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We point out that the initial-value (Cauchy) problem for self-interacting vector fields presents the
same well-posedness issues as for first-order derivative self-interacting scalar fields (often referred
to as k-essence). For the latter, suitable strategies have been employed in the last few years to
successfully evolve the Cauchy problem at the level of the infrared theory, without the need for
an explicit ultraviolet completion. We argue that the very same techniques can also be applied to
self-interacting vector fields, avoiding a number of issues and “pathologies” recently found in the
literature.

Massive vector fields are ubiquitous in physics, e.g.
as mediators of the weak interaction, dark matter can-
didates and superconductivity. Recently, considerable
interest has grown around possible pathologies that al-
legedly arise when self-interactions are considered for
these fields. In more detail, in the presence of gravity,
the action for a real vector field Aµ with mass m is given
by

S =

∫

d4x
√
−g

[

M2
P

2
R− 1

4
FµνF

µν

−1

2
m2AµA

µ + λ (AµA
µ)

2
+ · · ·

]

,(1)

where Fµν ≡ ∇µAν −∇νAµ and we have introduced the
coupling constant λ for the lowest order self-interaction
(the dots denote higher-order operators). Ref. [1] has
shown that numerical initial-value (Cauchy) evolutions
of such a vector field on a black hole background break
down, and attributes this feature to the appearance
of ghost (or tachyonic) instabilities. Soon afterwards,
Ref. [2] and [3] have identified the same problem, al-
though in a simplified set-up. Similar issues were al-
ready pointed out perturbatively on non-vanishing back-
grounds in [4].
In this short note, we wish to stress that those patholo-

gies are not surprising when the action is rewritten in the
Stueckelberg language, and that they are actually related
to the (breakdown of the) well-posedness of the Cauchy
problem in the set-up considered by these works. Indeed,
introducing a new scalar field φ, we can restore the U(1)
gauge symmetry of the action by performing the trans-
formation

Aµ → Aµ +
1

m
∇µφ , (2)

which renders the longitudinal mode of the massive vec-
tor field explicit. We can now choose the “unitary” gauge
φ = 0 and get back the original Lagrangian given by
Eq. (1), or we can choose a different gauge, e.g. the
Lorenz gauge ∇µA

µ = 0. The latter is particularly use-
ful when one focuses on the relatively high-energy limit of

the theory (where one retains only the highest derivative
terms in the action), since it decouples the scalar from
the vector field and gives

S =

∫

d4x
√
−g

[

M2
P

2
R− 1

4
FµνF

µν

−1

2
∇µφ∇µφ+

λ

m4
(∇µφ∇µφ)

2
+O

(

∇
m

)3
]

.(3)

In this form, it is straightforward to realize that the
(seemingly innocuous) self-interactions of the original
vector field actually hide derivative self-interactions,
which modify the principal part of the evolution system.
In particular, the Stueckelberg field presents first-order
derivative self-interactions, which have been extensively
studied in the literature (where they are often referred to
as k-essence) and shown [5–11] to cause problems akin to
those encountered in [1–3].
These problems arise from the breakdown of strong hy-

perbolicity (and thus of the well-posedness of the Cauchy
problem) for the Stueckelberg field equations. A system
of partial differential equations is strongly hyperbolic if
the characteristic matrix of the principal part has real
eigenvalues and a complete set of eigenvectors; a suffi-
cient requirement for this is that the eigenvalues (i.e. the
characteristic speeds) are real and distinct. Because of
the derivative self-interactions in Eq. (3), the character-
istic speeds depend on the scalar field gradients [6, 8, 9],
potentially leading to several issues.
If the characteristic speeds cease to be real and distinct

along an initial value evolution, the system may become
parabolic or elliptic. An example of this kind [12] is pro-
vided by the Tricomi equation [5–7]

∂2
t φ(t, r) + t ∂2

rφ(t, r) = 0 , (4)

which is hyperbolic for t < 0 (as it has characteristic
speeds ± (−t)1/2) and elliptic for t > 0. Furthermore,
the characteristic speeds may even diverge. An example
is given by the Keldysh equation [5–7]

t∂2
t φ(t, r) + ∂2

rφ(t, r) = 0 , (5)
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which has characteristic speeds ± (−t)−1/2 diverging as
t → 0−. Finally, it has been shown that deriva-
tive self-interactions can lead to the formation of
shocks/microshocks even when starting from smooth ini-
tial data, potentially leading to non-unique solutions and
therefore to an ill-posed Cauchy problem [13, 14].
Solutions to these issues, however, have been put for-

ward in recent years. Ref. [8] has shown that the Tricomi-
type evolution system arising from the action of Eq. (3)
can be avoided altogether if the coefficients of the deriva-
tive self-interactions satisfy suitable conditions. For ex-
ample, accounting for a cubic term (∇µφ∇µφ)3 is suffi-
cient to avoid the loss of hyperbolicity.
Moreover, Ref. [8] and [9] have shown that for theo-

ries with this cubic term, a Keldysh-type breakdown of
the Cauchy evolution typically occurs only during black
hole collapse, for realistic initial data. However, the di-
verging characteristic speeds that define the Keldysh be-
havior are not pathological per se, but are simply due
to a poor choice of gauge. Indeed, Ref. [10] has found
a gauge (with non-vanishing shift) that maintains the
characteristic speeds finite in stellar oscillations, during
gravitational collapse and in binary neutron star mergers.
Finally, the problem of shock formation can be avoided
by writing the evolution equations as a hyperbolic con-
servation system, and by solving the latter using high-
resolution shock capturing techniques [8–10].
The discriminant choice to perform numerical evolu-

tions in self-interacting vector theories is therefore a care-
ful selection of the coupling constants, so as to satisfy
the conditions avoiding Tricomi type breakdowns of well-
posedness [8]. If such conditions are not satisfied (as for
the cases studied in [1–3]) an alternative possibility is to
employ a “fixing-equation” [15] approach inspired by the
Müller–Israel–Stewart formulation of viscous relativistic
hydrodynamics [16–18]. These approaches have been suc-
cessfully applied in [11, 15, 19–23] to ameliorate the sta-
bility of the fully numerical evolutions in theories with ei-
ther changes of character of the Cauchy problem, higher-
order derivatives, or derivative self-interactions. This
method consists of modifying the field equations by intro-
ducing extra fields and “fixing equations” (i.e. drivers)
for them. The fixing equations are devised such that
on long timescales the evolution approximately matches
that of the original effective field theory. Another possi-
bility is to rely on the ultraviolet (UV) completion of the
theory (when that is known) to continue the evolution
past the Tricomi or Keldysh breakdown [23]. Unfortu-
nately, for the most interesting cases (e.g. derivative self-
interactions yielding screening mechanisms) a UV com-
pletion is not generally known.
Note added: When this note was being completed, an-

other paper [24] appeared on the arXiv which also in-
troduces the Stueckelberg formulation for self-interacting
vector fields.
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