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It is known that the spectrum of quasinormal modes of potential barriers is related to the spectrum of
bound states of the corresponding potential wells. This property has been widely used to compute black hole
quasinormal modes, but it is limited to a few “approximate” potentials with certain transformation properties
for which the spectrum of bound states must be known analytically. In this work we circumvent this
limitation by proposing an approach that allows one to make use of potentials with similar transformation
properties, but where the spectrum of bound states can also be computed numerically. Because the numerical
calculation of bound states is usually more stable than the direct computation of the corresponding
quasinormal modes, the new approach is also interesting from a technical point of view. We apply the
method to different potentials, including the Pöschl-Teller potential for which all steps can be understood
analytically, as well as potentials for which we are not aware of analytic results but provide independent
numerical results for comparison. As a canonical test, all potentials are chosen to match the Regge-Wheeler
potential of axial perturbations of the Schwarzschild black hole. We find that the new approximate potentials
are more suitable to approximate the exact quasi-normal modes than the Pöschl-Teller potential, particularly
for the first overtone. We hope this work opens new perspectives to the computation of quasinormal modes
and finds further improvements and generalizations in the future.
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I. INTRODUCTION

Although black hole perturbation theory is in general a
nontrivial field of research, it has provided some surpris-
ingly simple results. In general relativity, as well as in
many modified theories of gravity, it is possible to derive
so-called master equations that break down the full scale of
the problem into finding complex frequency eigenvalues
of effective potentials in a one-dimensional Schrödinger
equation or modifications of it [1–4]. Nonrotating black
holes are significantly easier to treat and it is quite generic
to find single or coupled wave equations also in modified
gravity. However, similar results for rotating black holes
are limited to general relativity and very few specific
theories for which the complicated calculations could be
carried out or are limited to small spins, see Refs. [5–9] for
recent developments.

The close relation to quantum mechanics immediately
calls for similar methods to solve the final eigenvalue
problem and the literature on adopted as well as new
methods has grown immensely, see e.g., Refs. [10–14] for
reviews. Methods to compute black hole quasinormal
modes range from purely analytic, semianalytic and fully
numerical ones. The question of which method to choose
from ultimately depends on the specifics of the problem
and the desired insights that should be gained. Methods
that provide quasinormal mode frequencies with pristine
precision, such as the Leaver method [15], do not provide
analytic results and might be difficult to adjust for new
potentials. Analytic approaches, such as the application of
the Wentzel-Kramers-Brillouin (WKB) method, can pro-
vide analytic results, but those are approximate and may
not apply to all parts of the quasinormal mode spectrum
[16–24]. For example, the higher order WKB method can
be very precise for the first few overtones, but it qualita-
tively fails for large overtones. See Ref. [25] for a standard
textbook on the topic or Ref. [26] for an early application
to related problems in quantum mechanics. A recent
review that is more specific to the application of the
WKB method to black holes can be found in Ref. [27].
One method that is particularly insightful with respect

to standard quantum mechanics is the inverted potential
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method proposed by Mashhoon [28], which is based on
earlier work of Heisenberg [29] and was further explored by
him and collaborators in Refs. [30–32]. It establishes a
mapping between the bound states of a potential well and
the quasinormal modes of the corresponding potential
barrier if certain transformation properties exist and the
bound states are known analytically, by e.g., the factoriza-
tion method Ref. [33]. While the complicated potentials of
black holes do not allow for the analytic computation of
bound states, the method has been applied to approximate
potentials for which analytic results are known, e.g., the
Eckart potential [34], the Pöschl-Teller (PT) potential [35],
and more recently a modified PT potential [36]. The
simplicity and ease of use of this method made it very
popular in the literature, but as with other analytic methods,
it has certain limitations. The main limitation is that the
method cannot be readily applied to potentials for which the
spectrum of bound states can only be computed numeri-
cally. Therefore the number of suitable potentials in the
standard approach is limited.
Since then extensions of the original idea have been

studied. In Ref. [37] it has been suggested to use an
anharmonic oscillator potential to compute quasinormal
modes from bound states in a perturbative way and in
Ref. [38] a perturbative, complex valued WKB matrix
approach has been presented. Based on the Bender-Wu
method [39] and subsequent work [40], it was shown in
Ref. [41] that a similar perturbative treatment, based on
using an anharmonic oscillator potential, Padé approx-
imants and the Borel summation, allows to compute
quasinormal modes from bound states with very high
precision. This idea was further improved in Ref. [42],
which demonstrates that it also allows for more precise
calculation of overtones.
The purpose of this work is to extend the method to more

general potentials for which bound states are obtained
numerically, which does not require one to limit oneself
to potentials that can be locally represented by a Taylor
expansion around their minimum. The key idea behind the
numerical extension is to compute an analytic representation
of the spectrum of bound states by using the numerical
results and then apply the necessary transformations to it.We
use a Taylor expansion of the bound state spectrum around a
given parameter choice, but other representations can in
principle be used as well. Limiting numerical calculations to
the bound state problem is rewarding because it is generi-
cally more stable and in practice much easier to perform than
those of quasinormal modes. We demonstrate the perfor-
mance of the new method by applying it first to the PT
potential, for which all steps can be verified analytically.
Then we study two potentials for which we are not aware of
analytic results in the literature. In all cases we choose the
parameters of the potential such that they correspond to an
approximation of the Regge-Wheeler (RW) potential that
describes the axial perturbations of the Schwarzschild black

hole [1], which we regard as the default benchmark test of
the method. Our results demonstrate that the method is
simple to use and provides more precise results than using
the PT potential as known analytic approximation.
The paper is structured as follows. In Sec. II we first

review the analytic approach and then outline the new
method. The application of the method to different potentials
is demonstrated in Sec. III. We discuss our findings and
provide remarks for further extensions of the method in
Sec. IV. Finally, our conclusions can be found in Sec. V.
In Appendix, we provide additional material for the shooting
method. Throughout this work we use units in which
G ¼ c ¼ 1.

II. METHOD

A. Bound states and quasinormal modes

The starting point of this work is to consider the standard
Schrödinger equation

d2

dx2
ΨðxÞ þ ½En − Vðx; PÞ�ΨðxÞ ¼ 0; ð1Þ

where Vðx; PÞ is a potential with some parameter(s) P and
En is the corresponding spectrum of eigenvalues for a
given choice of boundary conditions. Very qualitatively, if
Vðx; PÞ describes a potential well, the physical boundary
conditions for bound states are those for which ΨðxÞ → 0
for x → �∞. Depending on the properties of Vðx; PÞ, this
can give rise to a finite or infinite set of eigenvalues. If
however Vðx; PÞ describes a potential barrier, the suitable
boundary conditions depend on the application in mind.
Quasinormal modes in the context of black holes are

usually defined as purely outgoing solutions of the time
dependent wave equation, which in the time independent
Eq. (1) correspond to diverging solutions for ΨðxÞ for
x → �∞. For an extended introduction to quasinormal
modes and other techniques to compute them we refer the
interested reader to Refs. [10–14] and continue with
reviewing a few basics in the following.
The two potentials that describe gravitational perturba-

tions around the Schwarzschild black hole in general
relativity are known as the Regge-Wheeler potential [1]
and the Zerilli potential [3]. It can be shown that both
potentials are isospectral to each other, although their
analytic structure is different [43,44]. In the following
we continue with the RW potential, which is given by

VRWðrðxÞ;M; lÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

�
: ð2Þ

Here M is the mass of the black hole and lðlþ 1Þ is a
separation constant with l ≥ 2. The familiar form of the
Schrödinger equation with potential term only appears in
the so-called tortoise coordinate x, defined via
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x ¼ rþ 2M ln

�
r
2M

− 1

�
; ð3Þ

which makes a full analytic treatment more involved. Note
that exact analytic solutions have been found in terms of
confluent Heun functions [45], but the quasinormal mode
spectrum cannot be written in terms of simple functions.

B. Review of the analytic method

In Refs. [28,30–32] the following structure of the
Schrödinger Eq. (1) was noticed and utilized. If one
considers the transformation x → −ix and is able to trans-
form the original parameters P of the potential to a new set
of parameters P0 ¼ πðPÞ such that

Vðx; PÞ ¼ Vð−ix; P0Þ; ð4Þ

one can use the spectrum of bound states Ω2ðPÞ≡ −EnðPÞ
of the potential well to compute the quasinormal modes of
the potential barrier via

ωnðPÞ≡Ωnðπ−1ðPÞÞ: ð5Þ

The success of the method depends on whether the analytic
form of the bound states EnðPÞ is known. Because an
application to complicated potentials usually does not allow
for an analytic computation of the spectrum, but the
analytic form is needed to apply Eq. (5), the method cannot
be used. In the following we show how this major
shortcoming can be circumvented and how the method
can be used for potentials where the bound states can be
computed numerically.

C. Numerical bound state method

The recipe of the numerical bound state method is as
follows. It is assumed that one has a precise numerical
method available to compute the bound states EnðPÞ as
function of a given set of parameters P. One straightforward
approach is the shooting method, see e.g., Ref. [46] for an
overview. The method is based on integratingΨðxÞ as initial
value problem from two distant points for a given choice
of E and computing the Wronskian of both solutions at an
intermediate point. This process can be formulated as root
finding problem, because the Wronskian vanishes when the
initial guess for E is an eigenvalue En. Because the method
is widely used we refer to Appendix A for more details.
In Appendix B we review the direct shooting method for
the quasinormal mode case and provide supplementary
information.
Next it is assumed that En, for each n respectively,1 can

be represented by a Taylor series around a given parameter
set P0

EnðPÞ ≈
X
k

Tk: ð6Þ

Up to second order the series can be written in the
compact form

EnðPÞ ≈ T0 þ T1 þ T2; ð7Þ

with

T0 ¼ E0
n; ð8Þ

T1 ¼ gradðEnÞjP¼P0ðP − P0Þ; ð9Þ

T2 ¼
1

2
ðP − P0ÞHðEnÞjP¼P0ðP − P0Þ: ð10Þ

Here the gradient and Hessian operators are defined as

½gradðEnÞ�i ¼
dEn

dPi
; ð11Þ

½HðEnÞ�ij ¼
d2En

dPidPj
: ð12Þ

All derivatives can be obtained numerically, e.g., in terms
of higher order finite differences, by using the numerical
method to compute bound states in the vicinity of P0. Note
that it is in principle also possible to extend the multidi-
mensional Taylor series to higher order.
As last step we consider the transformations. If the

inverse transformation π−1ðPÞ is known, one can simply
compute the approximate form of the quasinormal modes at
any P0 from inserting it in the Taylor ansatz Eq. (7). Note
that the transformations typically extend the parameters to
the complex plane and that they do not have to be close
to the expansion point of the Taylor series. In this case the
convergence of the Taylor series needs to be carefully
studied and higher order terms may become necessary. We
emphasize that the validity of the Taylor series, or any other
expression found for the bound state spectrum, is crucial
and nontrivial for arbitrary potentials.
An important simplification of the multidimensional

Taylor series can be obtained if the inverse transformation
π−1 is just the identity. In that case all terms associated with
ðPi − P0

i Þ are zero when evaluated at the expansion point of
the Taylor series, while the nontrivial transformations give
nonzero contributions

ðπ−1ðPiÞ − P0
i Þ
���
Pi¼P0

i

�¼ 0; for π−1ðPiÞ ¼ Pi;

≠ 0; for π−1ðPiÞ ≠ Pi:
ð13Þ

This has the important and practical simplification that the
higher order terms of the multidimensional Taylor series
that one actually has to consider only depend on the1We suppress the n dependency on each Tk for simplicity.
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variables whose transformations are nontrivial. Those
parameters may change the spectrum at the zeroth order
term, but because the quasinormal modes are computed
exactly for π−1ðP0Þ all higher order terms vanish.

III. APPLICATIONS

In this section we apply the numerical bound state
method to different potentials. In Sec. III Awe first discuss
the transformation properties of the RW potential and how
approximate potentials are used. In Sec. III B we then apply
the numerical method to the well known PT potential,
because the results are known analytically and all steps can
therefore be understood carefully. In Secs. III C and III D
the method is applied to the Breit-Wigner potential and a
piecewise combination.
All shown derivatives in this section are computed using

finite differences with 9 or 11 point stencils [47] and
different step sizes indicated in the caption of each table
and figure. The step-size h is defined by a dimensionless
factor ϵ

h ¼ ϵP; ð14Þ

where P is the only nontrivial parameter of each potential.
Its numerical value is chosen to fit theM ¼ 1 and l ¼ 2RW
potential as described in Sec. III A. For comparison we also
provide the quasinormal modes for the BW and mixed
potential using the direct shooting method outlined in
Appendix B.

A. Regge-Wheeler potential

In contrast to the approximate potentials studied in the
literature, finding the transformations πðPÞ for the RW
potential is less obvious, but they were already reported in
Refs. [31,32]. By introducing a new parameter λ as overall
factor in the original potential Eq. (2)

VðλÞ
RWðrðxÞ;M; l; λÞ ¼ λVRWðrðxÞ;M; lÞ; ð15Þ

one can fulfill the necessary condition Eq. (4) for λ → −λ.
The original potential is included as trivial case for λ ¼ 1
and the full set of transformations is thus given by

πðMÞ ¼ −iM; πðlÞ ¼ l; πðλÞ ¼ −λ; ð16Þ

π−1ðMÞ ¼ iM; π−1ðlÞ ¼ l; π−1ðλÞ ¼ −λ: ð17Þ

However, because the spectrum of bound states of
the inverted RW potential is not known analytically,
the original works are limited to the application of the
harmonic oscillator, the PT potential or the Eckart potential
as approximations [28,30–32]. For these potentials one
simply demands that the value of the maximum, as well as
the value of the second derivative at the maximum, agree

with those of the RW potential. One therefore demands
that the approximate potential must locally match the RW
potential around its maximum. Because all approximate
potentials are matched at the peak of the potential, and it is
known that the fundamental quasinormal is tightly related
to it, the approximate potentials are useful to estimate the
fundamental mode n ¼ 0, but may fail for overtones n > 0.
In the following we adopt for simplicity the notation that
the tortoise coordinate is labeled with x but shifted by
whatever the exact location of the RW potential is, such that
the maximum is always at x ¼ 0. This translation does not
change the quasinormal modes spectrum.
Before introducing each potential in the following

sections, we show all of them for parameters chosen to
match the RW potential forM ¼ 1 and l ¼ 2 in Fig. 1. It is
evident that neither the PT potential Eq. (18) nor the BW
potential Eq. (25) correctly capture both asymptotic
behaviors of the RW potential simultaneously, but only
one of them. As a “mixed” potential Eq. (26) we introduce
a piecewise combination, which shows better agreement.

FIG. 1. In this figure we compare the RW potential for M ¼ 1
and l ¼ 2 (black) with the PT potential (blue), the BW potential
(orange) and the mixed potential (black dotted). The parameters
of the approximate potentials have been chosen to agree with the
RW at its peak. In the top panel we show the different potentials,
while the bottom panel shows the difference of a given potential
with respect to the RW potential.
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B. Pöschl-Teller potential

The original method has been applied to black holes in
Refs. [28,31,32] by using the PT potential as an approxi-
mation for the more complicated black hole potentials. The
PT potential is defined in slightly different ways in the
literature, but in the following we will use the form

Vðx; PÞ ¼ V0

cosh2ðαxÞ : ð18Þ

Here P ¼ ðV0; αÞ are the parameters describing the
“height/depth” and “curvature” at the maximum/
minimum. The transformations πiðPiÞ and their inverses
are simply given by

πV0
ðV0Þ ¼ V0; παðαÞ ¼ iα; ð19Þ

π−1V0
ðV0Þ ¼ V0; π−1α ðαÞ ¼ −iα: ð20Þ

The spectrum of bound states is given by En ¼ −Ω2
n with

ΩnðV0; αÞ ¼ α

�
−
�
nþ 1

2

�
þ
�
1

4
þ V0

α2

�
1=2

�
: ð21Þ

Using the inverse transformations, the spectrum of qua-
sinormal modes is given by

ωnðV0; αÞ ¼ �
�
V0 −

α2

4

�
1=2

þ iα
�
nþ 1

2

�
: ð22Þ

Due to a different choice for the sign convention for the
Fourier transform used in Refs. [28,31,32] with respect to
the rest of this work, we continue using Eq. (22) with a
negative imaginary part. Because the transformation of V0 is
just the identity, the relevant part of the Taylor series of the
spectrum needed to apply the inverse transformation of
bound states only depends on α and can thus in principle be
easily computed even for higher orders than 2. The practical
limitation to include very high derivatives is the numerical
precision required to compute them numerically from the
solutions of the bound state boundary value problem.
In the following we compare the results obtained with

the numerical bound state method with the exact analytic
results. Because the bound state spectrum is known ana-
lytically, we can compare the numerical results for the
Taylor expansion of Eq. (21) around P evaluated at π−1ðPÞ
with the analytic ones for a given order of the Taylor
expansion. To demonstrate the convergence of the quasi-
normal modes as function of the Taylor order k, we define

δkðωreÞ≡ ωk;re − ωExact
re

ωExact
re

; ð23Þ

δkðωimÞ≡ ωk;im − ωExact
im

ωExact
im

: ð24Þ

Here the index “re/im” indicates the real or imaginary part
and the label “Exact” indicates the analytic value.
In Fig. 2 we show this error function when applied to the

exact Taylor series expansion, as well as the numerically
computed one. It can be seen that the agreement between
the analytic and the numerical method is excellent and
starts to slightly deviate at the k ¼ 9 Taylor order. At the
same time Fig. 2 also demonstrates that using the Taylor
series, be it analytically or numerically computed, yields
very accurate approximations for the true quasinormal
modes. It is interesting to note that the real part is already
captured at 0.1% level for k ¼ 1 and only starts to improve
significantly around k >¼ 4. In contrast, the imaginary is
badly approximated at k ¼ 1 but already at 1% level for
k ¼ 2. Overall these results show that the n ¼ 0 and n ¼ 1
quasinormal modes can be computed with the numerical
bound state method at very high accuracy and that the exact

FIG. 2. Here we show the error defined in Eqs. (23) and (24) for
the exact (blue) and numerical (orange) results for including
different orders k in the Taylor series for the PT potential
spectrum for n ¼ 0 (top panel) and for n ¼ 1 (bottom panel).
The real and imaginary parts are shown with different symbols.
The numerical values for the individual quasinormal modes can
be found in Table I.
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Taylor series has good convergence properties. All values
used to compute the relative errors are also listed in Table I.
In Figs. 3 and 4 we show the quasinormal mode frequencies
computed for either using 9 or 11 point stencils for the
finite difference scheme, as well as for different step-sizes.
It is evident that the agreement is very good for n ¼ 0 for
all shown Taylor orders, while there are small deviations for
very high orders for the real part for n ¼ 1.

C. Breit-Wigner potential

As the next application we consider the potential

VBWðxÞ ¼
V0

1þ ðaxÞ2 ; ð25Þ

which we call the Breit-Wigner (BW) potential. It has a
similar shape as the PT potential around x ¼ 0, but
different asymptotic behaviors. The transformations for
ðV0; aÞ are the same as for ðV0; αÞ. To the best of our
knowledge it has not been applied to black hole quasinor-
mal modes and we are not aware of the analytic form of the
spectrum, but it might in principle exist in closed form.
These aspects make the BW potential an attractive case for
the numerical method.

The values for different orders of the Taylor series are
listed in Table II and compared to the other potentials in
Fig. 9. It can be seen that the convergence is not as fast as
for the PT potential. We also show the quasinormal modes
computed with the direct shooting method for comparison,
which demonstrates that the bound state method converges
toward the correct values. Similar to the PT potential, we
also show the convergence of the quasinormal mode
frequencies in Figs. 5 and 6 for different number of stencil
points and step-sizes. Here we find excellent agreement for
the real and imaginary part at all Taylor orders for the
different numerical details.

D. Mixed Pöschl-Teller and Breit-Wigner potential

As shown in Fig. 1, neither the popular PT potential
nor the BW potential give a good approximation for both
asymptotic behaviors for large �x. A more accurate
matching can be obtained by combining the BW potential
for x → ∞ and the PT potential for x → −∞ as follows

VMIXðxÞ ¼
�
VPTðxÞ; for x < 0;
VBWðxÞ; for x >¼ 0:

ð26Þ

FIG. 3. Here we show the real part (left panel) and imaginary
part (right panel) for the n ¼ 0 quasinormal mode computed
for the PT potential for different step-sizes ϵ ¼ ð0.05; 0.1Þ and
stencils of nst ¼ ð9; 11Þ. The analytic values are indicated as
black dotted line.

TABLE I. Quasinormal mode frequencies computed at differ-
ent orders k of the Taylor series for VPT. The ωExact

k shows the
exact value computed analytically, while ωNumerical

k shows the
numerically computed one, at each Taylor order k respectively.
These results are for a step-size ϵ ¼ 0.1 and 11 point stencils. The
true value using the exact analytic formula Eq. (22) is labeled
with “∞”.

n k MωExact
k MωNumerical

k

0 1 0.37883 − i0.07001 0.37883 − i0.07001
2 0.37883 − i0.08948 0.37883 − i0.08948
3 0.37783 − i0.09048 0.37783 − i0.09048
4 0.37820 − i0.09048 0.37820 − i0.09048
5 0.37827 − i0.09055 0.37827 − i0.09055
6 0.37827 − i0.09054 0.37827 − i0.09054
7 0.37827 − i0.09053 0.37827 − i0.09053
8 0.37827 − i0.09053 0.37827 − i0.09053
9 0.37827 − i0.09053 0.37827 − i0.09053

10 0.37827 − i0.09053 0.37827 − i0.09053
“∞” 0.37827 − i0.09053

1 1 0.37883 − i0.25107 0.37883 − i0.25107
2 0.37883 − i0.27054 0.37883 − i0.27054
3 0.37783 − i0.27154 0.37783 − i0.27154
4 0.37820 − i0.27154 0.37820 − i0.27154
5 0.37827 − i0.27161 0.37827 − i0.27161
6 0.37827 − i0.27160 0.37827 − i0.27160
7 0.37827 − i0.27160 0.37827 − i0.27160
8 0.37827 − i0.27160 0.37827 − i0.27160
9 0.37827 − i0.27160 0.37827 − i0.27160

10 0.37827 − i0.27160 0.37827 − i0.27160
“∞” 0.37827 − i0.27160
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Using the same V0 in both potentials and setting a ¼ α
reduces the four dimensional Taylor series to one for only
one nontrivial parameter a. The potentials are smoothly
matched at x ¼ 0 due to the Taylor expansion cosh2ðαxÞ ¼
1þ ðαxÞ2 þOððαxÞ4Þ around αx ¼ 0.
The results of the numerical method are presented in

Table III and compared to the other potentials in Fig. 9. We
also show the n ¼ 0 quasinormal mode computed with the
direct shooting method for comparison, which demon-
strates that the bound state method converges toward the
correct values. Unfortunately it was not possible to robustly
compute the n ¼ 1 quasinormal mode via direct shooting
with satisfying accuracy, so we do not report a value for
comparison. Similar to the BW potential the convergence is
slower compared to the one of the PT potential. Note that
for n ¼ 1 the convergence is much slower, and in fact, more
complicated. This type of “oscillatory” behavior can be
clearly seen in the bottom panels of Figs. 7 and 8. This
feature is robust with respect to changes in the stencils and
step-sizes.

IV. DISCUSSION

A. Comparison to exact Regge-Wheeler
quasinormal modes

In Fig. 9 the exact quasinormal modes of the RW
potential are compared with those of the matched potentials
studied in the previous sections. The figure shows the
complex plane and the value of ωk for different Taylor
orders k. As can be clearly seen, the predicted values for the
mixed potential are a much better approximation of the
exact RW quasinormal modes. Although the PT potential
and the BW potential both give an adequate prediction for
the n ¼ 0 mode, they fail for the real part of the n ¼ 1
mode. Note that the analytic result of the PT potential does
not predict any change in the real part, independent of n,
while the BW potential provides the correct trend. It is
further remarkable, although somehow expected, that the
quasinormal modes of the mixed potential should line up
between those of the PT potential and the BW potential. For
n ¼ 0 the mixed potential approximation is excellent, while
for n ¼ 1 the convergence of the Taylor series is not as fast
as those of the other potentials.

FIG. 4. Here we show the real part (left panel) and imaginary
part (right panel) for the n ¼ 1 quasinormal mode computed
for the PT potential for different step-sizes ϵ ¼ ð0.05; 0.1Þ and
stencils of nst ¼ ð9; 11Þ. The analytic values are indicated as
black dotted line.

TABLE II. Quasinormal mode frequencies ωNumerical
k computed

with the numerical method at different orders k of the Taylor
series for VBW. These results are for a step-size ϵ ¼ 0.1 and 11
point stencils. The numerical values obtained with the direct
shooting method are shown for comparison and brackets indicate
the accuracy limit.

n k MωNumerical
k

0 1 0.37561 − i0.06054
2 0.37561 − i0.08218
3 0.37166 − i0.08613
4 0.37004 − i0.08613
5 0.36964 − i0.08573
6 0.36964 − i0.08549
7 0.36972 − i0.08541
8 0.36978 − i0.08541
9 0.36981 − i0.08544

10 0.36981 − i0.08547
Direct shooting 0.36979 − i0.08546

1 1 0.33834 − i0.16514
2 0.33834 − i0.25859
3 0.33213 − i0.26479
4 0.33034 − i0.26479
5 0.32933 − i0.26378
6 0.32933 − i0.26338
7 0.32954 − i0.26317
8 0.32970 − i0.26317
9 0.32978 − i0.26325

10 0.32978 − i0.26333
Direct shooting 0.329ð71Þ − i0.263ð29Þ
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Can one also use the inverted potential approach to
compute quasinormal modes with n ≥ 1? Interestingly the
answer depends on what approximate potential is being
used. In the case of the PT potential, there are only two
bound states when matching to the l ¼ 2 RW potential
because Ωn changes sign between n ¼ 1 and n ¼ 2. The
BW potential and mixed potential can admit more bound
states, however those approach 0 rather quickly and there-
fore their separation becomes very small. Because those
states are less localized, the left and right starting points for
the shooting method need to be increased significantly.
This makes it numerically more difficult to compute the
higher order derivatives with high accuracy.

B. Further remarks on accuracy

The accuracy of the numerical bound state method
depends on a couple of aspects. Obviously one cannot
expect to get exactly the correct quasinormal modes if
approximate potentials are being used, which has been
quantified in the original works [28,30–32]. However, in
the application to the RW potential, the mixed potential
provides a significantly more accurate result than the PT

potential. In the following we address the aspects particular
to the method.
First we want to comment on the numerical aspects. The

accuracy of the method to compute the bound states at
different points in the parameter space, which is then used
to obtain the higher order derivatives in the Taylor series,
can be identified as one technical bottleneck. Although
bound states themselves can usually be computed with
great accuracy with the shooting method, computing high
derivatives from it correctly can be a nontrivial problem
in practice, especially for overtones as mentioned in
Sec. IVA. However, this can in principle be addressed
by increasing the float precision in programming languages
supporting it or in commercial software like Mathematica
or MAPLE. Therefore, because standard tools exist and it is a
widely studied topic, it might only be a problem if the
quasinormal modes need to be computed with arbitrary
precision, for which other methods, e.g., the Leaver
method [15], are better suited.
To verify that the numerical results for the high deriv-

atives are correct, we have checked several aspects of
convergence, which we qualitatively summarize in the
following. In particular we studied the initial starting points

FIG. 5. Here we show the real part (left panel) and imaginary
part (right panel) for the n ¼ 0 quasinormal mode computed
for the BW potential for different step-sizes ϵ ¼ ð0.05; 0.1Þ and
stencils of nst ¼ ð9; 11Þ. The direct shooting values are indicated
as black dotted line.

FIG. 6. Here we show the real part (left panel) and imaginary
part (right panel) for the n ¼ 1 quasinormal mode computed
for the BW potential for different step-sizes ϵ ¼ ð0.05; 0.1Þ and
stencils of nst ¼ ð9; 11Þ. The direct shooting values are indicated
as black dotted line.
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for the shooting method, different number of points for the
finite differences (9, 11) and the corresponding step-size in
the parameter used for the Taylor expansion. As expected
we find that the overall accuracy in our tests increases for
very high derivatives when more stencil points are included
(for the same step-size). When using a large number of
stencil points and qualitatively increasing the parameter
step-size (which means one is less limited by the numerical
accuracy of the bound states), one needs to be careful that
one really computes the eigenvalue for the same overtone n
at all stencil points and does not jump to another overtone
eigenvalue. Luckily these cases are very easy to exclude,
because they predict very erratic results, and can be avoided
by modifying the initial guess at each stencil point. Another
test to verify the accuracy of the results is that we compared
it to the analytic results, in case of the PT potential, and
where possible to numerical results obtained via direct
shooting for the BW and mixed potentials. We find very
good agreement between the two methods and that the
series seem to converge, within numerical uncertainties,
to the expected values.
The second aspect is on the analytic side. Even if many

higher order derivatives can be computed accurately, it is in
general not guaranteed that the Taylor series is valid at
π−1ðPÞ, since this point might not even be close on the

complex plane. In such a case, a clear warning sign would
be that the quasinormal modes do not converge as more
terms are included. From a very qualitative point of view
this could happen if the shape of the potential changes in a
rather nontrivial way as function of P, which is not the case
for any of the potentials studied in this work. The opposite
case, which is that the series converges to some value,
is of course not a rigorous proof that it converges to the
right one. Comparing the Taylor series convergence of the
quasinormal modes of the different potentials used in this
work, it can be seen that it is rapid for n ¼ 0 for all
potentials. Looking at the first overtone n ¼ 1, the quasi-
normal mode of the PT potential and the BW potential
convergence rapidly, while the one of the mixed potential
shows more variability, in particular for its real part.

C. Insights from WKB theory

Although the better performance of the mixed potential
could already be expected from Fig. 1, one can further
understand it in terms of analytic properties. In particular
insightful are results from WKB theory in the form of the
classical Bohr-Sommerfeld quantization rule

TABLE III. Quasinormal mode frequencies ωNumerical
k com-

puted with the numerical method at different orders k of the
Taylor series for VMIX. These results are for a step-size ϵ ¼ 0.03
and 11 point stencil. The numerical value for n ¼ 0 obtained with
the direct shooting method is shown for comparison and brackets
indicate the accuracy limit.

n k MωNumerical
k

0 1 0.37703 − i0.06494
2 0.37703 − i0.08580
3 0.37442 − i0.08841
4 0.37385 − i0.08841
5 0.37375 − i0.08831
6 0.37375 − i0.08822
7 0.37378 − i0.08819
8 0.37381 − i0.08819
9 0.37382 − i0.08820
10 0.37382 − i0.08821

Direct shooting 0.373ð81Þ − i0.088ð21Þ
1 1 0.34554 − i0.18942

2 0.34554 − i0.29132
3 0.36639 − i0.27047
4 0.35668 − i0.27047
5 0.35107 − i0.26486
6 0.35107 − i0.27741
7 0.35714 − i0.27134
8 0.35674 − i0.27134
9 0.35269 − i0.26730
10 0.35269 − i0.27416

Direct shooting � � �
FIG. 7. Here we show the real part (left panel) and imaginary
part (right panel) for the n ¼ 0 quasinormal mode computed for
the mixed potential for different step-sizes ϵ ¼ ð0.05; 0.1Þ and
stencils of nst ¼ ð9; 11Þ. The direct shooting values are indicated
as black dotted line.
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Z
x1ðEnÞ

x0ðEnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En − VðxÞ

p
dx ¼ π

�
nþ 1

2

�
: ð27Þ

Here n ∈ N0 labels the bound states and the turning points
x0, x1 are defined as the root of the integrand (and thus
dependent onEn themselves). It can be shown that potentials
with the same separation of turning points, defined as

LðEÞ≡ x1ðEÞ − x0ðEÞ; ð28Þ
have the same spectrum of bound states when computed
with Eq. (27), see. e.g., Refs. [35,49–52]. A similar result
can also be found when studying the transmission through a
two turning point potential barrier by inverting the Gamow
formula [53,54], or even more general for certain three and
four turning point potentials [55–57].
To further illustrate how this relates to the quasinormal

mode problem, we show L for the different potentials in the
top panel of Fig. 10, along with the relative error with
respect to the RW potential in the bottom panel. As evident,
all potentials are a good description close to the maximum/
minimum of the potential, but deviate further away in a

FIG. 8. Here we show the real part (left panel) and imaginary
part (right panel) for the n ¼ 1 quasinormal mode computed for
the mixed potential for different step-sizes ϵ ¼ ð0.05; 0.1Þ and
stencils of nst ¼ ð9; 11Þ.

FIG. 9. Here we compare the n ¼ 0 and n ¼ 1 quasinormal
modes of the RW potential (black þ) for l ¼ 2 with those of the
PT potential (blue), BW potential (orange) and mixed potential
(green) computed at different orders of the Taylor expansion
(different marker types). Note that in some cases, especially for
the PT potential, the markers overlap, demonstrating quick
convergence. All values are also provided in Tables I–III. The
RW quasinormal modes have been taken from supplementary
material of Refs. [12,48].

FIG. 10. Here we compare the widths of the RW potential for
M ¼ 1 and l ¼ 2 (black) with those of the PT potential (blue), the
BW potential (orange) and the mixed potential (green). As in
Fig. 1 the parameters of the approximate potentials have been
chosen to agree with the RWat its peak. In the top panel we show
each width, while the bottom panel shows the relative difference
of a given width with respect to those of the RW potential.
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different way. Because quasinormal modes are equivalent
to bound states, which can be approximated by Eq. (27),
one should expect that all three potentials perform well to
describe the n ¼ 0 modes, but less good for n ¼ 1.
Comparing the relative errors of the different potential
widths in the bottom panel of Fig. 10, one would further
expect for n ¼ 1 that the PT potential provides a bit worse
approximation than the BW potential, but the mixed
potential should be much better. This is indeed the case,
as confirmed in Fig. 9, or by comparing the different tables.

V. CONCLUSIONS

The idea to obtain quasinormal modes from the knowl-
edge of bound states of the inverted potential is elegant and
has been widely used since the mid-1980s [28,30–32,36].
However, the approach is limited to a few exactly solvable
potentials, because it requires the spectrum of bound states
in analytic form. The parameters of these solvable potentials
are in most applications fit/matched to more complicated
potentials for which the quasinormal modes are requested.
Although transformations that make potentials eligible to
the method also exist for more complicated cases, the
requirement of the analytic bound state spectrum is a crucial
bottleneck of the original method. Another existing exten-
sion is based on perturbative calculations around the
potential minimum, see e.g., Refs. [37,41,42]. In this work
we have introduced a novel approach to compute quasi-
normal modes from bound states fully numerically and
applied it to new approximate potentials.
The key idea behind the numerical approach is to

construct the Taylor expansion of the bound state spectrum
for a given set of parameters P. This can be done with
standard methods to compute bound states and we used the
shooting method. If the Taylor series is computed with
enough terms and converges when evaluated at π−1ðPÞ, the
quasinormal modes are directly given.
We demonstrated the performance and identified pos-

sible bottlenecks and pitfalls by applying it to multiple
potentials. The method can provide quasinormal modes
with high precision and can in principle be made even more
precise in a straightforward way by including higher order
terms of the underlying Taylor series.
As natural test case of black hole quasinormal modes, we

have applied the method to a new approximate potential that
captures the asymptotic properties of the RW potential
better than the standard PT potential. Using the numerical
method, we have shown that the quasinormal modes of the
new potentials provide a significantly more precise descrip-
tion, even for overtones where the PT potentials fails for
the real part.
Even if many methods to compute quasinormal modes

already exist, the inverted potential approach is also interest-
ing from a numerical point of view. Using standard
approaches, like the shooting method to directly search for
the complex quasinormal modes, is often unstable and

requires a careful treatment of the asymptotic properties,
as well as root finding on the complex plane. In contrast, the
numerical computation of bound states with the same method
is stable and the root finding typically only on the real axis.
Future work could explore the numerical higher order

Taylor series for potentials with multiple parameters.
Another possible extension is to study eigenvalue dependent
potentials, as they emerge for quasinormal modes of rotating
black holes, or even systems of coupled wave equations,
which are rather common beyond general relativity.
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APPENDIX A: COMPUTING BOUND STATES
WITH THE SHOOTING METHOD

In the following we summarize the main idea of the
popular shooting method to compute the spectrum of bound
states numerically, see e.g., Ref. [46] for more details. In this
approach one uses the asymptotic behavior of the wave
equation at large negative and large positive values of x,
called x− and xþ in the following, and chooses some value
for E as initial guess. The physical suitable boundary
conditions for E < VðxÞ are those of exponentially decaying
functions and their precise asymptotic form depends on the
details of the potential. Assuming that the potential goes to
zero for x → �∞ the physical solutions for bound states En
are imposed by the boundary conditions

Ψbc
� ðxÞ ∼ exp ð∓ ffiffiffiffiffiffiffiffiffi

−En

p
xÞ: ðA1Þ

Theminus sign ofΨbcðxÞ labels the solution for x → −∞ and
the plus sign vice versa. Since En is not known one can find
it from a root finding problem as follows. For some initial
guess E one can use Eq. (A1) and its first derivative to start
integrating a functionΨ�ðx; EÞ as initial value problem from
large values of x− and xþ to some intermediate point xM,
whereonematches the two solutions. Thematching condition
can be checked by evaluating the Wronskian, defined as

WðΨ−;ΨþÞðx; EÞ ¼ Ψ−Ψ0þ −Ψ0
−Ψþ: ðA2Þ
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If the chosenvalue ofE is a solution to the imposed boundary
conditions Eq. (A1), the Wronskian will vanish at xM, but
will be nonzero otherwise. Considering the Wronskian as
function ofE one can find the spectrum of eigenvaluesEn by
computing the roots of theWronskian. This one-dimensional
root finding problem can be done numerically.

APPENDIX B: COMPUTING QUASINORMAL
MODES WITH THE SHOOTING METHOD

Computing quasinormal modes with the shooting
method is significantly more involved than computing
bound states, again we refer the interested reader to
Refs. [10–14] for extensive reviews. We remind the reader
that the asymptotic form of the desired solution for ψbcðxÞ
(now referring to the quasinormal mode problem) corre-
sponds to boundary conditions of purely outgoing waves
for x → ∞ and purely ingoing waves at x → −∞

ψbc
� ðxÞ ∼ exp ð�iωnxÞ: ðB1Þ

Because the quasinormal mode spectrum ωn is in general
complex valued, and corresponds to exponentially grow-
ing solutions toward x → �∞, one cannot set the starting
point for the shooting at arbitrarily large values of x.
This is because the numerical integration toward the
intermediate matching point xM where the Wronskian
Eq. (A2) [now instead using ψðx;ωÞ] is computed is
unstable. This is partially due to the fact that the other,
unwanted solution of an inwards exponentially growing
wave is “excited” from numerical errors coming from the
integration itself. This forces one to consider starting
points that are closer to the potential barrier, but here the
asymptotic solutions of purely outgoing/ingoing waves
are not valid yet and thus the boundary conditions
Eq. (B1) are less accurate.
A common way to circumvent this problem is to consider

high order corrections of the form

ψbc
� ðxÞ ∼ exp ð�iωnxÞ

Xjmax

j¼0

c�j
xj

: ðB2Þ

Here the coefficients c�j depend on the details of the
potential barrier, e.g., the two parameters of the BW
potential. They are determined by inserting Eq. (B2) into
the Schrödinger equation Eq. (1) and expanding it in powers
of 1=x, for x → �∞. Comparing the resulting terms at each
1=x power then allows one to find the explicit form of the
coefficients. The improved boundary conditions can now be
used to choose closer integration points and thus increase the
accuracy of the shooting method. To obtain the quasinormal
modes that were used in this work we have worked with
jmax ¼ 25, which yields lengthy and uninformative expres-
sions for the set of c�j that we do not report here.
One might ask whether going up to jmax ¼ 25 is really

needed to obtain quasinormal modes with reasonable
accuracy. While for n ¼ 0 using a smaller number of terms
is sufficient, the numerical challenges increase tremen-
dously for overtones. This is because their imaginary part is
growing significantly, which implies that it becomes much
more challenging to integrate the correct solution for the
reasons outlined previously. While the direct shooting
results for n ¼ 0 quoted in this work are very robust with
respect to different starting points for the integration, we do
observe less robust results for n ¼ 1. Therefore we do not
necessarily expect the direct shooting results for n ¼ 1 to
be much more accurate than those obtained with the
numerical bound state method at high Taylor orders. We
have indicated the variability in the results with brackets
around the relevant digits in Table II and Table III. This
indicates the expected error in the direct shooting results.
The circumstance that the boundary conditions must be

taken with so much care for the direct shooting method, but
can be chosen very simplistically for the bound state case
(the correction terms are not needed), clearly demonstrates
one main disadvantage of the direct shooting method.
Moreover, the chosen potentials in this are very simple,
but finding a higher order series expansion for the boundary
conditions may be nontrivial for more complicated poten-
tials and thus not always possible in practice.
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