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Abstract
Formal models of learning from teachers need to respect certain criteria to avoid collusion. The
most commonly accepted notion of collusion-freeness was proposed by Goldman and Mathias
(1996), and various teaching models obeying their criterion have been studied. For each model M
and each concept class C, a parameter M -TD(C) refers to the teaching dimension of concept class
C in model M—defined to be the number of examples required for teaching a concept, in the worst
case over all concepts in C.

This paper introduces a new model of teaching, called no-clash teaching, together with the
corresponding parameter NCTD(C). No-clash teaching is provably optimal in the strong sense that,
given any concept class C and any model M obeying Goldman and Mathias’s collusion-freeness
criterion, one obtains NCTD(C) ≤M -TD(C). We also study a corresponding notion NCTD+ for
the case of learning from positive data only, establish useful bounds on NCTD and NCTD+, and
discuss relations of these parameters to the VC-dimension and to sample compression.

In addition to formulating an optimal model of collusion-free teaching, our main results are
on the computational complexity of deciding whether NCTD+(C) = k (or NCTD(C) = k) for
given C and k. We show some such decision problems to be equivalent to the existence question
for certain constrained matchings in bipartite graphs. Our NP-hardness results for the latter are of
independent interest in the study of constrained graph matchings.
Keywords: machine teaching, constrained graph matchings, sample compression

1. Introduction

Models of machine learning from carefully chosen examples, i.e., from teachers, have gained in-
creased interest in recent years, due to various application areas, such as robotics (Argall et al.,
2009), trustworthy AI (Zhu et al., 2018), and pedagogy (Shafto et al., 2014). Machine teaching
is also related to inverse reinforcement learning (Ho et al., 2016), to sample compression (Moran
et al., 2015; Doliwa et al., 2014), and to curriculum learning (Bengio et al., 2009). The paper at
hand is concerned with abstract notions of teaching, as studied in computational learning theory.

A variety of formal models of teaching have been proposed in the literature, for example, the
classical teaching dimension model (Goldman and Kearns, 1995), the optimal teacher model (Bal-
bach, 2008), recursive teaching (Zilles et al., 2011), or preference-based teaching (Gao et al., 2017).

∗. This is an extended version of (Kirkpatrick et al., 2019)
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In each of these models, a mapping T (the teacher) assigns a finite set T (C) of correctly labelled
examples to a concept C in a concept class C in a way that the learner can reconstruct C from T (C).
Intuitively, unfair collusion between the teacher and the learner should not be allowed in any formal
model of teaching. For example, one would not want the teacher and learner to agree on a total order
over the domain and a total order over the concept class and then to simply use the ith instance in
the domain for teaching the ith concept, irrespective of the actual structure of the concept class.

However, there is no general definition of what constitutes collusion, and of what constitutes
desirable or undesirable forms of learning. In this manuscript, we focus on a notion of collusion
that was proposed by Goldman and Mathias (1996) and that has been adopted by the majority of
teaching models studied in the literature. In a nutshell, Goldman and Mathias’s model demands that,
(i) the examples in T (C) are labelled consistently with C, and (ii) if the learner correctly identifies
C from T (C), then it will also identify C from any superset S of T (C) as long as the sample set
S remains consistent with C. In other words, adding more information about C to T (C) will not
divert the learner to an incorrect hypothesis.

Most existing abstract models of machine teaching are collusion-free in this sense. Historically,
some of these models were designed in order to overcome weaknesses of the previous models. For
example, the optimal teacher model by Balbach (2008) is designed to overcome limitations of the
classical teaching dimension model, and was likewise superseded by the recursive teaching model
(Zilles et al., 2011). The latter again was inapplicable to many interesting infinite concept classes,
which gave rise to the model of preference-based teaching (Gao et al., 2017). Each model strictly
dominates the previous one in terms of the teaching complexity, i.e., the worst-case number of
examples needed for teaching a concept in the underlying concept class C. In this context, one quite
natural question has been ignored in the literature to date: what is the smallest teaching complexity
that can be achieved under Goldman and Mathias’s condition of collusion-freeness? This is exactly
the question addressed in this paper.

Our first contribution is the formal definition of a collusion-free teaching model that has, for
every concept class C, the provably smallest teaching complexity among all collusion-free teach-
ing models. We call this model no-clash teaching, since its core property, which turns out to be
characteristic for collusion-freeness, requires that no pair of concepts are consistent with the union
of their teaching sets. A similar property was used once in the literature in the context of sample
compression schemes (Kuzmin and Warmuth, 2007), and dubbed the non-clashing property.

For example, consider a concept class (i.e., set system) C over the instance space {1, 2, 3, 4},
consisting of the four concepts of the form {i, (i + 1) mod 4} for 1 ≤ i ≤ 4. Then no-clash
teaching is possible by assigning the singleton set {(i, 1)} (interpreted as the information “i belongs
to the target concept”) as a teaching set to the concept {i, (i + 1) mod 4}; no two distinct concepts
are consistent with the union of their assigned teaching sets. Thus, in the no-clash setting, each
concept in C can be taught with a single example. By comparison, consider the classical teaching
dimension model, in which a teaching set for a given concept is required to be inconsistent with all
other concepts in the concept class (Goldman and Kearns, 1995). It is not hard to see that, under
such constraints, no concept in C can be taught with a single example; a smallest teaching set for
concept {i, (i + 1) mod 4} would then be {(i, 1), ((i + 1) mod 4, 1)}.

We call the worst-case number of examples needed for non-clashing teaching of any concept C
in a given concept class C the no-clash teaching dimension of C, abbreviated NCTD(C), and we
study a variant NCTD+(C) in which teaching uses only positive examples. In the example above,
NCTD = NCTD+ = 1, while the classical teaching dimension is 2.
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The value NCTD(C) being the smallest collusion-free teaching complexity parameter of C
makes it interesting for several reasons.

(1) NCTD represents the limit of data efficiency in teaching when obeying Goldman and Math-
ias’s notion of collusion-freeness. Therefore the study of NCTD has the potential to further our
understanding how collusion-freeness constrains teaching. It will also help to compare other no-
tions of collusion-freeness (see, e.g., (Zilles et al., 2011)) to that of Goldman and Mathias.

(2) An open question in computational learning theory is whether the VC-dimension (VCD),
(Vapnik and Chervonenkis, 1971), which characterizes the sample complexity of learning from
randomly chosen examples, also characterizes teaching complexity for some reasonable notion of
teaching. Recently, the first strong connections between teaching and VCD were established, cul-
minating in an upper bound on the recursive teaching dimension (RTD) that is quadratic in VCD
(Hu et al., 2017), but it remains open whether this bound can be improved to be linear in VCD.
Obviously, now NCTD is a much stronger candidate for a linear relationship with VCD than RTD
is. In fact, there is no concept class known yet for which NCTD exceeds VCD.

(3) The problem of relating teaching complexity to VCD is connected to the famous open prob-
lem of determining whether VCD is an upper bound on the size of the smallest possible sam-
ple compression scheme (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995) of a concept
class. Some interesting relations between sample compression and teaching have been established
for RTD (Moran et al., 2015; Doliwa et al., 2014; Darnstädt et al., 2016). The study of NCTD can
potentially strengthen such relations.

In addition, an important contribution of our paper is to link NCTD to the extensively devel-
oped theory of constrained graph matching. We show that the question whether NCTD+ = 1 is
equivalent to a very natural constrained bipartite matching problem which has apparently not yet
been studied in the literature. We proceed by proving that this particular matching problem is NP-
hard—a result that generalizes to larger values of NCTD+ as well as to NCTD. By comparison,
the question whether RTD+ = 1 or RTD = 1 can be answered in linear time.

To sum up, our new notion of optimal collusion-free teaching is of relevance to the study of
important open problems in computational learning theory as well as of fundamental graph-theoretic
decision problems, and therefore appears to be worth studying in more detail.

2. Preliminaries

Given a domain X , a concept over X is a subset C ⊆ X , and we usually denote by C a concept class
over X , i.e., a set of concepts over X . Implicitly, we identify a concept C over X with a mapping
C : X → {0, 1}, where C(x) = 1 iff x ∈ C. By VCD(C), we denote the VC-dimension of C.

A labelled example is a pair (x, `) ∈ X × {0, 1}, and it is consistent with a concept C if
C(x) = `. Likewise, a set S of labelled examples over X , which is also called a sample set, is
consistent with C, if every element of S is consistent with C. An example with the label ` = 1 is a
positive example, while ` = 0 is the label of a negative example.

Intuitively, the notion of teaching refers to compressing any concept in a given concept class to
a consistent sample set.

Definition 1 Let C be a concept class over a domain X . A teacher mapping for C is a mapping T
on C such that, for all C ∈ C, T (C) is a finite sample set S ⊆ X × {0, 1} that is consistent with C.
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The first model of teaching that was proposed in the literature required from a teacher mapping
T that the concept C ∈ C be the only concept in C that is consistent with T (C), for any C ∈ C
(Shinohara and Miyano, 1991; Goldman and Kearns, 1995). This led to the definition of the well-
known teaching dimension parameter.

Definition 2 (Shinohara and Miyano (1991); Goldman and Kearns (1995)) Let C be a concept
class over a domain X and C ∈ C be a concept. A teaching set for C (with respect to C) is a sample
set S such that C is the only concept in C consistent with S. The teaching dimension of C in C,
denoted by TD(C, C), is the size of the smallest teaching set for C with respect to C. The teaching
dimension of C is then defined as TD(C) = sup{TD(C, C) | C ∈ C}.

For example, let C be a concept class over a domain X of exactly m elements, containing
the empty concept, all singleton concepts over X , and no other concepts. Then TD({x}, C) = 1
for each singleton concept {x}, since {(x, 1)} serves as a teaching set for {x}. By comparison,
TD(∅, C) = m, since any set of up to m − 1 negative examples is consistent with some singleton
concept, so that all m negative examples need to be presented in order to identify the empty concept.
Consequently, TD(C) = sup{TD(C, C) | C ∈ C} = m.

As mentioned in the introduction, various notions of teaching have been proposed in the litera-
ture. The one that is most relevant to our work is the model of preference-based teaching. In this
model, intuitively, a preference relation on C is used to reduce the size of teaching sets. In particular,
a concept C need no longer be the only concept consistent with its teaching set T (C); it suffices
if C is the unique most preferred concept in C that is consistent with C. In order to avoid cyclic
preferences, the preference relation is required to form a partial order over C.

Definition 3 (Gao et al. (2017)) Let C be a concept class over a domain X and � any binary rela-
tion that forms a strict (possibly non-total) order over C. We say that concept C is preferred over
concept C ′ (with respect to �), if C � C ′. The preference-based teaching dimension of C with
respect to C and �, denoted by PBTD(C, C,�), is the size of the smallest sample set S such that

1. S is consistent with C, and

2. C � C ′ for all C ′ ∈ C \ {C} such that S is consistent with C ′.

We write PBTD(C,�) = sup{PBTD(C, C,�) | C ∈ C}. Finally, the preference-based teaching
dimension of C, denoted by PBTD(C), is defined by

PBTD(C) = min{PBTD(C,�) | �⊆ C × C and � forms a strict order on C} .

An interesting variant of preference-based teaching is obtained when disallowing negative ex-
amples in teaching. Learning from positive examples only has been studied extensively in the
computational learning theory literature, see, e.g., (Denis, 2001; Angluin, 1980) and is motivated
by studies on language acquisition (Wexler and Culicover, 1980) or, more recently, by problems of
learning user preferences from a user’s interactions with, say, an e-commerce system (Schwab et al.,
2000), as well as by problems in bioinformatics (Wang et al., 2006).

Definition 4 (Gao et al. (2017)) Let C be a concept class over a domainX . The positive preference-
based teaching dimension of C, denoted by PBTD+(C), is defined analogously to PBTD(C), where
the sets S in Definition 3 are required to contain only positive examples.

4



In the same way, one can define the notion TD+. The following property, proven by Gao et al.
(2017), is crucial when computing the PBTD and PBTD+ of finite classes.

Proposition 5 (Gao et al. (2017)) Let C be a finite concept class. If PBTD(C)=d, then C contains
some C with TD(C, C) ≤ d. If PBTD+(C)=d, then C contains some C with TD+(C, C) ≤ d.

This result immediately implies that PBTD and the well-known notion of RTD1 coincide for
finite concepts classes, and so do PBTD+ and RTD+.

3. Collusion-free Teaching and the Non-Clashing Property

While there is no objective measure of how “reasonable” a formal model of teaching is, the literature
offers some notions of what constitutes an “acceptable” model of teaching, i.e., one in which the
teacher and learner do not collude. So far, the notion of collusion-free teaching that found the most
positive resonance in the literature is the one defined by Goldman and Mathias.

Definition 6 (Goldman and Mathias (1996)) Let C be a concept class over X and T a teacher
mapping on C. Let L be a learner mapping that assigns to each set of labelled examples a concept
over X . The pair (T, L) is successful on C if L(T (C)) = C for all C ∈ C. The pair (T, L) is
collusion-free on C if L(S) = L(T (C)) for any C ∈ C and any set S of labelled examples such that
S is consistent with C and S contains T (C).

Intuitively, Goldman and Mathias’s definition captures the idea that a learner conjecturing concept
C will not change its mind when given additional information consistent with C.

For example, teacher-learner pairs following the classical teaching dimension model, Balbach’s
optimal teacher model, the recursive teaching model, or the preference-based teaching model are
always collusion-free according to Definition 6. Of these models, the classical teaching dimension
model is the one imposing the most constraints on the mapping T , followed by Balbach’s optimal
teaching, recursive teaching, and preference-based teaching in that order. Consequently, the “teach-
ing complexity” among these models is lowest for preference-based teaching; if every concept in a
concept class C can be taught with at most z examples in any of these models, then every concept
in C can be taught with at most z examples in the preference-based model.

One can still argue that the preference-based model is unnecessarily constraining. Preference-
based teaching of a concept class C relies on a preference relation that induces a strict order on C.
However, this strict order is used by the learner only after the teaching set has been communicated,
since the learner chooses the unique most preferred concept among those consistent with the set of
examples provided by the teacher. One might consider loosening the constraints by, for example,
demanding only that the set of concepts consistent with any chosen teaching set be ordered under
the chosen preference relation (rather than requiring acyclic preferences over the whole concept
class). In the same vein, one could relax more conditions—every relaxation might result in a more
powerful model of teaching satisfying the collusion-free property.

In this manuscript, we will define the provably most powerful model of teaching that is collusion-
free in the sense proposed by Goldman and Mathias (1996), namely a model that adheres to no other
constraints on the teacher-learner pairs (T, L) than those given by Goldman and Mathias: (i) T is a
teacher mapping; (ii) (T, L) is successful on C; and (iii) (T, L) is collusion-free on C.

1. The RTD, short for “recursive teaching dimension, is a well-studied teaching parameter defined by Zilles et al. (2011).
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Before we define this model formally, we introduce a crucial property that was originally pro-
posed by Kuzmin and Warmuth (2007) in the context of unlabeled sample compression.

Definition 7 Let C be a concept class and T be a teacher mapping on C. We say that T is non-
clashing (on C) if and only if there are no two distinct C,C ′ ∈ C such that both T (C) is consistent
with C ′ and T (C ′) is consistent with C.

It turns out that, for a teacher mapping T , the non-clashing property is equivalent to the existence
of a learner mapping L such that (T, L) is successful and collusion-free:

Theorem 8 Let C be a concept class over the instance space X . Let T be a teacher mapping on C.
Then the following two conditions are equivalent:

1. T is non-clashing on C.

2. There is a mapping L : 2X×{0,1} → C such that (T, L) is both successful and collusion-free
on C.

Proof First, suppose T is a non-clashing teacher mapping, and define L as follows. Given any set
S of labelled examples as input, L checks for the existence of a concept C ∈ C such that T (C) ⊆ S
and C is consistent with S. If such a concept C is found, L returns an arbitrary such C; otherwise
L returns some default concept in C.

To show that (T, L) is successful and collusion-free, suppose there is some concept C ∈ C such
that a given set S of labelled examples is consistent with C and contains T (C). We claim that then
such C is uniquely determined. For if there were two distinct concepts C,C ′ ∈ C consistent with
S such that T (C) ∪ T (C ′) ⊆ S, then T (C ′), being a subset of S, would be consistent with C and,
likewise, T (C) would be consistent with C ′—in contradiction to the non-clashing property of T .
From the definition of L, it then follows that (T, L) is successful and collusion-free.

Second, suppose T is a teacher mapping and there is a mapping L such that (T, L) is successful
and collusion-free, i.e., for all C ∈ C, we have L(S) = L(T (C)) = C whenever S is consistent
with C and contains T (C). To see that T is non-clashing, suppose two concepts C,C ′ ∈ C are both
consistent with T (C) ∪ T (C ′). Then C = L(T (C)) = L(T (C) ∪ T (C ′)) = L(T (C ′)) = C ′.

Consequently, teaching with non-clashing teacher mappings is, in terms of the worst-case num-
ber of examples required, the most efficient model that obeys Goldman and Mathias’s notion of
collusion-freeness. We hence define the notion of no-clash teaching dimension as follows.

Definition 9 Let C be a concept class over the instance space X . Let T : C → (X × {0, 1})∗
be a non-clashing teacher mapping. The order of T on C, denoted by ord(T, C), is then defined
by ord(T, C) = sup{|T (C)| | C ∈ C}. The No-Clash Teaching Dimension of C, denoted by
NCTD(C), is defined as NCTD(C) = min{ord(T, C) | T is a non-clashing teacher mapping for C}.

From Theorem 8 we obtain that, for every concept class C,

NCTD(C) = min{ord(T, C) | there exists an L s.t. (T, L) is successful and collusion-free on C}.

As in the case of preference-based teaching, it is natural to study a variant of non-clashing
teaching that uses positive examples only.
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Definition 10 Let C be a concept class over the domain X . A teacher mapping T is called pos-
itive on C if T (C) ⊆ X × {1} for all C ∈ C. We then define NCTD+(C) = min{ord(T, C) |
T is a positive non-clashing teacher mapping for C}.

Furthermore, for finite domains X , it will be helpful to have the notion of average no-clash
teaching dimension:

Definition 11 Let C be a concept class over the finite domain X . The Average No-Clash Teaching
Dimension of C, denoted by ANCTD(C), is defined as

ANCTD(C) = min

{
1

|C|
∑
C∈C
|T (C)|

∣∣∣∣∣ T is a non-clashing teacher mapping for C

}
.

Remark 12 It follows immediately from the pigeon-hole principle that NCTD(C) ≥ dANCTD(C)e.

In the following we describe a natural normal form for non-clashing teacher mappings. T ′ is
said to be an extension of T if T (C) ⊆ T ′(C) holds for every C ∈ C. Clearly, if T ′ is an extension
of T and T is non-clashing, then T ′ is non-clashing.

Proposition 13 (a) Let T be a non-clashing teacher mapping for C. Then there is a non-clashing
teacher mapping T ′ for C such that |T ′(C)| = ord(T, C) for all C ∈ C.
(b) Let T be a positive non-clashing teacher mapping for C. Then there is a positive non-clashing
teacher mapping T ′ for C such that |T ′(C)| = min{|C|, ord(T, C)} for all C ∈ C.

While many of our definitions and results apply to both finite and infinite concept classes, except
where explicitly stated otherwise, we will hereafter assume that X (and C) are finite.

4. Lower Bounds on NCTD and NCTD+

To establish lower bounds on NCTD and NCTD+ for finite concept classes, we first show that
NCTD(C) must be at least as large as the smallest d satisfying |C| ≤ 2d

(|X |
d

)
. A similar state-

ment then follows for NCTD+. In fact, we prove a slightly stronger result, replacing |X | with a
potentially smaller value:

Definition 14 We define XT ⊆ X as the set of instances that are part of a labelled example in a
teaching set T (C) for some C ∈ C. Moreover, we define

X(C) = min{|XT | : T is a non-clashing teacher mapping for C with ord(C, T ) = NCTD(C)} .

Intuitively, X(C) is the smallest number of instances that must be employed by any optimal non-
clashing teacher mapping for C. Likewise, we define X+(C) for positive non-clashing teaching.

Theorem 15 Let C be any concept class.

1. If NCTD(C) = d, then |C| ≤ 2d
(X(C)

d

)
.

2. If NCTD+(C) = d, then |C| ≤
∑d

i=0

(
X+(C)

i

)
.
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Proof To prove statement 1, let X ′ be a subset of size X(C) of X . Let C 7→ T (C) ⊆ X ′ × {0, 1}
be a consistent and non-clashing mapping which witnesses that NCTD(C) = d, and let L be the
mapping such that L(T (C)) = C for all C ∈ C. By Proposition 13, one may assume without loss
of generality that |T (C)| = d for all C ∈ C. Since T is an injective mapping and there are only
2d
(X(C)

d

)
labelled teaching sets at our disposal, the claim follows.

Statement 2 is proven analogously, taking into consideration that, in the NCTD+ case, we do
not have an analogous statement to Proposition 13, since a concept does not in general contain d or
more elements. Note that the formula has no factors 2i since there are no options for labelling the
instances in any set T (C).

We will next establish a useful lower bound on NCTD(C), as well as as a related lower bound
on NCTD+(C), based on the number of neighbors of any concept in C.

A concept C ′ ∈ C is a neighbor of concept C ∈ C if it differs from C on exactly one instance,
i.e., if the symmetric difference C∆C ′ := (C \ C ′) ∪ (C ′ \ C) has size one. The degree of C ∈ C,
denoted as degC(C), is defined as the number of neighbors of C in C. The average degree of
concepts in C is then denoted by

degavg(C) :=
1

|C|
·
∑
C∈C

degC(C) .

The dominance of C ∈ C, denoted as domC(C), is defined as the number of smaller neighbors of
C in C, i.e. neighbors that contain exactly one fewer instance than C.

Theorem 16 Every concept class C over a finite domain satisfies (i) ANCTD(C) ≥ 1
2 · degavg(C)

and (ii) NCTD(C) ≥ d12 · degavg(C)e.

Proof For assertion (i), let T be any non-clashing teacher mapping for C. If C1 and C2 are neigh-
bors, say C1∆C2 = {xi}, then at least one of the sets T (C1), T (C2) must contain xi. We obtain∑

C∈C |T (C)| ≥ 1
2 ·
∑

C∈C degC(C) = |C| · 12 · degavg(C). Assertion (ii) is immediate from (i), by
Remark 12.

Theorem 17 Every concept class C over a finite domain satisfies NCTD+(C) ≥ maxC∈C domC(C).

Proof If the smaller neighbor C ′ of C ∈ C differs from C on instance xi, then (xi, 1) must be used
in teaching C. Hence, every C ∈ C must have a positive teaching set of size at least domC(C).

Although the lower bounds in Theorems 16 and 17 are not expected to be attained very often,
the following Remark shows that they are sometimes tight:

Remark 18 Let Pm be the powerset over the domain {x1, . . . , xm}. Since every concept in Pm has
degree m, clearly degavg(P2) = m. It follows from Theorem 16 that ANCTD(Pm) ≥ m/2 and
hence NCTD(Pm) ≥ dm/2e. Furthermore, since domPm({x1, . . . , xm}) = m, it follows from
Theorem 17 that NCTD+(Pm) ≥ m. But the positive mapping T that maps S ∈ Pm to S × {1} is
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trivially non-clashing, and hence NCTD+(Pm) = m and ANCTD(Pm) = m/2. As the mapping
T given by

∅ 7→ {(a, 0)}, {a} 7→ {(b, 0)}, {b} 7→ {(b, 1)}, {a, b} 7→ {(a, 1)} ,

is non-clashing for P2, it follows that NCTD(P2) = 1. As we shall see in Theorem 23, this
generalizes to NCTD(Pm) = dm/2e.

We note that the maximum degree of a concept in C is in general not an upper bound on
NCTD(C). For example, if we consider the concept class C consisting of subsets of size k of some
domain of size n, then all concepts in C have degree zero yet, for n sufficiently large, NCTD(C) = k
(since for large enough n the size of C exceeds the number of possible teaching sets in a normal-form
teaching mapping T for C with ord(T, C) < k.)

5. Sub-additivity of NCTD and NCTD+

In this section, we will show that the NCTD is sub-additive with respect to the free combination of
concept classes. As an application of this result, we will determine the NCTD of the powerset over
any finite domain X . While the powerset is a rather special concept class, knowing its NCTD will
turn out useful to obtain a variety of further results.

Definition 19 Let C1 and C2 be concept classes over disjoint domains X1 and X2, respectively.
Then the free combination C1 t C2 of C1 and C2 is a concept class over the domain X1 ∪X2 defined
by C1 t C2 = {C1 ∪ C2| C1 ∈ C1 and C2 ∈ C2}.

Lemma 20 Let C = C1tC2 be the free combination of C1 and C2. Moreover, for i = 1, 2, let Ti be a
non-clashing mapping for Ci. Then, for T (C1tC2) defined by setting T (C1∪C2) = T1(C1)∪T2(C2),
we have that T is a non-clashing teacher mapping for C1tC2. Moreover, as witnessed by T , NCTD
acts sub-additively on t, i.e.,

NCTD(C1 t C2) ≤ NCTD(C1) + NCTD(C2) . (1)

Proof Suppose that concepts Ci1 , Cj1 ∈ C1 and Ci2 , Cj2 ∈ C2 give rise to distinct concepts Ci1∪Ci2

and Cj1 ∪ Cj2 ∈ C1 t C2 that clash under T . (Without loss of generality we can assume that
i1 6= j1.) Then Cj1 ∪ Cj2 is consistent with T1(Ci1) ∪ T2(Ci2) and Ci1 ∪ Ci2 is consistent with
T1(Cj1) ∪ T2(Cj2). Hence Cj1 is consistent with T1(Ci1) and Ci1 is consistent with T1(Cj1), that
is concepts Ci1 and Cj1 in C1 clash under the mapping T1.

As we shall see NCTD sometimes acts strictly sub-additively on t; in particular, the composition
of optimal mappings for C1 and C2 is not necessarily an optimal mapping for C1 t C2. In contrast,
ANCTD acts additively on t:

Lemma 21 Let C = C1tC2 be the free combination of C1 and C2. Moreover, for i = 1, 2, let Ti be a
non-clashing mapping for Ci. Then, for T (C1tC2) defined by setting T (C1∪C2) = T1(C1)∪T2(C2),
we have that T is a non-clashing teacher mapping for C1 t C2. Moreover, as witnessed by T ,
ANCTD acts additively on t, i.e.,

ANCTD(C1 t C2) = ANCTD(C1) + ANCTD(C2) . (2)
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Proof The proof of Lemma 20 above shows that ANCTD acts sub-additively on t, that is
ANCTD(C1 t C2) ≤ ANCTD(C1) + ANCTD(C2). It remains to show that

ANCTD(C1 t C2) ≥ ANCTD(C1) + ANCTD(C2) . (3)

To this end, let X1 (resp. X2) be the domain of concept class C1 (resp. C2) and suppose that T
is a non-clashing teacher mapping on C such that ANCTD(C) = 1

|C|
∑

C∈C |T (C)|. The following
calculation makes use of the fact, for every fixed choice of C2 ∈ C2, the mapping C1 7→ T (C1 ∪
C2) ∩ X1 is a non-clashing teacher mapping on C1 (and an analogous remark holds, for reasons of
symmetry, when the roles of C1 and C2 are exchanged):

ANCTD(C) =
1

|C1| · |C2|
∑

C1∈C1

∑
C2∈C2

|T (C1 ∪ C2|)

=
1

|C2|
∑
C∈C2

 1

|C1|
∑
C∈C1

|T (C1 ∪ C2) ∩ X1|


+

1

|C1|
∑
C∈C1

 1

|C2|
∑
C∈C2

|T (C1 ∪ C2) ∩ X2|


≥ ANCTD(C1) + ANCTD(C2) .

Remark 22 In Lemma 20, if T1 and T2 are positive non-clashing mappings, then the same proof
shows that T (a positive non-clashing mapping) witnesses the fact that NCTD+ also acts sub-
additively on t, i.e.,

NCTD+(C1 t C2) ≤ NCTD+(C1) + NCTD+(C2) . (4)

Furthermore, since t is associative, it follows immediately that, for any concept class C, if Ck :=
C1 t . . . t Ck, where Ci := {C × {i}| C ∈ C} for i = 1, . . . , k, then

ANCTD(Ck) = k ·ANCTD(C) (5)

and
NCTD(Ck) ≤ k ·NCTD(C) and NCTD+(Ck) ≤ k ·NCTD+(C) . (6)

We have already seen, in Remark 18, that ANCTD(Pm) = m/2, NCTD+(Pm) = m and
NCTD(Pm) ≥ dm/2e, where Pm denotes the powerset over the domain {x1, . . . , xm}. The sub-
additivity results above can be applied in order to determine NCTD(Pm) exactly as well.

Theorem 23 Let Pm be the powerset over the domain {x1, . . . , xm}. Then NCTD(Pm) = dm/2e.

10



Proof It remains to show that NCTD(Pm) ≤ dm/2e. It suffices to verify this upper bound for
even m. But, when m is even, NCTD(Pm) = NCTD(Pm/2

2 ) ≤ m/2 follows from (6) and the fact
that NCTD(P2) = 1 (cf. Remark 18).

Since the NCTD of any concept class over a domainX is trivially upper bounded by the NCTD
of the powerset overX , this result in particular implies that d|X |/2e is an upper bound on the NCTD
of any concept class over a domain X .

A further consequence of Theorem 23 is that NCTD is sometimes strictly subadditive with
respect to free combination, i.e., that inequality (1) is sometimes strict. An example for that is the
free combination Pm tPm of two copies of Pm for odd m. Since the domain of Pm tPm has size
2m, we obtain NCTD(Pm t Pm) = m, while NCTD(Pm) + NCTD(Pm) = 2dm2 e = 2m+1

2 =
m + 1.

Another situation (that we will exploit later) where NCTD+ acts strictly additively on t, is
captured in the following:

Lemma 24 Let Pm be the powerset over the domain {x1, . . . , xm} and let C be a concept class
with domain X disjoint from {x1, . . . , xm}. Then,

NCTD+(Pm t C) = NCTD+(Pm) + NCTD+(C).

Proof By (4) it suffices to show that NCTD+(Pm t C) ≥ NCTD+(Pm) + NCTD+(C). Theo-
rem 17 implies that, for each Ci ∈ C, any positive non-clashing mapping T for Pm t C must use
m = NCTD+(Pm) examples from {x1, . . . , xm} to teach the single concept {x1, . . . , xm} t Ci

within the concept class Pm t Ci. So the only way that T could use fewer than m + NCTD+(C)
examples in total for each concept in {x1, . . . , xm}tC is if each such concept is taught with exactly
m examples from {x1, . . . , xm}, and hence fewer than NCTD+(C) examples from X , a contradic-
tion.

Furthermore, it is easily seen that the average degree acts additively on t:

Lemma 25 Let C1 and C2 be concept classes over disjoint and finite domains. Then the following
holds:

degavg(C1 t C2) = degavg(C1) + degavg(C2) . (7)

Proof Let C := C1 t C2. The concepts in C that are neighbors of C1 ∪ C2 ∈ C are precisely the
concepts of the form C1 ∪ C ′2 or C ′1 ∪ C2 where C ′2 is a neighbor of C2 in C2 and C ′1 is a neighbor
of C1 in C1. Hence

degC(C1 ∪ C2) = degC1(C1) + degC2(C2) .

Moreover |C| = |C1| · |C2|. It follows that∑
C∈C

degC(C) =
∑

C1∈C1

∑
C2∈C2

degC(C1 ∪ C2) = |C2| ·
∑

C1∈C1

degC1(C1) + |C1| ·
∑

C2∈C2

degC2(C2) .

Division by |C1| · |C2| immediately yields (7).
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The free combination of classes with a tight degree lower bound is again a class with a tight
degree lower bound:

Corollary 26 Let C1 and C2 be two concept classes over disjoint and finite domains, and let C =
C1 t C2. Then NCTD(Ci) = 1

2 · degavg(Ci) for i = 1, 2 implies that NCTD(C) = 1
2 · degavg(C).

Proof The assertion is evident from the chain of inequalities:

NCTD(C)
(1)

≤ NCTD(C1) + NCTD(C2) =
1

2
· degavg(C1) +

1

2
· degavg(C2)

(7)
=

1

2
· degavg(C) .

and Theorem 16.

6. Relation to Other Learning-theoretic Parameters

In this section, we set NCTD in relation to PBTD and VCD, as well as to the smallest possible
size of a sample compression scheme for a given concept class.

6.1 PBTD and VCD

Since preference-based teaching is collusion-free (Gao et al., 2017), we obtain the following bounds.

Proposition 27 Let C be any concept class. Then NCTD(C) ≤ PBTD(C) and NCTD+(C) ≤
PBTD+(C).

Remark 28 The first inequality in Proposition 27 is sometimes strict, as witnessed by Theorem 23,
which states that NCTD(Pm) = dm/2e. By comparison, PBTD(Pm) = m. In particular, this
yields a family of concept classes of strictly increasing NCTD for which PBTD exceeds NCTD
by a factor of 2. The fact that the second inequality in Proposition 27 is sometimes strict is witnessed
by the simple class C described in the introduction, with NCTD+(C) = 1. Since no concept in C
has a positive teaching set of size 1, Proposition 5 implies PBTD+(C) = 2. In particular, these
examples witness that Proposition 5 does not hold for non-clashing teaching.

Results from the literature can now be combined in a straightforward way in order to formulate
an upper bound on NCTD in terms of the VC-dimension.

Proposition 29 NCTD(C) is upper-bounded by a function quadratic in VCD(C).

Proof PBTD is known to lower-bound the recursive teaching dimension (Gao et al., 2017). Hu
et al. (2017) proved that, when VCD(C) = d, the recursive teaching dimension of C is no larger
than 39.3752 · d2 − 3.6330 · d. By Proposition 27, the same upper bound applies to NCTD.

However, VCD can also be arbitrarily larger than NCTD, a result that follows immediately
from the corresponding result for TD:

Proposition 30 (Goldman and Kearns (1995)) Let k ∈ N, k ≥ 1. Then there exists a finite con-
cept class C such that TD+(C) = TD(C) = 1 and VCD(C) = k.
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So far, there is no concept class for which VCD is known to exceed NCTD. Note that any
such concept class would have to fulfill PBTD > VCD as well. We tested those classes for which
PBTD > VCD is known from the literature, but found that all of them satisfy NCTD ≤ VCD.

As an example, here we present “Warmuth’s class.” This concept class, shown in Table 1,
was communicated by Manfred Warmuth and proven by Darnstädt et al. (2016) to be the smallest
concept class for which PBTD exceeds VCD. In particular, VCD(CW )=2 while PBTD(CW )=3.

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5
C1 1 0 0 0 1 C ′1 1 0 1 0 1
C2 1 1 0 0 0 C ′2 1 1 0 1 0
C3 0 1 1 0 0 C ′3 0 1 1 0 1
C4 0 0 1 1 0 C ′4 1 0 1 1 0
C5 0 0 0 1 1 C ′5 0 1 0 1 1

Table 1: Warmuth’s class CW , with the highlighted entries (in bold) corresponding to the images of
a positive non-clashing teacher mapping. The domain of this class is {x1, . . . , x5}, and it
contains 10 concepts, named C1 through C5 and C ′1 through C ′5.

Proposition 31 NCTD(CW ) = NCTD+(CW ) = 2.

Proof The highlighted labels in Table 1 correspond to a positive non-clashing mapping for CW ,
which immediately shows that NCTD+(CW ) ≤ 2 and thus NCTD(CW ) ≤ 2. To show that
NCTD(CW ) ≥ 2, suppose by way of contradiction that NCTD(CW ) = 1. Then there is a non-
clashing teacher mapping T that assigns every concept in CW a teaching set of size 1.

Since C1 and C ′1 differ only on the instance x3, the mapping T must fulfill either T (C1) =
{(x3, 0)} or T (C ′1) = {(x3, 1)}.

Case 1. T (C1) = {(x3, 0)}. Since C2 is consistent with T (C1), the teaching set for C2 must be
inconsistent with C1. In particular, T (C2) 6= {(x4, 0)}. This implies T (C ′2) = {(x4, 1)}, since x4
is the only instance on which C2 and C ′2 disagree. By an analogous argument concerning C5 and
C ′5, one obtains T (C ′5) = {(x2, 1)}. Now T has a clash on C ′2 and C ′5, which is a contradiction.

Case 2. T (C ′1) = {(x3, 1)}. One argues as in Case 1, with C ′3 and C ′4 in place of C2 and C5,
yielding T (C3) = {(x5, 0)} and T (C4) = {x1, 0)}. This is a clash, resulting in a contradiction.

As both cases result in a contradiction, we have NCTD(CW ) > 1 and thus NCTD(CW ) = 2.
Since NCTD+ is an upper bound on NCTD, we also have NCTD+(CW ) = 2.

While the general relationship between NCTD and VCD remains open, it turns out that NCTD(C)
is upper-bounded by VCD(C) when C is a finite maximum class. For a finite instance space X , a
concept class C of VC dimension d is called maximum if its size |C| meets Sauer’s upper bound∑d

i=0

(|X |
i

)
(Sauer, 1972) with equality. Recently, Chalopin et al. (2018) showed that every finite

maximum class C admits a so-called representation map, i.e., a function r that maps every concept
in C to a set of at most d(= VCD(C)) instances, in a way that no two distinct concepts C,C ′ ∈ C
both agree on all the instances in r(C)∪ r(C ′). By definition, any representation map is, translated
into our setting, simply a non-clashing teacher mapping of order d for C. Therefore, the result by
Chalopin et al. implies that NCTD(C) ≤ VCD(C) for finite maximum C.
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6.2 Sample Compression

Intuitively, a sample compression scheme (Littlestone and Warmuth, 1986) for a (possibly infinite)
concept class C provides a lossless compression of every set S of labeled examples for any concept
in C in the form of a subset of S. It was proven that the existence of a finite upper bound on the
size of the compression sets is equivalent to PAC-learnability, i.e., to finite VC-dimension (Moran
and Yehudayoff, 2016; Littlestone and Warmuth, 1986). Open for over 30 years now is the question
how closely such an upper bound can be related to the VC-dimension.

Formally, a sample compression scheme of size k for a concept class C over X is a pair (f, g)
of mappings, where, for every sample set S consistent with some concept C ∈ C, (i) f maps S to a
subset f(S) ⊆ S with |f(S)| ≤ k; and (ii) g(f(S)) maps the compressed set to a concept C ′ over
X (not necessarily in C) that is consistent with S. By CN(C) we denote the size of the smallest-size
sample compression scheme for C. The open question then is whether CN(C) is upper-bounded by
(a function linear in) VCD(C).

Some connections between sample compression and teaching have been established in the liter-
ature (Doliwa et al., 2014; Darnstädt et al., 2016). The non-clashing property bears some similarities
to sample compression and has in fact been used in the context of unlabelled sample compression
(in which f(S) is an unlabelled set) (Kuzmin and Warmuth, 2007; Chalopin et al., 2018). It is thus
natural to ask whether CN is an immediate upper or lower bound on NCTD. Below, we answer this
question negatively.

Proposition 32

1. For every k ∈ N, k ≥ 1, there is a concept class C such that NCTD(C) = PBTD(C) = 1
but CN(C) > k.

2. Let Pm be the powerset over a domain of size m, where m ≥ 5 is odd. Then CN(Pm) <
NCTD(Pm) and 2CN(Pm) < PBTD(Pm).

Proof Statement 1 is due to Remark 30, which implies the existence of a concept class C with
NCTD(C) = PBTD(C) = 1 and VCD(C) = 5k. Then CN(C) > k follows from a result by Floyd
and Warmuth (1995) that states that no concept class of VC-dimension d has a sample compression
scheme of size at most d

5 .
Statement 2 follows from the obvious fact that PBTD(Pm) = m, in combination with The-

orem 23, as well as with a result by Darnstädt et al. (2016) that shows CN(Pm) ≤ bm2 c, for any
m ≥ 4. 2

Note that the compression function f in a sample compression scheme for C trivially induces a
teacher mapping Tf defined by Tf (C) = f({(x,C(x)) | x ∈ X}). The decompression mapping
g then satisfies g(Tf (C)) = C for all C ∈ C. Hence (Tf , g) is a successful teacher-learner pair.
Proposition 32.2 now states that there are concept classes for which the teacher-learner pairs (Tf , g)
induced by any optimal sample compression scheme necessarily display collusion. In other words,
optimal sample compression yields collusive teaching. An interesting problem is to find more ex-
amples of concept classes for which optimal sample compression yields collusive teachers and to

2. When m = 5k for some k ≥ 1, Darnstädt et al. (2016) even show that CN(Pm) ≤ 2k; hence there is a family of
concept classes with CN < NCTD for which the gap between CN and NCTD grows linearly with the size of the
instance space.
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determine necessary or sufficient conditions on the structure of such classes. Moreover, at present
we do not know how large the gap between sample compression scheme size and NCTD can be.

As mentioned above, representation maps, which were proposed by Kuzmin and Warmuth
(2007) and Chalopin et al. (2018), yield non-clashing teacher mappings. Clearly, in unlabelled
compression, the representation map that compresses any concept in a class C to a subset of X must
be injective, so that any two concepts in C remain distinguishable after compression. In other words,
the non-clashing teacher mappings induced by representation maps are repetition-free, i.e., they do
not map any two distinct concepts C,C ′ ∈ C to labelled samples T (C), T (C ′) for which

{x ∈ X | (x, l) ∈ T (C) for some l ∈ {0, 1}} 6= {x ∈ X | (x, l′) ∈ T (C ′) for some l′ ∈ {0, 1}} .

Requiring no-clash teacher mappings to be repetition-free would be a limitation, as the example of
the powerset over any set of m instances, m ≥ 2, shows. In this case, no-clash teaching can be done
with teacher mappings of order dm2 e, but it is not hard to see that the best possible repetition-free
no-clash teacher mapping is of order m.

7. Complexity of Decision Problems Related to No-clash Teaching

In this section, we address the complexity of the problem of deciding whether or not every concept
in a given finite concept class can be taught with a non-clashing teaching set of size at most k,
for some specified k ≥ 1. Surprisingly perhaps, such decision problems are NP-hard, even when
k = 1 and teaching is done using positive examples only. In contrast, we show in subsection 7.5
that the corresponding decision problems for PBTD (equivalently, for RTD) have polynomial time
solutions.

We show an equivalence between the most highly constrained such decision problem (testing if
NCTD+ = 1, for a given concept class) and a natural (but apparently not previously studied) con-
strained bipartite matching problem that is related to the well-studied notion of induced matchings.
The following, an immediate consequence of Proposition 13, allows us to restrict our complexity
analysis to certain normalized concept classes.

Proposition 33 Let C be any non-trivial concept class over a finite domain, with at least two non-
empty concepts. Then, NCTD+(C) = NCTD+(C \ {∅}).

Proof Let C′ denote C \ {∅}. If C′ = C there is nothing to show. So, suppose that C contains the
empty concept. If NCTD+(C) = k then trivially NCTD+(C′) ≤ k.

For the converse, suppose that NCTD+(C′) = k, as witnessed by a normal-form mapping T
(cf. Proposition 13(b)). Since T does not assign the empty set to any concept one can obviously
extend T to assign the empty set to the empty concept and thus teach all of C without clashes using
no negative examples and with teaching sets of size at most k. (There are no clashes, because the
empty concept cannot be consistent with any of the teaching sets that use at least one positive ex-
ample.)

Our goal in the remainder of this section is to set out hardness results for testing NCTD = k?
and NCTD+ = k?, for fixed k ≥ 1. We begin by establishing that testing NCTD+ = 1?, for
a given concept class C is NP-hard. Other results follow by reduction from the NCTD+ = 1?
decision problem. (It is straightforward to confirm that all of the decision problems NCTD ≤ k?
and NCTD+ ≤ k? are in NP.)
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7.1 Testing if NCTD+ = 1 is NP-hard

Let (C,X ) be an instance of the NCTD+ = 1 decision problem. By Propositions 13 and 33, we
can assume that C does not contain the empty set, and that positive teacher mappings realizing
NCTD+ = 1 are restricted to those that use exactly one positive instance for each concept.

We start by observing that (C,X ) can be viewed as a bipartite graph BC,X , with vertex classes
C (black vertices) and X (white vertices) and an edge from Ci ∈ C to xj ∈ X whenever xj ∈ Ci.
Under our assumptions, it follows that deciding if C has NCTD+ = 1 is equivalent to deciding if
BC,X admits a matching M such that (i) M saturates all of the black vertices, and (ii) no two edges
of M are part of a 4-cycle in BC,X . (Condition (i) ensures that each concept in C has an associated
positive teaching set of size 1, and condition (ii) ensures that the resulting teacher mapping is non-
clashing.)

We refer to the problem of deciding if a given bipartite graph B with vertex partition (Vb, Vw)
admits a matching M such that (i) M saturates all of the vertices in Vb, and (ii) no two edges of M
are part of a 4-cycle in B, as the Non-Clashing Bipartite Matching Problem. The NP-hardness of
deciding NCTD = 1? is thus an immediate consequence of the following:

Theorem 34 The Non-Clashing Bipartite Matching Problem is NP-hard.

The proof of Theorem 34 is by reduction from the familiar NP-hard problem 3-SAT. The details
are given in Appendix A.

Remark 35 The reduction produces a bipartite graph whose vertices have degree bounded by five.
One can conclude then that testing NCTD+ = 1 is NP-hard even if concepts contain at most
five instances, and instances are contained in at most five concepts. It is natural to ask to what
extent this can be tightened. In Appendix B.1, we describe a modification of the reduction that
produces a bipartite graph whose vertices have degree bounded by three, from which it follows that
testing NCTD+ = 1 is NP-hard even if concepts contain at most three instances, and instances are
contained in at most three concepts. On the other hand, if either (i) all concepts have at most two
instances, or (ii) all instances are contained in at most two concepts, the bipartite graph BC,X has
the property that the degree of all vertices in one of its two parts bounded by at most two. In this
case, it follows immediately from the algorithm in Appendix B.2 that testing NCTD+ = 1 can be
done in polynomial time.

7.2 Testing if NCTD = 1 is NP-hard

We reduce the NCTD+ = 1 decision problem to the NCTD = 1 decision problem. Let (C,X ) be
an instance of the NCTD+ = 1 decision problem. As before, we will assume (following Proposi-
tion 33) that C does not contain the empty set. We make two disjoint copies (C1,X 1) and (C2,X 2)
of (C,X ), and take their union, denoted 2C to be an instance of the NCTD = 1 decision problem.
We argue that NCTD(2C) = 1 if and only if NCTD+(C) = 1.

It is clear that NCTD+(C) = 1 implies NCTD(2C) = 1. For the converse, suppose that
teaching mapping T provides a NCTD = 1 solution of the concept class 2C that, among all such
mappings, uses the fewest negative examples.

Note that, all concepts in one component concept class are consistent with (necessarily negative)
examples drawn from the opposite domain, and inconsistent with positive examples drawn from the
opposite domain. Thus, the minimality of T ensures that negative examples used for any component
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concept class Ci are drawn from its associated domain X i (otherwise any such negative example
could be replaced by a positive example for the corresponding concept, without creating a clash).

But, for the same reason, it cannot be that for both concept classes Ci there exist one or more
concepts whose teaching set uses a negative example drawn from the associated domain X i, since
any pair of concepts from different classes taught in this way would necessarily clash. It follows
that T must use only positive examples (necessarily from the associated domain X i) for teaching
concepts in at least one of the two component concept classes Ci; in this sense it must provide a
NCTD+ = 1 solution of the instance (C,X ).

7.3 Testing if NCTD+ = k is NP-hard, for k > 1.

Again we describe a reduction from the NCTD+ = 1 decision problem. Given an instance of the
NCTD+ = 1 decision problem, specifically a pair (C,X ), where C is a concept class over the finite
domain X disjoint from {x1, . . . , xk−1}, we construct the concept class Pk−1 t C. By Lemma 24,
we know that NCTD+(Pk−1 t C) = k − 1 + NCTD+(C), so NCTD+(C) = 1 if and only if
NCTD+(Pk−1 t C) = k.

7.4 Testing if NCTD = k is NP-hard, for k > 1.

Again we describe a reduction from the NCTD+ = 1 decision problem. Let C be a concept class
over the finite domain X , disjoint from {x1, . . . , x2(k−1)}. We construct the composite concept
class 4C := 2(2C) as in subsection 7.2. By the reduction of that subsection, it will suffice to argue
that NCTD(2C) = 1 if and only if NCTD(P2(k−1) t 4C) = k.

First note that, by Theorem 23 and the sub-additivity of NCTD (equation (1)), NCTD(2C) = 1
implies that NCTD(P2(k−1) t 4C) ≤ k. In addition NCTD(2C) = 1 implies that ANCTD(4C) >
0 which, together with ANCTD(P2(k−1)) = k − 1 (Remark 18) implies ANCTD(P2(k−1)) +
ANCTD(4C) > k− 1. This in turn implies ANCTD(P2(k−1) t 4C) > k− 1, by Lemma 21, from
which we immediately conclude that NCTD(P2(k−1) t 4C) > k− 1, and hence NCTD(P2(k−1) t
4C) = k.

For the converse, we have seen that NCTD(P2(k−1) t 4C) = k implies ANCTD(P2(k−1) t
4C) ≤ k (trivially). This in turn implies ANCTD(P2(k−1)) + ANCTD(4C) ≤ k, by Lemma 21,
and hence ANCTD(4C) ≤ 1, by Remark 18. But ANCTD(4C) ≤ 1 implies NCTD(2C) = 1,
since (i) 4C can be viewed as two copies of 2C, and (ii) any teacher mapping for 4C realizing
ANCTD(4C) ≤ 1 uses the empty set as a teaching set at most once, and hence uses a teaching set
of size greater than 1 in at most one of the two copies of 2C.

7.5 Deciding PBTD ≤ k? (equivalently RTD ≤ k?) has a polynomial-time solution

As before, we can cast the decision problem PBTD ≤ k? as a constrained matching problem in a
suitably defined bipartite graph.

Definition 36 Let C be a concept class over domain X . Let 1 ≤ k ≤ |X | be an integer. Let
Sk = (X × {0, 1})k be the family of labeled samples of size k. Then Gk = Gk(C) denotes the
bipartite graph with vertex classes C and Sk and an edge between C ∈ C and S ∈ Sk iff C is
consistent with S.

The following result is a slight extension of a well known result in the theory of constrained
matchings:

17



Theorem 37 Let C be a concept class of size m over domain X and let G = Gk(C). Then the
following statements are equivalent:

1. There exists a matching M of size m in G such that G contains no alternating cycles with
respect to M (called a uniquely restricted matching of size m (Golumbic et al., 2001)).

2. There exists a matching M of size m in G such that every M -induced subgraph contains a
vertex of degree 1.

3. There exist m distinct vertices (samples) S1, . . . , Sm ∈ Sk and an ordering C1, . . . , Cm of
the vertices (=concepts) in C such that the following holds:

• There is an edge between Ci and Si (i.e., Ci is consistent with Si).

• If there is an edge between Ci and Sj (i.e., if Ci is consistent with Sj), then i ≤ j.

4. PBTD(C) ≤ k.

Proof 1.⇔2. and 2.⇔3. are well known equivalences in the theory of constrained matchings. See
Theorem 3.1 in (Golumbic et al., 2001).
3.⇒4.: Under the specified interpretation, the ordering over the concepts corresponds to a prefer-
ence relation where Cj is preferred over Ci whenever j > i. This preference relation is a witness of
PBTD(C) ≤ k.
4.⇒3.: If a preference relation (partial order) witnessing PBTD(C) ≤ k exists, then any linear
extension of it will satisfy 3.

Remark 38 The second statement in Theorem 37 can be strengthened as follows: there exists a
matching of size m in G such that every M -induced subgraph contains a vertex of degree 1 in each
of the two vertex classes, cf. (Cechlárová, 1991).

The above characterization of classes with a recursive teaching dimension of at most k easily
leads to a linear time algorithm for the corresponding decision problem:3

Corollary 39 1. Let G be a bipartite graph with vertex classes V0 and V1 such that |V0| ≤
|V1|. Let |G| denote the size (= number of vertices plus number of edges) of G. There is an
algorithm that runs in time O(|G|) and returns a uniquely restricted matching of size |V0|
(provided it exists).4

2. Suppose that the graph Gk(C) associated with a concept class C is given. Then there is an
algorithm for checking whether PBTD(C) ≤ k whose run time is linear in the size of Gk(C).
Moreover, if PBTD(C) ≤ k, it returns a preference relation that witnesses this fact.

The second part of the corollary is immediate from the first part and Theorem 37. The first part
of the corollary is based on the simple idea of initializing the matching M with the empty set and
then iteratively doing the following:

3. See (Cechlárová, 1991) for a similar algorithm (based on a similar characterization) that decides in linear time whether
a bipartite graph has a unique maximum matching.

4. The more general problem of deciding whether there exists a uniquely restricted matching of size k, with k being
part of the input, is known to be NP-complete (Golumbic et al., 2001).
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1. If V0 = ∅, then return M and stop.

2. If V1 does not contain any vertex of degree 1, then return an error message (indicating that
there exists no uniquely restricted matching of size |V0| in G) and stop.5 Otherwise, pick a
vertex of degree 1 from V1, say vertex v with u as its unique neighbor in V0.

3. Insert the edge (u, v) into M , remove u from V0 and v from V1 and update the degrees of the
vertices which are adjacent to either u or v.

Note that V0 and V1 are dynamically changed in the course of the algorithm. The following con-
ditions are easily shown to be satisfied after a run through the main loop provided that they are
satisfied immediately before entering the loop:

1. There exists a uniquely restricted matching of size |V0| for the subgraph induced by V0 ∪ V1.

2. Let V ′0 and V ′1 denote the vertices that have been removed from V0 and V1, respectively. Then
there is a unique perfect matching for the subgraph induced by V ′0 ∪ V ′1 .

The correctness of the algorithm directly follows from these invariance conditions.
We briefly note that the results described in this section also hold, mutatis mutandis, for PBTD+

in place of PBTD.6

8. Conclusions

No-clash teaching represents the limit of data efficiency that can be achieved in teaching settings
obeying Goldman and Mathias’s notion of collusion-freeness. Therefore, it is the sole most promis-
ing collusion-free teaching model to shed light on two open problems in computational learning
theory, namely (i) to find a teaching complexity parameter that is upper-bounded by a function lin-
ear in VCD, and (ii) to establish an upper bound on the size of smallest sample compression schemes
that is linear in VCD. If any collusion-free teaching model yields a complexity upper-bounded by
(a function linear in) VCD, then no-clash teaching does. Likewise, if any collusion-free model
is powerful enough to compress concepts as efficiently as sample compression schemes do, then
no-clash teaching is.

The most fundamental open question resulting from our paper is probably whether NCTD is
upper-bounded by VCD in general.

Furthermore, our results introduce some intriguing connections between NCTD and the well-
studied field of constrained matching in bipartite graphs that may open up a line of study that relates
teaching complexity, as well as sample compression and VCD, to fundamental issues in matching
theory.

References

Dana Angluin. Inductive inference of formal languages from positive data. Information and Control,
45(2):117–135, 1980.

5. This can be justified by Remark 38 and the invariance conditions below.
6. The corresponding bipartite graph has as its second vertex class the family of positive samples of order at most k.

19



Brenna Argall, Sonia Chernova, Manuela M. Veloso, and Brett Browning. A survey of robot learn-
ing from demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

Frank Balbach. Measuring teachability using variants of the teaching dimension. Theoretical Com-
puter Science, 397(1–3):94–113, 2008.
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Appendix A. Proof of Theorem 34

Proof We describe a parsimonious reduction from the familiar NP-hard problem 3-SAT, an instance
of which is a set D = {D1, . . . , Dm} of clauses, each of which is a disjunction of three literals
drawn from an underlying set V = {V 1, . . . , V n} of variables. Specifically, given an instance D
of 3-SAT, we construct a bipartite graph BD (vertices are either black or white, and all edges join a
black vertex to a white vertex) that admits a matching M such that (i) M saturates all of the black
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vertices, and (ii) no two edges of M are part of a 4-cycle in B, if and only if the instance D is
satisfiable.

To this end, we first associate with each variable V i a variable gadget: a ring of 4m vertices,
with alternating subscripted labels vi and wi, emphasizing its bipartite nature (cf. Figure 1(a)). A
matching that saturates all of the vi-vertices (black) of this gadget is of one of two types, illustrated
in Figure 1(b) and (c)), which we associate with the two possible truth assignments to V i.
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Figure 1: VariableGadget

We associate with each clause Dj a clause gadget consisting of 10 vertices, with subscripted
labels pj , qj , rj and sj (cf. Figure 2(a)). It is straightforward to confirm that any matching that
saturates all of the rj and qj-vertices (black) must use exactly one of the three pjqj-edges, illustrated
in Figure 2(b) (c) and (d)). We refer to the pjqj-edges as portals of the clause gadget, since their
endpoints are the only points of connection with other parts of the full construction.
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Figure 2: ClauseGadget

We complete the construction by adding edges from vertex gadgets to appropriate clause gadget
portals. Specifically, (i) if the k-th literal in clause Dj is V i, then we add edges from vi2j to pjk and
qjk to wi

2j (cf. Figure 3(a)) and (ii) if the k-th literal in clause Dj is V i, then we add edges from
vi2j to pjk and qjk to wi

2j−1 (cf. Figure 3(b)). These connector edges, shown dashed in Figures 3(a)
and (b), are forbidden in any matching satisfying the constraints set out above, by the inclusion,
for each such edge, of a pair of additional vertices and associated bridging path, as illustrated in
Figure 3(c). (Observe that since the graph has the same number of black and white vertices, a
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matching that saturates all of the black vertices must also saturate all of the white vertices. Thus,
for each connector edge, the middle edge of its bridging path is forced to belong to the matching;
otherwise, the end edges of the bridging path must both be chosen, resulting in a clash.)

It follows that if the k-th literal in clause Dj is V i, and the edge pjkq
j
k belongs to the constrained

matching then edge vi2jw
i
2j cannot belong. Similarly, if the k-th literal in clause Dj is V i, and the

edge pjkq
j
k belongs to the constrained matching then edge vi2jw

i
2j−1 cannot belong.
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(b)
vi2j
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2j
(a)

pjk
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2j

vi2j

qjk
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Figure 3: Connector Gadgets

To complete the proof it remains to argue that the resulting graph BD admits a matching M
such that (i) M saturates all of the black vertices, and (ii) no two edges of M are part of a 4-cycle
in BD, if and only if the instance D is satisfiable. Suppose first that BD admits such a matching
M . Since none of the connector edges are included in M , it follows (as argued above) that in every
vertex gadget the black vertices are saturated in one of the two ways illustrated in Figure 1(b) and
1(c)). Similarly, in every clause gadget, the black vertices are saturated in one of the three ways
illustrated in Figure 2(b), 2(c) and 2(d)). Suppose that the portal edge pjkq

j
k of the gadget associated

with clause Dj belongs to the matching M . Then, by our choice of connector edges, if the k-th
literal in clause Dj is V i, it must be that edge vi2jw

i
2j does not belong to M , that is the matching

on the variable gadget associated with V i has the associated truth assignment true. Similarly, if
the k-th literal in clause Dj is V i, it must be that edge vi2jw

i
2j−1 does not belong to M , that is the

matching on the variable gadget associated with V i has the associated truth assignment false. It
follows that the truth assignment to the variables in V , associated with the matchings induced on the
vertex gadgets, satisfies all of the clauses in D.

On the other hand, suppose that D is satisfiable, that is there is an assignment of truth values to
the variables in V that satisfies all of the clauses in D. Then, if we (i) choose the matching on the
vertex gadget associated with V i to be the one corresponding to its truth assignment, and (ii) choose
any matching on the clause gadget associated with clause Dj including a portal edge associated
with one of the satisfied literals in Dj , and (iii) choose all of the edges added to prevent the choice
of connector edges, it is straightforward to confirm that the chosen edges form a matching M in BD
such that (i) M saturates all of the black vertices, and (ii) no two edges of M are part of a 4-cycle
in BD.
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Appendix B. Complexity of Degree-bounded Instances of Non-clashing Bipartite
Matching

The reduction described in the proof of Theorem 34 produces a bipartite graph whose vertices have
degree at most five. (Degree five is attained for the vertices pj2 and qj2 of the clause gadgets, both of
which have three incident edges within the gadget and two from a bridged connector.) It is natural
to ask if the hardness result continues to hold for bipartite graphs all of whose vertices have degree
strictly less than five. In the next subsection we describe a fairly simple modification of both our
clause and connector structures that allows us to reduce the maximum degree to three. Following
that, we show that if the maximum degree among vertices in either part of a given bipartite graph
is reduced to two there is a polynomial time algorithm to decide if the graph admits a non-clashing
matching.

B.1 A modified reduction with maximum degree three

We begin by describing a new clause gadget, illustrated in Figure 4(a), with the same p-q portal
structure as before but with the additional property that all p and q vertices have degree two. It is
straightforward to confirm that, up to symmetry, the matching illustrated in Figure 4(b) is the only
matching that saturates all of the vertices using only edges internal to the gadget.
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Figure 4: NewClauseGadget

Next we describe a somewhat more complicated connector structure that is used to link vertices
in the variable gadgets with portal vertices of the new clause gadget. Schematically, as illustrated in
Figures 5(a) and (b), the connector structure plays exactly the same role as its counterpart (pair of
bridged edges) in the earlier construction. The new connector structure, illustrated in Figures 5(c),
also contains edges, dashed as before, that cannot be part of any perfect non-clashing matching.
Their role, as before, is simply to constrain the choice of other edges (in any perfect non-clashing
matching).

It is easiest to argue first that neither of the dashed diagonals can be used. If both are used then
edge r4s4 must also be used, creating a clash. On the other hand if just one, say r3s5 is used, then
either r4s4 must also be used or both r4r5 and s3s4 must be used, creating a clash in either case.
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By parity, an even number of the horizontal dashed edges are used in any perfect matching.
Since it is impossible to choose both wr1 and vs1 (or both r7p and s7q) in a non-clashing matching,
it suffices to rule out the case where exactly one of wr1 and vs1 and exactly one of r7p and s7q
belong to a perfect matching. Suppose r7p (but not s7q) is chosen. Then the matching is forced to
include r5r6 and s6s7 (in order to saturate r6 and s7). This in turn forces the choice of r3r4 and s4s5
(in order to saturate r4 and s5), creating a clash. By symmetry, it follows that none of the horizontal
dashed edges can be used in a perfect non-clashing matching.

It remains to argue that (i) if a non-clashing matching contains edge pq then edge vw cannot
belong (and vice versa); (ii) there is a non-clashing matching of the connector gadget that contains
edge pq but leaves both v and w exposed (and vice versa); and (iii) there is a non-clashing matching
of the connector gadget that leaves all of v, w, p and q exposed. For (i), we observe that, by chained
forcing as above, the inclusion of pq forces the inclusion of r1s1 (and, by symmetry, the inclusion
of vw forces the inclusion of r7s7). Properties (ii) and (iii) are illustrated in Figure 6.

B.2 An efficient algorithm for Non-Clashing Bipartite Matching, when the maximum degree
on either part is at most two

Suppose we are given a bipartite graph B whose vertices are either black or white, and all edges
join a black vertex to a white vertex. We want to determine if B admits a matching M such that (i)
M saturates all of the black vertices, and (ii) no two edges of M are part of a 4-cycle in B.

Suppose further that the vertices on one of the two parts of B all have degree at most two. We
can assume, without loss of generality that they all have degree exactly two, since edges with an
endpoint of degree one can be (incrementally) included in a maximum matching M without risk of
being part of a 4-cycle in B.
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We say that a pair of vertices in this degree-bounded part are twins if they have the same adjacent
vertices. We can assume that B has no twins since (i) twins cannot both be saturated without
producing a forbidden 4-cycle, and therefore (ii) the existence of black twins immediately precludes
a non-clashing matching, and (iii) any pair of white twins can be replaced by a single copy of the
twinned vertex.

With this simplification it is easy to confirm that any matching that saturates the black vertices,
the existence of which can be determined in polynomial time, must be non-clashing,
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