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Extreme-mass-ratio inspirals are one of the most exciting and promising target sources for space-
based interferometers (such as LISA, Taiji, and TianQin). The observation of their emitted grav-
itational waves will offer stringent tests on general theory of relativity, and provide a wealth of
information about the dense environment in galactic centers. To unlock such potential, it is nec-
essary to correctly characterize EMRI signals. However, resonances are a phenomena that occurs
in EMRI systems and can impact parameter inference, and therefore the science outcome, if not
properly modeled. Here, we explore how to model resonances and develop an efficient implemen-
tation. Our previous work [1] has demonstrated that tidal resonances induced by the tidal field of
a nearby astrophysical object alters the orbital evolution, leading to a significant dephasing across
observable parameter space. Here, we extensively explore a more generic model for the tidal per-
turber with additional resonance combinations, to study the dependence of resonance strength on
the intrinsic orbital and tidal parameters. To analyze the resonant signals, accurate templates that
correctly incorporate the effects of the tidal field are required. The evolution through resonances
is obtained using a step function, whose amplitude is calculated using an analytic interpolation of
the resonance jumps. We benchmark this procedure by comparing our approximate method to a
numerical evolution. We find that there is no significant error caused by this simplified prescription,
as far as the astronomically reasonable range in the parameter space is concerned. Further, we use
Fisher matrices to study both the measurement precision of parameters and the systematic bias
due to inaccurate modeling. Modeling of self-force resonances can also be carried out using the
implementation presented in this study, which will be crucial for EMRI waveform modeling.

PACS numbers:

I. INTRODUCTION

The detection of the first gravitational wave (GW) sig-
nal in 2015 by LIGO observatories commenced a new era
of astronomy. Since then, ground-based LIGO-VIRGO
networks have observed about a hundred GW signals in
the 10 Hz to 1 kHz frequency band [2–5]. In the near fu-
ture, planned space-based interferometric detectors such
as LISA (Laser Interferometer Space Antenna), Taiji and
Tianquin will observe GW in the 1-100 mHz frequency
band. Extreme mass ratio inspiral (EMRI) is one of the
most exciting possible sources and also one of the most
challenging to model emitting gravitational radiation in
the mHz range [6–8]. During such an inspiral, a stellar-
mass compact object spirals into a massive black hole
(MBH) at the center of a galaxy. EMRIs are charac-
terized by a small mass ratio, typically between 10−4

and 10−7, in contrast to comparable mass binaries ob-
served by ground-based interferometers. An EMRI can
stay in the LISA bandwidth for years before it plunges,
orbiting many cycles near the innermost stable circular
orbit (ISCO), Thus, offering a very accurate mapping of
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spacetime around MBHs. EMRIs provide a chance to
probe the environment of (dense) galactic centers and
tests for deviations from the predictions of General Rel-
ativity (GR) [6, 7]

In the test particle limit, the small object with a mass
µ follows a geodesic around the spinning MBH. In the
framework of black hole perturbation theory (BHPT),
the small mass ratio η = µ/M ∼ 10−4 − 10−7 is used
as an expansion parameter to account for the finite mass
of µ. Consequently, the forcing term known as the “self-
force” moves the body away from its geodesic and is re-
sponsible for the inspiral motion. Relativistic bounded
orbits around massive BHs have three frequencies — the
radial ωr, polar ωθ, and azimuthal ωφ frequencies. These
frequencies smoothly evolve as the small object gets
closer to the massive one due to the self-force. Flanagan
and Hinderer [9] highlighted an interesting phenomenon
that occurs during the EMRI evolution: self-force reso-
nances1. During such a resonance, radial and polar fre-

1 There is a common term in the literature for these resonances:
“transient” since the frequencies are continually evolving and
the orbit does not stay at a resonance. To distinguish them from
tidal resonances, which are also transient in nature, we call them
“self-force resonances”, here.
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quencies become commensurate such that nωr+k ωθ = 0,
where n, k are integers. Recent studies have shown the
impact of self-force resonances on detection and param-
eter estimation [10, 11], although the precise evaluation
of self-force resonance effects is still to be performed.

The event rate of EMRIs depends on highly uncertain
parameters such as the stellar density profile around each
galactic center, the population of compact objects, and
rates of dynamical processes that can lead to the capture
of the stellar-mass body in the gravitational potential of
a MBH [12–17]. Therefore, the expected range varies
from a few to a few hundred EMRI signals over a four-
year mission duration for LISA [17, 18]. To take the full
advantage of the scientific potential of such astrophysical
sources, data analysis methods rely on theoretical wave-
form templates to compare against the data. Thus, we
must have waveforms for generic orbits that are modelled
accurately within a fraction of a radian, even after hun-
dreds of thousands of orbital cycles. Another necessity is
that the templates should cover the high dimensional pa-
rameter space of possible EMRI configurations and their
generation must be fast enough to be able to deal with
templates in large numbers. Significant efforts by the
scientific community focusing on the computation of the
self-force, together with LISA working groups and mock
data challenges, are concentrated on realizing the goal of
accurate and fast waveform modeling [19–24].

Environmental effects will introduce systematic pa-
rameter estimation errors, potentially spoiling the efforts
of the community towards accurate waveform models and
precision gravitational wave astrophysics. This can lead
to the erroneous conclusion that the data conflicts with
GR [25]. Thus, quantifying and modeling resonances
resulting from self-force and external tidal fields on in-
spirals is another challenge to overcome, if we want to
perform precision tests of GR [25, 26]. Our paper is mo-
tivated by this issue, and we investigate the modeling of
resonances induced by an external tidal field. We devel-
oped for the first time the implementation of a realistic
EMRI waveform passing through a resonance. This is
essential for the scientific success of LISA. In particular,
full waveforms will be essential for the search [10] and pa-
rameter estimation of EMRIs [11]. The insights gained
from this paper will be also relevant to self-force reso-
nances, which we do not model in this paper as there are
no precise jump size estimations available at present, but
we hope they will be available in the near future [27–30].

Most of the current models are focused on isolated
EMRI systems. However, EMRIs may exist within
noisy astrophysical environments, and their evolution
can therefore deviate from the pure vacuum predictions
of GR. For instance, studies based on a Fokker-Planck
simulation suggest that a population of 40M� BHs can
be close to Sagittarius A?, with a median distance ∼
5 AU [15, 25, 31]. According to [12, 32], brown dwarfs
can be at an approximate distance of ∼ 30 AU for Sgr A?.
The focus of our work is to study the influence on EMRI
evolution by a nearby stellar-mass compact object with

mass M?, although our results apply to any kind of exter-
nal sources whose main contribution can be modelled by
a quadrupole tidal field. The tidal perturbation (the ex-
ternal force), can modify the orbital dynamics, and hence
the GWs radiated from that EMRI. In particular, a new
type of resonance is induced in EMRIs by the tidal force
of a nearby object [25], named tidal resonances, when the
condition nωr + k ωθ +mωφ = 0 is satisfied. During the
resonance crossing, a “jump” is induced in the constants
of motion which alters the subsequent orbital evolution.
Unlike self-force resonances, tidal resonances are caused
by the tidal force of the tertiary. Although the magni-
tude of the tidal field depends on the situation, here we
assume that the magnitude is not excessively large, and
hence the resonances are transient, i.e., the evolution of
orbital frequencies is dominated by the radiation reaction
due to gravitational self-force.

Our recent paper [1] (hereafter Paper I) surveyed how
common and vital tidal resonance encounters are over
a large part of the relevant parameter space of the or-
bital evolution tracks. The results showed that an EMRI
typically crosses multiple resonances during an observa-
tionally important regime leading to a significant dephas-
ing of waveforms. We also provided analytic fits for tidal
resonant jumps for an efficient generation of EMRI wave-
form models taking into account these features, which are
at the foundation of the present work. The analytic fits
also provide insight into the dependence of the resonance
strength on the orbital parameters such as the spin of
the massive BH a, the orbital eccentricity e, and the in-
clination I. In Paper I, the position of the perturber was
restricted to the equatorial plane, and its tidal influence
on the EMRI was implemented taking only the m = 2
quadrupole tidal deformation into account.

This paper aims to generalize the results of Paper I in
two important directions. First, the position of the ter-
tiary is generalized. Namely, we include the perturber’s
inclination as a parameter, while maintaining the station-
ary perturber approximation. This additional inclination
parameter introduces new non-vanishing resonances with
m = ±1 and thus, enhancing the allowed resonances. We
also take into account the m = 0 mode, which was ne-
glected in our previous work. Treating the tertiary as a
perturber, we can obtain the metric perturbation using
black hole perturbation theory [33]. From the tidally per-
turbed metric, we calculate the tidal force on the EMRI,
and the resonant jumps in the constants of motion are
determined semi-analytically.

Second, we go beyond semi-analytic fits to resonant
jumps by proposing a new waveform model taking the
resonances into account. To detect and analyze GW sig-
nals, the phase evolution of our waveform models need to
be accurate enough because detections rely on matched
filtering techniques, which are extremely sensitive to the
errors in the phase evolution of the template waveforms.
If the resonance effects are large enough, post-resonance
waveform evolution can become totally out of phase com-
pared with the template neglecting resonances. It re-
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quires a practical, i.e., fast and accurate, model to effi-
ciently detect EMRIs and correctly estimate the param-
eters of EMRI and the perturber. A recent work [11]
presented a partially phenomenological Effective Reso-
nance Model (ERM) with additional free parameters for
the resonance jumps. We use techniques from this model
to incorporate tidal resonances that are constrained by
physics, and hence our model is no longer “effective” in
the above sense.

A consistency check confirms that the obtained fitting
formulae accurately estimate the jump size by compar-
ing it with the slow evolution forced osculating elements
trajectory [34]. Hence, these fittings allow incorporating
resonances at inexpensive computational costs. To model
the jump, we use a step function approach rather than a
‘smooth’ impulse function [11], and show that this sim-
plified treatment is enough to maintain the accuracy re-
quired for data analysis. The accuracy of post-resonance
evolution depends far more on the fitting formulae than
the profile of the jump. For a small tidal perturbation
(examined in this paper), the phase accumulated during
the passage of the resonance is negligible, which makes
the step function approach suitable. In case of large tidal
perturbations (sustained resonances), the impulse func-
tion must be carefully selected. However, this occurs in
a less astrophysically relevant region of the parameter
space, and is beyond the scope of this paper.

With our model, we explore the parameter measure-
ment precision when tidal resonances are present and
study the parameter bias induced by ignoring them [35].
Based on the studied EMRI configurations, we find that
biases are larger than noise-induced statistical errors. As
a result of our findings, parameter estimates of reso-
nant EMRIs will likely be biased if resonances are not
taken into consideration in parameter estimation mod-
els. The Fisher matrices are also used to discuss the
threshold magnitude of tidal perturbation below which
the observed signal cannot be interpreted as indicative
of tidal perturbation.

The outline of the paper is as follows. In Sec. II, we
recall the evolution equations for Kerr geodesic motion
and the framework to compute jumps due to tidal res-
onances. In Sec. III, we present the first part of our
results and show the dependence of tidal resonances and
accumulated phase shift on orbital and tidal parameters.
In Sec. IV, we review gravitational wave data analysis
concepts and the key concepts of the Resonance Model
(RM). In Sec. V, we analyze the agreement between the
RM and forced osculating evolution. We examine the
bias in parameter estimation using Fisher matrices and
present our results. We conclude our paper with a discus-
sion and future outlook in Sec. VI. In App. A, we discuss
the combination of resonances that are suppressed and
do not contribute to dephasing the waveform. Through-
out this paper, we use geometrical units with c = G = 1
where c is the speed of light and G is the gravitational
constant.

II. BACKGROUND

In this section, we first describe the motion of a non-
spinning compact object of mass µ moving in the Kerr
spacetime and set up the notation and conventions that
we use. Next, we introduce the tidal resonance condition
and briefly describe the tidally perturbed metric used to
model the tidal force and calculate the jump in conserved
quantities due to a tidal resonance. For an in-depth dis-
cussion, we refer the reader to Paper I.

A. Overview of Kerr geodesic

Consider a small body of mass µ moving in the space-
time of a large black hole described by mass M and
spin parameter a. We use Boyer-Lindquist coordinates
{r,θ,φ} and Carter-Mino time λ to describe the geodesic
equations [36–39]:

(
dr

dλ

)2

=
[
E(r2 + a2)− aLz

]2
−∆

[
r2 + (Lz − aE)2 +Q

]
≡ R(r) , (2.1a)(

dθ

dλ

)2

= Q− cot2θL2
z − a2cos2θ(1− E2)

≡ Θ(θ) , (2.1b)

dφ

dλ
= Φr(r) + Φθ(cos θ)− aLz , (2.1c)

dt

dλ
= Tr(r) + Tθ(cos θ)− aE , (2.1d)

The quantities E,Lz, and Q correspond to the orbit’s
energy (in unit µ), axial angular momentum (in unit
µM), and Carter constant (in unit µ2M2). Here, ∆ =
r2− 2Mr+a2, and the Carter-Mino time parameter λ is
related to the proper time τ through dλ = dτ/Σ, where
Σ = r2 + a2cos2θ. The explicit forms of the functions,
Φr(r),Φθ(cos θ), Tr(r) and Tθ(cos θ) in Eqs. (2.1c) and
(2.1d) can be found in Ref [39].

The Kerr geodesic orbit can be also parameterized by
another set of parameters: the semi-latus rectum p, the
orbital eccentricity e, and orbital inclination angle I, in-
stead of E,Lz, and Q. These parameters are defined by

p :=
2rpra

M(rp + ra)
, (2.2)

e :=
ra − rp
ra + rp

, (2.3)

I := π/2− sgn(Lz) θmin . (2.4)

where ra, rp are, respectively, the values of r at the
apoapsis and periapsis, and θmin is the minimum value
of θ (measured from the black hole’s spin axis). For later
convenience, we also introduce x = cos I.



4

B. Framework to study tidal resonances

We consider an EMRI within the influence of an ex-
ternal tidal field. The tidal environment created by a
stellar-mass object near the EMRI is treated in a rela-
tivistic framework by computing the complete linear met-
ric perturbation to the Kerr spacetime [33, 40].

We use a set of action-angle variables to study the
orbital evolution, such that the angle variables qi param-
eterize a torus and the conjugate action variables Ji are
functions of the constants of motion {E,Lz, Q}. This
method offers a simple formulation to incorporate and
study deviations from the geodesic motion due to differ-
ent forces [41]:

dqi
dτ

= ωi(J) + εg
(1)
i,td(qφ, qθ, qr,J) + ηg

(1)
i,sf(qθ, qr,J)

+ O(η2, ε2, ηε) , (2.5)

dJi
dτ

= εG
(1)
i,td(qφ, qθ, qr,J) + ηG

(1)
i,sf(qθ, qr,J)

+ O(η2, ε2, ηε) , (2.6)

where the terms with subscript “td” are from the tidal
force, and the terms with subscript “sf” are from the
self-force. Here, the parameter

ε = M?M
2 x?/R

3 (2.7)

characterizes the strength of the tidal field produced by
the perturber M? at an inclination I?. Here, x? is a
sinusoidal function of I? depending on mode m of the
quadrupole (l = 2) tidal perturbation. The distance of
the tidal perturber from the central MBH is denoted by
R. As mentioned in the introduction, the frequencies of
EMRI orbital evolution associated with distant observer
time are ωr (oscillations in the radial direction), ωθ (oscil-
lations in the polar direction), and ωφ (rotations around
the central BH spin axis).

From the expressions above, we see that at the zeroth
order (neglecting the terms with the superscript (1) and
hither order), the action variables are conserved whereas
the angle variables increase at a fixed rate in time, which
are denoted by ωi. At leading order in η, the EMRI orbit
deviates from the geodesic motion due to the particle’s
self-force (gi,sf ,Gi,sf) [42–45]. In our model, the EMRI
experiences an external tidal force introduced in evolu-
tion equations by terms (gi,td,Gi,td). As we proceed, we
will only consider tidal resonances and hence the leading

order tidal force G
(1)
i,td, and we will drop the subscript ‘td’,

for brevity. The force is written in terms of its Fourier
modes as

G
(1)
i (qφ, qθ, qr,J) =

∑
n,k,m

G
(1)
i,nkm(J)ei(nqr+kqθ+mqφ) .

(2.8)
For non-resonant orbits, the exponential factor in the
above equation is rapidly oscillating in time, thereby av-
eraging to zero over many cycles. Thus, allm, k, nmodes,

except for the one with m = k = n = 0, do not contribute
to a secular change in J. However, the phase in Eq. (2.8)
will be stationary when

ωnkm := nωr + kωθ +mωφ = 0 , (2.9)

i.e. when the tidal resonance condition is satisfied for a
set of relatively small integers2 (n, k,m). Thus, the expo-
nential factor varies slowly around the resonance point,
and the corresponding average of the force amplitude

G
(1)
i,nkm is non-vanishing, inducing a secular change in J.
It is helpful to recall the relevant timescales for our

physical setup. The fastest timescale is the orbital pe-
riod τorb ∼ O(M) and the slowest timescale corresponds
to the radiation reaction time τrr ∼M/η. The orbital pe-

riod of the tidal perturber is given by τtd ∼ 2π
√
R3/M .

Another key time scale is the resonance duration τres
[1, 9],

τres ∼

√
4π

mω̇φ + kω̇θ + nω̇r
∼M

√
1

η
. (2.10)

Overall, when the stationary perturber approximation is
valid, we have

τorb � τres � τtd, τrr.

Flanagan and Hinderer [9] gave an analytic expression
for the ‘jump’ in the constants of motion in the con-
text of self-force resonances. We use a similar estimate
to model the effect of the tidal resonance, and calculate
the jump ∆Ji in conserved quantities across a resonance
point. Assuming that the evolution of J and hence the
orbital periods is dominantly determined by the gravi-
tational radiation reaction, the jump ∆Ji is estimated
as

∆Ji = ε

∫ ∞
−∞

G
(1)
i (qφ, qθ, qr,J)dτ

= ε
∑
s=±1

√
2π

|Γs|
exp

[
sgn(Γs)

iπ

4
+ isχ

]
×G(1)

i,sn,sk,sm(J) , (2.11)

where χ = nqr0 + kqθ0 + mqφ0 and Γ = nω̇r0 + kω̇θ0 +
mω̇φ0, and the quantities qi0 and ω̇i0 are phases and
frequency derivatives evaluated at τres,0 (the instant
where tidal resonance condition is satisfied), respectively.
Strictly speaking, higher modes with (n, k,m) multiplied
by an integer other than ±1 are also non-vanishing, but

2 When the condition is satisfied for large integers,the correspond-

ing G
(1)
i,nkm is much smaller. Hence, they tend to be irrelevant

from the observational point of view, although it also depends
on the magnitude of the tidal perturbation which resonances are
sufficiently influential. This holds true for self-forces resonances
as well [10].
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FIG. 1: The low order tidal resonance contours for a prograde
orbit with inclination 50◦ (top) and a retrograde orbit with
inclination 130◦ (bottom) in e - p plane. The spin parameter
of the central BH is set to a = 0.9. The contour labels cor-
respond to integers {n, k,m}. We discuss the suppression of
resonance combinations with k +m = odd in appendix A.

their contribution is highly suppressed. In the estimate
of Γ, the corrections due to the tidal resonance are ne-
glected, because such corrections are higher order in ε.

In this work, we study only the leading quadrupolar
l=2 modes, because the higher multipoles will be smaller
by a power of M/R. For l =2, allowed values for az-
imuthal number m are −2 to 2. In Paper I only the
m = ±2 modes were considered. We relax this restriction
to incorporate resonances caused by m = 0,±1 modes.
In Fig 1, we show the full set of low order resonance com-
binations investigated in our analysis. We find that reso-
nance jumps vanish for combinations with k +m = odd.
This suppression is discussed in appendix A.

To calculate the tidal force G
(1)
i , we start with the

space-time metric of a rotating BH perturbed by a nearby
object [33]. Given the perturbation hαβ

3, the induced ac-

3 An overall factor of two missing in hαβ in [33]; see footnote 17
in [46] for details.

celeration with respect to the background Kerr spacetime
is expressed as,

aα = −1

2
(gαβKerr + uαuβ)(2hβλ;ρ − hλρ;β)uλuρ , (2.12)

with uα the unit vector tangent to the worldline of the in-
spiralling object with a small mass µ. The instantaneous
change rates of the constants of motion are [47]

dLz
dτ

= aφ , (2.13)

dQ

dτ
= 2uθaθ − 2a2cos2θutat + 2cot2θuφaφ . (2.14)

As our perturber is treated to be stationary, the change
in orbital energy E due to a tidal resonance is zero. More-
over, m = 0 mode drives an axisymmetric perturbation,
leaving Lz unchanged. Nonetheless, this mode can cause
a significant non-zero change in Q.

III. RESONANCE STRENGTH AND
DEPHASING

In the following, we first explore the strength of m =
0,±1 mode resonances as a function of orbital parame-
ters (a, p, e, x) and inclination θper of the tidal perturber.
Next, similar to the analysis in Paper I, we show accu-
mulated phase shift for typical cases for m = 0,±1 reso-
nances and discuss the impacted orbital parameter space
of EMRIs due to a tidal resonance encounter. Fitting
formulae are constructed for each resonance combination
shown in Fig. 1 for both prograde and retrograde cases.

A. Dependence on orbital and tidal parameters

When we introduce a tidal perturber, the spacetime de-
scribing the central black hole and the tidal perturber is
no longer axisymmetric. As shown in Eq. (2.6), the tidal
force depends on the axial position of the small body.
Hence, the changes in conserved quantities are sensitive
to EMRI’s orbital phases on encountering the resonance,
i.e., qφ0, qθ0, qr0. To demonstrate this dependence, we
first compute dLz/dt and dQ/dt for some resonances.
After orbit averaging at the resonance point, the right
hand side in Eq. (2.8) is well approximated by,〈

G
(1)
i (qφ, qθ, qr,J)

〉
≈ G(1)

i,mkn(J)ei(mqφ0+kqθ0+nqr0) + {c.c.} . (3.1)

The resonant phase is defined as qres := mqφ0 + kqθ0 +
nqr0 and from Eq. (3.1), it is clear that the jump size
due to the tidal resonance has a sinusoidal dependence
on the resonant phase [1, 25]. Therefore, depending on
this phase, an orbit may cross the tidal resonance with a
negligible jump in Lz and Q, even if the magnitude of the
tidal perturbation itself is sufficiently large. To analyze
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FIG. 2: Dependence of average change rate of the z-component of angular momentum (red-solid) and Carter constant (blue-
dashed) on the orbital eccentricity (top, left), on orbital inclination (bottom, left), the spin of central BH (top, right), and
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inclination (bottom, left), the spin of central BH (top, right), and perturber’s inclination (bottom, right) for n : k : m = −3 :
2 : 0. The dots represent the values obtained from the semi-analytic calculation, and curves denote the obtained fitting. There
is no change in the z-component of angular momentum given the axisymmetry of the m = 0 perturbation. Note that 〈dQ/dt〉
is normalised by multiplying a factor of (ε/M)−1.
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the strength of resonance on orbital and tidal parameters,
we will adopt the fine-tuned value of qres that maximizes
the changes in Lz and Q. Hence, our results show the
upper limit of influence caused by these resonances.

Using (2.11), we compute the change in Lz and Q for
different resonances and note some interesting trends for
m = 0,±1 modes. In Fig. 2, we show dependence of a
sample resonance −3 : 1 : 1 (prograde orbit) on a, e, x
and θper.

• We find that, irrespective of the resonance com-
binations, i.e. m = 0,±1,±2, and the direction of
the orbit (prograde or retrograde), both dLz/dt and
dQ/dt increase with increasing orbital eccentricity
e. The prefactor e2/(e − 1)2 ensures that dLz/dt
and dQ/dt are zero for circular orbits (e = 0) since
the amplitude of radial oscillations is zero for this
case.

• Another pattern is observed for variation in the
spin parameter of MBH. Similar to m = ±2 modes
analysed in Paper I, for prograde orbits, m = ±1
mode resonances show a decrease in both dLz/dt
and dQ/dt as a increases whereas for retrograde
orbits both quantities increase as a increases. The
difference between prograde and retrograde orbits
is expected because the resonance occurs at smaller
(larger) p values for prograde (retrograde) orbits for
larger values of a (see vertical scale of lower panel
in Fig. 1) for which the acting tidal force is greater.

• As for orbital inclination parameter x = cos I, we
find that, as x increases, both dLz/dt and dQ/dt
decreases regardless of the orbit’s direction. This
feature is again qualitatively similar to the trend
found for m = ±2 in Paper I.

• Next, we note the dependence of resonance strength
on inclination of the tidal parameter θper. For the
sample resonance −3 : 1 : 1 and other resonance
combinations with m = ±1, the change in dLz/dt
and dQ/dt is maximum for the perturber at an in-
clination of θper = 45◦. This behaviour can be
qualitatively explained for Lz using Newtonian ar-
guments — the spherical harmonic decomposition
of (l = 2,m = ±2) mode of the tidal force and
hence the torque turns out to be proportional to
sinθper cosθper [48]. This dependence also clarifies
that m = ±1 resonance gives no contribution for
an equatorial perturber (θper = 0◦).

In Fig 3, we show the dependence on orbital and tidal
parameter for a m = 0 mode focusing on −3 : 2 : 0
resonance. For this mode, the axisymmetry of the back-
ground Kerr spacetime remains intact. Therefore there
is no jump induced in Lz. Nonetheless, we find that
such resonances can still drive a jump in Q as shown in
Fig 3. The dependency on e, a, x are qualitatively simi-
lar to m = 1 resonances discussed above. In contrast, for
m = 0 resonances, we find that the absolute jump size

I = 50°, a = 0.1, e = 0.6 , 3�r-2�� = 0
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o 0

100
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300
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FIG. 4: Dependence of average change rate of the Carter
constant (blue-dotted) on the perturber’s inclination for a
prograde orbit crossing n : k : m = 3 : 0 : −2. The dots
represent the values obtained from the semi-analytic calcula-
tion, and curves denote the obtained fitting. Note that both
〈dLz/dt〉 and 〈dQ/dt〉 are normalised by multiplying a factor
of (ε/M)−1.

is largest when the perturber is aligned with the rota-
tion axis of the MBH. This finding is important because
m = 0 modes can cause a jump in Q, implying that other
axisymmetric sources such as accretion disks can also in-
duce a jump and impact waveforms through tidal reso-
nances. Furthermore, tidal resonances with m = 0 modes
are degenerate with self-force resonances, for which only
the radial and polar integers (n and k) determine the
resonance combination due to the axisymmetry of the
Kerr space-time. In order to dissociate such resonances,
waveforms need to be accurately modeled. If multiple
tidal resonances due to the same perturber are encoun-
tered by an EMRI, they might be sufficient to break the
degeneracy.

For the completeness, in Fig 4 we show the dependence
of the m = 2 mode on θper. The cos2θper like dependence
highlights that the jump size from m = 2 modes is maxi-
mum when the perturber is on the equatorial plane. This
holds true irrespective of the orbit’s direction.

Note that in Fig. 2-4 〈dLz/dt〉 and 〈dQ/dt〉 are nor-
malised by multiplying a factor of (ε/M)−1. The dots
represent the values obtained from the semi-analytic cal-
culations, and curves denote the obtained fitting (see Pa-
per I for discussion on the construction of fitting formu-
lae). The agreement between the semi-analytic evalu-
ation and fitting agrees remarkably well with the error
always less than 1%. The Mathematica notebook with
fittings for all significant resonances is made available on
[49].

B. Dephasing due to tidal resonance

Low order resonances encountered by EMRI orbits lie
within the LISA frequency band for a typical mass ratio
of 10−4−10−7. As discussed in previous sections, an orbit
crossing resonance experiences a jump in the constants of
motion. Thus, resonances cause the orbit and hence, the
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FIG. 5: Log of accumulated phase ∆Ψφ for spin parameter a = 0.1, 0.5, 0.9 for a prograde orbit crossing the −3 : 1 : 1
(top panel) and −3 : 2 : 0 (bottom panel) resonance in the x - e plane. The phase shift is computed for an EMRI with
M = 4 × 106M�, µ = 30M� under the influence of a tidal perturber with mass M? = 30M� at a distance of 10 AU from the
central MBH. Results for different sets of parameters can be estimated from the scaling relation given in Eq. (3.3).

phases to depart from the standard adiabatic evolution.
Given a high SNR (∼ 30) of the waveform, LISA may
resolve the phase in φ with an approximate sensitivity
of ∆Ψφ ∼ 0.1 [18, 25]. To quantify the dephasing, we
compute the deviation in the GW phase using

∆Ψφ =

∫ Tplunge

0

2∆ωφdt . (3.2)

The accumulation in phase is integrated from the on-
set of resonance (when the resonance condition is sat-
isfied) up to the plunge time Tplunge. The method of
determining the phase evolution during the subsequent
inspiral is discussed in detail in Paper I (Sec III-B). In
short, for the implementation of the analytic expressions
of fundamental frequencies [37, 39], our code employs the
‘Kerr Geodesic’ Package from the Black Hole Perturba-
tion Toolkit [50]. We evolve two orbits— one with and
without ∆Ji included. At each time ωφ for both the or-
bits are compared, and the difference in frequencies for
these two evolutions is given by ∆ωφ. The factor of 2 in
Eq. (3.2) appears because the strongest harmonic in GWs
(for quasi-circular equatorial EMRIs) is the quadrupolar
mode (l = 2,m = 2). For eccentric orbits such as the
one we have here, higher harmonics dominate, which can
increase the amplitude of mismatch due to dephasing.

We set M = 4 × 106M�, µ = M? = 30M� and

R = 10AU. This distance is the same as in Paper I, but
twice as far compared to [25] to give a more conservative
estimate. In Fig 5, ∆Ψφ is shown for prograde orbits
crossing the −3 : 1 : 1 (top panel) and −3 : 2 : 0 (bottom
panel) resonances in the x - e plane for different spin pa-
rameters of the MBH. The whole parameter space except
for low eccentricity orbits and/or for a large spin is mea-
surably affected by the −3 : 1 : 1 resonance. In a similar
way, the −3 : 2 : 0 resonance impacts a large parameter
space. The dephasing increases with increasing eccentric-
ity. Since both sample resonances are encountered early
in the inspiral phase (see the upper panel of Fig 1), the
dephasing accumulates over hundreds of thousands of cy-
cles before the plunge, and therefore affects most of the
parameter range.

The accumulated phase shown for the sample reso-
nances is calculated for fixed masses of the MBH, EMRI
and the tidal perturber. The accumulated phase ∆Ψ′nkm
for a different set of parameters M ′, µ′,M ′?, R

′ , x′? sim-
ply scales as

∆Ψ′ = ∆Ψ

(
M ′

M

)7/2(
µ′

µ

)−3/2(
M ′?
M?

)(
x′?
x?

)(
R′

R

)−3
.

(3.3)

So far, our results suggest that resonance jumps are
sensitive to intrinsic orbital parameters, especially the
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orbital phases at resonance as discussed below Eq. (3.1).
Also, dephasing due to low-order tidal resonances can
strongly impact the EMRIs detectable by LISA, assum-
ing such tidal perturbers exist. Consequently, the wave-
form evolution becomes out of phase, compared to a tem-
plate neglecting resonances — reducing the detection rate
because the signal-to-noise ratio falls as the phase error
accumulates. It calls for careful modeling of waveforms
that correctly detect EMRIs and estimate the parameters
of EMRI and perturber. This serves as our motivation
for the rest of the paper.

IV. MODELING TIDAL RESONANCES

In this section, we first review how to evaluate the
expected accuracy and systematic bias in parameter es-
timation, based on Fisher analysis. Next, we introduce
the structure of the resonance model (RM), which is used
to incorporate tidal resonances in waveforms and inves-
tigate the loss of signal and the systematic bias due to
inaccurate modeling.

A. Gravitational wave data analysis

The output data s(t) of a gravitational detector con-
sists of random noise, n(t) and possibly a gravitational
wave signal h(t;λ) characterized by a set of parameters
λ = [λ1 . . . λn] in n-dimensional parameter space.

s(t) = h(t;λ) + n(t). (4.1)

We assume that noise is given by a weakly stationary,
Gaussian random process with zero mean. Under these
assumptions, the Likelihood for the parameters λ is given
by [51],

p(s|λ) ∝ exp

(
−1

2
〈s− h(λ)|s− h(λ)〉

)
, (4.2)

where 〈·|·〉 is a noise-weighted inner product defined as,

〈a(t)|b(t)〉 := 4 Re

∫ ∞
0

ã∗(f)b̃(f)

Sn(f)
df . (4.3)

Sn(f) is the power spectral density (PSD) of the noise
and the variable with tilde indicates the Fourier trans-
form of the corresponding time series data. Additionally,
it is customary to define the signal-to-noise ratio (SNR),

ρ =
√
〈h|h〉, (4.4)

which characterizes the detectability of a signal by a de-
tector with a given noise power spectrum.

We define two other quantities which serve as a mea-
sure of similarity between two template waveforms ha =

h(t;λa) and hb = h(t;λb), the Overlap O(ha, hb) and
Mismatch M(ha, hb), by

O〈ha, hb〉 =
〈ha|hb〉√

〈ha|ha〉〈hb|hb〉
(4.5)

M(ha, hb) = 1−O(ha, hb). (4.6)

If O(ha, hb) = 1, the two waveforms are identical. Wave-
forms with O(h1, h2) = 0 are mutually orthogonal. In
contrast, by definition, the smallerM(ha, hb), the better
the match is.

If we want to estimate how accurately parameters are
measured, it is helpful to calculate the Fisher Information
matrix Γij . When a strong signal with parameters λ is
present in the detector output, the likelihood is strongly
peaked in the parameter space at the best-fit (BF) pa-
rameter set close to the true values. Namely, the mea-
surement error

∆λ = λBF − λ , (4.7)

is small. Then, we expand h(λ) up to linear order in ∆λ
(truncating higher orders terms given the smallness of
∆λ in the strong signal limit) and substitute it into (4.2).
On substitution, the Likelihood function becomes

p(s|λ) ∝ exp

−1

2

∑
i,j

Γij∆λ
i∆λj

 . (4.8)

where

Γij =

(
∂h

∂λi

∣∣∣∣ ∂h∂λj
)
. (4.9)

The waveform derivatives ∂jh are computed numerically
using the five-point stencil formula such that the numer-
ical error scales at fourth order in the derivative spac-
ing. The probability function shows that the inverse of
Γij , known as the covariance matrix, contains informa-
tion about variances of parameter measurement error (di-
agonal elements) as well as correlations of errors among
different parameters (off-diagonal elements). In particu-
lar, the statistical error in the estimate of the parameter
λi can be evaluated by

∆λstati =
√

(Γ−1)ii . (4.10)

From (4.9), the Fisher Matrix scales as ∼ ρ2, therefore
∆λ scales as ∼ ρ−1.

Besides the errors induced by noise, there can be a pos-
sible systematic uncertainty that is not parameterized in
our waveform models. For instance, if we use an inaccu-
rate waveform model hm(λ) to estimate the parameters
λ0 of a signal actually described by a model ht(λ), the re-
covered parameters will be affected by systematic errors
given by [35],

∆λsysi = (Γ−1)ki〈∂kh(λ0)|ht(λ0)− hm(λBF)〉 . (4.11)
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FIG. 6: Workflow of Resonance Model.

This error is independent of the strength of the signal.
Therefore, if exists, it will dominate over noise-induced
error, whenever the data quality is sufficiently good.

In this work, we evaluate the above mentioned errors,
by comparing two kinds of waveforms: resonant wave-
forms which are produced using the AAK module [52, 53]
implemented in the RM (discussed in Sec. IV B), and
non-resonant waveforms where we “turn-off” the jumps
induced by tidal resonances. For our Fisher analysis, we
assume that from the data we determine the following
ten parameters:

λ =

(
log10

M

M�
, log10

µ

M�
, a, p, e, x, qr, qθ, qφ, ε̃

)
,

(4.12)
where qr, qθ, qφ are the initial phases of an EMRI or-

bit and ε̃ is the normalized (by the fiducial value of ε)
tidal parameter. These intrinsic parameters govern the
detailed dynamical evolution of a system, regardless of
where or how an observer observes it. For computational
convenience, we are not including extrinsic parameters
such as the sky location angles (θS , φS) and the angles
pointing to the direction of the MBH’s spin (θK , φK) in
this list, since they are not strongly correlated with the
intrinsic parameters. The luminosity distance DL of the
source is rescaled for each waveform to fix the SNR to
30. Our fiducial values for the masses of the EMRI sys-
tem are M = 106M� and µ = 30M�. The perturber of
mass M? = 30M� is placed at a distance of 5AU on the
equatorial plane, resulting in the following fiducial tidal
parameter ε ∼ 2.3× 10−13 for x = 1.

B. Resonance model

The Effective Resonance Model (ERM) is a phe-
nomenological model developed recently to study EMRI
resonances. It was constructed using the resonance jumps
as free parameters and applied to the case of self-force
resonances [11]. Following the implementation of [11],
we extend the ERM to incorporate tidal resonances. We

IC (a, p, e, x) t3:0:−2 (107sec)

1 0.1, 11.5, 0.7, 0.642 ∼ 1.64

2 0.5, 10.5, 0.8, 0.642 ∼ 1.85

3 0.7, 11.0, 0.7, 0.342 ∼ 1.71

4 0.9, 11.8, 0.8, 0.087 ∼ 2.24

TABLE I: Initial conditions for EMRI orbit. The last column
shows the time of n : k : m = 3 : 0 : −2 resonance encounter.

refer to our working code as the resonance model (RM);
the word “Effective” has been discarded since we are
not using the resonance jumps as free parameters. The
flowchart is shown in Fig 6. The solver employs flux
and phase evolution equations to obtain the trajectory,
given some initial condition (E0, Lz0, Q0). Our calcu-
lations use the fifth order post-Newtonian (5PN) fluxes
generated by the post-Newtonian (PN) approximation
in first-order black hole perturbation theory [19]. The
right-hand side of the phase evolution equations are cor-
responding Kerr orbital frequencies [37]. The resonance
condition is checked at each time step of the solver (us-
ing the adaptive time step and event handling tool in the
Solve-ivp ODE package in Python) for some low order
integer m, k, andn. If the resonance condition is satis-
fied, we record the orbital parameters at the resonance
surface and use them to estimate the jump size of the
resonance due to the tidal field using the analytic fits ob-
tained from our semi-analytic calculations [1]. Once the
jump sizes ∆Lz and ∆Q are measured, we update the
constants of motion for the next time step using a step
function. In [11], the resonance jump is implemented us-
ing a “smooth” impulse function. In this study, however,
we find that using a smooth function instead of a step
function did not affect our results (shown in Fig 7). Con-
sequently, we choose to implement the faster and simpler
step function. We stop the evolution of the trajectory
once the separatrix, where ωr vanishes, is reached. The
orbital parameters and phases are then fed to the Aug-
mented Analytic Kludge (AAK) module to obtain the
waveform. Our code makes use of the modular FEW
package [53].

V. RESULTS

In this section, we compare the jump obtained from
analytic fits with the result obtained by the numerical
osculating code, to find a good agreement between the
two. Using the RM and Fisher matrices, we show mis-
matches for different initial conditions and assess the
measurement precision of EMRI orbital parameters and
tidal parameters. We also compute the systematic bias
that would be induced by ignoring resonances.
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FIG. 7: The left figure shows the difference in Lz between the orbits evolved with and without tidal resonance effect. When the
orbit undergoes a resonance, there is a jump in the action variables J. Black dashed lines illustrate the evolution of ∆Lz using
a step impulse function in the RM, whereas orange (dashed-dotted) lines represent evolution tracks using a ‘smooth’ impulse
function. Similarly, the right figure shows the evolution of the Carter constant Q. The initial conditions for this orbit are
(a, p, e, x) = (0.9, 11.8, 0.8, 0.0187), and the trajectory crosses two resonances, n : k : m = 3 : 0 : −2 and n : k : m = 3 : −4 : −2
around t ∼ 2.2× 107and ∼ 5.8× 107, respectively. The fast oscillations in both figures correspond to timescales of the orbital
motion. The inset plot shows zoomed-in evolution near the 3 : 0 : −2 resonance.

FIG. 8: Snapshot of h+ waveforms obtained from the RM and osculating method a few hours before plunge. Top panel:
comparison of h+ from RM (with resonance jump included) and the one from the osculating method. Lower panel: comparison
of h+ from the RM without resonance jump and the one from the osculating method.

A. Mismatch

Dephasing induced by tidal resonances accumulates
over the inspiral, resulting in a decrease in the over-
lap (4.5) between resonant and non-resonant waveforms
after resonance encounter. In this section, we analyze the
evolution of the mismatch M (4.6) as a function of the
final time for different initial conditions listed in Table I.
These conditions were chosen since they cover a broad
range of possibilities for astrophysical EMRI events that
may be measured by future low-frequency GW missions.
All initial conditions are subject to a 30 M� tidal per-
turber at a distance of 5 AU on the equatorial plane, and
the EMRI inspiral lasts for ∼ 1−2 years. The parameters

chosen for tidal perturber are motivated by the Fokker-
Planck simulation study that suggests a population of
stellar-mass BHs at a median distance of ∼ 5AU [15].
We note that for the chosen set of parameters τres ∼ τtd,
thereby violating the stationary perturbation approxima-
tion. However, we leave the impact of a dynamical tidal
perturber on the resonances for future work.

We first determine the consistency of the resonance
model by comparing its trajectory evolution with the nu-
merical osculating trajectory. The forced osculating or-
bital elements method [34, 54] uses the tidal force com-
puted from the metric perturbation hαβ and for the in-
clusion of radiation reaction effects, 5PN fluxes [19, 49]
are employed. Using the osculating code, we ran two
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simulations for an inspiral orbit — with and without the
effect of the tidal force with the same initial conditions.
To extract the jump size, we compute the difference (∆Lz
and ∆Q) between the full trajectory (tidal force + 5PN)
and adiabatic (only 5PN) trajectory. A similar trajectory
evolution is obtained by means of the resonance model,
where the inspiral is derived mostly from 5PN adiabatic
fluxes, and the jump is added only when the resonance
condition is satisfied.

The comparison is presented in Fig 7. We show the
differences ∆Lz (left, red) and ∆Q (right, blue) for IC4
crossing two resonances 3 : 0 : −2 and 3 : −4 : −2. The
apparent thickness of the lines shown in the figures is due
to oscillations on the orbital timescale. In this plot, the
evolution of the respective quantities obtained from the
RM are overlaid for both the ‘step’ (black, dashed) and
‘smooth’ (orange, dashed-dotted) impulse functions that
model the jump obtained from the fitting formulae. This
figure shows a good agreement of jump size (and therefore
resonant phase) and overall evolution between the RM
and osculating method regardless of the choice for the
impulse function. The difference between the evolutions
from the two impulse functions is ∼ O(10−8), too small
to resolve on the scale in Fig 7.

Additionally, we compare the agreement between the
RM and osculating methods at the waveform level. The
trajectory information from both models is fed into the
AAK module, and the snapshot of the waveform (+ po-
larization) a few hours just before the plunge is displayed
in Fig 8. We can see a remarkable phase match between
the two in the top panel. In the lower panel, we switch
off the jump in the RM waveform and compare it with
the osculating waveform. As a result of dephasing, there
is a clear disagreement in the waveforms. Furthermore,
we see that in the present example the merger time cor-
responding to the end point of the waveform is delayed
for the osculating waveform, which takes the tidal jump
into account, because of the positive jump in Lz and Q.

In Fig 9, the cumulative mismatch between resonant
and non-resonant waveforms using the RM and osculat-
ing method is shown. The unfilled markers show the
cumulative mismatch between the resonant waveforms
using the RM and osculating method, for four different
initial conditions crossing two resonances n : k : m =
3 : 0 : −2 and n : k : m = 3 : −4 : −2 during
the evolution. In contrast, the filled markers show the
mismatch when the resonances are neglected in the RM
waveform model. Before crossing the first resonance, the
filled markers overlay the unfilled ones for every initial
condition. This indicates that the mismatch increases
with each subsequent resonance encounter. The tiny in-
crease in M before resonance is only due to numerical
error arising from a ‘shift’ in initial orbital frequencies
due to tidally perturbed metric as also discussed in [55]
using a Newtonian analysis. A key point to notice is that
after the resonance the mismatch between the RM and
osculating resonant waveforms grows from 10−5 − 10−7

up to ∼ 10−3. This result is significant for the waveform

FIG. 9: The cumulative mismatch between resonant and non-
resonant waveforms using the RM and osculating method.
Here, the unfilled markers show the cumulative mismatch
between the resonant waveforms using the RM and oscu-
lating method for different initial conditions (see Table I)
crossing two resonances n : k : m = 3 : 0 : −2 and
n : k : m = 3 : −4 : −2 during the evolution. In con-
trast, the filled markers show the mismatch if resonances are
neglected in the waveform model. The filled markers overlay
the unfilled ones before crossing the first resonance for every
initial condition. The condition with spin 0.9 has the longest
inspiral time because the separatrix is close to the central BH
compared to the low spin EMRIs.
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FIG. 10: Measurement precision ∆λ of EMRI’s intrinsic and
tidal parameters for the initial conditions listed in Table I.
All the signals are normalized to SNR = 30.

modeling community, because it quantifies the mismatch
induced by ignoring the resonance modeling. As long as
we correctly predict the resonance jumps, it is possible to
have an accurate waveform up to a mismatch of ∼ 10−3.
This is expected to be sufficient for search and parameter
estimation. In summary, we can model (multiple) tidal
resonances by using the RM and match the waveform
until the end of the inspiral keeping M below 10−3. It
is worth reminding the reader that the cause of the mis-
match of O(10−3) comes from a numerical error resulting
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FIG. 11: The ratio δλbias/∆λ between the size of the system-
atic and statistical errors is shown for the initial conditions
listed in Table I. The dashed grid line indicates that the ratio
is equal to 1. For δ λbias/∆λ > 1, the bias induced by inaccu-
rate waveform modeling is more significant than that caused
by the noise fluctuations in the detector.

from tidally perturbed metric causing a tiny ‘shift’ in the
initial conditions. If we can determine the initial condi-
tions correctly, the mismatch would be smaller. We also
find no discernible difference in mismatch between the
RM with the ‘step’ and the ‘smooth’ impulse functions
for all four initial conditions.

B. Parameter estimation and systematic bias

With the resonant waveforms derived from the RM
and including only one resonance (3:0:-2), we examine
the parameter measurement precision of the orbital and
tidal parameters based on Fisher matrices (discussed in
Sec IV A). All the waveforms have been normalized so
that their SNR = 30 and the extrinsic parameters are
set to {θK , φK , θS , φS} = {π/4, 0, π/4, 0}. The results
for Fisher matrix estimates are shown in Fig. 10. In
this figure, we can see that the orbital parameters (ex-
cept the initial phases) are well constrained, whereas the
tidal parameters are less well constrained. In particular,
the measurement precision for the tidal parameter ε̃ and
the phases is ∼ 10−1. In terms of the waveform, the
initial phases determine the initial position of the com-
pact object and do not affect the frequency evolution of
the EMRI at adiabatic order, so their impact is weaker,
which leads to the lower measurement precision. Due
to the longer observation time for IC4 (see Fig. 9), the
orbital parameters of this system are better constrained
than for the other models.

In waveform modeling, using an approximate model
can introduce systematic error (4.11) into parameter es-
timation. We investigate the systematic error by us-
ing a non-resonant approximate waveform hm, while the
true waveform ht incorporates the resonance using the

RM. To compare this error with the statistical error
(4.10), we show the ratio δ λbias/∆λ in Fig. 11. With
δ λbias/∆λ > 1, the inaccurate waveform modeling leads
to biases larger than those induced by noise fluctuations.
The magnitude of systematic bias naturally depends on
the magnitude of the tidal perturbation. For the strong
but still realistic examples (motivated by [15, 25, 31]) of
tidal resonance that we consider, the systematic errors
cannot be completely ignored. Thus, we may need to
account for the presence of tidal perturbers when per-
forming careful inference, as also indicated by mismatch
analysis in Fig. 9.

In addition to measurement precision, the Fisher ma-
trix also provides the covariance relation between the pa-
rameters. To visualize this, we plot the 3σ contours in
Fig. 12 for IC1. The solid (blue) contours are generated
by the true model (with resonance) and are centered on
the true parameter values. The dotted (red) contours
are derived from the model without resonance, where the
peak values are shifted by the amount of the systematic
errors shown in Fig. 11. For the example considered in
Fig. 12, the bias is within the credible region for most of
the EMRI parameters. However, our ability to measure
the initial phases is more significantly affected if tidal ef-
fect is not modeled. The normalized tidal parameter ε̃
(discussed below Eq. 4.12) can be constrained with an
absolute precision of 0.25.

In the analysis above, we showed the bias induced in
parameter measurement precision if tidal resonance was
not modeled in the waveform. Next, we compare the
same model with the one in which tidal parameter is set
to zero i.e. the signal is not tidally perturbed but the
tidal parameter is included in the Fisher analysis. The
goal is to check whether the error estimates are affected
by the introduction of the tidal parameter. We assume
that the signal is given by a model with the tidal pa-
rameter set to zero. In Fig. 13 blue-solid contours show
the 3σ confidence region when we use the model with
10 parameters including the tidal parameter, while the
red-dotted contours corresponding to the model with 9
parameters excluding the tidal parameter. Because the
tidal parameter is positive by definition, we show a sec-
tion of ellipses in the positive range. The orbital param-
eters such as M,µ, a, p, e, x are measured with approxi-
mately the same precision in both models. Our ability
to measure the EMRI’s initial phasing is noticeably more
degraded, but the overall impact is still fairly marginal.
Thus, the tidal parameter is largely a non-degenerate de-
gree of freedom, and its inclusion in EMRI data analysis
will not pose fundamental issues in the absence of a tidal
perturber at least for the magnitude of tidal perturbation
considered in our work.

By combining the results from Fig. 12 and Fig. 13 for
the example considered, we can infer the maximum value
of tidal parameter under which the presence of a tidal
resonance cannot be assessed. According to Fig. 12, we
can constrain the tidal parameter within the error bar of
±0.25 of the true value, whereas Fig. 13 says that we can
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dotted (red) contours are derived from a model without resonance with peak shifted to parameter values estimated with induced
systematic error.

rule out values larger than 0.25 for ε̃. Therefore, if we
choose a signal with ε̃ = 0.25, we would likely have an
ellipse centered at 0.25 and the width touching the zero
(since the error bar is ±0.25). It follows that we may
rule out zero for a larger ε̃ (> 0.25), thereby marking the
presence of the perturber, but not for a smaller ε̃.

VI. SUMMARY AND FUTURE WORK

Observations of extreme-mass-ratio inspirals may pro-
vide an excellent opportunity to test some of the key pre-
dictions of general relativity and are particularly useful
for probing the stellar distribution at the galactic center.
In this work, we generalized our previous study [1] to
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explore the impact of different resonance combinations
caused by a stellar-mass perturber near an EMRI. We
computed the accumulation in phase after a tidal reso-
nance has been encountered by an EMRI and showed the
dependence of resonance strength on orbital parameters
and inclination of the perturber. Using Fisher matrices,
we also analyzed how this phenomenon impacts the es-

timation of the intrinsic orbital and tidal parameters by
using a resonance model (RM) based on a step function
approach. We validated the evolution of the trajectory
derived from the RM by comparing it with the forced
osculating trajectory. This gives us confidence in the ro-
bustness of the fitting formulae as well as the implemen-
tation of the RM. Our study examined the systematic
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FIG. 14: Section of orbit in qφ - qθ plane for different resonance conditions.

errors that might arise from neglecting tidal resonances
in the estimation of intrinsic parameters. Our results
suggest that parameter estimates are likely to be biased
if resonances are not considered in waveform modeling.
The analysis presented here to model tidal resonances
would likely apply to self-force resonances as well.

As part of the extension of this work, we will relax
the stationary perturber approximation and explore mul-
tiple resonant interactions in parameter estimation us-
ing Bayesian posterior calculations. Furthermore, once
the resonances jump sizes due to the self-force is avail-
able, the ability of RM to detect and characterize EMRIs
should be investigated. Last, the overall approach in this
work, Paper I, and modeling efforts by the EMRI com-
munity is to pursue a modeled treatment of resonances
(be it self-force or tidal) in data analysis. However, this
is not the only possible approach, since phenomenologi-
cal treatments such as ERM (where information on res-
onance jumps is recovered rather than modeled) might
also prove useful; this is especially the case if sufficiently
precise modeling of these jumps turns out to be unfeasi-

ble or unachievable. Thus, it is worthwhile to continue
exploring both approaches in parallel, which will in turn
benefit from shared techniques such as those introduced
in this work.
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Appendix A: Suppression of odd k +m integer
resonances

In Paper I, we focused our analysis on m = ±2 modes
and discussed the suppression of resonances for odd k
integers. Here, we take a step further and investigate
m = ±1 modes. We discover that tidal resonances with
odd k +m integer do not give rise to a jump in the con-
stants of motion. Hence, they do not contribute to a sec-
ular accumulation of a phase shift and are therefore not
relevant for waveform modeling. On assuming a static
tidal interaction, the leading order external potential at
a large distance is expressed as

Uext ∝ Eab xaxb,

where the symmetric tidal tensor Eab contains all the in-
formation about the tidal environment. For m = ±1
modes, only Exz and Eyz contribute where x, y, z(r, θ, φ)
are standard Cartesian (spherical) coordinates. Note
that transforming qφ → qφ+π ⇒ x → −x, y → −y
or qθ → qθ+π ⇒ z → −z leads to a sign flip of the
tidal potential and hence the resulting torque. There-
fore, if corresponding points (for instance, both (qφ, qθ)
and (qφ, qθ+π)) are passed by an orbit, then it results in
a net cancellation of dLz/dt between the two segments
of the orbit. In Fig 14, for illustrative purpose, we show
a section of the orbit in the qφ - qθ plane for k + m = 1
(left) and k +m = 2 (right) resonance combinations. In
the left plot, for fixed qr = 0, the distance between two
lines is π. Thus, the orbit evolves in such a manner, that
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the net tidal force cancels out resulting in no change in
Lz. Whereas, in the right plot, the corresponding “can-
cellation” points are not crossed by the orbit. While

this discussion helps understand the vanishing dLz/dt on
crossing odd k+m resonances, empirically we found that
dQ/dt also vanishes for such resonances.
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