gyrokinetic codes.16,32,33

The usual convention when performing such scans is to use a fixed magnetic equilibrium

and vary β either by scaling the input plasma density profile, or by scaling β in the Ampère

equation. Such a convention is reasonable for the purpose of code cross-verification, how-

ever, for the purpose of physics studies, the assumption of a fixed magnetic equilibrium may

not be valid. This is because changes in plasma pressure result in changes to the Shafranov

shift, which, in turn, affects mode stability. Therefore, in order to obtain higher-fidelity

stability studies, profile-consistent magnetic equilibria are used in this work. That is to say,

the magnetic equilibrium is reconstructed at each value of β so that it is consistent with the

input plasma profiles.

The 3D magnetohydrodynamic equilibrium solver code VMEC34 is used to generate mag-

netic equilibria. The inputs to VMEC are given in terms of various geometry, resolution,

and convergence parameters, as well as the rotational transform ι(ρ) and pressure P (ρ) in

terms of the normalized toroidal magnetic flux ρ, and the total enclosed toroidal magnetic

flux Φ.

We consider axisymmetric and up-down symmetric magnetic geometries in this study.

The geometry of an axisymmetric magnetic equilibrium is specified by the geometry of the

boundary magnetic surface corresponding to the minor radius a of the tokamak poloidal

cross-section as35

R(θ) = R0 + a cos (θ + δ sin θ),

z(θ) = κa sin θ,

where R and z are the major radius and elevation coordinates, respectively, within a cylin-
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drical coordinate system, R0 is the major radius, θ is the poloidal angle coordinate,

δ =
R0 −Rzmax

a

is the up-down-symmetric triangularity, Rzmax is the value of R at zmax, zmax is the maximum

elevation of the boundary magnetic surface, and

κ =
zmax − zmin

2a

is the elongation. The input to VMEC is given in terms of the Fourier representation of

R(θ) and z(θ). We choose to keep both the rotational transform and the boundary of the

magnetic equilibrium fixed when varying β.

The remaining stages of the workflow are to convert the VMEC output to G EQDSK

format using the MConf36 tool, and to convert the G EQDSK format to EQD format using

XGC.

III. AN APPROXIMATION FOR THE INCLUSION OF

COMPRESSIONAL MAGNETIC PERTURBATION EFFECTS

A. Local verification

Global gyrokinetic simulations of magnetic fusion plasmas usually neglect the effects of

compressional magnetic perturbations, that is, the parallel component of the perturbed

magnetic field is chosen to be zero, δB‖ = 0. Compressional magnetic perturbations may

be included in global gyrokinetic simulations via standard19 and extended37–40 gyrokinetic

orderings, although doing so introduces additional complexity and expense relative to stan-

dard global gyrokinetic schemes.18,19 Alternatively, the effects of compressional magnetic

perturbations may be approximated by modifying the ∇B-drift7,13,18,20–24. This approxima-

tion has previously been shown to give excellent agreement with a full δB‖ model for certain

cases at conventional21 and high18 aspect ratio.

We have verified this approximation with the Cyclone Base Case41 (CBC) using the local

version of GENE. We choose to use the local version of GENE because it has the capability

to compare a full δB‖ model against an approximate δB‖ model, while XGC does not yet

have this capability.

6



The electromagnetic gyrokinetic equations25 solved by GENE take the ∇B-drift to be

v∇B0 =
1

Ω
b̂× v2⊥

2

∇B0

B0

(1)

=
1

Ω
b̂× v2⊥

2

[
(b̂ ·∇)b̂− 4π

B2
0

∇p

]
,

b̂ =
B0

B0

,

B0 = |B0|,

where we have used j × B0 = ∇p and Ampère’s law, and Ω is the gyrofrequency, v⊥ is

the particle speed perpendicular to the magnetic field, p is the plasma pressure, B0 is the

equilibrium magnetic field, and j is the plasma current density. To lowest order in β and

k⊥ρi, the inclusion of compressional magnetic perturbations cancels the pressure-dependent

part of the ∇B0-drift, thus, a lowest-order approximation for the inclusion of compressional

magnetic perturbations is to remove the pressure-dependent part of the ∇B0-drift.13,18,20,21,42

Using this approximation, Equation (1) becomes

v∇B =
1

Ω
b̂× v2⊥

2

[
∇B

B
+

4π

B2
∇p

]
.

The simulation parameters used are as follows. A Miller43 magnetic equilibrium is used

with parameters magnetic shear ŝ = 0.796, inverse aspect ratio ε = 0.18, and safety factor

q0 = 1.4, with α being set automatically such that it is consistent with β and the tem-

perature and density gradients of active species. Density and temperature length scales

R0/Ln = 2.22 and R0/LT = 6.96, respectively, are used with equal ion and electron tem-

peratures. Gyrokinetic deuterium ions and electrons with real electron mass are considered,

and collisions are not included. The mode kyρi = 0.2 is considered when performing a scan

over electron plasma β. This wavenumber corresponds to toroidal mode number n = 13,

if we take B0 = 2 T on axis, reference temperature Tref = 2.14 KeV, reference density

nref = 4.66 × 1019 m−3, reference length scale Lref = 1.67 m, and reference particle mass

mref = 2mp, where mp is the proton mass.33 βe = 3% is considered when performing a scan

over kyρi.

The growth rate and real frequency as a function of the electron plasma β and the mode

wavenumber kyρi are shown in Figures 1 and 2, respectively. In Figure 1, an ITG to KBM

transition is observed, which is in agreement with previous studies,18,33 and, in addition, a

second stability region is observed. Figure 2 is in qualitative agreement with Figure 2 of
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FIG. 1. (a) The normalized growth rate γR0/cs and (b) the normalized real frequency ωR0/cs as a

function of the electron plasma β for the Cyclone Base Case41 at wavenumber kyρi = 0.2 using the

local version of the gyrokinetic code GENE25 with a full δB‖ model, an approximate δB‖ model,

and δB‖ = 0, where R0 is the tokamak major radius and cs is the sound speed.
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FIG. 2. (a) The normalized growth rate γR0/cs and (b) the normalized real frequency ωR0/cs as

a function of the mode wavenumber kyρi for the Cyclone Base Case41 at βe = 3% using the local

version of the gyrokinetic code GENE25 with a full δB‖ model, an approximate δB‖ model, and

δB‖ = 0, where R0 is the tokamak major radius and cs is the sound speed.
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Reference 18. There is good agreement between the full δB‖ model and the approximate

δB‖ model, whereas a model that completely neglects δB‖ shows a significant disagreement.

B. Global cross-verification

1. Electromagnetic gyrokinetic Vlasov equation used in XGC

The electromagnetic gyrokinetic Vlasov equation44 used in XGC is

∂f

∂t
+ Ṙ ·∇f + u̇‖

∂f

∂u‖
= 0,

Ṙ =
D

B0

(
B∗

m

∂H

∂u‖
+

F ×B0

B0

)
, (2)

u̇‖ =
q

m

(
D
B∗

B0

· F −
∂As
‖

∂t

)
,

u‖ = v‖ +
q

m

〈
Ah
‖
〉
,

∂As
‖

∂t
= −b̂ ·∇φ,

D =
B0

B∗‖
=

1 +

mu‖
qB0

+

〈
As
‖

〉
B0

 b̂ ·∇× b̂

−1 ,
B∗ = ∇×A∗,

A∗ = A0 +

(
m

q
u‖ +

〈
As
‖
〉)

b̂,

H =
m

2
u2‖ + µB0 + q

(
〈φ〉 − u‖

〈
Ah
‖
〉)

+
q2

2m

〈
Ah
‖
〉2
,

F = −1

q
∇H = −µ

q
∇B0 −∇〈φ〉+ u‖∇

〈
Ah
‖
〉
− q

m

〈
Ah
‖
〉
∇
〈
Ah
‖
〉
, (3)

B∗‖ = b̂ ·B∗,

where f(Z, t) is the gyrocenter distribution function, Z = (R, u‖, µ), R is the gyrocenter

position, v‖ is the parallel velocity, q is the particle charge, m is the particle mass, angle

brackets denote the gyroaverage, Ah
‖ is the Hamiltonian component of A‖, A‖ is the parallel

component of the perturbed magnetic potential, µ is the magnetic moment, t is time, As
‖ is

the symplectic component of A‖, and φ is the perturbed electrostatic potential.

Once again, to lowest order in β and k⊥ρi, the inclusion of compressional magnetic per-

turbations cancels the pressure-dependent part of the ∇B0-drift, thus, a lowest-order ap-
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proximation for the inclusion of compressional magnetic perturbations is to remove the

pressure-dependent part of the ∇B0-drift.13,18,20,21,42 Using this approximation, Equations

(2) and (3) become

Ṙ =
D

B0

(
B∗

m

∂H

∂u‖
+

F ×B0

B0

+
µ

q
B0∇× b̂

)
,

F = −1

q
∇H = −∇〈φ〉+ u‖∇

〈
Ah
‖
〉
− q

m

〈
Ah
‖
〉
∇
〈
Ah
‖
〉
.

The field equations44 remain unmodified and, for completeness, we include them here.

The Poisson equation in the long-wavelength limit is

−∇ · mini0

B2
0

∇⊥φ = qi〈ni〉+ qene,

where the subscripts “i” and “e” denote ions and electrons, respectively, ni0 is the background

ion density, and n is the density. The Ampère equation is

−∇ · ∇⊥Ah
‖ + Ah

‖

∑
s=i,e

µ0n0q
2
s

ms

= µ0

(
〈j‖i〉+ j‖e

)
+∇ · ∇⊥As

‖,

where µ0 is the vacuum magnetic permeability, and j‖ is the parallel current density, which

is given by the first u‖ moment of the distribution function.

2. Cross-verification

Cross-verification has been performed using the global gyrokinetic code XGC and the

global versions of the gyrokinetic codes GEM45 and GENE, where all three codes used the

same δB‖ model. Cross-verification between XGC, GEM, and GENE has previously been

performed for ITGs, CTEMs, and KBMs.16,32 We emphasize that GEM and GENE are only

used here for cross-verification purposes, and only XGC is used for physics studies.

The plasma model that is used is based on that in Reference 32, which was designed to

save computing resources when performing physics parameter scans using numerous global

gyrokinetic simulations. We refer to this case as the Economical Cyclone Base Case (ECBC),

as the ratio of the ion gyroradius to tokamak minor radius ρ∗ is approximately 1/50, com-

pared to approximately 1/180 for the CBC. We define the magnetic equilibrium as R0 = 2.8

m, a = 1.0 m, κ = 1.0, δ = 0.0, B0 = 0.2364 on axis, safety factor (Figure 3)

q = 0.8241 + 0.9220ψN + 1.390ψ2
N,
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FIG. 3. Safety factor q as a function of the normalized poloidal magnetic flux ψN for the case

described in Subsection III B.

and pressure

P = 2neT,

where ne is the electron density and T is the ion and electron temperature. We define the

βe(ψN = 0.5) = µ0ne(ψN = 0.5)Te(ψN = 0.5)/B2
0 = 0.5% electron density and temperature
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profiles (Figure 4) as

ne =
1

2
(ne1 + ne2) +

1

2
(ne1 − ne2) tanh

[
2

(ne3 − ψN)

ne4

]
,

ne1 = 7.483× 1017 m−3,

ne2 = 5.483× 1017 m−3,

ne3 = 0.5,

ne4 = 0.5,

T =
1

2
(T1 + T2) +

1

2
(T1 − T2) tanh

[
2

(T3 − ψN)

T4

]
,

T1 = 3.14 keV,

T2 = 1.14 keV,

T3 = 0.5,

T4 = 0.5,

respectively. The density profiles for other βe values were obtained by scaling ne, and

these were then used when reconstructing the magnetic equilibria. We consider gyrokinetic

hydrogen ions and drift-kinetic electrons with real electron mass. The toroidal mode number

considered is n = 6, which corresponds to kθρi = 0.36.

The simulation parameters used by XGC are as follows. All toroidal mode numbers were

filtered out except n = 6, and only poloidal modes in the range |m − nq| ≤ 5 were kept.

There was no change in the results when using the alternative choice of only keeping poloidal

modes in the range |m/q−n| ≤ 3. This alternative choice may assist the formation of truly

global modes in high-q regions by increasing the range of poloidal modes that are included.

An ion time step ∆t = 2.5 × 10−2vA = 1.0 × 10−8 s was used, where vA is the Alfvén time

for the βe = 0.5% case at ψN = 0.95, and electrons were subcycled6 at a quarter of this time

step, with the field solver being executed at every ion time step. An unstructured triangular

mesh46 with a spacing ∆l = 0.5ρi was used on each poloidal plane, where ρi is the thermal

ion gyroradius. Mesh nodes that are approximately field-aligned allow the use of a relatively

low toroidal resolution. The simulation domain was in the range 0 ≤ ψN ≤ 1.1, and the

perturbed fields were set to zero for ψN < 0.1 and ψN > 1. A one sixth torus was used in the

toroidal direction (a toroidal wedge model), with eight grid points in the toroidal direction

within this toroidal wedge. The maximum toroidal mode number that is supported by the

13
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FIG. 4. Electron density ne (top) and ion and electron temperature Ti,e (bottom) as a function of

the normalized poloidal magnetic flux ψN for the βe = 0.5% case described in Section III.
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FIG. 5. The maximum toroidal mode number nmax that is supported by the mesh as a function of

the normalized poloidal magnetic flux ψN for the βe = 0.5% case described in Section III.

mesh is

nmax =
mmax

q
,

where mmax is the maximum poloidal mode number that is supported by the mesh. This

is shown in Figure 5 for βe = 0.5%, where nmax is approximately equal to 24 within the

region of non-zero perturbed fields. Fields were solved in the long-wavelength limit.16,32 100

numerical markers per mesh vertex were used.

The growth rate and real frequency as a function of βe for the three codes involved in

this global cross-verification are shown in Figure 6. At low βe, modes propagating in the ion

diamagnetic direction are present, and these modes are stabilized as βe is increased. Thus,

we identify these modes as ITGs. The radial location of the mode is compatible with an

analytic estimate47 for the ITG growth rate, as shown in Figure 7 for XGC.

At approximately βe = 1%, the mode transitions from an ITG to a KBM. The transition

is characterized by a large, discontinuous increase in real frequency. As βe is increased
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FIG. 6. (a) Growth rate γ and (b) real frequency f as a function of electron plasma β for the global

gyrokinetic codes XGC and the global versions of the gyrokinetic codes GEM and GENE with the

same approximate δB‖ model for the case described in Section III. Positive frequency corresponds

to the ion diamagnetic direction, and the units correspond to the fields varying as eiωt, where ω is

the complex angular frequency.
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FIG. 7. The mode structure for the absolute value of the electrostatic potential |φ| as a function

of the normalized poloidal magnetic flux ψN is compatible with the an analytic estimate47 for the

growth rate γ of the ion temperature gradient mode at βe = 0.05% for XGC for the case described

in Section III, where arbitrary units are used for |φ| and γ.

further, there is destabilization and then stabilization of the KBM. The radial location of

the mode is compatible with the KBM drive, which is the normalized pressure gradient

α = −2µ0q
2R0∇P/B2

0 , as shown in Figure 8 for XGC.

There is reasonably good agreement between the three global gyrokinetic codes XGC,

GEM, and GENE. At βe = 5%, which is five times the critical βe, there is greater variation

between the three codes, but this is unsurprising this far from the transition. At higher βe,

it is likely that the significant Shafranov shift and flux-surface compression requires higher

resolution in order to obtain better agreement, especially given that one pair of codes (GEM

and GENE) agree for growth rate, whereas a different pair of codes (XGC and GEM) agree

for real frequency.

The radial location of the modes is shown as a function of βe in Figure 9 for XGC.
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FIG. 8. The mode structure for the absolute values of the electrostatic potential |φ| and the parallel

magnetic potential |A‖| as a function of the normalized poloidal magnetic flux ψN is compatible with

the kinetic ballooning mode drive, which is the normalized pressure gradient α = −2µ0q
2R0∇P/B2

0 ,

at βe = 2.5% for XGC for the case described in Section III, where arbitrary units are used for |φ|,

|A‖|, and α.

KBMs peak further outward radially than ITGs because of these two different modes having

different instability drives (Table I and Figures 7 & 8).

Example ITG and KBM mode structures from XGC are shown in Figure 10. The Shafra-

nov shift is significantly larger for the KBM cases than for the ITG cases. For example, for

the βe = 0.05% and βe = 2.5% cases, the major radius of the magnetic axis is Raxis = 2.88

m and Raxis = 3.11 m, respectively. The βe = 2.5% case was also run with 10 times as many

markers with XGC, and the differences in the growth rate and real frequency remained

within 5%.
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of the electron plasma β for XGC for the case described in Section III.

IV. SHAPING STUDY

Following the cross-verification of the simplified compressional mode formula, XGC has

been used to study on shaping effects at the NSTX aspect ratio. We emphasize that GEM

and GENE were only used for verification and cross-verification, while XGC was used for

physics studies.

The magnetic geometries that were used in this study are based on NSTX discharge

1325888,48,49 at 650 ms. This discharge is a highly shaped, high-performance enhanced

pedestal (EP) H-mode discharge. Three magnetic geometries were considered, as described

in Table II and shown in Figure 11. All of the geometries use the same aspect ratio as

NSTX discharge 132588. The first geometry has a circular cross-section. The second ge-

ometry has a highly elongated cross-section, with an elongation identical to that of NSTX

discharge number 132588. The third geometry has a highly elongated and highly triangular
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FIG. 10. Mode structures for the perturbed electrostatic φ (first column) and parallel magnetic

A‖ (second column) potentials in the (R, z) plane for the ITG at βe = 0.05% (top row) and the

KBM at βe = 2.5% (bottom row) from the global gyrokinetic code XGC for the case described in

Section III.

cross-section, with elongation and triangularity identical to that of NSTX discharge 132588.

NSTX discharge 132588 includes up-down asymmetry, especially in the edge region, due to

the divertor separatrix, however, up-down asymmetry is not included in any of the geome-

tries considered here. The magnetic field strength and safety factor profile (Figure 12) are

identical to that of NSTX discharge 132588 for all three geometries up to ψN = 0.99.

We define the βe(ψN = 0.5)=15% electron density and temperature profiles (Figure 13)
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Geometry Aspect ratio A Elongation κ Triangularity δ

Circular 1.4 1.0 0.0

Elongated 1.4 2.2 0.0

Elongated, triangular 1.4 2.2 0.55

TABLE II. The shaping parameters used for the magnetic geometries that were considered in the

shaping study described in Section IV.
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FIG. 11. The shapes of NSTX discharge 132588 and the magnetic geometries considered in the

shaping study described in Section IV.
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FIG. 12. Safety factor q as a function of the normalized poloidal magnetic flux ψN for the case

described in Section IV. The magnetic field strength on axis is B0 = 0.4370.

as

ne =
1

2
(ne1 + ne2) +

1

2
(ne1 − ne2) tanh

[
2

(ne3 − ψN)

ne4

]
,

ne1 = 7.6× 1019 m−3,

ne2 = 5.6× 1019 m−3,

ne3 = 0.5,

ne4 = 0.5,

T =
1

2
(T1 + T2) +

1

2
(T1 − T2) tanh

[
2

(T3 − ψN)

T4

]
,

T1 = 3.179 keV,

T2 = 1.179 keV,

T3 = 0.5,

T4 = 0.5,

respectively. For comparison, we show the βe profile for NSTX discharge 132588 in Figure
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of the normalized poloidal magnetic flux ψN for the case described in Section IV. For reference, we

include the electron density and temperature profiles for NSTX discharge 132588.

23



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N

1

2

3

4

5

6

7

8

9

10

e
 (

%
)

FIG. 14. The electron plasma β as a function of the normalized poloidal magnetic flux ψN for

NSTX discharge 132588.

14. The plasma profiles used in this study are very different from those of NSTX discharge

132588 and, as such, this study is purely an investigation of the impact of plasma shaping on

generic stability characteristics. Shaping effects in the strong gradients of the pedestal could

be very different. The density profiles for other βe values were obtained by scaling ne, and

these were then used when reconstructing the magnetic equilibria. We consider gyrokinetic

hydrogen ions and drift-kinetic electrons with real electron mass, whereas NSTX discharge

132588 used deuterium ions (not hydrogen), and also had carbon impurities present, which

are not simulated here, although this capability exists in XGC50 and will be used in the

future. Coulomb collisions are not included. The toroidal mode number considered in this

study is n = 20, which corresponds to kθρi = 0.95, where microinstability is generally strong.

The simulation parameters that were used were identical to those in Section III B 2,

apart from the following. All toroidal mode numbers were filtered out except n = 20.

∆t = 1.4 × 10−2vA = 1.4 × 10−8 s was used, where vA is defined for the βe = 15% case at
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FIG. 15. The maximum toroidal mode number nmax that is supported by the mesh as a function

of the normalized poloidal magnetic flux ψN for the n = 20 elongated, triangular geometry case at

βe = 15% that is described in Section IV.

ψN = 0.95. A one twentieth torus was used. The maximum toroidal mode number that is

supported by the mesh for the elongated, triangular geometry case at βe = 15% is shown in

Figure 15.

The growth rate and real frequency as a function of electron plasma β are shown in Figure

16. We first discuss the results for which approximate δB‖ effects were included.

For all three geometries at βe = 1%, a collisionless trapped electron mode (CTEM) is

present. The mode is characterized by ballooning parity and a frequency that is in the

electron diamagnetic direction.

For the circular geometry case, as βe is increased, there is a CTEM to CMTM transition.

The transition is characterized by an increase in growth rate, a relatively large increase in

the magnitude of the frequency, which remains in the electron diamagnetic direction, and a

change from ballooning to tearing parity. CMTMs are present up to βe = 20%. Example
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FIG. 16. (a) Growth rate γ and (b) real frequency f as a function of electron plasma β for

the shaping study described in Section IV. Positive frequency corresponds to the ion diamagnetic

direction, and the units correspond to the fields varying as eiωt, where ω is the complex angular

frequency.
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CMTM mode structures for the circular geometry case are shown in Figures 17 and 18, where

some of the rational surfaces in the vicinity of the mode are indicated, and the confirmation

of tearing parity corresponding to this example is shown in Figure 19. One limitation of the

present study is that a convergence study to higher radial resolution may be required in order

to ensure a more accurate represention of the full spectrum of nonlocal CMTM behavior

that is supported by the configuration (i.e., kinetic electron dynamics across nearby high

mode-number rational surfaces), in addition to obtaining better agreement with analytic

estimates for growth rate and frequency. The circular geometry case has also been run for

βe = 30% and βe = 60%, where βe = 30% corresponds to approximately ten times the

critical βe. However, the simulations became numerically unstable before growth rates could

be reasonably determined because of extremely fast and unsteady initial growth that is

similar (βe = 30%) or exceeds (βe = 60%) the ion gyrofrequency at the outboard midplane.

The validity of gyrokinetic equations is limited to the physics of frequencies lower than the

gyrofrequency.51 For both the βe = 30% and βe = 60% cases, the mode parity indicated

that the modes that were numerically unstable were KBMs. A total-f simulation that has

significantly reduced time step and includes self-consistent background profile relaxation

may by necessary in order to handle these modes. This work will be reported elsewhere.

For the elongated geometry case, the CTEM branch continues up to βe = 15%, and

the CTEM to CMTM transition occurs at βe = 20%. The CMTM branch continues up to

βe = 30%. At βe = 60%, there is CMTM to KBM transition. The alternative possibility of

a CMTM to ITG transition may be ruled out as the transition occurs at a relatively high

value of βe, for which ITGs should be stabilized and KBMs destabilized. In other words,

elongation tends to suppress CMTMs. Example CTEM mode structures for the elongated

geometry case are shown in Figure 20.

For the elongated, triangular geometry case, the CTEM branch also continues up to

βe = 15%, however, instead of a CTEM to CMTM transition at βe = 15%, there is a CTEM

to KBM transition, and CMTMs are not observed. The transition is characterized by the

real frequency changing from being in the electron diamagnetic direction to being in the

ion diamagnetic direction. The alternative possibility of a CTEM to ITG transition may

be ruled out as the transition occurs at a relatively high value of βe, for which ITGs should

be stabilized and KBMs destabilized. Compared to the circular and elongated geometry

cases, the elongated, triangular geometry case exhibits only relatively small changes in the
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FIG. 17. The safety factor q and the absolute values of the electrostatic potential |φ| and the

parallel magnetic potential |A‖| as a function of the normalized poloidal magnetic flux ψN for the

CMTM at βe = 10% for the n = 20 circular geometry case described in Section IV, where some of

the rational surfaces is indicated.

growth rate and real frequency when transitioning between different modes through varying

βe. At the NSTX aspect ratio that was used in this study, the linear growth rates of

CMTMs and KBMs are all significantly reduced for the elongated and elongated, triangular

geometry cases compared to the circular geometry case. CMTMs are even suppressed in the

elongated, triangular geometry case compared to the elongated case, leaving the CTEMs

as the dominant modes around the experimental or lower βe ranges. The physical reason

for the relatively small changes in growth rate and suppression of CMTMs may be that the

addition of triangularity causes significant variation of the field line pitch, which stabilizes the

modes, however, further studies are required in order to provide a deeper understanding of

the stabilization mechanisms. Example KBM mode structures for the elongated, triangular
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FIG. 18. Mode structures for the perturbed electrostatic φ (top) and parallel magnetic A‖ (bottom)

potentials in the (R, z) plane for the CMTM at βe = 10% for the n = 20 circular geometry case

described in Section IV.
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the CMTM at βe = 10% for the n = 20 circular geometry case described in Section IV, where θ is

the geometric poloidal angle.

geometry case are shown in Figure 21.

Overall, both elongation and triangularity have significant stabilizing effects. This may

be due to an increase in good-curvature52 regions in the high-toroidicity configuration.

We now compare the results that included δB‖ effects with the results that did not include

δB‖ effects. For all three geometries at low βe, including δB‖ effects has a relatively small

effect, however, as βe is increased, the effect of including δB‖ effects is greater. The difference

in growth rate between including δB‖ effects and not including δB‖ effects is greatest for

the circular geometry case at high βe. The difference for the elongated geometry case at

high βe is approximately 10%, and the difference for the elongated, triangular geometry case

is approximately 30%. In general, including δB‖ effects results in higher growth rates and

real frequencies than when not including δB‖ effects. This is in agreement with previous

studies.7,11–15,18,21,23,24
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FIG. 20. Mode structures for the perturbed electrostatic φ (left) and parallel magnetic A‖ (right)

potentials in the (R, z) plane for the CTEM at βe = 15% for the n = 20 elongated geometry case

described in Section IV.

V. CONCLUSION

A workflow has been developed to perform scans over plasma β using profile-consistent

magnetic equilibria with the global gyrokinetic PIC code XGC, without the inclusion of

Coulomb collisions. This capability has been used in the cross-verification of an approxi-

mation for the inclusion of compressional magnetic perturbation effects between the global

gyrokintic code XGC, and the global versions of the gyrokinetic codes GEM and GENE.

XGC has then been used to study the effects of shaping on electromagnetic mode stabil-

ity at NSTX aspect ratio and high plasma β. The plasma profiles that were used were

based on standard CBC profiles. A toroidal mode number of n = 20 was used, where the

electromagnetic modes appear to be strong.

When the plasma cross-sectional shape is circular, it is found that CMTMs are dominant,

while the usual CTEMs are dominant in the low-βe limit. When a level of elongation that

is identical to that of NSTX discharge 132588 is added, the CMTMs are less dominant and

the CMTM critical βe
8 increases to the level of the experimental βe, meaning that, with

31



0.4 0.6 0.8 1 1.2 1.4

R/m

-1

-0.5

0

0.5

1

z
/m

-3

-2

-1

0

1

2

3

10
-13

0.4 0.6 0.8 1 1.2 1.4

R/m

-1

-0.5

0

0.5

1

z
/m

-1

-0.5

0

0.5

1

10
-19

FIG. 21. Mode structures for the perturbed electrostatic φ (left) and parallel magnetic A‖ (right)

potentials in the (R, z) plane for the KBM at βe = 30% for the n = 20 elongated, triangular

geometry case described in Section IV.

elongation alone, CMTMs can be marginally unstable.

When a level of triangularity that is identical to that of NSTX discharge 132588 is added,

CMTMs become stable, CTEMs become dominant at the experimental βe range, and then

transition to KBMs at or somewhat above the experimental βe. However, the linear KBM

growth rate becomes much lower than the value we are familiar with at the conventional

aspect ratio; there is no sudden explosive growth rate as the ion-scale modes (CTEMs in

this case) transition to KBMs. Thus, the present global gyrokinetic study does not provide

evidence that KBMs are a limiting factor to the βe or pressure gradient in the highly shaped,

high-performance EP H-mode discharge 132588 studied in the present work.

The simplified compressional magnetic perturbation model has been shown to be valid for

various cases at high aspect ratio (see Section III and References 18 and 21), however, this

validity is yet to be confirmed at low aspect ratio, although future work and experimental

evidence may be able to address this. In addition, the representation of CMTMs in this

study may be limited due to the coarse radial resolution used in the simulations.

No dominant ITGs were observed in any of the low-aspect-ratio cases, which is consistent
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with the expected stabilization effects due to reduced “bad-curvature” drive and strong

Shafranov shift at low aspect ratio,53,54 as well as EM stabilization effects.55 Even though

the profiles that were used in the shaping study are very different from those of NSTX

discharge 132588, the absence of ITGs is also consistent with the observation that ion thermal

transport in NSTX H-modes is typically observed to be described entirely by neoclassical

transport,56 that is to say, no anomalous transport or turbulent contributions are required.
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