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Non-Hermitian degeneracies are classified as defective exceptional points (EPs) and nondefective de-
generacies. While in defective EPs, both eigenvalues and eigenvectors coalesce, nondefective degeneracies
are characterized merely by the emergence of degenerate eigenvalues. It is also known that all degeneracies are
either symmetryprotected or accidental. In this paper, I prove that antiunitary symmetries protect all nondefective
twofold degeneracies. By developing a 2D non-Hermitian tight-binding model, I have demonstrated that these
symmetries comprise various symmetry operations, such as discrete or spatial point-group symmetries and
Wick’s rotation in the non-Hermitian parameter space. Introducing these composite symmetries, I present the
protection of nondefective degeneracies in various parameter regimes of my model. This work paves the way
to stabilizing nondefective degeneracies and offers a new perspective on understanding non-Hermitian band
crossings.

DOI: 10.1103/PhysRevResearch.4.043213

I. INTRODUCTION

Appearance of degeneracies in the energy spectra of differ-
ent Hermitian systems gives rise to a plethora of phenomena
such as quantized classical [1–3] and quantum [4–9] re-
sponses, quantum anomalies [10–14], and the emergence
of novel effective quasiparticles [15–20]. The occurrence
of degenerate energy levels historically has been classified
into either symmetry-protected or accidental degeneracies
[21–25]. Here, accidental degeneracies refer to the intersec-
tion of energy levels due to the finetuning of parameters
without symmetry stabilization. It has been later discussed
that all band-touching points in two-band Hermitian systems
are protected by antiunitary symmetries dubbed “symmetries”
[26–29]. Accidental degeneracies are stable in these systems
as long as these hidden symmetries are respected. It has fur-
ther been shown that these hidden symmetries are usually
composite of various discrete operations, including rotation,
translation, sublattice exchange, and complex conjugation.

Another platform where degeneracies play a crucial role
is in non-Hermitian physics, which effectively describes
open systems. This field of study encounters surges of
interest as some of its underlying properties have no Her-
mitian counterparts [30–32]. The appearance of defective
exceptional points (EPs) [33,34], at which both eigenval-
ues and eigenvectors coalesce, and the accumulation of bulk
modes on the boundaries, known as the skin effect [35–40],
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exemplify prominent properties of non-Hermitian systems
which cannot be realized in Hermitian setups. Aside from
these possibilities, non-Hermitian systems may accommodate
other degeneracies which are nondefective [41–45]. These
nondefective degeneracies can be further classified into two
classes. While one type of these nondefective degeneracies
has an analog in Hermitian physics and is usually isolated
[46], the other type resides in the vicinity of defective EPs
[47] and, hence, has no counterparts in Hermitian physics
[44]. All of these non-Hermitian degeneracies, as well as
the skin effect in non-Hermitian systems, is under theoretical
investigation and experimental observation in various fields
of research including classical active matters [48,49], classi-
cal electric circuits [50–53], quantum circuits [54], photonics
[55–59], phononics [60,61], laser physics [62–64], field the-
ories [65–67], transport physics [68–71], and nonequilibrium
dynamics [72–74].

The spate of studies on EPs identifies numerous (spatial
or discrete) symmetries which protect defective EPs [44,75–
80]. It has also been shown that the intersection of an even
number of symmetry-protected higher-dimensional defective
EPs, e.g., exceptional rings, results in observing nondefective
degeneracies [44,80,81]. Hence, all nondefective degeneracies
found in these situations are also stabilized by symmetry,
which protects the defective EPs [75,77,82]. Further attempts
regarding symmetry stabilization of isolated nondefective de-
generacies is based on a case study on four-band models
and in the presence of two symmetries, namely pseudo-
Hermiticity and anti-parity-time symmetries, which impose
strict restrictions on the eigenspace of the model [42]. How-
ever, the analog between well-studied Hermitian degeneracies
and nondefective degeneracies urges one to go beyond the
case studies and identify the key factors that make any non-
defective degeneracies robust.

As I have pointed out, all accidental degeneracies in two-
band Hermitian systems are symmetry protected. One may
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wonder whether the stabilization of Hermitian accidental de-
generacies can be extended to the realm of non-Hermitian
physics. In this Letter, I prove that composite antiunitary
symmetries protect all twofold nondefective degeneracies in
non-Hermitian models. I further demonstrate that, due to
the biorthogonality of the eigenspace, these symmetry op-
erators come in (right and left) pairs. By introducing a 2D
non-Hermitian tight-binding model, I show that different
non-Hermitian composite symmetries protect nondefective
degeneracies in various parameter regimes in my model.
These composite symmetries are distinct from their Hermitian
counterparts due to the presence of a Wick’s rotation in the
non-Hermitian parameter regime.

II. THEOREM

In the following, I prove that all nondefective twofold
degeneracies in non-Hermitian systems are protected by an-
tiunitary operations with nonunity square.

The eigensystem of a two-band non-Hermitian Hamilto-
nian HnH with nondefective degeneracy (λ = λ0) casts

HnH
∣∣ψR

i

〉
= λ0

∣∣ψR
i

〉
,

〈
ψL

i

∣∣HnH =
〈
ψL

i

∣∣λ0, (1)

H†
nH

∣∣ψL
i

〉
= λ∗

0

∣∣ψL
i

〉
,

〈
ψR

i

∣∣H†
nH =

〈
ψR

i

∣∣λ∗
0. (2)

where |ψR/L
i 〉 with i ∈ {1, 2} denotes the right/left biorthogo-

nal eigenvector such that 〈ψL
j |ψR

i 〉 = δi j .
In Hermitian systems, the Hermiticity imposes that vanish-

ing the commutation relation between the symmetry operator
and the Hamiltonian leads to the invariance of the sys-
tem under a particular symmetry. However, due to the lack
of Hermiticity in non-Hermitian models, biorthogonality of
eigenvectors necessitates introducing left and right symmetry
operations such that, see Appendix A,

H†
nHϒR

nH − ϒR
nHHnH = 0, (3)

HnHϒL
nH − ϒL

nHH†
nH = 0. (4)

The explicit form of these symmetry operators in terms of
biorthogonal basis reads [83]
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[∣∣ψR
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〉〈
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where K is the complex conjugation operator that ensures
ϒ

R/L
nH is antiunitary. Employing Eqs. (5) and (6), one can verify

that ϒR
nH · ϒL

nH = ϒL
nH · ϒR

nH = −1 [84]. Applying these sym-
metries on biorthogonal eigenvectors then yields
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From Eqs. (7) and (8), I realize that both eigenvectors in
(ϒR

nH|ψL
1 〉, |ψR

1 〉) or in (ϒL
nH|ψR

1 〉, |ψL
1 〉) possess the degener-

ate eigenvalue λ0 or λ∗
0, respectively.

To corroborate that these degeneracies are protected by
symmetry with a nonunity square, in the following I show
that eigenvectors are orthogonal by calculating the overlap
of eigenvectors at the nondefective degenerate point. For an

antiunitary operator ϒ in Hermitian systems, one can rewrite
the overlap of eigenvectors as 〈ψ |φ〉 = 〈ϒφ|ϒψ〉. In non-
Hermitian setups, biorthogonality of eigenvectors results in
generalizing this relation using ϒR and ϒL into

〈ψL|φR〉 = 〈ϒLφR|ϒRψL〉,

〈ψR|φL〉 = 〈ϒRψL|ϒLφR〉. (9)

Having this, and by defining ϒL
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1 〉, I evaluate the inner products as
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The above relations can be also verified using Eqs. (7) and
(8). Here I set ϒR

nHϒL
nH|ψR

1 〉 = −|ψR
1 〉 and ϒL

nHϒR
nH|ψL

1 〉 =
−|ψL

1 〉 to get the third line of the above relations. Equa-
tions (10) and (11) do not hold unless the set of eigenvectors
in (ϒR

nH|ψL
1 〉, |ψR

1 〉) and in (ϒL
nH|ψR

1 〉, |ψL
1 〉) are orthogonal,

i.e., 〈ψL
1 |ψ̃R

1 〉 = 〈ψR
1 |ψ̃L

1 〉 = 0. Hence, I conclude that the
presence of a pair of non-Hermitian antiunitary symmetry
(ϒR,ϒL ) with ϒR · ϒL = −1 protects nondefective degen-
eracies in non-Hermitian systems. !

To exemplify our findings, I now explore the stabilization
of nondefective degeneracies by non-Hermitian symmetries
on a 2D square lattice.

III. 2D TIGHT-BINDING MODEL

I consider a non-Hermitian bipartite model on a square
lattice with staggered potentials, nonreciprocal hopping terms,
and nonzero Peierls phase factors for nearest-neighbor hop-
ping amplitudes, schematically shown in Fig. 1. Our model
Hamiltonian, which is the non-Hermitian generalization of the
model in Ref. [26], reads

H = H0 + H1 + H2, (12)

H0 = − t[e−iγ e−gx a†
i bi+x̂ + e−iγ e−gx a†

i bi−x̂

+ eiγ e−gy a†
i bi+ŷ + eiγ e−gy a†

i bi−ŷ + eiγ egx b†
i+x̂ai

+ eiγ egx b†
i−x̂ai + e−iγ egy b†

i+ŷai + e−iγ egy b†
i−ŷai], (13)

H1 = − t1[e−ga a†
i ai+x̂+ŷ − e−ga a†

i ai+x̂−ŷ

− e−gbb†
i bi+x̂+ŷ + e−gbb†

i bi+x̂−ŷ + ega a†
i+x̂+ŷai

− ega a†
i+x̂−ŷai − egbb†

i+x̂+ŷbi + egbb†
i+x̂−ŷbi], (14)

H2 =v
∑

i∈A

a†
i ai − v

∑

i∈B

b†
i bi, (15)
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FIG. 1. Illustration of the tight-binding model on the square lat-
tice with A (green) and B (magenta) sublattices. Various ne arest
neighbor and next nearest neighbor hopping amplitudes are shown
in solid and dashed lines. The Peierls phase along x or y directions
are shown with orange dashed line arrows. The inset displays the first
Brillouin zone delineated by the cyan solid line. The high symmetry
points, shown in blue are at (kx, ky ) = (0, 0) at the ' point, (π , 0)
at the M point, {(π/2,π/2), (−π/2,−π/2)} at the X1 points, and
{(π/2,−π/2), (−π/2, π/2)} at the X2 points.

where a†
i (b†

i ) creates an electron at site i in sublattice A (B)
and x̂ (ŷ) stands for unitvectors along the x (y) direction. Here
t is the nearest-neighbor hopping amplitude, t1 denotes the
diagonal hopping amplitude, v sets the staggered onsite po-
tential, γ is the Peierls phase, and (gx, gy, ga, gb) account
nonreciprocity.

The above quadratic Hamiltonian in the momentum space
using Fᵀ = (ak, bk ) casts

H(k) =F †hkF, with hk =
(

h11 h12
h21 h22

)
, (16)

where h11= − t1(−e−ga−i(kx−ky ) − ega+i(kx−ky )+ e−ga−i(kx+ ky )+
ega+i(kx+ky ) ) + iµa + v, h22= t1(−e−gb−i(kx−ky ) − egb+i(kx−ky ) +
e−gb−i(kx+ky )+egb+i(kx+ky ) )−iµb − v, h12= − 2te−gx−iγ cos(kx )
− 2te−gy+iγ cos(ky), and h21 = −2tegx+iγ cos(kx ) − 2tegy−iγ

cos(ky).
The spectrum of this Hamiltonian yields ε± = (tr[hk] ±√

η)/2, with η = tr[hk]2 − 4 det[hk]. Here, tr[hk] and det[hk]
denote the trace and the determinant of hk, respectively. The
complex-valued η is the discriminant of the characteristic
polynomial. The solutions of η = 0 are degeneracies of hk
[31,78].

Our model Hamiltonian accommodates various quantum
phases, including the linear Weyl and quadratic double-Weyl
semimetals, as well as the trivial and topological band insula-
tors; see Appendix B. In the following, I focus on exploring

(a) (b)

(c) (d)

(e) (f)

(g) (h)h)(g)

(e)

( )

(f)

FIG. 2. Real (left panels) and imaginary (right) par ts of
the energy dispersion at various parameter regimes. For each
panel, I set (γ , gx, gy, t1/t, ga, gb, v/t ) = (0.5, 0.5, 0.3, 0.0, 0.0,

0.0, 0.0) (a), (b), (0.5, 0.0, 0.0, 0.75, 0.5, 0.3, 3.26) (c), (d), (0.0,

0.0, 0.0, 0.75, 0.5, 0.3, 0.0) (e), (f), (π/2, 0.0, 0.0, 0.75, 0.5, 0.3,

0.0) (g), (h). Magenta points mark the defective EPs, and black points
indicate nondefective degeneracies. Line colors are chosen such that
the largest (smallest) values are presented in yellow (blue).

various parameter regimes within which nondefective degen-
eracies find room to emerge.

Nondefective degeneracies at t1 = ga = gb = v = 0.—.
The first parameter regime in which nondefective degen-
eracies arise is at t1 = ga = gb = v = 0. Here the model
Hamiltonian merely comprises nearest-neighbor hopping
terms, i.e., H = H0; see the Appendices for details. Setting
0 < γ < π/2 in H leads to observing nondefective degen-
eracies in the band structure of our system. Figure 2 depicts
the real (a) and imaginary (b) parts of the spectrum at γ =
0.5, gx = 0.5, and gy = 0.3. The nondefective degeneracies,
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indicated by black points, appear at the X points at (kx, ky) =
(±π/2,±π/2) shown in the inset of Fig. 1 when cos(kx ) =
cos(ky) = 0.

The composite symmetry, which guarantees the occur-
rence of nondefective degeneracies, reads ϒR = σxKWgTx̂
and ϒL = σxKW−gTx̂ with ϒR · ϒL = T2x̂. Here Tx̂ is the
translational symmetry along the x axis, and Wg imposes the
Wick’s rotation on gx and gy such that Wggx/yW−1

g = igx/y
[85]. I note that KWg is equivalent to T+ which is the trans-
pose operator used in introducing the time-reversal symmetry,
also known as TRS† [36,86,87]. Equivalently, instead of Wg,
I can introduce an operator (Mg) which changes the sign
of non-Hermiticty parameters such that M−1

g gMg = −g. The
non-Hermitian composite symmetry can be readily reduced
to the Hermitian hidden symmetry ϒH = σxKTx̂ [26] after
imposing Wg = 1 in the Hermitian limit.

Considering the right wavefunction of the system at the X
points as |ψR

X 〉 and acting the ϒR · ϒL on this wavefunction
gives ϒR · ϒL|ψR

X 〉 = T2x̂|ψR
X 〉 = e−2ixX |ψR

X 〉 = −|ψR
X 〉, where

I set the x component of the X points as xX = ±π/2.
This emphasizes that ϒR · ϒL at nondefective degeneracies is
nonunity.

Nondefective degeneracies at nonzero (t1, ga, gb, v).—.
Switching on H1 or H2 violates the ϒ symmetry and lifts the
degeneracy at (at least two) X points; see the Appendices for
details. Here nonvanishing H1,2 gives rise to an effective mass
term opening a gap at one or both pairs of X1,2 nodal points;
see the inset of Fig. 1. When v1 = −2t1(cosh(ga) + cosh(gb))
the gap closes at X1 and hence, the system respects ϒ at this
point. Similarly, the nondefective degeneracy at X2 is retrieved
when v2 = 2t1(cosh(ga) + cosh(gb)). I present an example of
this situation in Figs. 2(c) and 2(d). Notably, the observed
gapless phases at v1 and v2 delineate the phase boundaries
between two insulating phases, namely, a band insulator and
a topological insulator.

Nondefective degeneracies at v = gx = gy = 0 and γ ∈
{0,π/2}.—. I now study systems at v = gx = gy = 0 such
that the total Hamiltonian consists of H = H0 + H1. Consid-
ering 0 < γ < π/2, the spectrum of this system is gapped.
To be precise, it possesses finite gaps in its real component
and has gapless behavior in its imaginary part. However,
when γ ∈ {0,π/2}, the system hosts only defective EPs with
nonzero (gx, gy) while it exhibits both defective and nonde-
fective degeneracies when gx = gy = 0; see the Appendices
for details.

Figures 2(e) and 2(f) present the spectrum at γ =
0, displaying both defective (magenta points) and nonde-
fective (black points) degeneracies around the M points
when gx = gy = 0, ga = 0.5, and gb = 0.3. I witness de-
fective degeneracies that result in the bifurcation of the
real and imaginary parts of the spectra. I also mark non-
defective degeneracies with black points in these figures.
The symmetry which protects the nondefective degenera-
cies reads ϒ ′

R = σxKWRga=gb
RxTx̂, where Rx performs the

mirror reflection operation along the x axis such that
Rx(kx, ky)R−1

x = (kx,−ky ). Here, the Wick’s rotation acts as
W−1

Rga=gb
gaWRga=gb

= igb and W−1
Rga=gb

gbWRga=gb
= iga. Defin-

ing the right eigenvector at the M points as |ψR
M〉, I find ϒ ′

R ·
ϒ ′

L|ψR〉 = −T2x̂|ψR
M〉 = −|ψR

M〉, where I have used σxRx =

−Rxσx. In the Hermitian limit, ϒ ′ acts similar to the hidden
symmetry introduced in Ref. [26]. Notably, the asymptotic
behavior of the Hamiltonian close to nondefective degenera-
cies is quadratic in momenta resulting in the non-Hermitian
generalization of quadratic double-Weyl semimetals [88–91].

Setting γ = π/2 and ga = gb = 0, the system again ex-
hibits both defective (magenta points) and nondefective (black
points) exceptional points, but in this case in the vicinity of
the ' points, shown in Figs. 2(g) and 2(h). The system in this
parameter regime is invariant under the composite symme-
try operator given by ϒ ′′

R = (e2iγ )iy (e−2iγ )ix σxKWRga=gb
RxTx̂,

where (ix, iy) denote the real-space coordinate of site i. I note
that Tx̂ixTx̂ = (ix + x̂)T2x̂ and the mirror reflection symmetry
with respect to the x axis results in RxiyRx = −iy. I thereby
obtain ϒ ′′

R · ϒ ′′
L = −1 at the ' point. Similar to systems at

γ = 0, the Hamiltonian close to the nondefective degenera-
cies is asymptotically quadratic in momenta.

IV. CONCLUSION

I have proved a theorem stating that anti-unitary sym-
metries protect all nondefective twofold degeneracies in
non-Hermitian systems. I have further exemplified the deriva-
tions by exploring the protection of nondefective degeneracies
in a 2D tight-binding model with nonreciprocal hopping
amplitudes. I have demonstrated that the antiunitary sym-
metries constitute various discrete and spatial operations
combined with Wick’s rotations in the nonreciprocal pa-
rameter space. These findings establish the new path to the
symmetryprotection of non-Hermitian degeneracies beyond
the convention of discrete [44,75,76,78,92,93] or point-group
[80] symmetries for defective EPs. Further works should
elaborate on the role of the composite symmetries in stabiliz-
ing nondefective degeneracies in many-body non-Hermitian
systems beyond the commonly studied discrete symmetries
[42,79,94–96]. It is also intriguing to explore the robust-
ness of symmetry-protected nondefective degeneracies under
small symmetry-breaking perturbations in interacting non-
Hermitian systems.
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APPENDIX A: CONSERVATION
OF SYMMETRY OPERATORS

In the following, I present the relations whose satisfaction
ensures the conservation of an operator in time. I derive these
relations for Hermitian and non-Hermitian systems.

1. Hermitian systems

A Hermitian system is described by HH|ψn〉 = εn|ψn〉,
where HH is a generic Hermitian Hamiltonian with eigenvalue
εn and eigenvector |ψn〉. For this Hamiltonian, the operator O
is a symmetry operator if it is conserved in time. This quest is
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translated into

∂t 〈O(t )〉 = 〈ψn(t )|H†
HO − OHH|ψn(t )〉 = 0, (A1)

where I used |ψn(t )〉 = exp(−iHHt )|ψn(0)〉. The Hermiticity
of HH then simplifies the above relation as

H†
HO − OHH = 0, (A2)

[HH,O] = 0. (A3)

Hence, O is a conserved quantity in Hermitian systems if
[HH,O] = 0.

2. Non-Hermitian systems

A non-Hermitian system is described by

HnH
∣∣ψR

n

〉
= εn

∣∣ψR
n

〉
, H†

nH

∣∣ψL
n

〉
= ε∗

n

∣∣ψL
n

〉
, (A4)

where HnH is a non-Hermitian Hamiltonian and
{(εn, |ψR

n 〉, |ψL
n 〉)} describes the non-Hermitian eigensystem

with 〈ψL
n |ψR

n 〉 = δmn and
∑

n |ψR
n 〉〈ψL

n | = 1.
Based on the biorthogonality of the eigenvectors, I define

the biorthogonal operator O ≡ (OR,OL ). This operator is
conserved in time when its elements satisfy

∂t 〈OR(t )〉RR = 〈ψR(t )|H†
effO

R − ORHeff |ψR(t )〉 = 0,

∂t 〈OL(t )〉LL = 〈ψL(t )|HeffOL − OLH†
eff |ψ

L(t )〉 = 0, (A5)

where 〈A〉RR(LL) is the shortened notation for the ex-
pectation value 〈ψR(L)|A|ψR(L)〉. Here I used |ψR(t )〉 =
exp(−iHnHt )|ψR(0)〉 and |ψL(t )〉 = exp(−iH†

nHt )|ψL(0)〉.
Thereby, to keep this set of symmetry operators stationary

in time, the pair of operators should fulfill

H†
nHOR − ORHnH = 0,

HnHOL − OLH†
nH = 0. (A6)

I have employed this set of relations in the main text to prove
the theorem.

APPENDIX B: VARIOUS PHASES AND DEGENERACIES
IN OUR TIGHT-BINDING MODEL

In the main text, I present the nondefective degeneracies
which may emerge in our tight-binding model. Here I provide
further details on other degeneracies and various phases in our
model.

1. Non-Hermitian linear Weyl semimetal
at t1 = ga = gb = v = 0

Setting t1 = ga = gb = v = 0 in Eq. (16), the Hamiltonian
casts

H(k) =
(
a†

k b†
k

)
hk

(
ak
bk

)
, (B1)

= [−2te−gx−iγ cos(kx ) − 2te−gy+iγ cos(ky)]a†
kbk

+ [−2tegx+iγ cos(kx ) − 2tegy−iγ cos(ky)]b†
kak .

(B2)

The dispersion relation of the system then reads

ε± = ±
√

f eφ + f e−φ + 2(cos(2kx ) + cos(2ky) + 2), (B3)

with φ = 2iγ + gx − gy and f = 4 cos(kx ) cos(ky). To iden-
tify degenerate points in the spectrum, one can use the
discriminant of the two-band systems given by η = f eφ +
f e−φ + 2(cos(2kx ) + cos(2ky) + 2). I present the streamlines
of (Re[η], Im[η]) in Figs. 3(a), 3(d), and 3(g).

Figure 3 presents the real and imaginary parts of the spec-
trum for γ ∈ {0, 0.75,π/2}, gx = 0.5 and gy = 0.3. Based on
these results, I can identify three possibilities.

(i) The first situation happens when |ε±|2 is fully real when
the Peierls phase vanishes, i.e., at γ = nπ with n ∈ Z. I illus-
trate the streamlines of the vector field (Re[η], Im[η]) by teal
arrows in Fig. 3(a). Evidently, the orientation of the flow lines
reverses at defective EPs when they hit Re[η] = 0 curves. In
this case, along the defective exceptional curves, both real
and imaginary parts of the spectrum are zero; see magenta
lines in panels (b) and (c). The intersections between these
exceptional curves with Re[η] = 0 mark nondefective degen-
eracies located at X points and are shown by black points in
(a)–(c). As a result, the X points are continuously connected
to defective EPs when γ = nπ with n ∈ Z. I also witness no
changes in the flow direction at nondefective degeneracies X
points; see panel (a). This is not unexpected as an even number
of EPs, which each reverses the stream flow, intersect at the X
points, and hence, no alternation of the streamlines should be
observed [43].

(ii) The second situation is similar to the previously dis-
cussed case (i). The only difference is that, in this situation,
the coexistence of defective and nondefective degeneracies,
appears when γ = nπ/2 with odd n values, see Figs. 3(g)–
3(i).

(iii) The third possibility occurs when |ε±|2 is complex-
valued with 0 < γ < π/2. While here, the imaginary part of
the spectrum exhibits i-Fermi states, along which Im[ε±] = 0,
the real part of the dispersion relation vanishes merely at non-
defective degeneracies X points. Note that these degeneracies
are isolated, and they are no longer the termination points of
i-Fermi arcs due to the absence of r-Fermi arcs, along which
Re[ε±] = 0 [43].

As it is evident from Fig. 3, the nondefective degeneracies
at the X points are robust against any changes of (γ , gx, gy)
values. This is because our model respects a composite sym-
metry discussed in the main text.

The asymptotic behavior of the Hamiltonian close
to the nondefective degeneracies reads hlin

k = d · σ
where dx = −s[2t (ky cosh(gy − iγ ) − kx cosh(gx + iγ ))],
dy = 2its(ky sinh(gy − iγ ) − kx sinh(gx + iγ )), and dz = 0
with s = +1(−1) at X1(X2). The energy dispersion relation
then yields

εlin
X = ∓2t

√
2skxky cosh(2iγ + gx − gy) + k2

x + k2
y , (B4)

and the associated eigenvectors read

∣∣ψ lin
X

〉
=



±

√
e2iγ

(
2skxky cosh(2iγ+gx−gy )+k2

x +k2
y

)

egy ky+kxegx+2iγ

1



. (B5)
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FIG. 3. Stream plot of the vector field (Re[η], Im[η]) (a), (d), (g). Real (b), (e), (h) and imaginary (c), (f), (i) parts of the energy dispersion
in Eq. (B3). Parameters are set to t1/t = ga = gb = v/t = 0, gx = 0.5, gy = 0.3, and γ = 0.00 (a), (b), (c), 0.75 (d), (e), (f), π/2 (g), (h), (i).
Black points depict nondefective degeneracies. Magenta (Orange) lines display Re[η] = 0 (Im[η] = 0).

Moreover, hlin
k can be rewritten as a linear Weyl Hamil-

tonian hlin
k = Mi j piσ j where M is a matrix with complex-

valued elements. This Hamiltonian resembles the Hermitian
linear Weyl model [26]. For this reason, I dub the sys-
tem in this parameter regime “non-Hermitian linear Weyl
semimetals.”

2. Non-Hermitian trivial and topological insulators by keeping
either (t1, ga, gb) or v nonzero

After turning on H1 or H2, the Hamiltonian hk in Eq. (B2)
casts hk = d.σ where d0 = −4it1 sin(ky) sinh(ga/2 −
gb/2) cosh(ga/2 + gb/2 + ikx ), dx = −2t cos(kx ) cosh(gx +
iγ ) − 2t cos(ky) cosh(gy − iγ ), dy = 2it cos(kx ) sinh(gx +

043213-6
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(a) (b) (c)(a) (c)(b)

BI

BI TI
TI

FIG. 4. (a) The phase diagram of the system comprises the band insulating (BI), yellow regions, and topological insulating (TI) phases at
ga = gb and with nonzero t1 and v. The teal surfaces in (a) separating BI and TI phases depict v1 and v2 given in Eqs. (B7) and (B8). Real
(b) and imaginary (c) parts of the energy dispersion of hk at t1/t = 0.75, ga = 0.5, gb = 0.3 v/t = gx = gy = 0.0, and γ = 0.5.

iγ ) + 2it cos(ky) sinh(gy − iγ ), and

dz = 2t1(cosh(ga) + cosh(gb)) sin(kx ) sin(ky)

− 2it1(sinh(ga) + sinh(gb)) cos(kx ) sin(ky) + v. (B6)

Here nonvanishing dz gives rise to an effective mass term,
which lifts the degeneracy at, at least two of the X points. The

gap closure occurs when

v1 = −2t1(cosh(ga) + cosh(gb)), (B7)

v2 = 2t1(cosh(ga) + cosh(gb)). (B8)

When v = v1, the gap closes at X1. Hence, the system respects
the composite symmetry ϒ at this point; see the main text.

(a) (b) (c) (d)

(e)

(f)

(f) (g) (h)

FIG. 5. Real (a) and imaginary (b) parts of the spectrum with open (periodic) boundary conditions along the x (ky)-axis. The absolute values
of eigenvectors |ψi| associated with eigenvalue εi, sorted ascendingly with respect to Re[εi], for the system presented in (a), (b) at ky = π/2
(c) and 0 (d). (e), (f) Similar to (a), (b) but with open (periodic) boundary conditions along the y (kx)-axis. The absolute values of eigenvectors
for the system are presented in (e), (f) at kx = π/2 (g) and 0 (h). All plots are obtained at t1/t = 0.75, ga = 0.5, gb = 0.3 v/t = gx = gy = 0.0,

and γ = 0.5.
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(a) (b) (c) (d)

FIG. 6. The stream plot of the vector field (Re[η], Im[η]) depicted by teal arrows, I present Re[η] = 0 in magenta solid lines and Im[η] = 0
in orange. Black points indicate nondefective degeneracies. The intersecting points between magenta and orange lines locate defective EPs.
All plots are obtained at t1/t = 0.75, ga = 0.5, gb = 0.3 v/t = 0.0. I set gx = gy = 0.0 and γ = 0.0 in (a), gx = gy = 0.0 and π/2 in (b),
gx = 0.2, gy = 0.1, and γ = 0.0 in (c) and gx = 0.2, gy = 0.1, and γ = π/2 in (d).

Similarly, the nondefective degeneracy at X2 is retrieved when
v = v2; see also Figs. 2(c) and 2(d) in the main text.

Figure 4(a) displays the phase diagram of our system
where the phase boundaries v1,2 (teal surfaces) separate the
non-Hermitian band insulator (yellow region) from the non-
Hermitian topological insulator. I set ga = gb in Fig. 4(a). The
complex-valued band structure for the topological insulator
with a nonzero gap is exemplified in Figs. 4(b) and 4(c).

By imposing open boundary conditions along the x or
y axis, I can identify chiral edge modes shown in red in
Figs. 5(a) and 5(b) and 5(e) and 5(f), respectively. These chiral
edge modes have finite lifetime (imaginary parts) for momenta
deep inside the gap when the system is merely periodic along
the y axis. However, when periodicity is respected only along
the x axis, the chiral edge modes possess zero imaginary parts
inside the gap region away from the bulk states (blue curves).
The chiral edge modes in both cases are localized at opposite
boundaries of the system, as can be seen from the absolute
values of eigenvectors, shown in (c) and (g), at i = 30, 31
associated with εi = 0.0. I further observe the skin effect, the
localization of bulk modes at boundaries, e.g., in panels (c)
and (h), due to the reciprocity [nonzero]. The observed skin
effect in panel (h) is also known as the Z2 skin effect [36]
protected by the time-reversal symmetry. I note that the ab-
sence of the skin effect at ky = 0 in panel (d) and at kx = π/2
in panel (g) is due to the zero imaginary parts of all modes
resulting in delocalizing the bulk states, similar to Hermitian
systems.

3. Non-Hermitian quadratic double Weyl semimetals at v = 0
and γ ∈ {0,π/2}

Imposing v = 0 turns off H2 and subsequently, the Hamil-
tonian casts hk = d01 + dxσx + dzσz where

d0 = −4it1 sin(ky) sinh
(

ga − gb

2

)
cosh

(
ga + gb + 2ikx

2

)
,

(B9)

dx = 2it[cos(kx ) sinh(gx + iγ ) + cos(ky) sinh(gy − iγ )],

(B10)

dz = 2t1 sin(ky)[sin(kx )(cosh(ga) + cosh(gb))

− i cos(kx )(sinh(ga) + sinh(gb))]. (B11)

The associated dispersion relations then reads ε± = d0 ± √
η

with η = d2
x + d2

z . I present the stream plot of (Re[η], Im[η])
in Fig. 6 at t1/t = 0.75, ga = 0.5, gb = 0.3, gx = gy = 0,
and γ = 0 (a) and π/2 (b). I also plot Figs. 6(c) and 6(d)
with t1/t = 0.75, ga = 0.5, gb = 0.3, gx = 0.2, gy = 0.1, and
γ = 0 (c) and π/2 (d). Figure 6 further displays Re[η] = 0
in magenta and Im[η] = 0 in orange lines. The intersection of
these lines identifies defective EPs in our systems. When even
numbers of these lines cross, I detect nondefective degenera-
cies marked in black points in (a) and (b). These nondefective
degeneracies are located at the M points when γ = 0, and they
appear at the ' points at γ = π/2; see also the discussion in

(a) (b) (c) (d)(b) (d)( ) ( )

FIG. 7. Real (a), (c) and imaginary (b), (d) components of the band structure for systems at t1/t = 0.75, ga = 0.5, gb = 0.3 v/t = 0.0,
gx = 0.2, gy = 0.1, and γ = 0.0 (a), (b) and γ = π/2 (c), (d).
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(a) (b) (c) (d)

FIG. 8. The real (a) and imaginary (b) parts of the spectrum with open (periodic) boundary conditions along the x (ky) axis. The absolute
value of eigenvectors for the system presented in (a), (b) at kx = π/2 (c) and 0 (d). All plots are obtained at t1/t = 0.75, ga = 0.5, gb =
0.3 v/t = gx = gy = 0.0, and γ = 0.

(a) (b) (c) (d)

FIG. 9. The same as Fig. 8 but with open (periodic) boundary conditions along the x (ky) axis.

(a) (b) (c) (d)

FIG. 10. The same as Fig. 8 but the absolute value of eigenvectors for the system presented in (a), (b) at ky = π/2 (c) and 0 (d). For all
panels I set t1/t = 0.75, ga = 0.5, gb = 0.3 v/t = gx = gy = 0.0, and γ = π/2.

(a) (b) (c) (d)

FIG. 11. The same as Fig. 9 but at t1/t = 0.75, ga = 0.5, gb = 0.3 v/t = gx = gy = 0.0, and γ = π/2.
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the main text. I emphasize that these nondefective degenera-
cies disappear when nonreciprocal nearest neighbor hopping
parameters, namely (gx, gy), are nonzero, as shown in (c) and
(d). The energy band associated with parameters in Figs. 6(c)
and 6(d) are shown in Fig. 7. Unsurprisingly, transitioning
from one gapless phase to the other is through a gapped phase
with 0 < γ < π/2.

Around nondefective degeneracies, the Hamiltonian is
asymptotically quadratic in momentum as it casts hquad

k =
dquad.σ where

dquad
0 = 2pyt1[−i(sinh(ga) − sinh(gb))

+ px cosh(ga) − px cosh(gb)], (B12)

dquad
x = t

[(
p2

x − 2
)

cosh(gx ) +
(
p2

y − 2
)

cosh(gy)
]
, (B13)

dquad
y = −it

[(
p2

x − 2
)

sinh(gx ) +
(
p2

y − 2
)

sinh(gy)
]
, (B14)

dquad
z = 2pyt1[px(cosh(ga) + cosh(gb))

− i(sinh(ga) + sinh(gb))], (B15)

where p = k − M, γ = 0 and nondefective degeneracies are
located at the M points. When γ = π/2 and nondefective
degeneracies reside at the ' points, different components of
hquad

p with p = k − ' yield

dquad
0 = 2pyt1[−i(sinh(ga) − sinh(gb))

+ px cosh(ga) − px cosh(gb)], (B16)

dquad
x = it

[(
p2

x − 2
)

sinh(gx ) −
(
p2

y − 2
)

sinh(gy)
]
, (B17)

dquad
y = t

[(
p2

x − 2
)

cosh(gx ) −
(
p2

y − 2
)

cosh(gy)
]
, (B18)

dquad
z = 2pyt1[px(cosh(ga) + cosh(gb))

− i(sinh(ga) + sinh(gb))]. (B19)

These systems are the non-Hermitian generalizations of the
quadratic double Weyl semimetals [88–91].

After understanding our model with the periodic bound-
ary conditions in this parameter regime, I now explore the
underlying physics when periodicity along the x or y axis
is lifted; see real and imaginary components of the energy
spectra in panels (a) and (b) in Figs. 8, 9, 10, and 11. Here
Figs. 8 and 9 are plotted at γ = 0 and Figs. 10 and 11 are
obtained at γ = π/2. Evidently, these two sets of results are
very similar to each other. Both cases exhibit boundary modes
with nearly zero real and imaginary parts when periodicity
along the ky axis is relaxed. On the contrary, the boundary
modes possess finite imaginary parts when one enforces the
open boundary conditions along the x axis. The behavior of
eigenvectors in these parameter regimes is similar to those
discussed in Sec. B 2. The only major difference is how eigen-
vectors behave at two zero eigen-energies (εi = 0.0) with
i = 30, 31 in panels (c) in Figs. 8, 9, 10, and 11. For these two
eigenvalues, in contrast to the results of Sec. B 2, I realize that
the associated eigenvectors coalesce. Hence, I conclude that
these systems with open boundary conditions along the y and
x axes experience defective EPs at kx = π/2 and ky = π/2,
respectively. I also observe the localization of the bulk eigen-
vectors, i.e., the skin effect, around x = 0; see Figs. 9 and 11.
However, the bulk eigenvectors are localized at the left/right
ends of the system along the y axis when periodicity along ky
is relaxed.
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