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The quest for distinguishing black holes from horizonless compact objects using gravitational
wave signals from coalescing compact binaries can be helped by utilizing the phenomenon of tidal
heating, which leaves its imprint on the binary waveforms through the horizon parameters. These
parameters, defined as H1 and H2 with H1,2 ∈ [0, 1] for the two compact objects, are combined
with the binary components’ masses and spins to form two new parameters, Heff5 and Heff8, to
minimize their covariances in parameter estimation studies. In this work, we investigate the effects
of tidal heating on gravitational waves to probe the observability of these effective parameters.
We use a post-Newtonian waveform that includes the phase contribution due to tidal heating as a
function of Heff5 and Heff8, and examine their 1-σ measurement errors as well as the covariances
between them mainly using the Fisher matrix approach. Since this approach works well for high
signal-to-noise ratios, we focus primarily on the third generation (3G) gravitational wave detectors
Einstein Telescope and Cosmic Explorer and use the second generation (2G) detector-network of
LIGO (Hanford, Livingston) and Virgo for comparison. We study how the errors vary with the
binaries’ total mass, mass-ratio, luminosity distance, and component spins. We find that the region
in the total binary mass where measurements of Heff5 and Heff8 are most precise are ∼ 20− 30M�
for LIGO-Virgo and ∼ 50 − 80M� for 3G detectors. Higher component spins allow more precise
measurements of Heff5 and Heff8. For a binary situated at 200 Mpc with component masses 12M�
and 18M�, equal spins χ1 = χ2 = 0.8, and Heff5 = 0.6, Heff8 = 12, the 1-σ errors in these two
parameters are ∼ 0.01 and ∼ 0.04, respectively, in 3G detectors. These estimates suggest that
precise measurements of the horizon parameters are possible in third-generation detectors, making
tidal heating a potential tool to identify the presence or absence of horizons in coalescing compact
binaries. We substantiate our results from Fisher studies with a set of Bayesian simulations.

I. INTRODUCTION

Detection of gravitational waves (GWs) from coales-
cence of numerous compact binaries by LIGO [1] and
Virgo [2] has opened up a new era of astronomy [3, 4].
Their observations have motivated a series of tests of
General Relativity (GR) [5, 6]. The components of the
binaries observed by LIGO and Virgo are mainly inferred
to be either black holes (BHs) or neutron stars (NSs),
which is primarily based on the measurements of compo-
nent masses, population models, and tidal deformability
of NSs [7]. Merger of two NSs was observed in the event
GW170817 [8], and possibly also GW190425 [9]. More
recently, confirmed detections of events GW200105 and
GW200115 [10] were made where one of the components
is believed to be a BH, and the other an NS. However, for
the heavier LIGO-Virgo binaries [3], it remains to be con-
clusively proven whether their components are, in fact,
BHs of GR or not.
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Indeed, there are various types of exotic compact ob-
jects (ECOs) [11–13] proposed that are claimed to mimic
BHs in these binaries. However, incorrect inferences
about their true nature can have far-reaching implica-
tions, such as on population models of compact objects.
In the future, the proposed 3rd generation ground-based
GW detectors Einstein Telescope [14] and Cosmic Ex-
plorer [15] are expected to have order-of-magnitude bet-
ter sensitivity compared to current ones in estimating the
source parameters, which should enable us to probe the
nature of these objects more accurately. Multiple mod-
els of ECOs have been proposed, including Planck-scale
modifications of BH horizons [16, 17], gravastars, [18],
and boson stars [19], among others. Building separate
models for each of these exotic objects is a hard problem,
and accurate measurements of their properties are not yet
possible with the current detectors. So, a more practical
approach would be to devise tests that are generic and
model-independent and are based on our understanding
of binary black hole (BBH) dynamics.

One way to probe the presence of ECOs against BHs
is to understand the possible ways in which the charac-
teristics of these objects can differ from those of BHs,
and that can be confirmed or ruled out by introducing
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appropriate free parameters in the gravitational wave-
form. In order to develop such model-independent tests
of BH mimickers, it is important to identify the proper-
ties that are unique to BHs, and investigate their imprints
on the gravitational waveform so that we can measure
them from observations.

Several tests have been proposed to probe whether the
compact objects in a binary are BHs or ECOs. One of
them is using echoes to distinguish the remnants of bi-
nary merger from BHs, which has initiated rigorous mod-
elling and search for those features in GW data [12, 20–
32]. Construction of waveforms for binary ECOs has
also begun [33, 34]. Measurement of tidal deformabil-
ity (TD) [7, 35–37] and spin-induced multipole moments
[38–45] from the late inspiral phase can also be used to
test the presence of BHs. Nature of the compact objects
can be probed with GWs emitted due to superradiant
instability as well [46, 47].

Due to their causal structure, BHs in GR are perfect
absorbers that behave as dissipative systems [48–51]. A
significant feature of a BH is its horizon, which is a null
surface and a “one-way membrane” that does not al-
low energy to escape outward. These tidal effects cause
changes in their mass, angular momentum, and horizon
area. This phenomenon is called tidal heating (TH) [52–
54]. If the BH is nonspinning, then energy and angular
momentum can only flow into the BH. However, spin-
ning BHs can transfer their rotational energy from the
ergoregion out into the orbit due to tidal interactions
with their binary companion. Energy exchange via TH
backreacts on the binary’s evolution, resulting in a shift
in the phase of the GWs emitted by the system. Effect of
TH on objects such as NSs or horizonless ECOs is com-
paratively much less due to their lack of a horizon. So,
a careful measurement of this phase shift can be used
in principle to distinguish BHs from horizonless compact
objects [36, 39, 55–63].

To quantify this effect, two “horizon parameters”, H1

and H2, were introduced in a recent study [64] whose
utility we will study further in characterizing compact
objects. These parameters take the value of 1 when the
objects are BHs, and 0 ≤ H1, H2 < 1 for other com-
pact objects. The phase shift in GWs due to TH will
depend on these parameters. Their accurate measure-
ment, in turn, will indicate the presence or absence of
BHs in a binary. It turns out that the covariance of
these two parameters is generally finite. We therefore
find two other related parameters that are mostly sta-
tistically independent. Even then, some covariances be-
tween the new parameters can arise due to waveform sys-
tematics, non-stationary detector noise, etc. Parameter
estimation (PE) exercises for real GW signals widely use
Bayesian approaches [64, 65], which is a robust method,
but computationally expensive. Fisher studies [66] can
provide reliable estimates for the errors and uncertain-
ties in measuring the source parameters of GW signals
with high signal-to-noise ratios, and is much faster and
less expensive. In the current work, we will primarily use

the latter approach for estimating the errors, and explore
Bayesian simulations to corroborate the results.

A compact binary coalescence (CBC) consists of three
major phases - inspiral, merger, and ringdown. One can
model the inspiral phase using post-Newtonian (PN) for-
malism, whereas numerical relativity (NR) simulations
are needed to model the merger regime [67]. In order
to study the ringdown part of the dynamics, one may
use BH perturbation theory techniques [68] or NR. Tidal
heating is relevant in the inspiral and is more significant
for a binary when the components are closer together
so that their tidal interactions are stronger. In the PN
regime, TH can be incorporated into the gravitational
waveform by adding the phase shift due to this effect
into a PN approximant in the time or frequency domain.

In Sec. II, we will review the basic framework of tidal
heating, describing the waveform parameterization cho-
sen for this work. Sec. III will summarize the concepts
of the Fisher matrix analysis, discussing various relevant
aspects of it, and the corresponding results will be pre-
sented in Sec. IV. In Sec. V we will present results from
Bayesian simulations to check the consistency of our anal-
yses. In Sec. VI, we will discuss the covariances between
the relevant parameters and possibilities of improving the
results by diagonalizing the Fisher matrix. We will sum-
marize the results in Sec. VII, and discuss the relevance
of this work to future studies.

Throughout the article, we will use geometric units,
assuming G = c = 1, except when calculating physical
quantities.

II. THEORY OF TIDAL HEATING AND
WAVEFORM PARAMETERIZATION

The PN formalism [69] describes the gravitational
waveform emitted by a stellar-mass compact binary in its
early inspiral phase. In this formalism, the evolution of
the orbital phase Ψ(t) of a compact binary is computed as
a perturbative expansion in a small parameter, typically
taken to be the characteristic velocity v = (πMf)1/3.
Here M is the total mass of the binary and f is the in-
stantaneous GW frequency. This analytical procedure
demands v � 1, which makes it useful in the early inspi-
ral phase of a CBC. For building a proper PN waveform,
one begins with the gravitational waveform from an in-
spiraling pair of point particles (PP). Extra terms are
added based on the nature of the binary components. If
a component has a finite size and inner structure, e.g., an
NS, then tidal deformability plays an important role [70].
If there is a BH involved, then the effect of its horizon
has to be considered. This is where tidal heating comes
into play.

An electrically neutral spinning black hole, called a
Kerr black hole (KBH) in GR parlance, is stationary
when it is isolated. On the other hand, when a KBH is
a member of a binary, it feels its companion’s tidal field,
which acts as a non-axisymmetric perturbation [52]. This
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perturbation causes changes in the mass, spin, and hori-
zon area of the KBH over time [71]. Since the KBH expe-
riences the tidal field of its orbiting companion, it absorbs
(emits) energy from (into) the orbit. The absorption part
is present in non-spinning BHs as well. Additionally, for
a KBH, the difference between the spin frequency and
the angular frequency of the tidal field causes the spin to
slow down, which in turn makes the KBH lose its rota-
tional energy. The slowing down of a rotating BH due to
the gravitational dissipation produced by exterior mass
is analogous to the slowing down of a rotating planet
by viscous dissipation due to tides raised by an exterior
moon that increases its internal thermal content - a phe-
nomenon known as tidal heating. Due to this similarity,
the energy and angular momentum flux in BBHs is also
termed tidal heating [72].

The gravitational waveform for a specific binary will
include contributions from these factors depending on its
components. For a generic binary, we can write the fre-
quency domain strain h̃(f) as

h̃(f) = Ã(f)ei(ΨPP+ΨTD+ΨTH), (1)

where Ã(f) is the frequency-dependent amplitude. The
phase terms – ΨPP,ΨTD, and ΨTH – arise from the point-
particle approximation, tidal deformability, and tidal
heating, respectively.

Since GW absorption is negligible for matter [73], TH
can be a way to discern the existence of horizons [36, 39].
Reference [39] introduced the horizon parameter H for
extreme mass-ratio inspirals (EMRIs) for this purpose.
In Ref. [64], the authors extended this to a more general
case, introducing horizon parameters for both objects as
H1 and H2. Strictly speaking, these two parameters de-
note the fraction of the flux due to TH in any binary to
that in a BBH, and they take values H1,2 ∈ [0, 1].

In case of circular orbits, the flux of energy at the hori-
zon can be expressed as a PN expansion [50, 51, 71, 74–
77]. Since TH implies the presence of horizon, the TH
energy flux due to each component has to be multiplied
with the corresponding Hi.

Let us consider a compact binary with individual
masses m1 and m2, dimensionless spins χ1 and χ2, total
mass M = m1 + m2 and mass-ratio q = m1/m2 with
m1 ≥ m2. In the case of partial absorption, one has
0 < Hi < 1. Then the absorbed flux can be expressed
as [64]

−dE

dt
=

32

5
ν2 v
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2∑
i=1

Hi

(mi

M

)3 (
1 + 3χ2

i

)
×
{
−(L̂ · Ŝi)χi + 2

[
1 +

√
1− χ2

i

]
mi

M
v3

}
,

(2)
where ν = m1m2/M

2 is the symmetric mass-ratio, v is

the characteristic velocity, and Ŝi and L̂ are the unit
vectors along the directions of the ith object’s spin and
the orbital angular momentum, respectively.

There are a few things to note from this expression.
This is the expression for the rate of energy absorp-
tion by the compact object. For a spinless binary, i.e.
χ1 = χ2 = 0, the right-hand side survives, meaning that
tidal heating is still possible; but in that case it is al-
ways positive, which means that the energy flux can only
be inward and not outward (which is expected for non-

spinning BHs). The presence of the term −(L̂ · Ŝi)χi
contributes to the loss of energy by the BH, which means
that energy is being transferred to the orbit. Also, we
see that for anti-aligned spins, where (L̂ · Ŝi) is negative,
energy extraction from the BH is not possible.

The horizon parameters H1,2 appear in the GW phase
in terms that also include the masses and spins. This
makes them degenerate with those parameters, in that it
is more practical to measure the following effective ob-
servable parameters instead of H1,2:

Heff5 ≡
2∑
i=1

Hi

(mi

M

)3 (
L̂ · Ŝi

)
χi
(
3χi

2 + 1
)
, (3a)

Heff8 ≡ 4πHeff5 +

2∑
i=1

Hi

(mi

M

)4 (
3χi

2 + 1
)

×
(√

1− χi2 + 1

)
. (3b)

These are analogous to the effective spin parameter χeff
that was introduced [78, 79] for characterizing spinning
compact binary waveforms, where a combination of the
spin parameters were introduced as a new parameter that
can be measured more precisely. The subscripts here
denote the fact that Heff5 and Heff8 appear in the GW
phase in 2.5PN and 4PN order, respectively.

If the system is a BBH, as long as any one of the com-
ponents has a finite spin, both Heff5 and Heff8 will be
nonzero. On the other hand, when both the components
of a BBH have vanishing spins, one has Heff5 → 0, but
Heff8 6= 0. Therefore, in the low-spin limit, Heff8 acts
as the discriminator for the presence or absence of hori-
zons. A horizonless binary with negligible tidal heating
(e.g. binary neutron star) would have both Heff5 and
Heff8 vanish, regardless of their spin values.

Next, we examine the phase contribution in the gravi-
tational waveforms due to TH. This has been calculated
in Ref. [64] from Refs. [80, 81] to be

ΨTH =
3

128ν

(
1

v

)5 [
−10

9
v5Heff5 (3 log (v) + 1)

− 5

168
v7Heff5 (952ν + 995)

+
5

9
v8 (3 log (v)− 1) (−4Heff8 +Heff5ΨSO)

]
,

(4)
where the “spin-orbit” term ΨSO is given by
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ΨSO =

(
L̂ · Ŝ1

)
χ1m1(73m1 + 45m2) + 1↔ 2

3M2

=
73

3(1 + q)2

{
q2
(
L̂ · Ŝ1

)
χ1 +

(
L̂ · Ŝ2

)
χ2

}
+

15q

(1 + q)2

{(
L̂ · Ŝ1

)
χ1 +

(
L̂ · Ŝ2

)
χ2

}
.

(5)

Equation (4) gives the total phase contribution in the
gravitational waveforms due to TH. We can rewrite this
expression in a compact form by identifying the depen-
dence of individual terms on v as

ΨTH = [C0 + C1 log(v) + C2v
2 + C3v

3

+ C4v
3 log(v)]Heff5

+ [D3v
3 +D4v

3 log(v)]Heff8 ,

(6)

where the coefficients Ci (i = 0, 1, 2, 3, 4) and Di (i =
3, 4) are functions of the symmetric mass-ratio ν, and
C3, C4 also include ΨSO. The term C0Heff5 is indepen-
dent of v and thus independent of f . Therefore, this
term can be absorbed into the phase of coalescence φc,
which is also independent of f . The terms C3v

3Heff5 and
D3v

3Heff8 have v3 dependence, so they are ∝ f . These
terms can be absorbed into the time of coalescence tc,
which appears in the total GW phase as 2πftc, and is
∝ f as well. For these reasons, we discard these three
terms from ΨTH, equivalently redefining φc and tc.

We are then left with the terms containing C1, C2, C4

and D4; which give us the GW phase due to tidal heating
to be

ΨTH =
3

128ν

[
−10

3
Heff5 log (v)

− 5

168
v2Heff5 (952ν + 995)

+
5

3
v3 log (v) (−4Heff8 +Heff5ΨSO)

]
,

(7)

after putting their expressions from Eq. (4). We will use
this expression for ΨTH here for our analyses. Through-
out the paper, we only consider spins aligned with the
orbital angular momentum, so that L̂ · Ŝ1 = L̂ · Ŝ2 = 1 in
Eq. (5).

Next, we need the PN approximant to which we will
add this phase in order to obtain the complete PN wave-
form with TH included. For this purpose, we consider
the TaylorF2 approximant [82] upto 3.5PN order (∼ v2),
constructed under the “stationary phase approximation”
(SPA) [83]. Since PN expansions fail near the merger
phase due to violations of the slow motion and weak grav-
ity conditions, we have to truncate the waveform at some
point where the binary is still away from the merger. A
general choice for such cut-off frequency is the binary’s
innermost stable circular orbit (ISCO), which marks the
“end” of the inspiral phase. For a binary of KBHs, loca-
tion of the ISCO depends on the spin-alignment as well as

the component masses and spins. In the case of aligned
spins, the ISCO for a KBH is closer to the center of mass
of the binary than a Schwarzschild BH of the same mass.
In our work, we consider the upper cutoff frequency to be
the GW frequency at the ISCO corresponding to the final
BH formed after merger, given by (ignoring cosmological
redshift) [84]

fISCO =
Ω̂ISCO(χf )

πMf
. (8)

Here Ω̂ISCO(χ) = MKerrΩISCO is the dimensionless an-
gular frequency for a circular equatorial orbit around a
KBH with mass MKerr and spin χ [85]. For the upper
cutoff frequency, we choose MKerr = Mf and χ = χf ,
the final mass and spin of the merger remnant BH, which
are obtained by using fitting formulas from NR simula-
tions [86]. Explicit expressions for Ω̂ISCO, and Mf , χf in
terms of initial masses and spins are mentioned in Ap-
pendix C of Ref. [84].

III. BASICS OF THE FISHER MATRIX
APPROACH

In this work, we mainly focus on Fisher matrix anal-
ysis [66, 83, 87, 88] for the estimation of errors in the
measurement of the horizon parameters in the 3rd gen-
eration detectors Einstein Telescope [14] and Cosmic Ex-
plorer [15, 89, 90]. In this section we will briefly summa-
rize the basic concepts of the Fisher matrix approach for
parameter estimation.

A GW signal in the time domain, as emitted by a co-
alescing compact binary, can be decomposed into two
polarization states h+(t; ΘGW) and h×(t; ΘGW), where
the parameter vector ΘGW contains information about
the source. For a BBH in PP approximation, ΘGW ≡
{m1,m2,χ1,χ2, DL, ι, tc, φc}, where m1,m2 are com-
panion masses, χ1,χ2 are their dimensionless spin vec-
tors, DL is the luminosity distance of the binary, ι is the
inclination angle of its orbital plane with respect to the
line of sight, and tc and φc are the time and phase of co-
alescence, respectively. We extend this set by including
the two parameters {Heff5, Heff8}, defined in Eq. (3), to
incorporate TH. The GW strain in the frequency domain
as measured by a detector, H(f), depends on ΘGW, the
location of the detector, and three more extrinsic source
parameters {α, δ, ψ}, which denote right ascension, dec-
lination and polarization angle, respectively.

A. The Noise Power Spectral Density

The ability of a GW detector to measure the GW
strain depends on its sensitivity, which in turn depends
on the power spectral density (PSD) of its noise, n(t),

and its auto-correlation [91] κ = n(t1)n(t2), where the
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overbar denotes an average over noise realizations. As-
suming that the noise is stationary and Gaussian with
zero mean, which means κ only depends on the time dif-
ference t′ = t1 − t2, the PSD of the noise (in frequency
domain) can be written as,

Sn(f) =
1

2

∫ ∞
−∞

dt′κ(t′)ei2πft
′
, with f > 0. (9)

This function denotes the detector sensitivity at different
frequencies.

B. The Signal-to-Noise Ratio

The set of all possible detector responses in frequency
or time domain forms a vector space. In frequency do-
main, let us call this space V. We can define, on this
space, a noise-weighted scalar product of two detector re-
sponses H(f), G(f) ∈ V as [92]

〈H|G〉 = 2

∫ ∞
0

df
H∗(f)G(f) +G∗(f)H(f)

Sn(f)
. (10)

Equipped with this definition, we can define the signal-
to-noise ratio (SNR) ρ for a given GW signal H as

ρ =
√
〈H|H〉 = 2

√∫ ∞
0

df
|H(f)|2
Sn(f)

, (11)

where Sn(f) contains information about the sensitivity
of the chosen detector. The SNR of a signal characterizes
its loudness over a given noise profile.

It is important to mention here that in practical sit-
uations, like in this study, we will not cover the entire
frequency region (0 to ∞), because detectors typically
have sensitivity only within a finite frequency band, and
the signal band is also finite. So, Eq. (11) will be replaced
by

ρ = 2

√∫ fmax

fmin

df
|H(f)|2
Sn(f)

. (12)

Here fmin will be determined by the detector band’s lower
frequency cut-off, and fmax will correspond to the ISCO
(Eq. (8)).

C. The Fisher Information Matrix

The detector output S(f) in frequency domain is re-
lated to the GW strain H(f) and the noise N(f) as
S(f) = H(f)+N(f). Since we have assumed a Gaussian
profile for the noise, we can write the probability function
for N(f) [91] as

p(Θ) =p0(Θ)e−
1
2 〈N |N〉

=p0(Θ)e−
1
2 〈S−H(Θ)|S−H(Θ)〉, (13)

where Θ is the parameter vector and p0 is the prior on
these parameters.

Let us denote E(Θ) = 〈S −H(Θ)|S −H(Θ)〉, and ex-
pand this quantity around the “true” value (Θ∗) of the
parameters :

E(Θ) = E(Θ∗) +
1

2

∂2E

∂Θi∂Θj

∣∣∣∣
Θ=Θ∗

∆Θi∆Θj + · · · , (14)

where ∆Θ = (Θ − Θ∗), and we use Einstein summation
convention over repeated indices. Also, using the expres-
sion for E(Θ), we can write

∂2E(Θ)

∂Θi∂Θj
= 2

〈
∂Θi

H(Θ)
∣∣∂Θj

H(Θ)
〉

+
〈
∂Θi

∂Θj
H(Θ)

∣∣N〉
≈ 2

〈
∂Θi

H(Θ)
∣∣∂Θj

H(Θ)
〉
, (15)

where in the second step we have assumed that the SNR
value is high enough for the first order derivatives of H
to dominate over the second order ones [83].

We now define the Fisher information matrix Γ, the
elements of which are given as

Γij =
〈
∂Θi

H(Θ)
∣∣∂Θj

H(Θ)
〉
. (16)

Using this in Eq. (15), and assuming that ∆Θ is small,
we can infer from Eq. (13) that

p(Θ) ∝ exp

{
−1

2
Γij∆Θi∆Θj

}
. (17)

The inverse of the Fisher matrix is the covariance matrix,
C = Γ−1. Along the diagonal of C, one gets the vari-
ances of the concerned parameters, from which one can
get the 1-σ errors in those parameters as σΘi

=
√
Cii.

The off-diagonal elements are the covariances between
the parameters, defined as

Cij = cov(Θi,Θj) = (Θi −Θi)(Θj −Θj), (18)

where the bar denotes mean value. For i = j, one gets

Cii = (Θi −Θi)2, called the “variance” of the distribu-
tion of Θi, which is the square of its standard deviation
σΘi

.
For the Fisher matrix approach to work, not only the

SNR has to be high, but the matrix also has to be well-
conditioned [91]. This criterion is quantified by the con-
dition number, which is defined as the ratio of the largest
and the smallest eigenvalues of the matrix. If this quan-
tity is too large, then the inversion of Γ is not trustwor-
thy. Here, we ensured that it is well within the numerical
precision available for our computations [93].

IV. RESULTS OF FISHER ANALYSES

In this section we will apply the Fisher matrix ap-
proach to estimate the errors in the TH parameters
in the three-detector network comprising the Advanced
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(a) Errors in Heff5 in LIGO-Virgo

(b) Errors in Heff8 in LIGO-Virgo

FIG. 1. Error values in the TH parameters Heff5 (top) and
Heff8 (bottom) as a function of total mass, when measured
by the three detector network of LIGO (Hanford, Livingston)
and Virgo. mass-ratio (q) has been varied from 1.5 to 3 for
getting different curves. We consider aligned spins here, so
that L̂ · Ŝi = 1. Heff5 = 0.6, Heff8 = 12, DL = 200 Mpc,
χ1 = χ2 = 0.8 have been taken.

LIGO [94] and Advanced Virgo [95] detectors, and the
proposed 3rd generation detectors Einstein Telescope [14]
and Cosmic Explorer [15]. We have used the package
GWBENCH [91] for our Fisher matrix calculations. In order
to estimate the errors in certain parameters using this
approach, we first inject a gravitational waveform into
the relevant detector, then using Eq. (16), calculate the
Fisher matrix Γ and the covariance matrix by inverting it.
As mentioned in Sec. II, in this work we take TaylorF2
as the PN approximant and incorporate in it the phase
contribution (ΨTH) due to TH, given by Eq. (7).

In our study, we estimate the projected errors in five
parameters, Θ ≡ {Mc, ν,DL, Heff5, Heff8}, where Mc

is the chirp mass defined as Mc = (m1m2)3/5/M1/5.
When we discuss the variation of the errors with compo-
nent spins in Sec. IV B 3, we extend the parameter space
with the two component spins χ1, χ2. As the lower cutoff

frequencies, we have used 10 Hz (4 Hz) for LIGO-Virgo
(ET, CE), and the upper cutoff frequencies are deter-
mined by the spin-dependent ISCO frequencies given by
Eq. (8).

From Eqs. (3) we see that Heff5 and Heff8 are func-
tions of the component masses only through the ratios
m1/M = q/(1 + q) and m2/M = 1/(1 + q), both of
which have values always lying between 0 and 1. Also,
−1 ≤ χi ≤ 1. This enables one to define a range in
the values of these two parameters that can occur phys-
ically, for all possible values of q. This turns out to be
approximately [64]

− 4 ≤ Heff5 ≤ 4 , and − 46.3 . Heff8 . 54.3 . (19)

Even though we will treat Heff5 and Heff8 as free parame-
ters here, we have to keep in mind that this is the physical
range of values they can have.

A. LIGO & Virgo

Figure 1 shows the variation of 1-σ errors with the total
binary mass in the noise spectrum of the three-detector
network of LIGO (Hanford, Livingston) and Virgo. The
Y-axes report the 1-σ errors in Heff5 (Fig. 1(a)) and Heff8

(Fig. 1(b)), denoted by ∆Heff5 and ∆Heff8, respectively.
In our analysis, we have used the most recent design
sensitivity curves of Advanced LIGO [96] and Advanced
Virgo [97] detectors. Binaries in the range of total mass
10−100M� have been considered, situated at a distance
of 200 Mpc. The errors initially fall with total binary
mass in the range M < 30M�, and we find that there
is a region around 30M� where the errors are minimum.
Thereafter, the errors rise rapidly with increasing M . An
increase in M causes the SNR to rise, which provides a
better estimation for Heff5, Heff8. This causes the dip in
the errors for M = 10 − 30M�. Further increase in M
shrinks the signal band. This is because it lowers the
value of the ISCO frequency while fmin remains fixed.
This interplay between the SNR and the effective fre-
quency interval creates an optimal region, which turns
out to be about 30 − 40M�. We also note that the ex-
act minima in the errors are slightly different for Heff5

(∼ 40M�) and Heff8 (∼ 30M�).
Heff5 and Heff8 for binaries with more asymmetric

masses appear to be more precisely measurable. This
is expected because mass asymmetry lowers the value of
the symmetric mass-ratio ν, and the TH phase has a pref-
actor of 1/ν (see Eq. (7)), making the phase contribution
due to TH higher for more asymmetric masses, conse-
quently adding more GW cycles into the signal band.
For a binary at 200 Mpc with M = 30M� and q = 1.5,
Fisher estimates show an error value of ∼ 0.4(1.2) for
Heff5(Heff8), which amounts to a relative percentage er-
ror of ∼ 67%(10%). In LIGO, then, the detection of a
so-called golden binary at a distance ≤ 50 Mpc will make
it possible to estimate these TH parameters with better
than 17% precision.
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(a) Errors in Heff5 in Einstein Telescope (b) Errors in Heff5 in Cosmic Explorer

(c) Errors in Heff8 in Einstein Telescope (d) Errors in Heff8 in Cosmic Explorer

FIG. 2. Errors in Heff5 (top row) and Heff8 (bottom row) as a function of total mass M , when measured in ET (first column)
and CE (second column). Injection parameters are the same as in Fig. 1.

B. 3rd Generation Detectors

The proposed 3rd generation (3G) GW detectors, Ein-
stein Telescope (ET) and Cosmic Explorer (CE) will have
a higher sensitivity than current detectors, which will re-
sult in higher SNR for CBCs. This makes Fisher error
projections quite trustworthy. In this section, we explore
the measurement precision of Heff5, Heff8 in ET and CE.
In addition to the variations of the errors with M , we
will also look at the variations with luminosity distance
DL and the spin values χ1,2.

For our study, we have used the sensitivity curves for
the ET-D configuration [98] of Einstein Telescope, and 40
km long CE configuration [99, 100] of Cosmic Explorer,
optimized for the low fequencies of CBC.

1. Dependence on the Total Binary Mass

Figure 2 shows the variation of errors with total mass.
As expected, the errors are smaller compared to LIGO-

Virgo, due to the high SNR values. In 3G detectors
(Fig. 4), typically SNR ∼ O(103) whereas in LIGO-
Virgo, SNR ∼ O(102) for the chosen parameter space.
Also, SNR increases more rapidly with M in ET and CE
than in LIGO-Virgo, making the rise in errors due to
the shortening of the frequency range much slower after
M ∼ 60M�, as seen from Fig. 2. Comparing Fig. 1 and
Fig. 2, we confirm that the precision of measurement in
3G detectors has substantial improvement over LIGO-
Virgo.

For binaries with M & 60M� and q = 1.5, estimation
of Heff5 and Heff8 can be made with 1-σ errors ∆Heff5 ∼
0.008 (1.2%) and ∆Heff8 ∼ 0.02 (0.22%) respectively, for
BBHs at a distance of 200 Mpc. The error values fall as
more component mass asymmetry is introduced. How-
ever, for binaries with low masses, we see that this trend
is reversed for Heff5 – as seen in Figs. 2(a) and 2(b) for
M = 10M�. We also note that the variation in the error
values with changing q is less pronounced in ET, CE than
LIGO-Virgo.
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(a) Errors in Heff5 in Einstein Telescope (b) Errors in Heff5 in Cosmic Explorer

(c) Errors in Heff8 in Einstein Telescope (d) Errors in Heff8 in Cosmic Explorer

FIG. 3. Errors in Heff5 (top row) and Heff8 (bottom row) as a function of luminosity distance, when measured in ET (first
column) and CE (second column). Along the X-axis, DL varies from 100 Mpc to 1 Gpc. Other parameters are fixed at
Heff5 = 0.6, Heff8 = 12,M = 30M�, χ1 = χ2 = 0.8.

FIG. 4. Variation of SNR with the total mass M in LIGO-
Virgo, ET and CE, as calculated from Eq. (11). We consider
binaries at DL = 200 Mpc with mass-ratio q = 1.5.

2. Dependence on the Luminosity Distance

Figure 3 shows the variation of errors with luminos-
ity distance DL. We keep the total mass fixed at M =
30M�. In this case only the fall in SNR with increasing
distance affects the errors. As expected, the errors rise
linearly with DL, with the slope being greater for more
symmetric masses. From Fig. 3, we see that for binaries
as far as 1 Gpc away, the 1-σ error in Heff5 is ∼ 0.06
(10%) for BH binaries with q = 3, whereas for Heff8 it is
∼ 0.2 (1.6%). Owing to the linear variation in errors, the
presence of horizons for all the sources within this range
can be tested with linearly increasing precision.

3. Dependence on the Spins

Measurements of Heff5, Heff8 are expected to depend
on the spins of the binary components χ1, χ2 due to the
presence of the spin-orbit term ΨSO (Eq. (5)), and the
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FIG. 5. Variation of errors in Heff5 (left column) and Heff8

(right column) in ET (solid lines), CE (dashed lines) with
dimensionless spins. χ1, χ2 are varied from 0 to 1 along the
X and Y -axes respectively. Total binary mass is M = 40M�,
and mass-ratios are q = 1.1 (top panel) and q = 3 (bottom
panel). We consider optimally oriented binaries at DL = 200
Mpc, with Heff5 = 0.6, and Heff8 = 12.

fact that the upper cutoff frequency fISCO depends on
the component spins (Eq. (8)). Figure 5 shows contours
of the error values in Heff5 and Heff8 in ET and CE de-
tectors when the dimensionless (aligned) spins χ1, χ2 are
varied from 0 to 1. ∆Heff5 and ∆Heff8 contours are shown
in the plots in the left and the right columns, respec-
tively. The parameter space considered for this analysis
is Θ ≡ {Mc, η,DL, χ1, χ2, Heff5, Heff8}. We demonstrate
the spin dependence of the errors for total binary mass
M = 40M� and two values of the mass-ratios, q = 1.1
(top panel) and q = 3 (bottom panel). Let us consider
one of these binaries in CE, with q = 1.1 and low val-
ues of component spins, χ1 = χ2 = 0.2. For the 7-
dimensional parameter space mentioned above, the er-
rors in Heff5 (Heff8) are ∼ 0.4 (3), which amounts to a
percentage error of ∼ 67% (25%) for this binary. The
contours have lower error values as they approach the
point χ1 = χ2 = 1, indicating that the errors decrease
with increasing spins. This can be attributed to the fact
that fISCO increases with χ1 and/or χ2, making the ef-
fective frequency range larger, consequently adding more
GW cycles in the frequency band. We note here that the
values of the parameters themselves increase with the
(aligned) spins substantially (Eq. (3); Fig. 1 and Fig. 2
of Ref. [64]), implying that for highly spinning compact
objects one can put more stringent constraints on them.

V. COMPARISON WITH BAYESIAN
ANALYSES

We carried out Bayesian parameter estimation with
Bilby [101] to compare the results with ones gotten
from the Fisher analyses. For each of the detector net-
works (LIGO-Virgo, ET, CE), we chose one point from
the region of the parameter space that is expected to
produce the best results according to the Fisher studies
above. This was partly to ensure the robustness of the
best estimates found by the latter method. Although
these regions are different for LIGO-Virgo and 3G de-
tectors, as noted earlier, we choose the values of total
mass (M = 40M�) and mass-ratio (q = 3) same for all
three detector networks for the sake of comparison. We
first inject TaylorF2 waveforms with the TH phase, then
run the parameter estimation to obtain posteriors from
the simulations. The starting frequency is 10Hz(4Hz) for
LIGO-Virgo(ET, CE), and the upper cutoff frequency is
taken to be the corresponding ISCO frequency.

In Table I, we list the distribution and ranges of priors
used for the chosen parameter space.

Parameter Distribution Range Units

Chirp mass (Mc) Uniform (10, 20) M�
Symmetric mass-ratio

(ν) Uniform (0.01, 0.25) · · ·
Luminosity distance

(DL) Uniform (100, 500) Mpc
Heff5 Uniform (-4, 4) · · ·
Heff8 Uniform (-20, 20) · · ·

TABLE I. Choice of priors for the Bayesian posteriors pre-
sented in Fig. 6.

Figure 6 shows the corner plots generated form the
posteriors, for the three detector-networks, LIGO-Virgo
(Fig. 6(a)), ET (Fig. 6(b)), and CE (Fig. 6(c)). As
expected, estimation of Heff5 and Heff8 are much bet-
ter in ET and CE than in LIGO-Virgo, with the errors
broadly agreeing with their Fisher counterparts for simi-
lar systems studied in Figs. 1(a), 2(a), 2(b) for Heff5, and
Figs. 1(b), 2(c), 2(d) for Heff8.

We chose a fourth point for the LIGO-Virgo network,
which is significantly close – at DL = 50 Mpc, with all the
other parameters the same as in Fig. 6(a). Prior for the
luminosity distance is taken to be uniform in the range
(10, 100) Mpc. All the other parameters have the same
priors as in Table I. Figure 7 shows the corresponding
posterior plot. Comparing the two, we see the expected
improvement in accuracy and precision, arising from the
binary being four times closer. The errors in this case
are ∼ 11.7%(∼ 4.7%) for Heff5(Heff8) for a BBH.
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(a) LIGO-Virgo (b) Einstein Telescope

(c) Cosmic Explorer

FIG. 6. Posterior plots from Bayesian parameter estimation. Injection parameters are M = 40M�, q = 3, DL = 200 Mpc,
χ1 = χ2 = 0.8, Heff5 = 0.6, Heff8 = 12. The solid red lines denote the injected values of the corresponding parameters and the
green dashed lines show the standard deviations (for the figures 6(b) and 6(c), 14.65 is to be added to the tick labels of Mc,
which is mentioned below the x-axes of the subplots). The priors chosen for these simulations are listed in Table I.

VI. PRINCIPAL COMPONENT ANALYSIS

So far we have considered the diagonal elements of the
error covariance matrix C, which are the variances. In
this section we will consider the covariances betweenHeff5

and Heff8, which are the off-diagonal elements of C. Di-
agonalizing C will yield its eigenvalues and eigenvectors.
The eigenvectors will provide the new coordinates (i.e.,
horizon parameters) that have a vanishing covariance,
and the eigenvalues will correspond to the errors in those
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FIG. 7. Bayesian posterior plot in LIGO-Virgo
with M = 40M�, q = 3, DL = 50 Mpc, χ1 = χ2 = 0.8,
Heff5 = 0.6, Heff8 = 12.

new coordinates. Keeping this in mind, we choose a par-
ticular waveform as a “target” waveform, with which we
calculate the matches (defined below) of several neigh-
boring “template” waveforms. If we make a contour plot
of these match values, we get ellipses – with their princi-
pal axes along the eigenvectors of C. Since C = Γ−1, the
eigenvectors of C and Γ are the same, and their eigen-
values are related by λi = 1/αi, where λi(αi) are the
eigenvalues of Γ(C).

In this quest, we take the manifold V of dimensionality
same as that of Θ, with every point on V corresponding
to a template waveform. The distance between two tem-
plates on V corresponding to the parameter vectors Θ
and (Θ + ∆Θ) can be calculated as [102]:

|h(Θ + ∆Θ)− h(Θ)|2

= 〈h(Θ + ∆Θ)− h(Θ)|h(Θ + ∆Θ)− h(Θ)〉

=

〈
∂h

∂Θi

∣∣∣∣ ∂h∂Θj

〉
∆Θi∆Θj

=Γij∆Θi∆Θj . (20)

The match (M), also known as the overlap function [87,
103], between two template waveforms h(Θ) and h(Θ +
∆Θ) can be defined as the inner product between them,
maximized over the extrinsic parameters tc and φc [87] :

M = max
tc,φc

〈h(Θ + ∆Θ)|h(Θ)〉 . (21)

If all the templates h(Θ) on V are normalized to ĥ(Θ)

by ĥ(Θ) = h(Θ)/ 〈h(Θ)|h(Θ)〉, so that
〈
ĥ(Θ)

∣∣∣ĥ(Θ)
〉

=

1∀ ĥ(Θ) ∈ V, then the maximum value of M can be 1,
which corresponds to ∆Θ = 0. Then, one can define the

mismatch between two templates ĥ(Θ) and ĥ(Θ + ∆Θ)
as 1 − M, which geometrically denotes the “distance”
between them on the manifold V. One can relate them,
using Eq. (20), as

1−M = Γ
(n)
ij ∆Θi∆Θj . (22)

Here Γ
(n)
ij is the Fisher matrix for normalized templates

(ĥ(Θ)), related to the Fisher matrix for unnormalized
templates (h(Θ)) as

Γij =

〈
∂h

∂Θi

∣∣∣∣ ∂h∂Θj

〉
= 〈h|h〉

〈
∂ĥ

∂Θi

∣∣∣∣∣ ∂ĥ∂Θj

〉
= ρ2 Γ

(n)
ij . (23)

The last expression follows from the fact that
√
〈h|h〉 is

the SNR ρ, given by Eq. (12). Eq. (22) motivates one to
define a metric gij on V to express the distance between

two templates ĥ(Θ) and ĥ(Θ + ∆Θ) as gij∆Θi∆Θj , and
identify the relation of the metric with the Fisher matrix

as gij = Γ
(n)
ij = (1/ρ2)Γij .

In our analysis, we consider a 2D manifold with only
Heff5 and Heff8 as parameters, which is a submanifold of
V with all the other parameters fixed. On this submani-
fold, Eq. (22) can be expanded as

1−M = Γ
(n)
00 (Heff5 −H∗eff5)2 + Γ

(n)
11 (Heff8 −H∗eff8)2

+2Γ
(n)
01 (Heff5 −H∗eff5)(Heff8 −H∗eff8) ,

(24)

with H∗eff5(H∗eff8) being the value of Heff5(Heff8) corre-
sponding to the target waveform. Thereby, the contours
of constant values of M represent ellipses in the space
of Heff5 and Heff8, centered at (H∗eff5,H∗eff8), given that
the Fisher matrix components are constant. For a Fisher
matrix with only Heff5 and Heff8 as parameters, none of
its components depends on the values of Heff5 or Heff8.
This implies that the metric is flat on this submanifold,
and the contours of constant M are all perfect ellipses.
If we diagonalize Γ, then in the eigen-coordinates, all
the covariances will vanish. Let us call the correspond-
ing eigenvectors (X,Y ), known as the principal compo-
nents [104]. Then the equation of the ellipses with re-
spect to the eigen-coordinates (X,Y ) with corresponding
eigenvalues (λ1, λ2) becomes

λ1(X −X∗)2 + λ2(Y − Y ∗)2 = (1−M). (25)

These ellipses are centered at (X∗, Y ∗), and have princi-
pal axes (a, b) given by,

a =
√

(1−M)/λ1 , b =
√

(1−M)/λ2 . (26)
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FIG. 8. Fisher ellipses in LIGO-Virgo with normalized templates, implying SNR = 1. The spin values taken here are χ1 =
χ2 = 0.8. The “target waveform” corresponds to the intersection point of the eigenvector directions (the dotted black lines),
which is Heff5 = 0.6, Heff8 = 12. First and second row correspond to mass-ratio q = 4 and q = 6 respectively, and the four
columns are for total mass values M = 50, 60, 70, 80M� from left to right. Match values for different ellipses are shown in the
common legend at the upper right corner.

Figure 8 shows such ellipses in the sensitivity of Ad-
vanced LIGO and Virgo for a target waveform with
source parameters H∗eff5 = 0.6, H∗eff8 = 12. Figures 9(a)
and 9(b) show similar ellipses in ET and CE, respec-
tively. We show eight different plots for a combination of
different values of the total mass and mass-ratio. Since
Γ is a symmetric matrix, its eigenvectors, lying along the
dotted lines shown in the plots, are orthogonal to each
other.

Covariances between the two parameters cause the el-
lipses to tilt, with higher tilt angles implying higher co-
variances between Heff5 and Heff8. In Fig. 10, we show
the variation of the tilt angles (θ) between the X − Y
coordinate axes and the Heff5 − Heff8 axes with total
mass M , for q = 4 and q = 6. In LIGO-Virgo, the
tilt angles vary negligibly with M , but their values are
higher compared to the 3G detectors. In ET and CE,
The tilts of the ellipses increase slowly with M , implying
that the covarinaces between Heff5 and Heff8 are higher
for higher-mass systems. We also note that CE shows a
faster growth in the covariances for higher mass systems
than ET. The effect of q on the covariances appears to be
different in LIGO-Virgo than in ET, CE – in the former,
they increase with increasing q, but the latter two follow
the opposite trend. The small tilt angles of the eigen-
coordinates, especially in 3G detectors, imply negligible
covariances between Heff5 and Heff8.

The measurability of a certain parameter can be in-

ferred from these ellipses by studying how closely spaced
they are along the direction of that parameter, which de-
notes how rapidly the match values change with small
displacements along that direction. Rapid change of
match values implies that two different waveforms can be
distinguished better; consequently, the errors are smaller.
Since we are considering only normalized waveforms for
this analysis, effects of the SNR on the statistical er-
rors are absent here, in contrast to Sec. IV where the
results depend largely on SNR. This enables us to study
the variations of the errors in the eigen-coordinates in an
SNR-independent way. To demonstrate how the shapes
of the ellipses vary with total mass and mass-ratio, in
Fig. 11 we plot the principal axes a and b of the ellipses,
defined in Eq. (26), for the match value M = 0.99 (the
red ellipses in Fig. 8 and Fig. 9). In this figure only the
3G detectors are considered. The ellipses get stretched
out along the eigen-coordinate Y (the semi-major axes)
with increasing M , implying that the error in that co-
ordinate increases with M for M > 60M�. This follows
the behavior of ∆Heff8, which increases with M in this
region (Figs. 2(c), 2(d)). Along the X direction (semi-
minor axes), sections of the ellipses are smaller with in-
creasing M , implying lesser errors. Increasing q makes
the ellipses more squeezed along both X and Y , implying
better measurabilities in both the eigen-coordinates.

Covariance between two parameters is a measure of
the degeneracy between them. A vanishing covariance
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(a)

(b)

FIG. 9. Same as in Fig. 8, but in the detectors ET (Fig. 9(a)) and CE (Fig. 9(b)).

between two parameters allows one to probe the depen-
dence of the model (in our case, the gravitational wave-
form) on them separately. This possibility is attained by
3G detectors with the introduction of more GW cycles in
the early inspiral, and the accompanying fact that these

parameters are much more precisely measurable than in
LIGO and Virgo. In the case of ET and CE, as we see, in
the considered region of the parameter space, the errors
and the covariances are not large enough for diagonaliza-
tion to make any significant difference.
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FIG. 10. Variation of the rotation angle of X − Y coordinate
axes with respect to the Heff5−Heff8 axes with M for q = 4, 6
in Fig. 8 and Fig. 9.

FIG. 11. Sections of theM = 0.99 ellipses with their principal
axes in Fig. 9, plotted against M for q = 4 (red), q = 6 (green)
in ET (square points) and CE (triangular points).

VII. DISCUSSION AND CONCLUSIONS

We have explored how well one can measure the two
tidal heating parameters Heff5 and Heff8 in the future
ground-based GW detectors Einstein Telescope and Cos-
mic Explorer as well as in the 2nd generation detectors
Advanced LIGO and Advanced Virgo. These parame-
ters account for the flux of energy and angular momen-
tum into or out of a (spinning) BH, which is different
for other compact objects – even those that mimic a BH.
They appear at 2.5PN and 4PN orders, respectively, in
the expression for the phase shift in the gravitational
waveform due to tidal heating. The prospect of proper

estimation of these parameters results in a viable method
for distinguishing BHs (in binaries) from other compact
objects that do not have horizons, but may otherwise
resemble them. We chose TaylorF2 as the PN approxi-
mant and added the tidal-heating phase shift to it. We
used primarily the Fisher matrix approach for estimating
the errors.

In 3G detectors, we showed that for a total binary
mass of M & 50M�, estimation of the aforementioned
parameters is the most precise, whereas for 2G detectors
there is a specific region around 20M� . M . 40M�
where we expect the best results with the current wave-
form. Increasing mass asymmetry results in lesser er-
rors. The errors rise linearly with the luminosity dis-
tance. In 3G detectors, we can constrain Heff5 (Heff8)
with a 1-σ error value of ∼ 0.05 (∼ 0.2) for a binary
with M = 30M�, q = 1.5, Heff5 = 0.6, Heff8 = 12, at
1 Gpc distance. This error value amounts to a relative
percentage error of approximately 8.3% (2%) for Heff5

(Heff8). In LIGO-Virgo, the errors are higher (∼ 300%
for Heff5, ∼ 50% for Heff8), as expected, mainly due to
the lower SNRs. The measurements can be improved by
using coherent mode stacking, by which one can combine
observations of N number of GW events and effectively
scale the SNR by a factor of

√
N [105, 106]. Spins of the

binary components affect the measurabilities due to the
spin-orbit term, and the fact that the upper cutoff fre-
quency used in this work is spin-dependent. Increasing
spin makes the considered frequency range wider, which
in turn lowers the error values.

We have also demonstrated that in the sensitivity of 3G
detectors, covariances between these parameters are not
significant, meaning that we do not expect to improve the
results any further by introducing any new combination
of them by diagonalizing the covariance matrix. How-
ever, in 2G detectors, covariances are high enough for
this method to produce better results, and we show how
we can define a new set of coordinates with less errors
from the tilts of the Fisher ellipses.

This work will be useful in future studies when more
complete and accurate tidal-heating waveforms are avail-
able that extend deeper into the merger phase. Our study
has identified the regions in the parameter space where
one can expect the best results in estimating the tidal
heating parameters. We have shown that these results
are consistent with Bayesian analyses.
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