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Several quantum hardware platforms, while being unable to perform fully fault-tolerant quantum
computation, can still be operated as analogue quantum simulators for addressing many-body prob-
lems. However, due to the presence of errors, it is not clear to what extent those devices can provide
us with an advantage with respect to classical computers. In this work we consider the use of noisy
analogue quantum simulators for computing physically relevant properties of many-body systems
both in equilibrium and undergoing dynamics. We first formulate a system-size independent notion
of stability against extensive errors, which we prove for Gaussian fermion models, as well as for a
restricted class of spin systems. Remarkably, for the Gaussian fermion models, our analysis shows
the stability of critical (gapless) models at zero temperature which have long-range correlations.
Furthermore, we analyze how this stability may lead to a quantum advantage, for the problem of
computing the thermodynamic limits of many-body models, in the presence of a constant error rate
and without any explicit error correction.

I. INTRODUCTION

Quantum information processing systems hold the
promise of solving a number of problems in physics and
computer science faster than their classical counterparts
[1, 2]. However, most quantum algorithms with theo-
retical performance guarantees require a fault-tolerant
quantum computer [3–5]. While in principle possible,
implementing a fault tolerant quantum computer is a
technological challenge that could still take a long time to
solve. This has motivated several investigations trying to
identify both quantum algorithms, as well as physically
relevant computational problems, that can be addressed
by quantum hardware in the near term and without any
explicit error correction.

Analog quantum simulators, wherein a target Hamilto-
nian is mimicked by an experimentally controllable sys-
tem, have shown some promise in solving problems aris-
ing in many-body physics in the near term [6–8]. From
a theoretical standpoint, several previous works have de-
veloped the notion of universal quantum simulators [9–
11]. More practically, they offer several distinct advan-
tages in solving many-body problems. First, in many
of those problems, there is no need for a universal gate
set to implement the target Hamiltonian, and thus the
requirements are much milder than those to build a quan-
tum computer. Furthermore, the simulation can be per-
formed just by letting the system evolve, without the
need to Trotterize the evolution into a quantum circuit,
which typically incurs in a rapid proliferation of errors
during the algorithm [7, 8, 12–14]. Moreover, since one
is typically interested in the thermodynamic limit, this
only requires obtaining the expectation values of certain
intensive quantities, like the energy or magnetization per
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lattice site. Even if the quantum state of the simulator
is orthogonal to the ideal one, those quantities may still
be correct, or have a small error, raising the expectation
that the degree of robustness required to be much lower
than for other problems in quantum computing.

These expectations make quantum simulators very
promising in providing some advantage with respect to
classical computers when addressing typical quantum
many-body problems that appear in different branches of
physics. However, the standard notion of quantum ad-
vantage [15–20], that deals with the computational effort
required to solve a problem as a function of the system
size, must be revisited since one may be interested in
the thermodynamic limit as opposed to a finite system
[21, 22]. Additionally, the fact that quantum simula-
tors do not implement error correction casts doubts on
their applicability and has to be carefully taken into ac-
count. More specifically, analog quantum simulators in
most applications try to implement a target Hamiltonian
H which is typically geometrically local i.e. H =

∑
α hα,

with ‖hα‖ ≤ 1. Each term hα is implemented by en-
gineering local interactions between different subsystems
in the quantum simulator. In practice, however, each of
these local interactions are slightly different from their
target. Consequently, the quantum simulator imple-
ments a perturbed HamiltonianH ′ = H+δ

∑
α vα, where

‖vα‖ ≤ 1 and δ measures the “hardware error” incurred
by the simulator locally. While a well designed experi-
mental setup can, in principle, achieve δ � 1, the total
error between H ′ and H grows with n, the number of
qubits in the quantum simulator (i.e. the problem size)
— ‖H ′ −H‖ ∼ δpoly(n). Due to this proliferation of
errors, the error in the state of the quantum simulator,
relative to the target state, both for dynamics or ther-
mal equilibrium, will only be small if δ < O(1/poly(n))
— this could potentially limit the applicability to quan-
tum simulators to only small-scale problems.

In this paper we show that many physically relevant
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problems are stable and avoid this worst-case prolifera-
tion of errors, and thus can be addressed with the help
of quantum simulators without implementing any error
correction. We also propose a notion of quantum advan-
tage, in the presence of errors, for such problems, where
the figure of merit is the computational time to obtain
an intensive quantity in the thermodynamic limit with a
hardware-limited precision.

In order to address the stability with respect to noise,
we consider the quantum simulation of both equilibrium
and non-equilibrium problems. We first study geomet-
rically local Gaussian fermion models, and show that
k−local observables (or their weighted averages) are sta-
ble for the problem of constant-time dynamics. Fur-
thermore, when considering the ground state and Gibbs
state of Gaussian fermion models, we show that trans-
lationally invariant k−local observables are stable with-
out any restrictive assumptions on the spectrum of the
model — our results hold not only for gapped models,
but also for gapless models and without any assump-
tion on the frustration freeness of the model. Finally,
we also consider spin systems with geometrically local
interactions, and show that well-known locality proper-
ties [23–27] of these models imply stability of local ob-
servables in constant-time dynamics, ground states and
Gibbs states but with more restrictive assumptions on
the model (e.g. the Hamiltonian being stably gapped
for ground states, or exhibiting exponential clustering of
correlations for Gibbs states). Additionally, for Gaus-
sian fermion models, we numerically verify that the the
ground state problem is, in fact, stable to errors in both
the gapped and gapless cases, as is theoretically predicted
by our stability analysis. Based on these results, we hy-
pothesize that many physically relevant, gapped or gap-
less, models could potentially be within the reach of near-
term analogue quantum simulators.

Finally, we turn to the question of whether the class of
problems that are stable under errors on quantum simu-
lators also provide some advantage over the best known
classical algorithms for solving the same problems. Here,
instead of framing the algorithm run-time as a function
of system-size (i.e. the number of spins/fermions) and
the desired precision, we treat the system-size as a trun-
cation parameter introduced in approximating the more
physically relevant thermodynamic limit [21, 22]. This
allows us to express the run-time of the classical and
quantum algorithms in terms of a single parameter —
the precision in the approximated thermodynamic limit.
We argue that for many problems for which we have evi-
dence of stability to errors, we also expect an advantage,
with respect to precision, in using the quantum simulator
— in the absence of errors, for the problem of constant-
time dynamics this advantage is superpolynomial with
respect to precision and exponential with respect to evo-
lution time in two or higher dimensional local Hamiltoni-
ans, and for ground state computation it is exponential in
desired precision. In the presence of errors, there is a fun-
damental limit to the precision that can be achieved by

the quantum simulator which is determined by the hard-
ware error — the advantage of the quantum simulator
can then be assessed by scalings of the classical run-time
required to achieve this hardware-limited precision with
the hardware error.

II. STABILITY OF ANALOGUE QUANTUM
SIMULATORS

Abstractly, an analogue quantum simulation can be
considered to configure a target Hamiltonian H on
n−spins and measure an observable O on a state ρH asso-
ciated with this Hamiltonian (e.g. a state obtained from
an initial product state after evolution for finite time un-
der H, or the Gibbs state/ground state of H). The target
Hamiltonian can be expressed as a sum of terms each of
which correspond to interactions between groups of spins
i.e.

H =
∑
Λ

hΛ. (1)

In an experimentally realistic setting, in the process of
configuring this target Hamiltonian, an error can be in-
curred in each term i.e. the Hamiltonian that is imple-
mented on the hardware is instead given by

H ′ =
∑
Λ

h′Λ, (2)

where we are only guaranteed that ‖hΛ − h′Λ‖ ≤ δ for all
Λ and for some δ — δ can be considered to be a measure
of the ‘hardware’ error incurred in the quantum simu-
lator. We note that since the number of terms in the
Hamiltonian in Eqs. 1 and 2 will typically be poly(n),
we can only guarantee that ‖H −H ′‖ ≤ δpoly(n) —
consequently, for the analogue quantum simulator to be
accurate without error correction, we would require the
hardware error to scale as 1/poly(n). This would typi-
cally make it intractable to obtain thermodynamic limits
accurately with analogue quantum simulators since the
hardware error would have to be made very small.

An alternative viewpoint would be to ask if there are
certain interesting many-body problems for which a good
estimate for the thermodynamic limit can be produced
with a hardware with constant errors. This motivates us
to look for ‘quantum simulation tasks’ which are stable
to an error in each term of the Hamiltonian, as made
precise in the following definition.

Definition 1 (Stable quantum simulation task). The
quantum simulation task on n spins of measuring an ob-
servable On in a state ρHn associated with a target Hamil-
tonian Hn is said to be stable if the corresponding state
ρH′n for the perturbed Hamiltonian H ′n satisfies

|Tr(OnρHn)− Tr(OnρH′n)| ≤ f(δ),

for some f , independent of n, such that f(δ) → 0 as
δ → 0.
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Hamiltonian implemented on 
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FIG. 1. Schematic depiction of our error model for ana-
logue quantum simulator. A target Hamiltonian H, expressed
as sum of Hamiltonian terms modelling interactions between
groups of spins, when implemented on an analogue quantum
simulator would have an error δ per term. The parameter δ
thus controls the accuracy of the hardware implementation.

Thus, if a quantum simulation task is stable as per this
definition, we can hope to be able to estimate the thermo-
dynamic limit of the observable on a quantum simulator
with the hardware error determined entirely by the pre-
cision desired in the thermodynamic limit. These prob-
lems would not require the hardware error to be scaled
down with system size even in the absence of error cor-
rection, and we can consider them to be problems that
analogue quantum simulators can conceivable solve in the
near term.

The stability of quantum simulation tasks for many-
body physics problems, while hard to prove rigorously,
can be intuitively understood. For simplicity, consider
the specific setting in which both the target Hamiltonian
H and V = H ′ − H are translationally invariant — in
this case, if the thermodynamic limit of an observable
(e.g. a local observable) O in a non-equilibrium or equi-
librium state associated with the translationally invariant
Hamiltonian H(s) = H + sV exists and is a continuous
function of s, then it can be seen that it is indeed stable
in the sense of definition 1. However, this argument falls
short of a full proof since in an actual experiment, even
for target Hamiltonians that are translationally invariant,
the presence of errors can make it translationally varying
thus making it hard to define its thermodynamic limit. In
particular, disorder can induce Anderson or many-body
localization which can even result in local observables be-
ing unstable. In the following sections, however, we show
that for several many-body problems, physically interest-
ing observables and order parameters are stable even to
translationally varying errors in the Hamiltonian.

III. STABILITY OF GAUSSIAN FERMION
MODELS

To make further progress on whether many-body sim-
ulation tasks can be considered to be stable in the sense
defined above, we consider physically relevant setting of
free-fermion models. We will consider fermions arranged

on a d−dimensional lattice with L sites in each direction
ZdL, and at each site we have D fermionic modes — we
denote by cαx for x ∈ ZdL, α ∈ {1, 2 . . . 2D} the Majo-
rana operators associated with each site x. We consider
a target Hamiltonian with local interactions given by

H =
∑

x,y∈ZdL
d(x,y)≤R

2D∑
α,β=1

hα,βx,y c
α
xc
β
y . (3)

where R is the range of interaction, and we assume
that all interaction strengths are bounded by a constant,
|hα,βx,y | ≤ J . Due to local hardware errors, the quantum
simulator instead implements a perturbed free-fermion
Hamiltonian H ′,

H ′ =
∑

x,y∈ZdL
d(x,y)≤R

2D∑
α,β=1

h′α,βx,y c
α
xc
β
y , (4)

such that

|hα,βx,y − h′α,βx,y | ≤ δ.

Generically, we expect ‖H −H ′‖ = Θ(n), where n =
2DLd is the total number of fermions. However, in
the following subsections, we show the stability of the
quantum simulation task of measuring several important
classes of observables, which include typical intensive or-
der parameters, in both dynamical and equilibrium states
of these models.

A. Finite-time dynamics

We are interested in the expectation value of Gaussian
observables O which are either k−local, i.e. they act on
a set S ⊆ ZdL of k sites

O0 =
∑
x,y∈S

2D∑
α,β=1

oα,βx,y c
α
xc
β
y , (5)

or weighted averages of k−local Gaussian observables

i.e. are of the form
∑M
i=1 wiOi, where Oi is of the form

Eq. 5,
∑M
i=1 |wi| = 1 and M can possibly grow with

n ∼ Ld.
We consider an arbitrary Gaussian initial state, and

let the target state ρH be the state obtained on evolving
it with H for time t. We show in Appendix B that

Proposition 1. The quantum simulation task of mea-
suring k−local Gaussian observables, or their weighted
sums, for constant-time dynamics under a spatially local
Gaussian Hamiltonian is stable with f(δ) = O(tδ).

We point out that the dependence of the error be-
tween the observable in perturbed and unperturbed
models on t is independent of the dimensionality
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of the lattice d — this result is thus stronger
than what would be expected simply from locality,
wherein the error would be expected to grow as t ×
(Number of sites in the light cone at time t) ∝ td+1 —
we revisit this in section IV.

B. Equilibrium

We next study the stability properties of the ground
state as well as the Gibbs state. We again consider the
target Hamiltonian described while studying the stability
of constant-time dynamics, but make an additional phys-
ically reasonable assumption on the density of modes of
the target Hamiltonian H.

Assumption 1. We assume that the number of eigen-
frequencies nη of H, which are eigenvalues of the matrix
hα,βx,y defining the target Hamiltonian, lying in the interval
[−η, η] satisfy the upper bound

nη ≤ nfh(η) + κ(η, n), (6)

where n = DLd is the number of fermionic modes, fh(η)
is some function which → 0 as η → 0 and κ(η, n) is o(n)
for any fixed η.

Physically, this assumption formalizes the expectation
that any frequency interval would have an extensive num-
ber of eigenmodes lying within it — we expect this to
be true for most physically relevant models. In particu-
lar, for translationally invariant models, such an estimate
would be true with fh(η) being governed by the deriva-
tives of the dispersion relation of the free-fermion bounds
near ω = 0.

The observables we consider while analyzing ground
states are translationally invariant Gaussian observables
generated k−locally, i.e., if O0 is a k−local observable of
the form of Eq. 5, then we consider observables of the
form

O =
1

n

∑
x∈ZdL

τx(O0),

where τx is the observable O0 translated by x. Consid-
ering the target state ρH to be the ground state of the
free-fermion Hamiltonian, we then obtain the following
proposition (proved in appendix C)

Proposition 2. The quantum simulation task of mea-
suring translationally invariant Gaussian observables
generated k−locally, in the ground state of a spatially lo-
cal free-fermion model whose density of modes satisfies
Eq. 6 is stable with f(δ) = O(

√
δ) + fh(O(δ1/4)).

We note that the stability result above holds very gen-
erally, with only a mild assumption on the density of
modes of the free-fermion model. In particular, it holds
for free-fermion models which are not gapped, i.e. the
energy separation between the ground state and the first

excited state decreases with n, as long as the observable
under consideration is translationally invariant.

The translational invariance of the observables con-
sidered here is key to obtaining the stability result for
ground states — translationally varying observables need
not be stable, even if they are intensive and spatially
local. A simple counter-example here is that of Ander-
son localization — consider H to be a 1D translationally

invariant tight-binding model i.e. H =
∑n−1
i=1 (a†i+1ai +

a†iai+1), with errors
∑n
i=1 δia

†
iai where vi is chosen uni-

formly at random between [−δ, δ]. In the absence of error,
the ground state of H is completely delocalized across
the spin-chain. In the presence of errors, no matter how
small, this model is known to be localized. Now, for ev-
ery δ1, δ2 . . . δn and , consider the translationally varying
intensive observable Oδ1,δ2...δn given by the average par-
ticle numbers on Θ(1/δ) sites around the site where the
ground state is localized. This observable, when mea-
sured in the delocalized ground state of the unperturbed
Hamiltonian H, yields an expected value of 0 as n→∞.
On the other hand, in the ground state of the perturbed
localized model it will yield an expected value of Θ(1).
Thus, not all translationally varying observables can be
stable, even if we restrict ourselves to free-fermion mod-
els, with the observables being intensive and spatially
local.

Finally, we consider the Gibbs state, ρH =
e−βH/Tr(e−βH) where the inverse-temperature β is a
constant independent of n, corresponding to the spa-
tially local free-fermion Hamiltonian above, and again
study the stability of translationally invariant Gaussian
observables that are generated k−locally. We show in
appendix D that

Proposition 3. The quantum simulation task of mea-
suring translationally invariant Gaussian observables
generated k−locally, in the Gibbs state at inverse-
temperature β of a spatially local free-fermion is stable
with f(δ) = O(β

√
δ).

We point out that, in contrast to the corresponding result
for ground state, this stability result corresponding to the
Gibbs state does not rely on an assumption on the density
of modes of the target Hamiltonian. However, f(δ) grows
with β, so this result does not directly imply the stability
of the ground state since β would in general have to be
increased with n for the Gibbs state to approximate the
ground state.

As an illustrative example to corroborate proposition
2, we numerically study the ground state of the free
fermionic Su–Schrieffer–Heeger (SSH) model on n fermi-
ions with periodic boundary condtion:

HSSH[J ] ≡
n∑
i=1

tia
†
iai+1 + H.c, ti =

{
1 i odd,

J i even.
(7)

where an+1 ≡ an. This model displays a (topological)
phase transition at J = 1, where the gap closes as 1/n,
and is gapped otherwise. We consider measuring the en-
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(b)

(c)

J = 0.5

J = 1.0

J = 1.5

(a)

FIG. 2. Numerical study of the error in intensive translation-
ally varying observable in the SSH model. The observable
that we study here is O = HSSH[J ]/n, where HSSH[J ] is the
Hamiltonian of the ideal SSH model (Eq. 7) (a) The error in
the expected value of the observable O in the ground state
between the perturbed and unperturbed Hamiltonians, as a
function of δ, the hardware-error, and the number of sites n.
For both gapped (J = 0.5, 1.5) and gapless (J = 1.0) cases, we
see that the error in O becomes independent of n as N →∞.
(b) Numerically extracted error between the perturbed and
unperturbed models for n → ∞ as a function of δ, and its
fit with δ2. (c) The error between the perturbed and unper-
turbed model as a function of J — for the same hardware
error δ, this error peaks at J = 1 which is also the point at
which the gap in the unperturbed model closes. All the er-
rors are computed by averaging over 500 random instances of
perturbed models.

ergy density HSSH[J ]/n of the unperturbed Hamiltonian
in the presence and absence of errors. Figure 2(a) shows
impact of changing system size on this energy density —
we see that for both gapped (J = 0.5, 1.5) and gapless
(J = 1.0) cases, the errors in the energy density becomes
independent of n as n→∞, verifying the expectation in
proposition 2. Furthermore, we show the error in the en-
ergy density for large n as a function of δ in Fig. 2(b) and
see that, consistent with proposition 2, this error → 0 as
δ → 0. Finally, Fig. 2(c) shows this error as a function
of J — we see the error peak near J = 1 (i.e. the point
where the gap in the Hamiltonian closes), and that it is
smaller for values of J where the model is gapped.

IV. STABILITY IN QUANTUM SPIN SYSTEMS

While for free fermion models, we could prove tight
stability results with minimal assumptions on the model,
looser stability results hold for quantum spin systems
under more restrictive assumptions on their many-body
spectrum. In this section, we outline several quantum

simulation tasks whose stability is a consequence of sev-
eral locality results that have already been established
in the many-body literature [23–30]. Our emphasis here
is to cross-examine these results from the standpoint of
quantum simulation, and discuss their implications on
noisy quantum simulators.

We restrict ourselves to spin systems that are spatially
local — n spins are arranged on a lattice L ⊂ Zd in
d−dimensions, and the Hamiltonian is of the form

H =
∑
x∈L

hx,

where hx only acts on spins within a distance R from x,
and ‖hx‖ ≤ J for all x. We consider different physically
relevant observables, and states (either ground states,
Gibbs states or states generated by constant-time dy-
namics) that are associated with H, and study the sta-
bility of the quantum simulation problem of computing
a local observable in these states.

A. Finite time dynamics

Consider first the setting where an initial state
(|0〉 〈0|)⊗n is evolved under the Hamiltonian H for a time
t that is independent of n — we are thus interested in
ρH = e−iHt(|0〉 〈0|)⊗neiHt. We consider observables O
that are either local (i.e. they only act non-trivially on
an n−independent subset of spins), or of the form

O = O1O2 . . . Ok, (8)

where O1, O2 . . . Ok are local and k is independent of n,
or

O =

M∑
i=1

wiOi,

where
∑M
i=1 |wi| = 1, Oi are of the form of Eq. 8 and

M can possibly grow with n. For these observables, the
stability of this quantum simulation task can be stated:

Proposition 4. The quantum simulation task of mea-
suring k−local observables, or their weighted averages,
for constant-time dynamics under a spatially local Hamil-
tonian is stable with f(δ) = O(td+1δ) + O(tδ logd(δ−1)).

The proof of this result, provided in appendix E is
straightforward and uses the Lieb-Robinson’s bounds
[23, 24] to approximate the Heisenberg picture evolu-
tion of local observables with that corresponding to the
Hamiltonian truncated within their light cones, and then
uses a perturbation theory bound on this truncated
Hamiltonian.

Note also that for large t, the error between the target
observable and the observable measured on the quantum
simulator grows as td+1 — this is looser than the corre-
sponding result in Gaussian fermion models (proposition
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1), where the error grows only as t. Furthermore, since
this error bound becomes loose with t, it prevents us from
using this result to understand the stability of quantum
simulation tasks which are aimed to studying the ground
state properties of many-body Hamiltonians, and use the
adiabatic algorithms [7] that evolve a Hamiltonian for
t ∼ poly(n). To address these problems, we consider the
stability of the ground state and Gibbs states of local
Hamiltonians using a different approach.

B. Equilibrium

We next study the stability of the task of simulating
the ground state and Gibbs states of H. We first consider
the problem of measuring k−local observables, and their
weighted averages, in the ground state. We assume that
H is gapped i.e. the energy difference between the ground
state and the first excited state is ≥ ∆ independent of
n. Furthermore, we also assume that the Hamiltonian
remains gapped in the presence of errors i.e. any Hamil-
tonian H ′ such that

H ′ =
∑
x∈L

h′x with ‖hx − h′x‖ ≤ δ for all x, (9)

is gapped with gap ∆ — we refer to such a target
Hamiltonian H to be stably gapped with gap ∆. We
point out that the stability of the gap in the presence
of errors or perturbations has only been shown for cer-
tain frustration free models with local topological order
[31–34], although we posit it as a reasonable physical
assumption. The stability of this quantum simulation
task is a direct consequence of the spectral flow method,
or quasi-adiabatic continuation, proposed by Hastings
and co-workers [25, 26] which shows that map taking
ground state of H to the ground state of H ′ can be well-
approximated by a local unitary. We thus obtain the
following proposition and we include a proof of this in
appendix F.

Proposition 5. The quantum simulation task of mea-
suring k-local observables, or their weighted averages, in
the ground state of stably gapped spatially local Hamilto-
nians is stable with f(δ) = O(δ).

We point out, again, that the choice of observables here
is crucial to having a stable quantum simulation prob-
lem — even for stably gapped Hamiltonians, non-local
observables would in general not yield a stable quantum
simulation task. A counter-example here would be the
unperturbed HamiltonianH =

∑n
i=1 Zi, and a perturbed

Hamiltonian H ′ =
∑n
i=1 Zi + δXi. It can be seen that

both these models are gapped for small δ — the gap of H
is 2, and gap of H ′ is 2

√
1 + δ2. However, the non-local

observable O = (|0〉 〈0|)⊗n, when measured in the ground
state of H is 1 and when measured in the ground state
of H ′ evaluates to (1+ δ2)−n/2 — thus, at any δ > 0, the
error in this observable → 1 as n→∞ showing that it is
unstable in the sense of definition 1.

We next consider the Gibbs state of H at some tem-
perature β independent of n, and assume that the Gibbs
state has an exponential clustering of correlation [27]
i.e. for any two observables A, B separated by distance
l,

|〈A⊗B〉 − 〈A〉〈B〉| ≤ ‖A‖‖B‖O(e−c2l),

for some constant c2. Furthermore, as in the case of
ground states, we assume that this exponential cluster-
ing of correlations is stable i.e. for any perturbation H ′ of
H of the form of Eq. 9, this exponential clustering prop-
erty holds. In this case, we again obtain that the problem
of measuring 1−local observables and their weighted av-
erages is stable.

Proposition 6. The quantum simulation task of mea-
suring 1-local observables, or their weighted averages, in
the Gibbs state of spatially local Hamiltonians with sta-
ble exponential clustering of correlations is stable with

f(δ) = O(log1−1/d(1/δ)e−Ω(log1/d(1/δ))
)
.

V. DISCUSSION: QUANTUM ADVANTAGE IN
THE THERMODYNAMIC LIMIT

In many problems in physics, the quantities of inter-
est are the value of certain intensive observables in the
thermodynamic limit i.e. when the system size n → ∞.
Thus, typical complexity arguments behind quantum ad-
vantage that rely on the scaling of the computational ef-
fort with the system size have to be revised and adapted
to this limit. One way of doing that is to concentrate
on the computational complexity of obtaining the ther-
modynamic limit as a function of a prescribed error, ε
[21, 22]. A quantum advantage can then be obtained if
the computational time on a quantum computer required
to reach a precision of ε scales more favorably with it than
with a classical computer. For instance, in a quantum
computer this scaling can be TQ = poly(1/ε) while in a

classical one Tcl = exp(log2(1/ε)) or Tcl = exp(O(1/ε)),
in which case we will respectively have a superpolyno-
mial or exponential quantum advantage. Furthermore,
even this notion of advantage relies on error-free com-
putation — for quantum simulation in the presence of
errors, a new notion of quantum advantage needs to be
introduced.

In this section we discuss potential advantage in quan-
tum simulations for dynamics and ground state problems.
First, we will consider the ideal (and unrealistic) situa-
tion where there are no errors. For dynamical problems
we will show that a quantum advantage can be reached
for the problem of computing the thermodynamic limit
in the sense described above. For ground state problems,
we will adopt a different perspective than the one an-
alyzed in Refs. [21, 22], where they consider the most
general scenario and even a quantum computer may re-
quire an exponential time in terms of the required er-
ror. Instead, we will consider promise problems where
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the many-body Hamiltonian fulfills physically reasonable
assumptions and discuss potential quantum advantage.
Most of our discussion is based on technical results re-
lated to locality estimates and analysis of adiabatic quan-
tum algorithms that can already be found in literature —
we focus on describing the implications of these results
for quantum simulation.

Next, we will consider the more realistic scenario where
the quantum simulator is subject to errors as analyzed in
the previous sections. There, we will argue that quantum
advantage has to be based on the classical computational
time required to obtain the value of the intensive observ-
able in the thermodynamic limit with the same error as
with the quantum simulator. Within this framework, we
will rely on the robustness results of the previous sec-
tions, to argue that quantum advantage can persist for
stable quantum simulation tasks even in the presence of
errors.

A. Quantum advantage for ideal quantum
simulators

Let us consider a many-body model defined as a fam-
ily of Hamiltonians {Hn}n∈N and observables {On}n∈N,
where Hn, On act on n−spins. We are interested in the
expected value of On in a many body quantum state
generated by the Hamiltonian Hn, ρHn . We furthermore
assume that the models and observables under consider-
ation have a well-defined thermodynamic limit i.e.

O∗ := lim
n→∞

Tr(ρHnOn) (10)

exists.
Examples of physically relevant ρHn would include the

states obtained on evolving an initial state of n spins after
some time t, the Gibbs state corresponding to Hn or the
ground state of Hn. We will mostly focus on families of
local Hamiltonians

Hn =
∑
x∈ZdLn

hx, (11)

where hx acts on spins in a cube of unit length with x
being its lower left corner and satisfies ‖hx‖ ≤ J for some
J > 0. Typically, one considers translationally invariant
models, where hx is just some h0 translated to the po-
sition x. We will also only consider here observables On
are then acting on a single or few lattice sites.

Now, given a precision ε, we can then choose n(ε) such
that

|O∗ − Tr(OnρHn)| ≤ ε, (12)

i.e. approximate the thermodynamic limit by a finite-
size problem. The run-time of a quantum simulation or
a classical simulation for the finite-size problem can thus
be expressed in terms of the precision ε demanded in the
thermodynamic limit. This allows us to then compare
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FIG. 3. An erroneous quantum simulator can obtain the ther-
modynamic limit of the perturbed model to a precision ε′ in
time poly(1/ε′) — this thermodynamic limit, however, can
have an error f(δ) from the target thermodynamic limit in
the presence of hardware error δ.

the scalings of the run-time of these algorithms with the
precision ε, and declare an algorithm to have an advan-
tage in precision compared to others depending on their
respective scaling.

We note that there are classical algorithms which di-
rectly operate in the thermodynamic limit [35, 36]. We
will not consider them here, since for ground state prob-
lem in dimensions higher than two, it is not possible to
give rigorous scalings, and for dynamical ones they give
the same scaling as the ones considered here.

1. Finite time quantum dynamics

We consider first an initial product state |0〉⊗n, and

for t > 0, we take ρHn = e−iHnt
(
|0〉 〈0|

)⊗n
eiHnt. The

observable of interest is a local observable O.
The existence of the thermodynamic limit is obtained

directly using the Lieb-Robinson bounds [23, 24], and it
also characterizes the error between the thermodynamic
limit and its finite-size approximation.

Lemma 1. For the problem of computing a local ob-
servable O∗ after evolving |0〉⊗n for finite-time t with
respect to a nearest-neighbour Hamiltonian exists and ful-
fills Eq. 12 for n = Θ(logd(1/ε) + td).

On a quantum simulator, one would evolve n =
Θ(logd(1/ε)+ td) qubits for a time t and measure the ob-
servable. The procedure would be repeated M times, so
that the error in the observable would decrease as 1/M2.
In order to obtain an error ε, the computation time would
then be O(t/ε2)

On a classical computer, in general, we would have to
compute the quantum state on O(logd(1/ε) + td) spins.
Using exact methods, this would require a run-time that

scales as 2O(logd(ε−1))+td . For a fixed time t, in two or
higher dimension, this run-time would be superpolyno-
mial in 1/ε and exponential in t. One could also use
other classical methods that obtain a better scaling with
the required precision. For instance, in Ref. [37] a method
based on cluster expansion was analyzed and which the
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computational time scales as poly(n), although super-
exponentially with time. Compared to such a classical
algorithm, the quantum advantage is super-exponential
with respect to evolution time t.

2. Ground state

Consider next the problem of estimating local observ-
ables in the ground state of many-body Hamiltonians
in the thermodynamic limit. The convergence rate of
a finite-size approximation of a local observable to its
thermodynamic limit for the ground state problem is ex-
pected to depend on whether the model is gapped (and
hence the ground state has exponentially decaying cor-
relations [28, 29]) or gapless. While it is generally hard
to rigorously characterize the rate of convergence of a
finite-size approximation to the thermodynamic limit for
ground states, it is physically reasonable to consider the
following cases:

• Logarithmic Convergence: n = logd(1/ε),
where d is the lattice dimension.

• Power-law Convergence: n = poly(1/ε).

The first case is expected to hold for gapped models. In
fact, under the local topological quantum order condi-
tion [31, 33, 34], one can easily show that this is the case.
The second case is expected to hold for critical (gapless)
models. For instance, for the Gaussian fermionic Hamil-
tonians analyzed in the previous section this is the case,
under very general conditions for the Fermi surface.

Furthermore, to ensure that there is a quantum algo-
rithm that reaches the ground state we will assume that
Hn is adiabatically connected to a family of Hamiltoni-
ans H0

n with efficiently preparable ground states with a
minimal gap, ∆n along the adiabatic path, fulfilling

• Power-law Gap: ∆n ≥ 1/poly(n).

This ensures that using the adiabatic algorithm one can
reach the ground state within an error ε in a time
TQ = poly(n, 1/ε), or TQ = poly(1/ε) if framed entirely
in terms of the precision of the thermodynamic limit1.
This scaling of the gap is expected to hold for critical
systems as well.

We expect that, generically, classical algorithms to
compute a ground state observable would be no bet-
ter than exactly diagonalizing a finite-size Hamilto-
nian. Thus, under the Power-Law Gap and Logarith-
mic convergence conditions, a classical computer would

1 Note that we could have also considered a constant gap, in
which case, at least under certain further assumptions on the
Hamiltonian, it is provably possible to reach the ground state in
TQ = polylog(n, 1/ε) [38].

require time exp(O(logd(1/ε))) and thus one would ob-
tain a superpolynomial quantum advantage using a quan-
tum simulator. Instead, under the Power-Law Conver-
gence conditions, a classical computer would require time
exp(O(poly(1/ε))) thus yielding an exponential quantum
advantage using a quantum simulator.

B. Quantum advantage for noisy quantum
simulators

As argued above, in the absence of errors, we expect a
quantum simulator to provide an advantage over classi-
cal algorithms for computing thermodynamic limits. The
presence of errors, however, sets a limit on the precision
that can be obtained by quantum simulators. In the er-
ror models analyzed in previous sections, such a limit is
determined by the hardware error δ. In time poly(1/ε′),
the quantum simulator is expected to compute the ther-
modynamic limit of the perturbed model to a precision
ε′ — the precision of the target thermodynamic limit ob-
tained is thus upper bounded by

ε ≤ O(max(ε′, f(δ))),

where f(δ) is given in Definition 1. From this, we imme-
diately see that in the presence of hardware errors, we do
not gain any benefit in precision by running the quantum
simulator beyond a time needed to obtain ε′ = f(δ) with
which we can expect to compute the target thermody-
namic limit to a precision of O(f(δ)). Based on the sta-
bility analysis of the previous subsections, we generically
expect f(δ) = poly(δ) for most stable many-body simu-
lation tasks, and thus to be able to obtain the thermo-
dynamic limit to a precision of O(poly(δ)), determined
entirely by the hardware error δ, in quantum-simulation
time O(poly(1/δ)).

A numerical illustration of this analysis is shown in
Fig. 4 — here, we use the adiabatic quantum algorithm
to find the energy density observable in the ground state
of the critical SSH model (i.e. Eq. 7 with J = 1). Figure
4(a) shows the convergence of the energy density observ-
able, in the absence of errors, to its thermodynamic limit
— we see that a power-law convergence is obtained, as
physically expected for gapless models. In Fig. 4(b), we
use a system-size that yields a precision of O(f(δ)), as
determined by the stability bounds on the ground-state
of this model, and simulate an adiabatic algorithm to find
the ground state in the presence of hardware error. We
see that, in the presence of errors, the accuracy in the
achieved precision is fundamentally limited by the hard-
ware precision δ — Fig. 4 shows the run-time of the adi-
abatic algorithm as a function of this hardware-limited
precision. We see that this run-time scales polynomially
with 1/ε, where ε is the hardware-limited precision that
is achieved by the adiabatic algorithm.

To define a notion of advantage in the presence of noise,
we can now compare the classical and quantum run-times
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n

(a) (b) (c)

FIG. 4. Numerical study of quantum adiabatic algorithm in the presence of error. We consider using the adiabatic algorithm to
find the energy density observable for the critical SSH model in the thermodynamic limit (TL). (a) Convergence of the energy
density to the thermodynamic limit as n→∞— the scaling of ε with n reveals a power-law scaling that is expected for gapless
models. (b) The adiabatic algorithm in the presence of hardware errors — the quantity being plotted is the error of the noisy
adiabatic algorithm from the thermodynamic limit of the noiseless model. The precision achieved by the adiabatic algorithm
is fundamentally limited by hardware errors. (c) The final precision (ε) achieved by an adiabatic algorithm in the presence of
errors as a function of the adiabatic algorithm run-time, confirming that T ∼ poly(1/ε) as expected from our analysis. Thus, on
decreasing the hardware error, the error achievable by the noisy quantum simulator decreases and the run-time of the quantum
algorithm increases at-most polynomially.

needed to achieve this hardware-limited precision. As-
suming f(δ) = poly(δ), it follows from the discussion in
the previous subsection that we would need classical run-
times that are either superpolynomial or exponential in
poly(1/δ) to achieve the precision that can be achieved by
quantum simulators in time poly(1/δ). If δ is decreased
by a constant factor, then the run-time of the quantum
simulator will only increase at-most polynomially with
this factor, while the run-time of the classical simulator
will increase by a super-polynomial or exponential factor.

More specifically, in the case of dynamics, we can
evolve the noisy quantum-simulator for time t =
O(δ−1/(d+2)) and, from proposition 4, we obtain an
error in local observable that → 0 as poly(δ). All
known classical algorithms, based either on exact meth-
ods or cluster expansion, will have a run-time which is
exp(O(poly(1/δ))) thus one would obtain an exponential
quantum advantage in the sense of the previous para-
graph. Similary, for the ground state, depending on
whether we have logarithmic or power-law convergence,
one would obtain a superpolynomial or an exponential
quantum advantage. We summarize our expectation of
noisy quantum advantage for the quantum simulation
task of dynamics and ground states in the table 1. This
table is based on both the stability results provided in the
previous two sections, as well as the scaling conjectured
above for the run-times of classical algorithms.

VI. CONCLUSION

We have considered both the stability and quantum
advantage of using near-term analogue quantum simu-
lators for thermodynamic limits of many-body problems
in physics. Based on both existing theoretical results in
many-body literature, and new technical results for free-
fermion models, we argue that many physically relevant
many-body problems are stable to a constant rate of er-

ror on the quantum hardware being used to solve them
and thus are accessible in near-term experiments. We
also hypothesize that these algorithms have an advan-
tage, with respect to the obtained precision, in comput-
ing thermodynamic limits of many-body problems. Our
formulation and results provides some evidence for near-
term analogue quantum simulators being useful for solv-
ing many-body problems.

Extending the stability results for gapless models to
the case of quantum spins, or non-Gaussian fermionic
systems is an immediate open problem suggested by our
work. While previous work by Hastings [25] indicates
that, under some assumption on the density of states of
the many-body model, such a stability result could hold
for gapless spin systems, it would be interesting to see if
restricting observables to being translationally invariant
could help improve these results. Furthermore, we have
assumed a coherent error model for analyzing stability of
quantum simulation task, future directions could include
expanding these results to incoherent error models. Fi-
nally, any progress on a rigorous analysis of impact of
errors on adiabatic quantum algorithms would help lay
current experimental efforts on a strong theoretical foun-
dation.
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Problem Stability Quantum
Run-Time
w.r.t hardware-
limited precision

Classical
Run-Time
w.r.t. hardware-
limited precision

Conjectured Ad-
vantage with re-
spect to hardware
errors

Constant time dynamics for
t = Θ(δ−1/(d+1))

Provable with f(δ) =

Õ(poly(δ))

Õ(poly(1/δ)) exp(O(poly(1/δ))) Exponential

Ground states of stably
gapped Hamiltonians with
logarithmic convergence and
power-law gap

Provable with f(δ) =
O(δ)

O(poly(1/δ)) exp(O(logd(δ−1)) Superpolynomial

Ground states of gapless
Hamiltonians with power-
law convergence and power-
law gap

Conjectured from
free-fermions with
f(δ) = O(poly(δ))

O(poly(1/δ)) exp(O(1/δ)) Exponential

TABLE I. Summary of stability, hardware-limited precision, classical and quantum run-times for thermodynamic limits in
many-body problems with respect to the hardware error δ, together with their conjectured quantum advantage in the presence
of noise.
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Appendix A: Notational preliminaries

The following is a list of notations that we will use for the mathematical proofs in the following appendices. Here
v denotes a vector, and A a matrix.

• ‖v‖p ≡ (
∑
i v
p
i )

1
p denotes the p-norm of the vector v (p = 2 is the Euclidean norm, for which we drop the

subscript, ‖·‖ ≡ ‖·‖2). In the p→∞ limit, it becomes the max norm, ‖v‖∞ ≡ maxi |vi|.

• ‖A‖op is the operator norm of A, i.e. the norm induced by the Euclidean vector norm, or the∞-Schatten norm.
‖A‖op,1 denotes the trace norm, i.e. the 1-Schatten norm of A.

• vec(A) denotes the vectorization of A, i.e. the vector whose components are the matrix elements of A.

• Unless otherwise mentioned, ‖v‖, where v is a vector, will denote their `2 norm and ‖O‖, where O is an operator,
will be its operator norm.

In the proofs relating to gaussian fermion models, for a hermitian operator O expressed as a quadratic form over the
Majorana operators cαx ,

O =
∑

x,y∈ZdL

2D∑
α,β=1

oα,βx,y c
α
xc
β
y ,

we will denote by Õ the matrix of coefficients oα,βx,y , with the indices (x, α) corresponding to the rows and (y, β)

corresponding to the columns. We will assume, without loss of generality and unless otherwise mentioned, that Õ is
a hermitian matrix with purely imaginary matrix elements.
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Appendix B: Proof of proposition 1 (Dynamics of free-fermion models)

We will need the following lemma on matrix norms:

Lemma 2. Let M be an n× n matrix such that (i) |Mij | ≤ δ, ∀i, j, and (ii) any row or column of M has at most r
nonzero elements. Then ‖M‖op ≤ rδ.
Proof. Let v = (vi) be a vector, and denote Ri ≡ {j|Mij 6= 0}, Cj ≡ {i|Mij 6= 0}. Then,

‖Mv‖2 =

n∑
i=1

∣∣∣∣ ∑
j∈Ri

Aijvj

∣∣∣∣2

≤
n∑
i=1

∑
j∈Ri

|Aij |2
∑
k∈Ri

|vk|2


≤ rδ2
n∑
i=1

∑
k∈Ri

|vk|2 = rδ2
n∑
k=1

∑
i∈Ck

|vk|2

≤ r2δ2‖v‖2 =⇒ ‖M‖op ≤ rδ.

Lemma 3. Given bounded Hermitian operators H and H ′, for any bounded operator O∥∥∥eiH′tOe−iH′t − eiHtOe−iHt∥∥∥
op
≤ 2‖O‖op‖H −H ′‖opt.

Proof. Consider the operator Õ(t) ≡ e−iHteiH′tOe−iH′teiHt. Note that

d

dt
Õ(t) = i

[
e−iHt(H ′ −H)eiH

′tOe−iH
′teiHt − e−iHteiH

′tOe−iH
′t(H ′ −H)eiHt

]
,

and consequently, ∥∥∥∥ ddtÕ(t)

∥∥∥∥ ≤ 2‖H −H ′‖‖O‖.

We then immediately obtain that∥∥∥eiH′tOe−iH′t − eiHtOe−iHt∥∥∥ ≤ ∫ t

0

∥∥∥∥ ddsÕ(s)

∥∥∥∥ ds ≤ 2‖O‖‖H −H ′‖t.

Proof (of proposition 1). Let H̃, Õ be the 2DLd × 2DLd matrices with elements hα,βx,y , o
α,β
x,y (see Eqs. (3)-(5)), and let

Γ0 be the correlation matrix in the Majorana basis corresponding to the initial state ρ0,

(Γ0)α,βx,y ≡
1

2
Tr (ρ0[cαx , c

β
y ]). (B1)

After evolving for time t, the expectation values of the unperturbed and perturbed observable are given by

〈O(t)〉H = Tr
(
Γ0e

iH̃tÕe−iH̃t
)

and 〈O(t)〉H′ = Tr
(
Γ0e

iH̃′tÕe−iH̃
′t
)
.

Using |TrA| ≤ Tr |A| = ‖A‖op,1, and Hölder’s inequality, ‖AB‖op,1 ≤ ‖A‖op,1‖B‖op, we have

|〈O(t)〉H − 〈O(t)〉H′ | ≤ ‖Õ‖op,1‖e−iH̃tΓ0e
iH̃t − e−iH̃

′tΓ0e
iH̃′t‖ ≤ 2t‖Õ‖op,1‖Γ0‖‖H̃ − H̃ ′‖,

where the second inequality follows from lemma 3. It only remains to prove that the last expression is independent
of lattice-size L. Observe that since O only acts on k sites, Õ has at most 2kD nonzero eigenvalues, thus

‖Õ‖op,1 ≤ 2kD‖Õ‖.

Furthermore, for any correlation matrix, ‖Γ0‖ ≤ 1. Finally, by assumption, H̃ − H̃ ′ is a matrix that satisfies the
conditions of lemma 2 (its elements are bounded by δ, and due to H,H ′ being local, it has at most 2DRd nonzero
elements per row and column), hence

‖H̃ − H̃ ′‖ ≤ 2DRdδ (B2)

and the proposition follows.
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Appendix C: Proof of proposition 2 (Ground states of local gaussian fermionic models)

In this appendix we will prove the stability of the expectation value of a translationally invariant, k-locally generated
Gaussian observable on the ground state of a quadratic Hamiltonian. We first provide a lemma that uses the translation
invariance of a local observable to provide an error bound.

Lemma 4. Consider a quadratic operator O which is translationally invariant and expressible as

O =
1

n

∑
x∈ZdL

τx(O0),

where n = Ld is the number of sites in ZdL, O0 is a quadratic operator with a support on at most k sites and τx is a
super-operator that translates an operator by x, then for any quadratic operator A0,∣∣Tr(O†A0)

∣∣ ≤ 4D2k

n
‖Õ0‖‖Ã0‖op,1.

Proof. We note that

Tr(Õ†Ã0) =
1

n

∑
x∈ZdL

Tr
(
Õ0τ

†
x(Ã0)) =

1

n

∑
x∈Zd

Tr
(
Õ0τ−x(Ã0)

)
.

Define A ≡ n−1
∑
x∈ZdL

τ−x(A0). We note that A is translationally invariant on the underlying lattice — consequently,

if F is the n × n Fourier transform matrix, then FD = F ⊗ I2D block diagonalizes Ã i.e. FDÃF
†
D will be a block

diagonal matrix with n blocks of size 2D × 2D. Then we use∣∣∣Tr(Õ†Ã0)
∣∣∣ =

∣∣∣Tr(F †DÕ
†FDF

†
DÃFD)

∣∣∣ ≤ ∥∥∥vec
(
F †DÕ0FD

)∥∥∥
∞

∥∥∥vec(F †DÃFD)
∥∥∥

1

where we have applied Hölder’s inequality to the norms of the vectorized matrices. Now we bound each of the factors
in the right hand side. Since the operator O0 has support only k sites, Õ0 only has 2Dk × 2Dk non-zero elements.
Suppose that ΠO0

is a diagonal matrix with 1s on the entries that correspond to non-zero elements of Õ0 — it then

follows that Õ0 = ΠO0
Õ0ΠO0

. We further note that if fi is the ith column of FD then∥∥∥vec
(
F †DÕ0FD

)∥∥∥
∞

= sup
i,j

∣∣∣f†i ΠO0
Õ0ΠO0

fj

∣∣∣ ≤ ‖Õ0‖ sup
i,j
‖ΠO0

fi‖‖ΠO0
fj‖ =

2Dk

n
‖Õ0‖,

where we have used that each entry of FD has magnitude 1/
√
n since it is the Fourier transform matrix. Next, since

F †DÃFD is block diagonal with N 2D × 2D blocks, and labelling by A1, A2 . . . AN these blocks, we obtain that

∥∥∥vec(F †DÃFD)
∥∥∥

1
=

N∑
i=1

‖vec(Ai)‖1 ≤ 2D

N∑
i=1

‖Ai‖op,1 = 2D
∥∥∥F †DÃFD∥∥∥

op,1
= 2D

∥∥∥Ã∥∥∥
op,1

.

where we have used ‖vec(M)‖1 ≤ n‖M‖op,1 for an n × n matrix2. Finally, since A =
∑
x∈ZdL

τ−x(A0)/N , it follows

that ‖Ã‖op,1 ≤ ‖Ã0‖op,1. Combining the above estimates, the lemma statement follows.

The correlation matrix Γ of the ground state of a quadratic Hamiltonian H with matrix of coefficients H̃ (see
Eq. (3)) is given by

Γ = sign(H̃),

where sign(x) = x/|x| for x 6= 0 and 0 for x = 03. The sign function applied on a matrix is to be understood
as an operator function i.e. as a function acting on the eigenvalues of the argument while keeping the eigenvectors

2 To see this, let σij ≡ sign(Mji). Then ‖σ‖op ≤ n‖vec(σ)‖∞ = n,
and ‖vec(M)‖1 = Tr(σM) ≤ ‖σ‖op‖M‖op,1 ≤ n‖M‖op,1.

3 The reader may be familiar with the equivalent formulation in
terms of complex fermions, where the function to be applied to
the Hamiltonian matrix to obtain the correlation matrix of the

ground state is of the Heaviside type, such that it populates
negative energy states and depopulates positive energy states.
The function of the sign function in the language of Majorana
fermions is exactly analogous.
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FIG. 5. (left) Truncated Fourier series approximation signM (x) to the sign(x) function, used in the proof of proposition 2.
(right) Truncated Fourier series approximation tM (x) to the tanh(βx) function (for β = 1), used in the proof of proposition 3.

unchanged. Our proof will rely on a Fourier series approximation to the sign function. Within the interval (−π, π),
we will investigate the approximation of sign(x) with signM (x), where

signM (x) =
M∑

n=−M
cne

inx where cn =
1

2π

∫ π

−π
sign(x)e−inxdx.

To analyze the error between signM (x) and sign(x), it is convenient to express signM (x) in terms of the Dirichlet
kernel,

signM (x) ≡
∫ π

−π
DM (x− y)sign(y)dy,

where

DM (x) ≡ 1

2π

M∑
n=−M

e−inx =
1

2π

sin[(M + 1/2)x]

sin(x/2)
.

Below, we provide two technical lemmas about the signM function — one that quantifies the approximation error
between it and the exact sign function, and the next that quantifies the maximum value of the signM function. Both
of these lemmas will be used for the perturbation theory analysis of the free-fermion ground state problem.

Lemma 5. For all η ≤ |x| ≤ π − η and M > 0,∣∣sign(x)− signM (x)
∣∣ ≤ 1

M
+

1

Mη
.

Proof. We first consider x ∈ [η, π]. We note that

signM (x) =

∫ π

0

DM (x− y)dy −
∫ π

0

DM (x+ y)dy.

Now, since
∫ π
−πDM (y)dy = 1, we obtain that∫ π

0

DM (x− y)dy = 1−
∫ π

0

DM (x+ y)dy,

and thus

|signM (x)− sign(x)| = 2

∣∣∣∣∫ π

0

DM (x+ y)dy

∣∣∣∣ .
Next, we apply integration by parts to obtain∫ π

0

DM (x+ y)dy =
1

π(2M + 1)

(
cos((M + 1/2)(π + x))

cos(x/2)
+

cos((M + 1/2)(π + x))

sin(x/2)
−

1

2

∫ π

0

cos((M + 1/2)(x+ y)) cos((x+ y)/2)

sin2((x+ y)/2)
dy

)
,
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and therefore ∣∣∣∣∫ π

0

DM (x+ y)dy

∣∣∣∣ ≤ 1

π(2M + 1)

(
1

|cos(x/2)|
+

1

|sin(x/2)|
+

1

2

∫ π

0

|cos((x+ y)/2)|dy
sin2((x+ y)/2)

)
≤ 2

π(2M + 1)

(
1

|cos(x/2)|
+

1

|sin(x/2)|
− 1

)
,

where in the last step we have used the integral

1

2

∫ π+x

x

|cos(y/2)|
sin2(y/2)

dy =
1

sin(x/2)
+

1

cos(x/2)
− 2.

Now, for x ∈ (η, π/2), |cos(x/2)| ≥ 1/
√

2 and |sin(x/2)| ≥ x/π ≥ η/π. Therefore, we obtain that∣∣∣∣∫ π

0

DM (x+ y)dy

∣∣∣∣ ≤ 2

π(2M + 1)

(√
2 +

π

η
− 1

)
.

While this bound is true for x ∈ [η, π/2], we note that both sign, signM satisfy f(x) = f(π − x) for x ∈ [0, π] and
consequently this bound also holds for x ∈ [π/2, π− η]. Finally, since for both sign, signM , f(x) = −f(−x), it follows
that this bound holds for [−π + η,−η] ∪ [η, π − η].

Lemma 6. For all x ∈ [−π, π],

|signM (x)| ≤ 5.

Proof. This proof is an adaptation of the standard technique based on Riemann integration that is used to treat Gibbs
phenomena in Fourier analysis. We repurpose that technique to provide error bounds as a function of M instead of
just concentrating on the asymptotic limit M → ∞. Again, we only consider x ∈ [0, π/2], and extend the bound on
|signM (x)| to the remaining interval by symmetry. We divide the interval [0, π/2] into [0, α0/M ]∪ [α0/M, π/2], where
α0 is a constant that we pick later.

Consider first x ∈ [α0/M, π/2]. An application of lemma 5 yields

|signM (x)| ≤ 1 +
2

π(2M + 1)

(√
2− 1 +

πM

α0

)
.

For large M , this bound scales as ∼ 1/α0 and thus does not allow us to provide an upper bound on signM (x) for x
close to 0. For this, we use the representation of signM (x) as a Fourier series which approximates a Riemann integral
of sin(t)/t. Consider x ∈ [0, α0/M) and let α = xM (α ≤ α0). Note that

signM (x) =
2

π

∑
k∈[1,M ]|k is odd

2

k
sin

(
kα

M

)

To bound the term in the summation, we observe that it is an approximation of the Riemann integral of sin(αx)/x
in the interval [0, 1]. In particular, since supx∈R |(sinx/x)′| ≤ 2, Taylor’s theorem yields that∣∣∣∣∣∣

∑
k∈[1,M ]|k is odd

2

k
sin

(
kα

M

)
−
∫ 1

0

sinαx

x
dx

∣∣∣∣∣∣ ≤ 4α2

M
≤ 4α2

0

M
.

Finally, we note that ∫ 1

0

sinαx

x
dx ≤ α ≤ α0.

Thus, we obtain that for x ∈ [0, α0/M),

|signM (x)| ≤ α0 +
4α2

0

M
.
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Thus, for the entire interval [0, π/2], we obtain that

|signM (x)| ≤ max

(
α0 +

4α2
0

M
, 1 +

2

π(2M + 1)

(√
2− 1 +

πM

α0

))
.

Since this holds for any α0, we choose α0 = 1. We then obtain that

|signM (x)| ≤ max

(
1 +

4

M
, 1 +

2

π(2M + 1)

(√
2− 1 + πM

))
≤ 5 for M ≥ 1.

Proof (of proposition 2). The expectation value of the observable O in the ground state of the Hamiltonian H is given
by

〈O〉H = Tr
(
Õ sign(H̃)

)
, 〈O〉H′ = Tr

(
Õ sign(H̃ ′)

)
.

Without loss of generality, we will assume that H̃, H̃ ′ are normalized so that ‖H̃‖, ‖H̃ ′‖ ≤ π
2 . This way all the

eigenfrequencies lie in the interval [−π2 ,
π
2 ]. Note that lemma 2 guarantees that this can be done with a constant

normalization factor, i.e. one that does not depend on the system size, and does not change the ground state (note
however that δ and fh would have to be rescaled accordingly). Now, from lemma 4, it follows that

|〈O〉H − 〈O〉H′ | ≤
4D2k

n
‖Õ0‖‖sign(H̃)− sign(H̃ ′)‖op,1.

Furthermore,

‖sign(H̃)− sign(H̃ ′)‖op,1 ≤
‖sign(H̃)− signM (H̃)‖op,1 + ‖sign(H̃ ′)− signM (H̃ ′)‖op,1 + ‖signM (H̃)− signM (H̃ ′)‖op,1.

We bound each term on the right hand side separately. Consider ‖sign(H̃)− signM (H̃)‖op,1 — denoting by λi the

eigenvalues of H̃ and for any η > 0, we can express it as

‖sign(H̃)− signM (H̃)‖op,1 =
∑

i|λi∈[−η,η]

|sign(λi)− signM (λi)|+
∑

i|λi /∈[−η,η]

|sign(λi)− signM (λi)|.

The motivation behind splitting the error into these two terms is that, within the interval [−π2 ,
π
2 ], the approximation

of sign (λ) by signM (λ) is only good outside the neighbourhood of 0 (see Fig. 5) — consequently, we treat the

eigenvalues of H̃ which lie within η radius of 0 separately from the rest. It now follows that from assumption 1 and
lemma 6 that ∑

i|λi∈[−η,η]

|sign(λi)− signM (λi)| ≤ 6nfh(η) + 6κ(η, n).

Furthermore, from lemma 5, ∑
i|λi /∈[−η,η]

|sign(λi)− signM (λi)| ≤
n

M

(
1 +

1

η

)
.

Therefore, we obtain that

1

n
‖sign(H̃)− signM (H̃)‖op,1 ≤ 6fh(η) + 6

κ(η, n)

n
+

1

M

(
1 +

1

η

)
.

We can similarly analyze ‖sign(H̃ ′)− sign(H̃ ′)‖op,1. Denote by λ′i the eigenvalues of H̃ ′ — it follows from Weyl’s

theorem that |λi − λ′i| ≤ ‖H̃ − H̃ ′‖op ≤ 2DRdδ (see Eq. (B2)). Consequently, for sufficiently small, but Θ(1), δ, we
obtain that ∑

i|λ′i∈[−η,η]

|sign(λ′i)− signM (λ′i)| ≤ 6nfh(η + 2DRdδ) + 6κ(η + 2DRdδ, n),
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and ∑
i|λ′i /∈[−η,η]

|sign(λ′i)− signM (λ′i)| ≤
n

M

(
1 +

1

η

)
.

Finally, we consider ‖signM (H)− signM (H ′)‖op,1 ≤ n‖signM (H)− signM (H ′)‖. Now, denoting by {cm}m∈Z the
Fourier series components of sign function, then

‖signM (H)− signM (H ′)‖ ≤
M∑

m=−M
|cm|‖eimH̃ − eimH̃

′
‖ ≤

M∑
m=−M

|mcm|‖H̃ − H̃ ′‖.

Using the explicit expression for cm, we can immediately conclude that |mcm| = 2/π when m is odd, and 0 when m
is even. Therefore, we obtain that

‖signM (H)− signM (H ′)‖ ≤ 2(M + 1)

π
‖H̃ − H̃ ′‖ ≤ 2(M + 1)

π
2DRdδ.

Combining all of these estimates, we obtain that

1

n
‖sign(H̃)− sign(H̃ ′)‖op,1 ≤ cMδ +

2

M

(
1 +

1

η

)
+ 6
(
fh(η) + fh(η + c′δ)

)
+ 6

(
κ(η, n)

n
+
κ(η + c′δ, n)

n

)
.

with c, c′ constants. Since this is valid for any η and M , choosing M = δ−1/2 and η = δ1/4, we obtain the proposition.

Appendix D: Proof of proposition 3 (Gibbs state of free-fermion models)

The correlation matrix of a thermal state of a quadratic Hamiltonian can be written in terms of the coefficient
matrix H of the latter as Γ = tanh(βH). Note that the β → ∞ limit yields the sign function, which was used in
the previous appendix to compute the ground state correlation matrix. Indeed, the reasoning here will be similar to
that of appendix C, replacing the sign function with the hyperbolic tangent. The next couple of lemmas discuss the
Fourier series approximation of tanhβx, defined as

tM (x) ≡
M∑

n=−M
cne

inx, where cn =
1

2π

∫ π

−π
tanhβxe−inxdx.

Lemma 7. For M ≥ 1, and x ∈
[
−π2 ,

π
2

]
,

|tM (x)− tanhβx| ≤ q(β)

M
,

where q(β) ≡ 12π2β3 + 2π2β2 +
(

2 + π2

2

)
β +

(
4
√

2
π + π2

2

)
= O(β3).

Proof. We fix the value of β and let t(x) be the 2π-periodic extension of tanhβx

t(x) ≡ tanhβ(x− 2nπ), x− 2nπ ∈ [−π, π], n ∈ Z (D1)

Once again, it will be convenient to represent tM (x) in terms of the Dirichlet kernel DM . We note,

tM (x) =

∫ π

−π
DM (x− y)t(y)dy =

∫ π

−π
DM (y)t(x− y)dy =

∫ π

−π
DM (y)t(x+ y)dy,

and therefore, using that the Dirichlet kernel is normalized, we write

t(x)− tM (x) =
1

2

∫ π

−π
DM (y) (2t(x)− t(x− y)− t(x+ y)) dy =

∫ π

0

DM (y)fx(y)dy,
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where in the last step we have defined fx(y) ≡ 2t(x) − t(x − y) − t(x + y). In the integration interval [0, π], fx(y)
is piecewise smooth with a single jump discontinuity at y = π − x. We thus split the integral into the two intervals
[0, π − x] and [π − x, π] and apply integration by parts in each of them. For the first one,∫ π−x

0

DM (y)fx(y)dy = − 1

π

cos
((
M + 1

2

)
y
)

2M + 1

fx(y)

sin y
2

∣∣∣∣∣
π−x

y=0

+
1

(2M + 1)π

∫ π−x

0

gx(y)
cos
((
M + 1

2

)
y
)

sin2 y
2

dy

where gx(y) ≡ 2 sin y
2f
′
x(y)−cos y2fx(y). To bound this expression, we will use the following properties of the functions

fx(y), gx(y) on the interval [0, π − x], where they are smooth:

fx(0) = f ′x(0) = 0, |fx(y)| ≤ 4, |f ′x(y)| ≤ 2β, |f ′′x (y)| ≤ 4β2, |f ′′′x (y)| ≤ 12β3,

gx(0) = g′x(0) = 0, |g′′x(y)| ≤ 24β3 + 4β2 + β + 1.

These bounds follow from direct computation, and in the case of gx(y) they are easiest to see when expressed in terms
of fx(y). They imply (via Taylor’s theorem with second order remainder) that

|gx(y)| ≤ (24β3 + 4β2 + β + 1)
y2

2

which together with sin2(y) ≥ y2

π2 will allow us to bound the integral. Putting it all together, we have∣∣∣∣∫ π−x

0

DM (y)fx(y)dy

∣∣∣∣ ≤ 4
√

2

(2M + 1)π
+

π2

(2M + 1)
(24β3 + 4β2 + β + 1)

Now we proceed on to the second interval y ∈ [π − x, π] and similarly integrate by parts,∫ π

π−x
DM (y)fx(y)dy = − 1

π

cos
((
M + 1

2

)
y
)

2M + 1

fx(y)

sin y
2

∣∣∣∣∣
π

y=π−x

+
1

(2M + 1)π

∫ π

π−x
gx(y)

cos
((
M + 1

2

)
y
)

sin2 y
2

dy.

Now the bound on gx(y) from Taylor’s theorem no longer holds, due to the discontinuity, but since y = 0 is not in
the integration interval, we can just use the constant bound |g(x)| ≤ 4β + 4 to obtain∣∣∣∣∫ π

π−x
DM (y)fx(y)dy

∣∣∣∣ ≤ 4
√

2

(2M + 1)π
+

4

(2M + 1)
(β + 1),

and putting everything together the lemma follows.

Lemma 8. If {cn}n∈Z are the Fourier series coefficients of tanhβx in the interval [−π, π], then for M ≥ 1

M∑
n=−M

|ncn| ≤ 2M(β + 1).

Proof. This follows by a straightforward manipulation of cn — note that c0 = 0, and for n 6= 0, we obtain from
integration by parts that

cn =
1

2π

∫ π

−π
tanhβx e−inxdx =

1

2π

(
2i

n
tanhβπ e−inπ +

β

in

∫ π

−π

e−inx

cosh2βx
dx

)
.

Consequently,

|cn| ≤
1

2π

(
2

n
+

2πβ

n

)
≤ β + 1

n
.

From this bound, the lemma follows.

Proof (of proposition 3). We bound the error between 〈O〉H,β and 〈O〉H′,β using the same procedure as for the ground
state (see appendix C) — the proof simplifies significantly because tanhβx does not have a discontinuity near x = 0
(unlike the sign function). From lemma 4 it follows that

|〈O〉H,β − 〈O〉H′,β | ≤
4D2k

n
‖Õ0‖‖tanhβH̃ − tanhβH̃ ′‖op,1.
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We again split

‖tanhβH̃ − tanhβH̃ ′‖op,1 ≤
‖tanhβH̃ − tM (H̃)‖op,1 + ‖tanhβH̃ ′ − tM (H̃ ′)‖op,1 + ‖tM (H̃ ′)− tM (H̃)‖op,1

We will assume once again that ‖H‖, ‖H ′‖ ≤ π
2 , so that from lemma 7, it follows that

‖tanhβH̃ − tM (H̃)‖op,1, ‖tanhβH̃ ′ − tM (H̃ ′)‖op,1 ≤
nq(β)

M
,

and

‖tM (H̃)− tM (H̃ ′)‖op,1 ≤ n‖tM (H̃)− tM (H̃ ′)‖op ≤ n
M∑

m=−M
|cm|‖eimH̃ − eimH̃

′
‖op.

Furthermore, from lemmas 3 and 2 we have ‖eimH̃ − eimH̃′‖op ≤ mcδ, where c = 2DRd. Thus, from lemma 8, it
follows that

‖tM (H̃)− tM (H̃ ′)‖op,1 ≤ 2nM(β + 1)cδ.

Thus, we obtain that for any M > 1,

|〈O〉H,β − 〈O〉H′,β | ≤ 4D2k‖O0‖op

(
2q(β)

M
+ 2(β + 1)cMδ

)
.

choosing M =
√
q(β)/c(β + 1)δ, we obtain the result.

Appendix E: Proof of proposition 4 (Dynamics of locally interacting spin systems)

We will need the following two lemmas:

Lemma 9 (Lieb-Robinson bounds, Ref. [24, 39]). Given a Hamiltonian defined on a lattice ZdL, H =
∑
α∈ZdLs

hα such

that ‖hα‖ ≤ J and hα acts on sites α′ such that d(α, α′) ≤ R, then there exist positive constants µ, v that depend only
on the lattice such that

(a) For any two operators A,B with support SA, SB and l = d(SA, SB),

‖[A(t), B]‖ ≤ |SA|‖A‖‖B‖e−µl
(
evJ|t| − 1

)
,

where A(t) = eiHtAe−iHt.

(b) For any local operator O with support SO, and for l > 0,

‖O(t)−Ol(t)‖ ≤ ‖O‖ |SO| e−µl
(
evJt − 1

)
,

where Ol(t) = eiHltOe−iHlt with Hl = H −
∑
α|d(Shα ,SO)≥l hα being the restriction of the Hamiltonian to a

region within distance l of SO.

Proof (of proposition 4). We consider the Hamiltonians H and H ′ represented as

H =
∑
α∈ZdL

hα, H ′ =
∑
α∈ZdL

h′α.

We have, by assumption, ‖hα − h′α‖op ≤ ε. Thus if ε < J , then for all α ∈ ZdL, ‖hα‖, ‖h′α‖ ≤ 2J . Now,

|〈O〉H,t − 〈O〉H′,t| ≤
∑

K∈{H,H′}

∥∥eiKtOe−iKt − eiKltOe−iKlt∥∥+
∥∥∥eiHltOe−iHlt − eiH′ltOe−iH′lt∥∥∥ .
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We note that by simply counting the number of sites in the support of the truncated Hamiltonian,

‖Hl −H ′l‖ ≤ (RO + 2R+ 2l)dε,

where RO = diam(SO). From lemma 3, it then follows that∥∥∥eiHltOe−iHlt − eiH′ltOe−iH′lt∥∥∥ ≤ 2εt‖O‖(RO + 2R+ 2l)d.

Using this together with the Lieb-Robinson bounds (lemma 9), we obtain that

|〈O〉H,t − 〈O〉H′,t| ≤ 2‖O‖|SO|e−µl
(
e2vJt − 1

)
+ 2εt‖O‖(RO + 2R+ 2l)d.

Choosing l = 2vJt/µ+ log(2J/ε)/µ, we obtain that

|〈O〉H,t − 〈O〉H′,t| ≤ ‖O‖
[
ε

J
|SO|

(
1− e−2vJt

)
+ 2εt

(
RO + 2R+

4vJt

µ
+

2

µ
log

(
2J

ε

))d]
,

which proves the proposition statement.

Appendix F: Proof of proposition 5 (Ground states of gapped local Hamiltonians)

We will apply the formalism developed in Ref. for spectral flows for families of gapped Hamiltonians. We are
interested in a target spatially local Hamiltonian H, expressed as

H =
∑
x∈L

hx,

where hx acts only on spins with a distance R of x ∈ L, and ‖hx‖ ≤ 1. The implemented Hamiltonian H ′ is assumed
to have a similar form,

H ′ =
∑
x∈L

(
hx + vx

)
,

where ‖vx‖ ≤ ε for all x ∈ L. We assume that H is stably gapped with gap ∆ i.e. any H ′ of the above form has
an energy gap between the ground state and the first excited state that is larger than ∆. We consider the family of
Hamiltonians, Hs, for s ∈ [0, 1], defined by

Hs = H + s(H ′ −H) =
∑
x∈L

hx + svx,

and note that the assumption of being stably gapped is equivalent to Hs being gapped, with the gap being larger
than ∆, for all s ∈ [0, 1]. Now, the spectral flow method allows us to construct a unitary U(s) that relates the ground
state |Gs=0〉 of Hs=0 = H to the ground state |Gs〉 of Hs as provided in the following lemma.

Lemma 10 (From Ref. [26]). Consider the unitary U(s) obtained from

d

ds
U(s) = iD(s)U(s) where D(s) =

∫ ∞
−∞

W∆(t)e−itHs(H ′ −H)eitHsdt,

where W∆ ∈ L1(R) is a real valued odd function which satisfies

(a) |W∆(t)| is bounded and satisfies

‖W∆‖∞ = sup
t∈R
|W∆(t)| = 1

2
. (F1)

(b) For t > 0, the function I∆(t) =
∫∞
t
|W∆(s)|ds satisfies

I∆(t) ≤ G(∆t), (F2)

where G(x) falls off faster than any polynomial as x→∞.
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Then, |Gs〉 = U(s) |Gs=0〉, where |Gs〉 is the ground state of H(s).

Proof (of proposition 5). Using this result, we can straightforwardly show the stability of the quantum simulation
task of computing a local observable in the ground state of H. To see this, we note that

|〈G0|O |G0〉 − 〈Gs|O |Gs〉| =
∣∣∣∣〈G0|

(
O − U†(s)OU(s)

)
|G0〉

∣∣∣∣ ≤ ‖O − U†(s)OU(s)‖ ≤
∫ s

0

‖[O,D(s′)]‖ds′.

It then remains to bound ‖[O,D(s′)]‖ — we can do this by following lemma 4.7 in Ref. [26], and we reproduce this
below — we start by noting that

‖[A,D(s′)]‖ ≤
∑
x∈L

∥∥∥∥∫ ∞
−∞

Wγ(t)[A, eitHsvx, e
−itHs ]dt

∥∥∥∥ .
For each term in this summation, we further split the integral and bound it as∥∥∥∥∫ ∞

−∞
W∆(t)[A, eitHsvx, e

−itHs ]dt

∥∥∥∥ ≤
∥∥∥∥∥
∫
|t|≤Tx

W∆(t)[A, eitHsvxe
−itHs ]dt

∥∥∥∥∥+

∥∥∥∥∥
∫
|t|>Tx

W∆(t)[A, eitHsvxe
−itHs ]dt

∥∥∥∥∥ .
For the first term, which only concerns with |t| ≤ Tx, we use the Lieb Robinson’s bound (lemma 9) and Eq. F1 to
obtain∥∥∥∥∥
∫
|t|≤Tx

W∆(t)[O, eitHsvxe
−itHs ]dt

∥∥∥∥∥ ≤ ‖O‖‖vx‖|SO|e−µd(SO,Svx )

∫ Tx

0

(evt − 1)dt ≤ ‖O‖‖vx‖|SO|
e−µd(SO,Svx )evTx

v
.

For the second term for |t| ≥ Tx, we use Eq. F2 together with the fact that W∆ is an odd function and the simple
bound ‖[O, eitHsvxe−itHs ]‖ ≤ 2‖O‖‖vx‖ to obtain that∥∥∥∥∥

∫
|t|≥Tx

W∆(t)[O, eitHsvxe
−itHs ]dt

∥∥∥∥∥ ≤ 2‖O‖‖vx‖
∫
|t|≥Tx

|W∆(t)| ≤ 2‖O‖‖vx‖G(∆Tx),

Note that Tx can be arbitrary in the above two estimates — choosing Tx = µd(SO, Svx)/2v, we obtain that∥∥∥∥∫ ∞
−∞

W∆(t)[O, eitHsvx, e
−itHs ]dt

∥∥∥∥ ≤ ‖O‖‖vx‖[ |SO|v e−µd(SO,Svx )/2 + 2G

(
∆µ

2v
d(SO, Svx)

)]
,

and therefore, for all s′ ∈ [0, s], we obtain that bound

‖[O,D(s′)]‖ ≤ ‖O‖ε
∑
x∈L

[
|SO|
v

e−µd(SO,Svx )/2 + 2G

(
∆µ

2v
d(SO, Svx)

)]
.

Noting that the summand in the above expression decreases faster than any polynomial in d(SO, Svx), we see that it
will be upper bounded by a constant independent of the size of the lattice L, thus independent of n. This proves the
proposition. �

Appendix G: Proof of proposition 6 (Gibbs state with exponential clustering of correlations)

We begin by presenting a proof of a standard bound on the perturbation of Gibb’s states of a Hamiltonian. This
can be found in , and we reproduce it here for the convenience of the reader.

Lemma 11. Suppose H and V are two Hermitian bounded operators, then for any β ≥ 0:

(a) The partition functions satisfy

Tr(e−β(H+V )) ≤ Tr(e−βH)eβ‖V ‖

(b) For any O � 0, it follows that

Tr
(
Oe−β(H+V )

)
≤ Tr

(
Oe−βH

)
exp

(
eβ(‖H‖+‖V ‖)‖V ‖

)
.
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Proof. (a) We will use the Duhamel’s formula, which states that for any differentiable bounded operator F (t),

d

dt
eF (t) =

∫ 1

0

e(1−u)F (t) dF (t)

dt
euF (t)dt.

Defining H(s) = H + sV , we note from the Duhamel’s formula that∣∣∣∣ ddsTr
(
e−βH(s)

)∣∣∣∣ = β

∣∣∣∣∫ 1

0

Tr
(
e−(1−u)βH(s)V e−uβH(s)ds

)
du

∣∣∣∣ = β

∣∣∣∣∫ 1

0

Tr
(
e−βH(s)V

)
du

∣∣∣∣ ≤ β‖V ‖op‖e−βH(s)‖op,1,

where we have used the Holder’s inequality in the last step. Noting that ‖e−βH(s)‖op,1 = Tr(e−βH(s)), we obtain that∣∣∣∣ ddsTr
(
e−βH(s)

)∣∣∣∣ ≤ β‖V ‖opTr
(
e−βH(s)

)
Therefore,

|log Tr(e−β(H+V ))− log Tr(e−βH)| ≤
∫ 1

0

∣∣∣∣ dds log Tr(e−βH(s))

∣∣∣∣ ds =

∫ 1

0

∣∣∣∣ 1

Tr(e−βH(s))

d

ds
Tr(e−βH(s))

∣∣∣∣ ds ≤ β‖V ‖op.

Thus, we obtain the lemma statement.

(b) We again use the Duhamel’s formula to obtain∣∣∣∣ ddsTr(Oe−βH(s))

∣∣∣∣ = β

∣∣∣∣∫ 1

0

Tr
(
Oe−(1−u)βH(s)V e−uβH(s)

)
du

∣∣∣∣ ≤ β ∫ 1

0

∣∣∣Tr
(
Oe−(1−u)βH(s)V e−uβH(s)

)∣∣∣ du
We note that∣∣∣Tr

(
Oe−(1−u)βH(s)V e−uβH(s)

)∣∣∣ =
∣∣∣Tr
(
e−βH(s)/2Oe−βH(s)/2e−(1/2−u)βH(s)V e−(u−1/2)βH(s)

)∣∣∣ ,
≤ Tr

(
e−βH(s)/2Oe−βH(s)/2

)
‖e−(1/2−u)βH(s)V e−(u−1/2)βH(s)‖,

≤ Tr
(
Oe−βH(s)

)
‖V ‖eβ(‖H‖+s‖V ‖).

where we have used the fact that since u ∈ [0, 1], |u− 1/2| ≤ 1/2. Therefore, we obtain that∣∣∣∣ dds log Tr
(
Oe−βH(s)

)∣∣∣∣ ≤ ‖V ‖eβ‖H‖eβs‖V ‖ =⇒
∣∣∣log Tr(Oe−βH)− log Tr(Oe−β(H+V ))

∣∣∣ ≤ ‖V ‖eβ(‖H‖+‖V ‖).

This estimate yields the lemma statement.

Lemma 12. Given bounded hermitian operators H and V , and any bounded hermitian operator (observable) O,∣∣∣∣Tr

(
Oe−βH

ZH(β)

)
− Tr

(
Oe−β(H+V )

ZH+V (β)

)∣∣∣∣ ≤ 2‖O‖op

( ∣∣∣exp(eβ(‖H‖+‖V ‖)‖V ‖)− 1
∣∣∣+

∣∣∣∣exp(β‖V ‖)− 1

∣∣∣∣)
Proof. This is a straightforward application of lemma 11. We denote by H ′ = H + V . For simplicity, we will analyze
the operator O′ = O + ‖O‖I — O′ � 0 and

Tr

(
O′e−βH

ZH(β)

)
− Tr

(
O′e−βH

ZH(β)

)
= Tr

(
Oe−βH

ZH(β)

)
− Tr

(
Oe−βH

ZH(β)

)
.

We begin by noting that∣∣∣∣∣Tr

(
O′e−βH

ZH(β)

)
− Tr

(
O′e−βH

′

ZH′(β)

)∣∣∣∣∣ ≤ Tr(O′e−βH)

ZH(β)

∣∣∣∣∣1− Tr(O′e−βH
′
)

Tr(O′e−βH)

∣∣∣∣∣+
Tr(O′e−βH

′
)

ZH′(β)

∣∣∣∣1− ZH′(β)

ZH(β)

∣∣∣∣
Noting that

Tr(O′e−βH)

ZH(β)
,

Tr(O′e−βH
′
)

ZH′(β)
≤ ‖O′‖op ≤ 2‖O‖op,
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we obtain that∣∣∣∣∣Tr

(
O′e−βH

ZH(β)

)
− Tr

(
O′e−βH

′

ZH′(β)

)∣∣∣∣∣ ≤ 2‖O‖op

( ∣∣∣exp(eβ(‖H‖+‖V ‖)‖V ‖)− 1
∣∣∣+

∣∣∣∣exp(β‖V ‖)− 1

∣∣∣∣)

We next need the notion of exponentially-clustered correlations in a Gibb’s state — which we reproduce below from
Ref. [27]. We will consider Hamiltonians on L ⊂ Zd expressed as

H =
∑
x∈L

hx,

where hx acts only on spins within a distance R of x ∈ L. We will denote by supp(hx) ⊆ L the support of hx. Given
X ⊆ L, we denote by HX the operator

HX =
∑

x|supp(hx)⊆X

hx,

i.e. HX is the Hamiltonian H obtained on restricting H to the set X.

Definition 2. A local Hamiltonian H is said to have exponential clustering of correlations at inverse-temperature β
if ∃c1, c2 > 0 such that for all operators X ⊂ L and A,B with supp(A), supp(B) ⊂ X with d(supp(A), supp(B)) ≥ l,∣∣Tr

(
A⊗BσX(β)

)
− Tr

(
AσX(β)

)
Tr
(
BσX(β)

)∣∣ ≤ c2‖A‖‖B‖e−c1l,
where σX(β) = e−βHX/Tr[e−βHX ] is the Gibb’s state corresponding to HX at inverse-temperature β.

An important property of Hamiltonians with exponential clustering of correlations, which relies on quantum belief
propagation [40] and is proved in Ref. [27], is that local observables can be estimated locally.

Lemma 13 (From Ref. [27]). Suppose H is a local Hamiltonian on a finite lattice L ⊂ Zd with exponential clustering
of correlations at inverse temperature β. If L = A ∪ B ∪ C such that dist(A, C) ≥ l, then ∃c′1, c′2 such that

‖TrB,C(σL(β))− TrB(σA∪B(β))‖tr ≤ |∂C|c
′
2e
−c′1l,

where σX(β) is the Gibb’s state corresponding to HX and ∂C is the boundary between B,C.

Proof (of proposition 6). We assume that both H and H ′ have exponential clustering of correlations and satisfy
lemma 13. Suppose O is a local observable with support SO and consider B to be a region around SO and C be the
remainder of the lattice. We also assume that d(C, SO) ≥ l, for some l to be chosen later. We denote by σl(β) and
σ′l(β) the Gibb’s state, at inverse temperature β, corresponding to HSO∪B and H ′SO∪B respectively, and by σ(β), σ′(β)
the Gibb’s state corresponding to H and H ′. Now, from lemma 13 it follows that

|Tr(Oσ(β))− Tr(Oσl(β))|, |Tr(Oσ′(β))− Tr(Oσ′l(β))| ≤ ‖O‖d(2l +RO)d−1c′2e
−c′1l,

where RO = diam(SO) and we have used that |∂C| ≤ d× diam(SO ∪B)d−1 ≤ d(2l+RO)d−1. Furthermore, lemma 12
can be used to bound |Tr(σl(β))− Tr(Oσ′l(β))|. We note that

‖HSO∪B −H ′SO∪B‖ ≤ δ(2l +RO)d and ‖HSO∪B‖ ≤ (2l +RO)d.

Therefore,

|Tr(σl(β))− Tr(Oσ′l(β))| ≤ 2‖O‖O(eβ(2l+RO)d(2l +RO)dδ).

Thus, from the triangle inequality we obtain the bound that

|Tr(σ(β))− Tr(Oσ′(β))| ≤ ‖O‖
[
O

(
(2l +RO)d−1e−c

′
1l

)
+O

(
eβ(2l+RO)d(2l +RO)dδ

)]
.

Choosing 2l +RO = Θ(log1/d(1/
√
δ)), we obtain that

|Tr(Oσ(β))− Tr(Oσ′(β))| ≤ ‖O‖O(log1−1/d(1/δ)e−Ω(log1/d(1/δ))
)
,

which proves the lemma statement. �
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