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Abstract
Vectorial forms of structured light that are non-separable in their spatial and polarisation degrees
of freedom have become topical of late, with an extensive toolkit for their creation and control. In
contrast, the toolkit for quantifying their non-separability, the inhomogeneity of the polarisation
structure, is less developed and in some cases fails altogether. To overcome this, here we introduce
a new measure for vectorial light, which we demonstrate both theoretically and experimentally. We
consider the general case where the local polarisation homogeneity can vary spatially across the
field, from scalar to vector, a condition that can arise naturally if the composite scalar fields are
path separable during propagation, leading to spatially disjoint vectorial light. We show how the
new measure correctly accounts for the local path-like separability of the individual scalar beams,
which can have varying degrees of disjointness, even though the global vectorial field remains
intact. Our work attempts to address a pressing issue in the analysis of such complex light fields,
and raises important questions on spatial coherence in the context of vectorially polarised light.

1. Introduction

Complex vectorial fields are general states of structured light [1, 2], non-separable in their spatial and
polarisation degrees of freedom, giving rise to exotic inhomogeneous transverse polarisation distributions
[3]. These vectorial forms of structured light have shown their potential in a wide variety of applications
[4–8], including optical communications, optical tweezers, optical metrology, among others. Noteworthy,
their high resemblance to quantum-entangled states, by virtue of the non-separability of their component
degrees of freedom, has been the subject of several studies, which have enabled simulating quantum
phenomena in the classical regime. Crucially, as has been stated in different works, such analogy cannot be
pushed to the quantum limit of representing nonlocal entanglement [9]. Nonetheless, it can be used as a
powerful tool to understand some of the abstract concepts of quantum mechanics. The idea then of classical
entanglement is not to replace or simulate quantum entangled systems with classical states, but rather to
exploit the potentialities of their analogy with quantum entanglement in applications in the classical word
[10]. One example is the demonstration of a ‘nonlocal’ teleportation with classical systems, which opens the
possibility to create a robust hybrid quantum–classical communication system [11]. Another one is the
demonstration that classically-entangled photons propagating in atmospheric turbulence, where only one
degree of freedom is affected (the spatial), evolve in a similar way to quantum-entangled photons, when
only one of the photons is sent through the atmospheric channel. Such demonstration offers the possibility
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Figure 1. Conceptual figure. The upper row shows a mixture of two different kind of particles (red and blue types). As time
evolves, each kind of particle groups together in separate regions. The lower row depicts a vectorial field that upon propagation
splits into disjoint areas.

of quantum error correction in free-space or fibre-based optical communication systems [12]. A more
complete analysis of such analogies, as well as other examples can be found in [13–17].

Given the high interest in vector beams, in the last two decades there has been intense interest in their
generation, with techniques exploiting liquid crystal wave plates [18], glass cones [19, 20], metamaterials
[21], interferometric arrays [22–25], directly from lasers [26, 27], liquid crystal spatial light modulators
[28–35] and digital micromirror devices [36–43]. Conversely, characterisation techniques are still
somewhat limited. These include filtering [44–46] and deterministic detection [47] of the mode, as well as
quantitative analysis by a quantum toolkit, for a full decomposition via tomographic projections [48] and a
reduced measurement set for determining the non-separability [49–52]. Both quantitative techniques rely
on the similarities between the vector modes and quantum-entangled states, for example, the latter being
the classical equivalent to the well-known concurrence, C, for qubits [53, 54]. In the classical case, rather
than measuring the degree of entanglement of two entangled photons, the measurement has been adapted
to measure the degree of coupling between the spatial and polarisation degrees of freedom of vector modes,
and has been coined the vector quality factor (VQF) [50]. Notably, such techniques have been extended to
the space-time domain, thus providing a technique to measure the nonseparability of space-time
electromagnetic pulses [55].

Even though these techniques perform very well at characterising some features of vector beams, such as
their non-separability, they fail to account for other properties manifested by more intricate vector modes.
One such case is when the spatial modes become spatially disjoint, appearing to follow independent paths
although remaining as a single coherent field. This situation can arise naturally in vectorial light and has
been discussed theoretically [10] and observed experimentally [42], and even engineered as a path degree of
freedom in such fields [56–58]. This path-like splitting is analogous to splitting of particle mixtures,
illustrated in figure 1. In the case of such splitting phenomena in vectorial light, the mutable degree of
non-separability cannot be quantified using conventional measurements such as the VQF, suggesting the
need for a more refined toolbox.

Here we introduce a novel approach for the characterisation of vectorial light fields that overcomes the
aforementioned shortcoming, namely, it allows to quantify the dynamic evolution of vector fields that upon
propagation experience a spatial separation. This is, to the best of our knowledge, the first proposed
measure that attempts to quantify the evolution of the polarisation structure in such kind of vector beams.
We outline the problem theoretically and propose an amendment to the existing framework to account not
only for the non-separability of the entire field, but also its component disjointness. For this, we employ the
Hellinger distance [59] as a measure of the disjointness. We provide experimental evidence to verify the
efficacy of this technique, using exemplar cases of Hermite- Airy-, and parabolic-Gauss vectorial beams.
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Figure 2. Polarisation-intensity patterns of the mode defined by equation (40) at (a) z = 0, (b) z = 0.5zR, (c) z = zR and
(d) z = 2zR. Right and left circular polarisation are shown in orange and green, respectively. Notice the top-bottom inversion of
handedness occurring from z < zR to z > zR. (e) and (f) Show the degree of polarisation P1(z) and Hellinger distance
H[|φ1|, |φ2|](z), respectively, as function of propagation distance. Note that H[|φ1|, |φ2|](z) is maximum when the two spatial
modes are non-overlapping (z = 0) and minimum when their overlap is maximal (z = zR), which also coincides with a totally
scrambled polarisation distribution. The red dots labelled (a)–(d) mark the distances z/zR = 0, 0.5, 1, 2, respectively,
corresponding to the polarisation patterns shown.
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2. Theory

In this section, we provide the theoretical background for describing and quantifying the splitting of the
polarisation pattern of a non-uniformly polarised light beam into two disjoint uniformly polarised parts,
which may occur during free propagation, as sketched conceptually in figure 1. After shortly reviewing in
section 2.1 the basic properties of non-uniformly polarised beams of light, we give in section 2.2 a
description of the above splitting phenomenon in terms of the degree of polarisation of each part of the
beam. Then, in section 2.3 we introduce a propagation-dependent measure of this phenomenon, which is
suitable for experimental verification. Finally, we illustrate our approach by means of a real-world example
in section 2.4.

2.1. Entangled polarisation and spatial degrees of freedom in optical beams: a cursory look
Consider a monochromatic, non-uniformly polarised paraxial beam of light travelling in vacuum (or air)
along the positive direction of the axis z of a Cartesian reference frame with coordinates
r = (x, y, z) = (x, z), where x = (x, y). The measurable real-valued electric field vector E(r, t) carried by
such beam can be written as

E(r, t) = Re
[
Ψ(x, z) ei(kz−ωt)

]
, (1)

where k = 2π/λ is the wavenumber of the light of wavelength λ and frequency ω = kc, with c the speed of
light in vacuum. By definition, the vector field Ψ(x, z) can always be written as

Ψ(x, z) = ê1 ψ1(x, z) + ê2 ψ2(x, z), (2)

where ê1, ê2 and ê3 are real-valued unit vectors parallel to the axes x, y and z, respectively, with

êi · êj = δij, (i, j = 1, 2, 3), (3)

and ψ1(x, z),ψ2(x, z) are two arbitrary solutions of the paraxial wave equation,

(
∂2

∂x2
+

∂2

∂y2
+ 2ik

∂

∂z

)
ψα(x, z) = 0, (α = 1, 2). (4)

Alternatively, as shown in appendix C, it is possible to write Ψ(x, z) in the Schmidt form [10],

Ψ(x, z) =
√
λ1 ε̂1 φ1(x, z) +

√
λ2 ε̂2 φ2(x, z), (5)

where λ1 � λ2 � 0, are the eigenvalues of the coherency matrix J of the beam (see equation (D4) in
appendix D), defined by

J =

∫
R2

d2xΨΨ†. (6)

The dyad ΨΨ† is an x- and z-dependent 2 × 2 matrix which can be written with respect to the basis
{ê1, ê2} as:

ΨΨ† =

[
|ψ1(x, z)|2 ψ1(x, z)ψ∗

2(x, z)
ψ∗

1 (x, z)ψ2(x, z) |ψ2(x, z)|2
]

, (7)

where equation (2) has been used. We remark that J is independent of z because both ψ1(x, z) and ψ2(x, z)
are supposedly solutions of the paraxial wave equation. The polarisation modes ε̂1 and ε̂2 are two (possibly
complex-valued) unit vectors perpendicular to the z-axis and to each other,

ε̂∗α · ê3 = 0, ε̂∗α · ε̂β = δαβ , (8)

with α,β = 1, 2. Likewise, the spatial modes φ1(x, z) and φ2(x, z) are square-integrable solutions of the
paraxial wave equation that obey the orthonormality conditions

∫
R2

d2x φ∗
α(x, z)φβ(x, z) = δαβ , (α,β = 1, 2). (9)

4
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The entanglement between the polarisation and the spatial degrees of freedom of the vector field (2) is
usually quantified by the concurrence C defined by

C = 2
√

p1 p2, where pα ≡ λα

λ1 + λ2
, (10)

and α = 1, 2. By definition, the concurrence is related to the degree of polarisation P of the beam [60–62],

P =

√
1 − 4 det J

(tr J)2 = |p1 − p2|, (11)

by the simple relation
C2 + P2 = 1. (12)

When either p1 = 0 or p2 = 0, there is not entanglement so that C = 0 and P = 1. Vice versa, when
p1 = p2 = 1/2 the entanglement is maximal and we obtain C = 1 and P = 0. From the definition (7) of J, it
follows that the concurrence C is propagation-invariant, i.e., it does not depend on the propagation distance
z, even if the polarisation pattern changes upon propagation.

2.2. Polarisation-pattern splitting and degree of polarisation
When a non-uniformly polarised paraxial beam of light travels in free space, its polarisation pattern
typically changes during propagation, although the concurrence and the degree of polarisation do remain
constant (see, e.g., [63] and references therein). Of particular interest are those peculiar beams whose
polarisation pattern splits upon propagation into two disjoint parts with uniform orthogonal polarisation,
as outlined in figure 1 [42]. Let z = z0 be the distance from the origin of the coordinates at which the split
occurs, and let ε̂1 and ε̂2 denote the unit vectors characterising the orthogonal polarisations of the two parts
of the beam resulting from the splitting. Note that z0 may be either finite or infinite as, for example, in the
case of the beams investigated in [42]. Then, the field of the beam at z = z0 must have necessarily the form

Ψ(x, z0) = ε̂1 ϕ1(x, z0) + ε̂2 ϕ2(x, z0), (13)

with
ϕ1(x, z0)ϕ2(x, z0) = 0, ∀ x ∈ R

2. (14)

The last condition is implied by the requirement that at z = z0 the two polarisation patterns do not overlap
at any point in the xy-plane. In more mathematical terms, equation (14) can be written as

D1 ∩ D2 = ∅, (15)

where Dα denotes the support of the mode function ϕα at z = z0, namely

Dα = supp (ϕα) =
{

x ∈ R
2 : ϕα(x, z0) �= 0

}
. (16)

Here and hereafter we assume that D1 ∪ D2 = R
2.

From (14) it trivially follows that the spatial modes ϕ1(x, z0) and ϕ2(x, z0) are orthogonal in the sense of
(9). Therefore, equation (13) is automatically a Schmidt form of the type (5), with√

λα φα(x, z0) = ϕα(x, z0), (17)

and

λα =

∫
R2

d2x |ϕα(x, z0)|2. (18)

Since paraxial propagation is a unitary process, orthogonality is preserved during propagation, so that∫
R2

d2xϕ∗
α(x, z)ϕβ(x, z) = λα δαβ , (α,β = 1, 2), (19)

where (18) has been used, and

ϕα(x, z) =

∫
R2

d2x′ U
(

x − x′, z − z0

)
ϕα(x′, z0), (20)

with

U
(

x − x′, z
)
=

k

2πi

1

z
exp

[
i

k

2z

(
x − x′)2

]
, (21)

5
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the Fresnel paraxial propagator [64]. This implies that also the Schmidt decomposition (13) remains valid,
with

Ψ(x, z) = ε̂1 ϕ1(x, z) + ε̂2 ϕ2(x, z). (22)

Another useful decomposition of Ψ(x, z) is the following,

Ψ(x, z) = Ψ1(x, z) +Ψ2(x, z), (23)

where

Ψμ(x, z) ≡Ψ(x, z)|x∈Dμ

= ε̂1ϕ1(x, z)|x∈Dμ
+ ε̂2ϕ2(x, z)|x∈Dμ

, (24)

with μ = 1, 2, denotes the field Ψ(x, z) restricted to the region Dμ of the xy-plane. At z = z0, equation (24)
reduces to

Ψμ(x, z0) = ε̂μϕμ(x, z0), (μ = 1, 2). (25)

Both fields Ψ1(x, z0) and Ψ2(x, z0) defined by (25), are fully polarised so that their degree of
polarisation is equal to one. However, for z �= z0, Ψ1(x, z) and Ψ2(x, z) are typically partially polarised
because of the physical superposition between ϕ1(x, z)|x∈Dμ

and ϕ2(x, z)|x∈Dμ
, which may occur because of

diffraction. In this case, the degree of polarisation of each field must be less than one. This implies that the
degree of polarisation of Ψμ(x, z), denoted Pμ(z), will depend on the propagation distance z and can
therefore be used as a measure of the polarisation-pattern splitting phenomenon. Pμ(z) can be calculated
either via (11), or as P =

√
1 − C2, where (12) has been used. Then, using the expression (E3) for C, we can

eventually write

Pμ(z) =

√
S2

1μ(z) + S2
2μ(z) + S2

3μ(z)

S0μ(z)
, (26)

where the measurable Stokes parameters of the field Ψμ(x, z), are given by

S0μ(z) =

∫
Dμ

d2x
(
|ψ1|2 + |ψ2|2

)
,

S1μ(z) =

∫
Dμ

d2x
(
|ψ1|2 − |ψ2|2

)
,

S2μ(z) =

∫
Dμ

d2x
(
ψ∗

1ψ2 + ψ1ψ
∗
2

)
,

S3μ(z) =
1

i

∫
Dμ

d2x
(
ψ∗

1ψ2 − ψ1ψ
∗
2

)
,

(27)

with ψα = ψα(x, z) = êα ·Ψ(x, z), and α = 1, 2.
By construction, at z = z0 we must have P1(z0) = 1 = P2(z0). However, for z �= z0 we expect to find

Pμ(z) < 1. An explicit example of application of equation (26) will be presented in section 2.4.

2.3. The Hellinger distance
Let us look again at the field (22), that we rewrite here as

Ψ(x, z) =
√
λ1 ε̂1 φ1(x, z) +

√
λ2 ε̂2 φ2(x, z), (28)

where, according to equations (17) and (20), we have defined

φα(x, z) =
ϕα(x, z)√

λα
, (α = 1, 2), (29)

with
φα(x, z0)φ∗

β(x, z0) = δαβ|φα(x, z0)|2. (30)

Now, consider the non-negative quantity

h[φ1,φ2](z) =

∫
R2

d2x |φ1(x, z)| |φ2(x, z)| � 0, (31)

which is a functional of φ1 and φ2, and a function of z. The minimum value

min {h[φ1,φ2](z)} = h[φ1,φ2](z0) = 0, (32)

6
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is achieved at z = z0 because of equation (30). The maximum value

max {h[φ1,φ2](z)} = h[φ1,φ1](z) = 1, (33)

is obtained for |φ1(x, z)| = |φ2(x, z)|, because of the normalization condition (19). Next, we note that the
non-negative function fα(x, z), defined by

fα(x, z) ≡ |φα(x, z)|2 � 0, (α = 1, 2), (34)

has all the properties of the probability density function of a continuous real-valued two-dimensional
random vector X = (X1, X2), with (X1, X2) ∼ fα(x1, x2, z). In probability theory and statistics, there are
several ways to quantify the distance between two probability distributions, say f(x) and g(x). Here,
considering the properties (32) and (33), it is convenient to use the Hellinger distance H[f, g] [59], defined
by

H2[f , g] =
1

2

∫
dx
[√

f (x) −
√

g(x)
]2

= 1 −
∫

dx
√

f (x)g(x). (35)

It is not difficult to show that such distance is a proper metric, that is for all non-negative, normalized
smooth functions g1, g2, g3, the Hellinger distance H[g1, g2] satisfies the following conditions:

(a) Positivity condition: H[g1, g2] � 0;

(b) Symmetry property: H[g1, g2] = H[g2, g1];

(c) Identity property: H[g1, g2] = 0 if and only if g1 = g2;

(d) Triangular inequality: H[g1, g3] � H[g1, g2] + H[g2, g3].

In our two-dimensional case the Hellinger distance takes the form

H[|φ1|, |φ2|](z) =

√
1 −

∫
R2

|φ1(x, z)| |φ2(x, z)| d2x

=
√

1 − h[φ1,φ2](z). (36)

We remark that this distance does not depend directly on the amount of the entanglement of the beam, that
it is independent of λ1 and λ2. However, it does crucially depend on the propagation distance z. For
illustration, H[|φ1|, |φ2|](z) is calculated explicitly for an exemplary beam in section 2.4. We would also like
to remark that our choice of the Hellinger distance to quantify the separation between φ1 and φ2, is not the
only possible one. There are several statistical distances available in the literature like, e.g., the
Kullback–Leibler divergence and the Jensen–Shannon distance [65]. However, we have chosen the Hellinger
distance because it is a metric (conversely, the Kullback–Leibler divergence is not a metric), and it is simple
to calculate. Moreover, it is automatically z-dependent.

2.4. Polarisation-pattern splitting phenomenon: a case study
To illustrate the use of equations (26) and (36), we consider here a simple non-uniformly polarised paraxial
beam of light, whose polarisation pattern is split into two disjoint uniformly polarised parts at z = z0 = 0.
Imagine to have a beam of light prepared at z = 0 in the Hermite–Gauss mode u01(x, 0) of Rayleigh length
zR and waist w0 (see appendix A). Then, suppose to place at z = 0 a thin spherical lens of focal length
f = zR, characterised by the transmission function [64],

t(x) = e−ik |x|2
2f = e

−i |x|2
w2

0 . (37)

By construction, the amplitude φ(x) of the beam at z = 0 immediately after the lens is

φ(x) = t(x) u01(x, 0) =

√
8

π

y

w2
0

e
−(1+i) |x|2

w2
0 . (38)

Using φ(x), we can define the two orthonormal mode functions φ1 and φ2 at z = 0, as

φ1(x, 0) =
√

2φ(x) θ(y), (39a)

φ2(x, 0) =
√

2φ(x) θ(−y), (39b)

7
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where θ(y) denotes the Heaviside step function [66]. Finally, imagine to send the upper (lower) mode φ1

(φ2) through a linear polarizer and a quarter wave plate suitably oriented, so that it is circularly polarised to
the right (left). In this way, we obtain a non-uniformly polarised beam with vector amplitude

Ψ(x, 0) = φ(x)
[
ε̂1 θ(y) + ε̂2 θ(−y)

]
, (40)

where the unit vectors

ε̂α =
ê1 + i(−1)αê2√

2
, (α = 1, 2), (41)

describe right- (α = 1) and left-circular (α = 2) polarisation. By definition, this field is maximally
entangled and C = 1. The vector field Ψ(x, z) at distance z from the origin can be calculated as in
equation (22).

The polarisation and intensity patterns of Ψ(x, z) at several distances z � 0 are shown in
figures 2(a)–(d). At z = 0 (see figure 2(a)) the beam presents two disjoint polarisation patterns. Upon
propagation by z, the upper and lower lobes of the field (41) spread and overlap, and at z = zR the
polarisation pattern becomes completely scrambled, as shown in figure 2(c).

In figure 2(e) we show the degree of polarisation P1(z) of the beam Ψ1(x, z) =Ψ(x, z)|x∈D1
, where D1

coincides with the upper half plane y � 0. For this beam P1(z) = P2(z). As expected, at z = z0 = 0 the fields
Ψ1(x, 0) and Ψ2(x, 0) are fully polarized. Then, the degree of polarisation decrease with z to reach the
minimum value at z = zR, where ϕ1(x, z)|x∈Dμ

and ϕ2(x, z)|x∈Dμ
are maximally overlapped. Finally, for

z > zR the fields tend to separate again and P1(z) raises monotonically.
Figure 2(f) shows the plot of the Hellinger distance H[|φ1|, |φ2|](z) calculated from equation (36). It is

worth noticing that the plots of H[|φ1|, |φ2|](z) and P1(z) display the same qualitative behaviour. The
Hellinger distance is maximal when the two polarisation patterns are fully separated. Vice versa,
H[|φ1|, |φ2|](z) is minimal at z = zR where the patterns are maximally superimposed.

3. Experiment

3.1. Experimental setup
To experimentally prove our proposed theory, we implemented the experimental setup previously
demonstrated in [40] and schematically depicted in figure 3 in the generation stage. Here, a horizontally
polarised laser beam (λ = 532 nm, 300 mW) is expanded and collimated with the telescope formed by the
pair of lenses L1 ( f1 = 20 mm) and L2 ( f2 = 200 mm). The polarisation state of the beam is then rotated to
a diagonal polarisation state through a half-wave plate (HWP) oriented at 22.5◦ relative to the vertical axis.
Afterwards, the beam is split, using a polarising beam splitter (PBS) or a Wallastone prism, into two
different beams travelling along different optical paths, one with horizontal and the other with vertical
polarisation. Both beams impinge onto a polarisation-independent digital micromirror device (DMD, DLP
Light Crafter 6500 from Texas Instruments), at slightly different angles (≈1.5◦) and at the geometric centre
of the DMD, where a digital hologram is displayed. The digital hologram contains the two constituting wave
fields φ1(x, y) and φ2(x, y) required to generate the vector mode given by equation (5). Each field is
superimposed with a unique linear phase grating and both multiplexed into a single hologram. The period
of each linear grating is carefully adjusted to ensure the overlap of the two first diffraction orders along a
common propagation axis after the DMD, where the desired complex vector mode is generated. Afterwards,
such mode is isolated from other diffraction orders by means of a spatial filter (SF), located at the focusing
plane of a telescope formed by lenses L3 and L4, both with focal lengths f = 100 mm. Finally, a quarter-wave
plate (QW) is added to change the vector mode from the linear to the circular polarisation basis.

The generated modes where analysed in the measurement stage through the use of a circular polariser
(CP) fabricated by cementing a QWP to a linear polariser with its axis at 45◦ with respect to the fast axis of
the QWP. Here, the generated modes were focused onto the CCD camera with a lens of focal length f = 400
mm. Transverse polarisation distributions were reconstructed using Stokes polarimetry, through a series of
intensity measurements in accordance with the relations [41]

S0 = IH + IV, S1 = 2IH − S0,

S2 = 2ID − S0, S3 = 2IR − S0,
(42)

where, S0, S1, S2 and S3 are the Stokes parameters and IH, IV, ID and IR represent the intensity of the
horizontal, vertical, diagonal and right-handed polarisation components, respectively. Experimentally, such
intensities where recorded with a charge-coupled device (CCD) camera (FLIR FL3-U3-120S3C-C from
point grey) in the measurement stage of figure 3 with the help of a CP. More specifically, IH, IV and ID

8
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Figure 3. Experimental setup to generate and characterise no-separable light beams. In the generation stage, an expanded and
collimated diagonally polarised laser beam (λ = 532 nm) is split into its two polarisation components using a PBS. Both beams
are redirected with the help of a mirror to the centre of a DMD, where the require binary holograms are displayed to generate the
desired non-separable light modes. L: lens; HWP and QWP: quarter- and half-wave plate, respectively; M: mirror; SF: spatial
filter; CP: circular polariser. In the measurement stage, the modes are analysed using a CCD camera mounted on a translation
stage. Further, the generated modes are focused with a lens (L5) of focal distance f = 400 mm.

where obtained by setting the CP to 0◦, 90◦ and 45◦, respectively, whereas IR was obtained by flipping the
CP 180◦ with its angle fixed to 0◦ (see for example [40, 41] for further details).

3.2. Transverse polarisation distribution in spatially disjoint vector fields
In this section we will show three specific cases of engineered vector beams, whose polarisation structure
changes dramatically upon free space propagation, namely, Hermite-, parabolic- and Airy–Gauss vector
modes. The left panels of figure 4 show the transverse polarisation distribution overlapped on the intensity
profile of such modes for different propagation distances, both experimentally and theoretically. The right
ones show the position of the centroid of the right- and left-handed circular polarisation components as
function of the propagation distance.

3.2.1. First case: Hermite–Gauss vector beams
As a first case, we analyse the example mentioned in the theory section, constructed from the non-separable
superposition of the HG01 mode, whose spatial profile features two vertical lobes of maximum intensity.
Such mode was engineered in such a way that the upper lobe carries right-handed circular polarisation,
while the lower one carries the orthogonal left-handed one. This mode is then focused with a lens of focal
distance f = 400 mm and scanned with the CCD camera along its propagation axis. The transverse
polarisation distribution of such modes was reconstructed at selected planes z = 0, z = 0.5zR, z = 0.75zR

and z = zR, where zR is the Rayleigh length. Such polarisation distributions overlapped on the spatial shape
of the modes are shown in figure 4(a), experiment on the top row and numerical simulations, performed
using the Rayleigh–Sommerfeld diffraction theory [64], on the bottom. Figure 4(b) further illustrates how
both modes approach to each other while their polarisation distribution evolves from quasi-homogeneous
to non homogeneous, as seen in the approaching centroids of left- and right-handed polarisation
components upon propagation.

3.2.2. Second case: parabolic-Gauss beams
As a second example, we analyse the recently introduced parabolic-Gauss vector modes, which is
implemented from a non-separable superposition of orthogonal parabolic modes, natural solutions to the
Helmholtz equation in parabolic cylindrical coordinates, and orthogonal left- and right-handed
polarisation states [42]. Such vector modes feature an interesting behaviour as function of their propagation
in free space, namely, their degree of non-separability evolves from a non-homogeneously polarised vector
beam to a quasi-homogeneously polarised one. Figure 4(c) illustrates this behaviour for different
propagation distances z = 0, z = 0.25zR, z = 0.4zR and z = zR. Here we show the intensity distribution
overlapped on the transverse polarisation distribution, experiment on top and theory on the bottom, which
we reconstructed through Stokes polarimetry. Notice that for z = 0 the transverse polarisation distribution
contains only linear polarisation states whereas for z = zR = f, the mode mainly contains left- and
right-handed polarisation states. In figure 4(d) we show the centroid of each of the circular polarisation
components as function of their propagation distance. In this case, the separation increases from zero to a
maximum separation, which is attained in the far field or the focal plane of the Fourier transforming lens
(z = f ).

3.2.3. Third case: Airy–Gauss beams
As a final example, we engineered a vector mode consisting on the non-separable superposition of two
Airy–Gauss beams with in-plane opposite transverse accelerations and orthogonal polarisation. As it is
well-known, Airy–Gauss beams propagate in free space following a parabolic trajectory, whose parameters
can be easily controlled [67]. We superimposed two Airy–Gauss beams with orthogonal circular

9
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Figure 4. Examples of spatially disjoint vector fields. (a), (c) and (e) Illustrates the transverse polarisation distribution and
intensity profile at different propagation distances for Hermite-, parabolic- and Airy–Gauss vector modes. (b), (d) and (f)
Illustrate the vertical separation of both polarisation components.

Figure 5. Hellinger distance as function of the propagation distance z for (a) Hermite-, (b) parabolic- and (c) Airy–Gauss vector
modes. The top insets show the experimentally reconstructed transverse polarisation distribution at the planes indicated by the
arrows.
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polarisation with their maximum intensity lobes facing each other. The polarisation and intensity
distribution of such modes, reconstructed for specific planes, is illustrated in figure 4(e), experiment on top
and numerical simulations on the bottom. As illustrated, upon propagation the upper mode with
right-handed circular polarisation moves upwards to a maximum point and then downwards. Similarly, the
lower mode move downwards to a minimum point and then upwards. As result, upon propagation the
modes initially separate from each other up to a maximum value, after which they approach to each other
again. The trajectory of the main lobe of each beam as function of the propagation distance is shown in
figure 4(f). Here, we choose arbitrarily z = 0 as the plane where the two modes are the closest to each other.

3.3. Determining the non-separability of spatially disjoint vector fields
As stated earlier, the degree of concurrence or non-separability of spatially disjoint vector fields, cannot be
quantified using traditional methods, such as a basis independent tomography, as exhibited in [52]. In other
words, traditional methods can only quantify the global behaviour of vector fields, but not the local
behaviour exhibited by spatially disjoint vector fields. Hence, we introduced the Hellinger distance
(equation (36)) as a measure that quantifies the local evolution of the non-separability in spatially disjoint
vector fields. To demonstrate this, we applied equation (36) to the three vector fields introduced in the
previous section. Figure 5(a) shows the case of the Hermite–Gauss vector field, where the Hellinger distance
is plotted as function of propagation. For the sake of clarity, the transverse polarisation distribution at three
different planes are shown as insets on the top of this figure, with arrows indicating their z value. As
mentioned in the theory, the Hellinger distance, which evolves from 1 to 0, clearly captures the evolution of
the mode, from two modes with orthogonal circular polarisation into a single mode with linear
polarisation. The second case corresponds to the parabolic-Gauss vector modes shown in figure 5(b). Here,
the transverse polarisation distribution evolves upon propagation from a single mode with linear
polarisation to two spatially disjoint modes with circular orthogonal polarisation. Again, this behaviour is
captured by the Hellinger distance, which in this case increases monotonically from 0 to 1. The final
example corresponds to the Airy–Gauss vector modes shown in figure 5(c). This case was specifically
engineered to show the effect of a parabolic-like Hellinger distance directly related to the transverse
positions of the independent Airy–Gauss modes. In all cases, the theoretical results are shown as solid lines
and the experimental data as solid circles, featuring remarkable agreement.

4. Discussion

Control over light’s degrees of freedom is steadily gaining traction [68], driven by the explosion of
applications that structured light affords. Concomitantly, there is a need to understand and quantify such
new forms of light. In the early 1990s, exotic scalar fields became possible by the emergence of diffractive
optical elements, which saw the measurement toolkit expanded to include statistical approaches (intensity
moments), resulting in (for example) the beam quality factor, M2. This single parameter is not sufficient to
fully describe such light fields, and thus the toolkit quickly matured, forming the basis of our present ISO
standards for laser beams. More recently, vectorially structured light is routinely created and employed in a
variety of applications, but analogous to the situation for scalar light 30 years ago, our toolkit is very much
in its infancy. This time our toolkit is quantum-inspired, returning a VQF (the vectorial equivalent to the
M2 parameter), but with some shortcomings that require continual improvement. The first was to alter the
measurement from basis dependent [49] to a basis independent [52], removing the requirement of
knowledge of the field to be probed. But here we have highlighted that even though these techniques
perform very well at characterising vector modes whose spatial and polarisation degrees of freedom are
shape-invariant upon propagation, it fails at characterising beams that do not satisfy such condition, whose
constituting spatial modes separate from each other upon propagation, becoming path-like separable. The
existing approaches are insufficient to quantify such disjoint behaviour. We envisaged a way in which we
could address this issue by defining a Hellinger distance, between the constituting spatial modes that form
the vector beam, as a measure. We hope that this work inspires further advances in the toolkit.

Our work also raises some interesting fundamental questions on the nature of visibility (spatial
coherence) in the context of vectorially structured light. Our propagation induced disjointness is analogous
to a double slit experiment, but as if the interference pattern is time reversed to return to the double slits.
The question is how the visibility changes with propagation? In our analogous situation, the initial locally
inhomogeneous field, with high visibility in the polarisation variation, evolves to become locally
homogeneous with no visibility—we can observe (intuitively) two distinct regions made of scalar fields
(our two ‘slits’). Yet the global field retains its visibility during propagation, as if the original slits themselves
are now the interference pattern with high visibility (1 inside the slits and 0 outside).
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The situation has a quantum analogue too. While it is commonplace in quantum optics to exploit the
path as a degree of freedom for entanglement, this is largely untouched in the context of classical
quantum-like light [56–58]. When the paths are marked, no interference is observed. In our disjoint field,
this is equivalent to measuring locally, one scalar component. When the paths are not marked, full visibility
is possible. In our classical field, this is equivalent to making projections on the entire field, a global
concurrence measurement. The physics of path embedded information in such vectorial light fields thus
requires further probing, and will surely shed light on extending notions of spatial coherence to
multi-partite, multiple degree of freedom light [69].

5. Conclusions

Here we have revisited the emerging field of quantum-like vectorial (classical) light, and highlighted the
shortcomings of traditional quantum-inspired measures. We considered the general case where the local
polarisation homogeneity can vary spatially across the field, from scalar to vector, by virtue of a propagation
induced spatial disjointness. We proposed and demonstrated a new measure that correctly accounts for the
local separability of the field, while accounting for the fact that the global vectorial field remains
non-separable. Our work is relevant fundamentally, probing the notion of non-separability and spatial
coherence in the context of vectorially polarised light, but also practically, where new standards to
universally quantify these fields are a pressing need.
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Appendix A. Hermite–Gauss modes

The two-dimensional Hermite–Gauss modes unm(x, z) = ϕn(x, z)ϕm(y, z), with n, m = 0, 1, . . . ,∞, are
defined by [70],

ϕn(x, z) =
1

π1/4

1√
2nn!

1
√
ρ

Hn

(
x/ρ

)
e−(x/ρ)2/2 e

i
2

z
zR

(x/ρ)2

e−i(n+ 1
2 ) arctan(z/zR). (A1)

In equation (A1) Hn(x) denotes the nth-order Hermite polynomial, and

ρ = ρ(z) =
w0√

2

(
1 +

z2

z2
R

)1/2

, (A2)

fixes the transverse length scale at distance z from the beam’s origin, where the minimum beam radius
w0 > 0, is attained. The Rayleigh length zR = kw2

0/2, sets the longitudinal length scale, giving the distance
over which the beam can propagate without spreading significantly. From equations (A1) and (A2) it
readily follows that

unm(x, z) =
1

ξ(z)
unm

(
x

ξ(z)
, 0

)
exp [iχnm(x, z)] , (A3)

with

ξ(z) =
ρ(z)

ρ(0)
=

(
1 +

z2

z2
R

)1/2

, (A4)

and

χnm(x, z) =
z

zR

∣∣∣∣ 1

w0

x

ξ(z)

∣∣∣∣
2

− (n + m + 1) arctan

(
z

zR

)
. (A5)
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Appendix B. Quantum-like notation

In this appendix we quickly review the common use of a quantum-like notation for the study of vector
beams. To begin with, let Ψ(x, z) be the vector amplitude of a non-uniformly polarized paraxial optical
beam propagating along the z-axis of a Cartesian reference frame with coordinates (x, y, z) = (x, z), defined
by

Ψ(x, z) = ê1 ψ1(x, z) + ê2 ψ2(x, z), (B1)

where the real-valued unit vectors ê1 and ê2 are parallel to the x- and the y-axis, respectively, with
ê1 · ê2 = 0, and ψ1(x, z),ψ2(x, z) are two arbitrary solutions of the paraxial wave equation, which do not
need to be orthogonal and normalized. The global intensity of the beam is denoted I0, and defined by

I0 =

∫
R2
Ψ∗(x, z) ·Ψ(x, z) d2x

=

∫
R2

{
|ψ1(x, z)|2 + |ψ2(x, z)|2

}
d2x, (B2)

which is independent of z.
Now, we introduce the discrete ‘polarisation basis’ {|1〉, |2〉}, and the continuous ‘position basis’

{|x〉 = |x, y〉}, with x ∈ R
2. By definition, the polarisation basis {|i〉}i∈{1,2} spans the discrete polarisation

Hilbert space Hpol, and the position basis {|x〉}x∈R2 spans the continuous position Hilbert space Hpos. We
postulate that these bases are orthonormal

〈α|β〉 = δαβ , (α,β = 1, 2), (B3)

〈x|x′〉 = 〈x|x′〉〈y|y′〉

= δ(x − x′)δ(y − y′)

≡ δ(x − x′), (x, x′ ∈ R
2), (B4)

and complete:

2∑
α=1

|α〉〈α| = Îpol, (B5)

∫
R2
|x〉〈x| d2x = Îpos, (B6)

where Îpol and Îpos are the identity operators in the polarisation and position spaces, respectively. By
definition, the direct product |α〉 ⊗ |x〉 = |α〉|x〉 = |α, x〉 spans the whole Hilbert space H = Hpol ⊗Hpos.

Using this quantum-like notation (but the physics of the problem is entirely classical), we can represent
Ψ(x, z) by means of the state vector |Ψ(z)〉 defined by

|Ψ(z)〉 = |1〉|ψ1(z)〉+ |2〉|ψ2(z)〉

=

2∑
β=1

|β〉|ψβ(z)〉, (B7)

such that

〈α, x|Ψ(z)〉 =
2∑

β=1

〈α|β〉〈x|ψβ(z)〉

= 〈x|ψα(z)〉

= ψα(x, z), (α = 1, 2), (B8)

where ψ1(x, z),ψ2(x, z) are defined by (B1). For the sake of clarity, here and hereafter we shall occasionally
write |ψα〉 for |ψα(z)〉 and |Ψ〉 for |Ψ(z)〉, the z-dependence being understood. Moreover, we shall use
upper case Greek letters, as Ψ, to denote vectors in H, while lower case Greek letters, as ψ, will denote
vectors in Hpos.
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Using this notation, we can rewrite the intensity of the beam as

I0 =

∫
R2

{
|ψ1(x, z)|2 + |ψ2(x, z)|2

}
d2x

= 〈ψ1|ψ1〉+ 〈ψ2|ψ2〉

= 〈Ψ|Ψ〉, (B9)

where, here and hereafter, for any |ψ〉, |φ〉 ∈ Hpos, and |Ψ〉 ∈ H, we write

〈ψ|φ〉 = 〈ψ|̂Ipos|φ〉

=

∫
R2
〈ψ|x〉〈x|φ〉 d2x

=

∫
R2
ψ∗(x, z)φ(x, z) d2x, (B10)

and

〈Ψ|Ψ〉 = 〈Ψ|̂Ipol ⊗ Îpos|Ψ〉

=

2∑
α=1

∫
R2
〈Ψ|α, x〉〈α, x|Ψ〉 d2x

=

2∑
α=1

∫
R2
〈ψα|x〉〈x|ψα〉 d2x

=

2∑
α=1

〈ψα|ψα〉, (B11)

where (B8) has been used.

Appendix C. The Schmidt decomposition

Given the field
Ψ(x, z) = ê1 ψ1(x, z) + ê2 ψ2(x, z), (C1)

and the corresponding state vector

|Ψ(z)〉 = |1〉|ψ1(z)〉+ |2〉|ψ2(z)〉, (C2)

the Schmidt decomposition is easy to evaluate. First, using |ψ1〉 and |ψ2〉 we build the orthonormal basis
{|v1〉, |v2〉} defined by

|v1〉 =
|ψ1〉√
〈ψ1|ψ1〉

, (C3)

and

|v2〉 =
|ψ2〉 − |v1〉〈v1|ψ2〉√
〈ψ2|ψ2〉 − |〈v1|ψ2〉|2

=
|ψ2〉 − |ψ1〉 〈ψ1 |ψ2〉

〈ψ1 |ψ1〉√
〈ψ2|ψ2〉 − |〈ψ1|ψ2〉|2

〈ψ1 |ψ1〉

. (C4)

Equations (C3) and (C4) imply
|ψ1〉 = |v1〉

√
〈ψ1|ψ1〉, (C5)

and

|ψ2〉 = |v1〉
〈ψ1|ψ2〉√
〈ψ1|ψ1〉

+ |v2〉

√
〈ψ2|ψ2〉 −

|〈ψ1|ψ2〉|2

〈ψ1|ψ1〉
. (C6)
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Substituting (C5) and (C6) into (C2) we find

|Ψ(z)〉 = |1〉 |v1〉
(√

〈ψ1|ψ1〉
)
+ |2〉 |v1〉

(
〈ψ1|ψ2〉√
〈ψ1|ψ1〉

)

+ |2〉 |v2〉

⎛
⎝
√
〈ψ2|ψ2〉 −

|〈ψ1|ψ2〉|2

〈ψ1|ψ1〉

⎞
⎠

≡
2∑

α,β=1

Aαβ |α〉|vβ〉. (C7)

The 2 × 2 matrix A is defined by (C7) as

A =

⎡
⎢⎣
√
〈ψ1|ψ1〉 0

〈ψ1|ψ2〉√
〈ψ1|ψ1〉

√
〈ψ2|ψ2〉 −

|〈ψ1|ψ2〉|2

〈ψ1|ψ1〉

⎤
⎥⎦ , (C8)

and it is independent of z. Substituting the singular value decomposition

A = UDV†, (C9)

into (C7), we can easily calculate the Schmidt form of |Ψ(z)〉 as:

|Ψ(z)〉 =
2∑

α=1

Dα

⎛
⎝ 2∑

β=1

Uβα|β〉

⎞
⎠(

2∑
γ=1

V†
αγ |vγ〉

)

≡
2∑

α=1

√
λα |εα〉|φα〉, (C10)

where Dαβ = δαβDα ≡ δαβ
√
λα, λα being the non-negative eigenvalues of A†A, and we have defined

|εα〉 ≡
2∑

β=1

Uβα|β〉,

|φα〉 ≡
2∑

γ=1

V†
αγ |vγ〉.

(C11)

A straightforward calculation gives
λ1 = λ+,

λ2 = λ−,
(C12)

where

λ± =
1

2

[
〈ψ1|ψ1〉+ 〈ψ2|ψ2〉 ±

√
4|〈ψ1|ψ2〉|2 +

(
〈ψ1|ψ1〉 − 〈ψ2|ψ2〉

)2
]
. (C13)

Note that since the state vector |Ψ(z)〉 is not normalized, then

λ1 + λ2 = 〈ψ1|ψ1〉+ 〈ψ2|ψ2〉 �= 1. (C14)

Finally, multiplying (C10) from left by 〈x| and using equations (B7) and (B8), we obtain the Schmidt form
of the field (C1):

Ψ(x, z) =
√
λ1 ε̂1 φ1(x, z) +

√
λ2 ε̂2 φ2(x, z). (C15)

The amount of the entanglement in the vector state |Ψ(z)〉 can be quantified by the so-called Schmidt
number, denoted K and defined by

K =
(λ1 + λ2)2

λ2
1 + λ2

2

=

(
〈ψ1|ψ1〉+ 〈ψ2|ψ2〉

)2

〈ψ1|ψ1〉2 + 2|〈ψ1|ψ2〉|2 + 〈ψ2|ψ2〉2
. (C16)
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For a bipartite two-dimensional system the Schmidt number K and the concurrence C are simply related:

K =
2

2 − C2
, (C17a)

C =

√
2

(
1 − 1

K

)
= 2

√
λ1λ2

λ1 + λ2
. (C17b)

We present an explicit calculation of C in appendix E.

Appendix D. Density matrix operator and coherency matrix

The density matrix operator ρ̂ for the pure state |Ψ〉 is defined as the projector

ρ̂ =
|Ψ〉〈Ψ|
〈Ψ|Ψ〉 . (D1)

The reduced polarisation density matrix operator ρ̂pol, is calculated by tracing ρ̂ with respect to the position
degrees of freedom, as follows:

ρ̂pol =

∫
R2
〈x|ρ̂|x〉 d2x

=
1

〈Ψ|Ψ〉

∫
R2
〈x|Ψ〉〈Ψ|x〉 d2x

=
1

〈Ψ|Ψ〉

2∑
α,β=1

|α〉〈β|
∫
R2
〈ψβ |x〉〈x|ψα〉 d2x

=
1

〈Ψ|Ψ〉

2∑
α,β=1

|α〉〈β|〈ψβ |ψα〉. (D2)

It is easy to check that tr ρ̂pol = 1. This equations shows that in the polarisation basis {|1〉, |2〉}, ρ̂pol is
represented by the 2 × 2 normalized coherency matrix of the beam, denoted ρpol = J/tr J, and defined by

ρ̂pol
.
= ρpol

=

[
〈1|ρ̂pol|1〉 〈1|ρ̂pol|2〉
〈2|ρ̂pol|1〉 〈2|ρ̂pol|2〉

]

=
1

〈Ψ|Ψ〉

[
〈ψ1|ψ1〉 〈ψ2|ψ1〉
〈ψ1|ψ2〉 〈ψ2|ψ2〉

]

=
1

tr J
J, (D3)

where tr J = 〈Ψ|Ψ〉 = 〈ψ1|ψ1〉+ 〈ψ2|ψ2〉. A direct calculation shows that

J = AA†, (D4)

where A is defined by equation (C8). This implies that J and A†A have the same eigenvalues λ1,λ2 given in
(C12).

The coherency matrix J can be written in terms of the so-called Stokes parameters {S0, S1, S2, S3} as,

J =
1

2

[
S0 + S1 S2 − iS3

S2 + iS3 S0 − S1

]
. (D5)

Comparing (D3) and (D5) we obtain

1

2

[
S0 + S1 S2 − iS3

S2 + iS3 S0 − S1

]
=

[
〈ψ1|ψ1〉 〈ψ2|ψ1〉
〈ψ1|ψ2〉 〈ψ2|ψ2〉

]
. (D6)
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This evidently implies
S0 + S1

2
= 〈ψ1|ψ1〉,

S0 − S1

2
= 〈ψ2|ψ2〉,

S2 − iS3

2
= 〈ψ2|ψ1〉,

S2 + iS3

2
= 〈ψ1|ψ2〉.

(D7)

Solving this set of four equations with respect to {S0, S1, S2, S3}, we find

S0 = 〈ψ1|ψ1〉+ 〈ψ2|ψ2〉,

S1 = 〈ψ1|ψ1〉 − 〈ψ2|ψ2〉,

S2 = 〈ψ1|ψ2〉+ 〈ψ2|ψ1〉,

S3 =
〈ψ1|ψ2〉 − 〈ψ2|ψ1〉

i
,

(D8)

so that we can rewrite (D3) as

ρpol =
1

〈ψ1|ψ1〉+ 〈ψ2|ψ2〉

[
〈ψ1|ψ1〉 〈ψ2|ψ1〉
〈ψ1|ψ2〉 〈ψ2|ψ2〉

]

=
1

2S0

[
S0 + S1 S2 − iS3

S2 + iS3 S0 − S1

]
. (D9)

Appendix E. The concurrence C

The concurrence C of the state vector |Ψ〉 is defined as [71],

C =

√
2
(

1 − tr ρ2
pol

)
, (E1)

where

tr ρ2
pol =

tr

{[
〈ψ1|ψ1〉 〈ψ2|ψ1〉
〈ψ1|ψ2〉 〈ψ2|ψ2〉

]2
}

〈Ψ|Ψ〉2

=
〈ψ1|ψ1〉2 + 2〈ψ2|ψ1〉〈ψ1|ψ2〉+ 〈ψ2|ψ2〉2(

〈ψ1|ψ1〉+ 〈ψ2|ψ2〉
)2

=
(S0 + S1)2 + 2|S2 − iS3|2 + (S0 − S1)2

4S2
0

=
1

2
+

S2
1 + S2

2 + S2
3

2S2
0

, (E2)

and equation (D7) has been used. Substituting (E2) into (E1) we obtain

C =

√
1 − S2

1 + S2
2 + S2

3

S2
0

. (E3)

Using the second line of (E2) and 〈Ψ|Ψ〉 = 〈ψ1|ψ1〉+ 〈ψ2|ψ2〉, we can also write the concurrence as

C = 2

√
〈ψ2|ψ2〉〈ψ1|ψ1〉 − 〈ψ2|ψ1〉〈ψ1|ψ2〉

〈ψ1|ψ1〉+ 〈ψ2|ψ2〉
. (E4)

Then we remember that the Schmidt decomposition of |Ψ〉 is (see appendix C),

|Ψ〉 =
√
λ1 |ε1〉|φ1〉+

√
λ2 |ε2〉|φ2〉

≡ |ε1〉|ψ1〉+ |ε2〉|ψ2〉, (E5)
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where
〈εα|εβ〉 = δαβ , and 〈φα|φβ〉 = δαβ , (E6)

with α,β = 1, 2. Substituting (E5) into (E4) we obtain

C = 2

√
λ1λ2

λ1 + λ2

√
〈φ2|φ2〉〈φ1|φ1〉 − 〈φ2|φ1〉〈φ1|φ2〉

= 2

√
λ1λ2

λ1 + λ2
, (E7)

where (E6) has been used.
As a consistency check, we repeat now the same calculation for C, but using the equivalent definition

C =
√

2
(
1 − tr ρ̂2

pos

)
, (E8)

where the reduced position density matrix operator ρ̂pos is calculated by tracing ρ̂ with respect to the
polarisation degrees of freedom,

ρ̂pos =

2∑
α=1

〈α|ρ̂|α〉

=
1

〈Ψ|Ψ〉

2∑
α=1

〈α|Ψ〉〈Ψ|α〉

=
1

〈Ψ|Ψ〉
(
|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|

)
. (E9)

Note that this quantity is not a 2 × 2 matrix, but an infinite-dimensional operator, as it can be directly seen
by rewriting ρ̂pos in the position basis:

ρ̂pos = Îpos ρ̂pos Îpos

=

∫
R2

d2x

∫
R2

d2x′ |x〉〈x|ρ̂pos|x′〉〈x′|

=
1

〈Ψ|Ψ〉

∫
R2

d2x

∫
R2

d2x′ |x〉〈x′|
[
ψ1(x, z)ψ∗

1 (x′, z) + ψ2(x, z)ψ∗
2 (x′, z)

]
. (E10)

From this equation it follows that

tr ρ̂2
pos =

1

〈Ψ|Ψ〉2
tr

⎡
⎣
(

2∑
α=1

|ψα〉〈ψα|
)⎛
⎝ 2∑

β=1

|ψβ〉〈ψβ |

⎞
⎠
⎤
⎦

=
1

〈Ψ|Ψ〉2

2∑
α,β=1

〈ψα|ψβ〉tr
(
|ψα〉〈ψβ |

)

=
1

〈Ψ|Ψ〉2

2∑
α,β=1

|〈ψα|ψβ〉|2

=
1

〈Ψ|Ψ〉2

[
〈ψ1|ψ1〉2 + 2|〈ψ1|ψ2〉|2 + 〈ψ2|ψ2〉2

]

=
1

2
+

S2
1 + S2

2 + S2
3

2S2
0

, (E11)

where (D7) has been used, and

tr
(
|ψα〉〈ψβ |

)
=

∫
R2
〈x|ψα〉〈ψβ |x〉 d2x

= 〈ψβ |ψα〉, (α,β = 1, 2). (E12)

Substituting (E11) into (E8) we obtain

C =

√
1 − S2

1 + S2
2 + S2

3

S2
0

. (E13)
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As expected, we have obtained the same value for the concurrence C by using either (E1) or (E8).
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