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The modeling of unequal mass binary black hole systems is of high importance to detect and estimate
parameters from these systems. Numerical relativity (NR) is well suited to study systems with comparable
component masses, m1 ∼m2, whereas small mass ratio (SMR) perturbation theory applies to binaries
where q ¼ m2=m1 ≪ 1. This work investigates the applicability for NR and SMR as a function of mass
ratio for eccentric nonspinning binary black holes. We produce 52 NR simulations with mass ratios
between 1∶10 and 1∶1 and initial eccentricities up to 0.8. From these we extract quantities like gravitational
wave energy and angular momentum fluxes and periastron advance, and assess their accuracy. To facilitate
comparison, we develop tools to map between NR and SMR inspiral evolutions of eccentric binary black
holes. We derive post-Newtonian accurate relations between different definitions of eccentricity. Based on
these analyses, we introduce a new definition of eccentricity based on the (2,2)-mode of the gravitational
radiation, which reduces to the Newtonian definition of eccentricity in the Newtonian limit. From the
comparison between NR simulations and SMR results, we quantify the unknown next-to-leading order
SMR contributions to the gravitational energy and angular momentum fluxes, and periastron advance. We
show that in the comparable mass regime these contributions are subdominant and higher order SMR
contributions are negligible.
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I. INTRODUCTION

Binary black hole (BBH) mergers have dominated the
gravitational wave (GW) observations of the LIGO and
Virgo detectors [1,2] in the first, second and the third
observing runs [3–6]. One key parameter of these astro-
physical systems is the mass ratio q ¼ m2=m1 ≤ 1 of the
binaries’ components. Current GW observations [5,7–9]
predominantly find mass ratios close to unity with a few
observations showing support for low mass ratios [10,11].
With the increasing number of GW detections in

the upcoming observing runs by ground-based detectors
[7,12], and space-borne detectors, like the LISA

observatory [13,14], it is likely that more binaries with
mass asymmetries are found. In particular, LISA will
be sensitive to binaries with mass ratios ranging from
q ∼ 1, over intermediate mass-ratio systems (q ∼ 10−3) to
extreme mass ratio inspirals at q ∼ 10−5. Furthermore,
third-generation ground-based detectors with improved
low frequency sensitivity relative to today’s ground-based
detectors will be able to detect the capture of stellar mass
black holes (BHs) by intermediate mass BHs with mass-
ratios down to q ∼ 10−3 [15]. Thus, the modeling of GWs
from BBHs at all mass ratios is of preeminent relevance for
a correct detection and analysis of these sources.
This modeling problem may be tackled by different

approaches: using weak field perturbation theory, like post-
Newtonian (PN) theory [16] and post-Minkowskian expan-
sions [17], effective methods (like the effective-one-body
formalism [18,19] or phenomenological models [20]),
small mass ratio (SMR) perturbation theory [21] and
numerical relativity (NR), i.e., solving numerically the full
Einstein equations [22].

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW D 106, 124040 (2022)

2470-0010=2022=106(12)=124040(29) 124040-1 Published by the American Physical Society

https://orcid.org/0000-0002-6874-7421
https://orcid.org/0000-0002-0242-2464
https://orcid.org/0000-0001-9288-519X
https://orcid.org/0000-0002-3442-5360
https://orcid.org/0000-0001-5392-7342
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.124040&domain=pdf&date_stamp=2022-12-28
https://doi.org/10.1103/PhysRevD.106.124040
https://doi.org/10.1103/PhysRevD.106.124040
https://doi.org/10.1103/PhysRevD.106.124040
https://doi.org/10.1103/PhysRevD.106.124040
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Orbital eccentricity is an important parameter describing
binary systems as it can help constrain the formation
scenario of these binaries, and thus the astrophysical origin
of GW sources [23–29]. For current ground-based detectors
there are ongoing efforts to search for signatures of orbital
eccentricity in the detected GW signals [30–40]. For future
GW detectors, especially for high-mass ratio binaries
in LISA, it is expected that emission of GWs has not
circularized most binaries yet. Therefore, the correct
modeling of orbital eccentricity effects is fundamental to
accurately describe such systems in future detectors, in
particular for extreme mass-ratio inspirals, which are
described by SMR perturbation theory.
Recently, Ref. [41] demonstrated that NR simulations at

modest mass-ratios (q≳ 0.1) can be used to gain insight
into the accuracy of the SMR expansion, confirming the
known leading-order term, and predicting next-to-leading
order contributions. Reference [41] considered noneccen-
tric (quasicircular) binaries only, with both BHs nonspin-
ning. Here, we begin to extend the analysis in [41] to
eccentric BBHs, while still keeping both BHs nonspinning.
The noncircularity of the binary’s orbit introduces a new
timescale to the two-body problem, the timescale of the
periastron precession, which induces oscillations in the
dynamical and GW quantities of the binary system com-
plicating substantially the analysis relative to the quasicir-
cular case described in [41].
An additional difficulty arises from the fact that

eccentricity is a gauge dependent parameter in general
relativity, thus complicating the comparison between
SMR evolutions and NR simulations. In order to over-
come this problem, we develop tools to extract gauge
invariant quantities from both SMR and NR waveforms.
Using PN theory, we derive relations among the
eccentricity defined from the orbital and (2,2)-mode
gravitational wave frequency, and the PN temporal
eccentricity. We show that a commonly used definition
of eccentricity based on the (2,2)-mode frequency—
Eq. (5) below—does not reduce to the Newtonian
definition of eccentricity. We therefore adopt a new
definition of eccentricity, egw in Eq. (6) below. This
new definition continues to be based on the frequency of
the (2,2) GW-mode, but also satisfies the correct
Newtonian limit.
NR simulations of BBHs have been routinely performed

since more than a decade ago. Motivated by expectation of
small eccentricities for most of the GW signals in the
frequency band of ground-based detectors, most of the NR
groups have focused on the production of simulations of
quasicircular BBH mergers [42–53], with the exception of
a limited number of studies exploring BBH coalescences in
eccentric orbits [53–61]. The Spectral Einstein Code
(SpEC) [62] is an accurate and efficient NR code that
has been used to study quasi-circular inspirals in great
depth [45,50]. Eccentric inspirals at low eccentricity were

studied to some extent [55–58]. We expand SpEC’s
capabilities for accurate simulations of binaries with larger
eccentricities, 0.2≲ e≲ 0.8, which are characterized by
large variations of GW frequency and amplitude between
apastron and periastron passages. We have produced a set
of 52 nonspinning eccentric simulations between mass
ratios 1∶10 and 1∶1, and with initial eccentricities of up to
0.8. The number of orbits is typically ≳20, yielding a
dataset with the longest evolutions and highest initial
eccentricities up to date, which sets it also apart from
the simulations of other groups [53,59,61].
The main purpose of this article is to compare NR and

SMR calculations. This requires a map from the instanta-
neous state of a NR simulation to the geodesic on which the
point-particle instantaneously moves in its motion around
the central black hole. We characterize the instantaneous
state of SMR and NR simulations by symmetric mass
ratio, ν ¼ m1m2=ðm1 þm2Þ2, eccentricity, egw, and orbit-
averaged frequency of the 22-mode, hω22i. These quantities
can be uniquely determined in SMR and NR configurations
and they generate an unambiguous map between SMR and
NR configurations, as described in Sec. V.
We find that the leading order prediction in the SMR

expansion for the energy and angular momentum fluxes
agree with the NR results to within 10%. The next-to-
leading order SMR contributions to the fluxes can be
estimated by rescaling the difference of the NR and leading
order SMR contribution by a factor of the symmetric mass-
ratio. The result has a very small dispersion in symmetric
mass ratio, which implies that the next-to-next-to leading
order SMR contribution is small, even for comparable
masses. This is compatible with the findings of [63] in the
quasicircular case. Comparing the zero-eccentricity limit
of our next-to-leading order estimate to the exact results of
[63] we find the results to be comparable with an overall
small shift likely due to the orbit-averaging procedure
applied to extract quantities from the eccentric NR simu-
lations. A similar analysis is done for the periastron
advance. In this case the NR results are within 8% of
the leading-order (geodesic) SMR result, the next-to-
leading SMR contribution is compatible with previous
exact calculations in the quasi-circular limit [64,65], and
the next-to-next-to-leading SMR contribution appears
small in the comparable mass regime.
This article is organized as follows. In Sec. II we present

a detailed description of the new dataset of eccentric
nonspinning NR simulations produced for this work. We
investigate the relations between different eccentricity
definitions in Sec. III, and we provide a definition of
eccentricity based on the (2,2)-mode frequency, which
reduces to the Newtonian definition of eccentricity in the
Newtonian limit. Section IV describes the SMR evolutions
performed in this work, and Sec. V discusses the mapping
between SMR and NR configurations. In Sec. VI we
compare the quantities extracted from the NR simulations
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to the SMR perturbation theory results and provide
constraints on the values of the next order terms
in the SMR expansion for the GW energy and angular
momentum fluxes, as well as the periastron advance. In
Sec. VII we summarize our main conclusions and discuss
future work. The appendixes contain additional technical
details: Appendix A describes our method to set the initial
parameters in the NR simulations, in Appendix B we assess
the quality of the NR waveforms, and in Appendix C we
provide details of the derivation of the relations between
different definitions of eccentricity using PN theory.

II. NUMERICAL RELATIVITY SIMULATIONS

The NR simulations produced in this work are performed
with the SpEC code [62], utilizing numerical techniques
summarized in [45,50]. In particular, SpEC evolves a first-
order representation of the generalized harmonic evolu-
tion system [66] using a multidomain spectral method
[67–70]. At the outer boundary constraint-preserving
boundary conditions [66,71,72] are employed, whereas
black hole excision is used inside the apparent horizons
[68–70,73]. The transition to ringdown is accomplished
with the techniques described in Refs. [68,70]. Initial data
are constructed with the eXtended Conformal-Thin
Sandwich (XCTS) approach [74–76], and we describe
in Sec. II A and Appendix A how we achieve binaries with
a desired value of orbital eccentricity.
For improved performance for eccentric systems we

adopt part of the modifications developed in [77] to
produce accurate simulations of hyperbolic encounters.
Most notably, adaptive mesh refinement and GW output is
triggered more frequently to adjust to periastron passages
which happen on fast timescales, and which cause pulses of
higher-frequency GWs that travel through the computa-
tional grid.

A. Numerical relativity dataset

We have produced 52 new numerical relativity simu-
lations of binary black holes on eccentric orbits. The
simulations are summarized in Table I; for each of the
mass-ratios q ¼ 1; 1=2; 1=3; 1=4; 1=6; 1=8 and 1=10, sim-
ulations with several different eccentricities egw are com-
puted. Within the XCTS formalism to construct initial
data, the simulations in Table I were produced using
superposed harmonic Kerr (SHK) initial data [78], except
for the simulation SXS:BBH:2527, which used superposed
Kerr-Schild (SKS) initial data [79] as this is the simulation
with largest initial separation and eccentricity, and initial
tests with SHK initial data were not successful.1

For each simulation, Table I reports on the parameters
values necessary to reproduce the initial data with the
techniques described in [80]: the inverse mass ratio
1=q ¼ m2=m1 ≥ 1, the orbital separation D0=M0, where
M0 is the initial ADM mass, the initial orbital frequency
M0Ω0, and the initial radial velocity parameter a0 [81,82].
The procedure to determine the initial parameters of the
simulations is described in Appendix A. The simulations
are started at or very close to apastron due to limitations
of the radial map used by the dual-frame method [83]
employed to solve the Einstein equations in SpEC [84].
Specifically, the radial mapping of Eq. (9) in [84] con-
necting the comoving and inertial frames does not allow the
orbital separation to increase more than 1.5 times the initial
separation. We note that this limitation has been recently
overcome in SpEC by defining a new radial map, however,
it is not applied for simulations in this publication, and we
leave it to future work to report on this new feature.
To convey a sense of the physical properties of the BBHs

studied, Table I also lists the number of orbits to merger,
Norbits and the time to merger Tmerger=M, where M is the
total mass. We also specify the time (before merger) Tref=M
where the orbit averaged frequency of the (2,2)-mode
reaches the value ωref

22 ¼ 0.042, as well as eccentricity
erefgw and mean anomaly lref=ð2πÞ at this reference time.
These quantities are defined with the procedures outlined
below in Sec. III. The reference frequency is chosen to be
consistent with the length2 of the shortest simulation, which
corresponds to SXS:BBH:2520 with 4963M of evolution
and 18 orbits. Apart from this particular case, most of the
simulations have typically a time to merger > 104M. This
makes our dataset of eccentric NR waveforms the one with
the longest evolutions of eccentric binary black holes
to date.
We extract the gravitational radiation from each simu-

lation using the same techniques as in [50], and decompose

h ¼ hþ − ih× ¼
X
lm

hlm−2Ylm: ð1Þ

Each mode hlm is further split into real amplitude and
phase as

hlmðtÞ ¼ AlmðtÞe−iϕlmðtÞ; ð2Þ

with an associated GW mode frequency of

ωlm ¼ _ϕlm: ð3Þ

A sample of the computed numerical waveforms are
shown in Fig. 1. One can observe that the highly eccentric

1After tuning some settings in the linear solvers of the SpEC
initial data code, the SHK initial data was successfully computed,
but in order to save computational resources the evolution with
SHK initial data was not produced.

2We consider the length as measured after the relaxation time,
i.e., the time after which is considered that the burst of junk
radiation has dissipated.
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TABLE I. Properties of the NR simulations used in this work. Columns 2–5 give the initial data parameters needed to reproduce each
simulation (see main text), whereas columns 6–10 give some physical properties: the number of orbits, Norbits, the time to merger
Tmerger=M, and the reference time Tref=M corresponding to a frequency of the (2,2)-mode ωref

22 ¼ 0.042, at which the eccentricity erefgw

and mean anomaly lref=ð2πÞ are extracted from the simulation. Here,M is the total mass of the binary after initial transients have settled
down [50]. These parameters and additional properties can be found at numerical precision in the metadata files accompanying each
simulation. (*) Simulation performed with SKS initial data, differently from the rest of simulations, which used SHK initial data (see
main text for details).

Initial data Physical properties

SXS ID 1=q D0=M0 M0Ω0 a0 × 106 Norbits Tmerger=M ðTref − TmergerÞ=M erefgw lref=ð2πÞ
SXS:BBH:2517 1.0 16.03 0.0142 −2.898 19.0 5199 −3177.8 0.024 0.428
SXS:BBH:2518 1.0 22.02 0.0089 −0.808 40.3 16510 −14489.9 0.027 0.251
SXS:BBH:2519 1.0 20.03 0.0102 −1.183 32.0 11593 −9573.4 0.028 0.234
SXS:BBH:2520 1.0 18.03 0.0114 −1.804 18.2 4963 −3011.5 0.105 0.028
SXS:BBH:2521 1.0 26.02 0.0061 −0.416 25.2 8799 −6985.0 0.183 0.273
SXS:BBH:2522 1.0 28.02 0.0053 −0.310 25.0 8930 −7170.0 0.207 0.249
SXS:BBH:2523 1.0 34.02 0.0038 −0.144 27.3 10993 −9314.3 0.239 0.463
SXS:BBH:2524 1.0 60.01 0.0013 −0.015 30.0 17074 −15625.3 0.313 0.567
SXS:BBH:2525 1.0 45.01 0.0022 −0.047 22.5 9820 −8415.9 0.330 0.402
SXS:BBH:2526 1.0 70.01 0.0010 −0.008 26.2 15735 −14412.3 0.352 0.845
SXS:BBH:2527 (*) 1.0 130.00 0.0003 −0.001 19.9 16380 −15345.6 0.437 0.579
SXS:BBH:2528 1.0 65.01 0.0010 −0.011 15.0 7137 −6132.4 0.445 0.621
SXS:BBH:2529 2.0 18.03 0.0120 −1.279 28.1 9025 −6803.6 0.024 0.080
SXS:BBH:2530 2.0 20.02 0.0098 −0.838 25.7 8060 −5905.2 0.097 0.369
SXS:BBH:2531 2.0 26.02 0.0061 −0.294 28.2 9924 −7930.6 0.180 0.944
SXS:BBH:2532 2.0 28.02 0.0053 −0.219 27.8 10050 −8117.4 0.206 0.880
SXS:BBH:2533 2.0 34.01 0.0038 −0.102 30.3 12315 −10478.3 0.238 0.285
SXS:BBH:2534 2.0 60.01 0.0013 −0.011 33.3 18990 −17396.7 0.312 0.595
SXS:BBH:2535 2.0 65.01 0.0010 −0.008 16.3 7798 −6707.7 0.449 0.263
SXS:BBH:2536 3.0 22.02 0.0089 −0.343 53.4 22385 −19827.7 0.024 0.992
SXS:BBH:2537 3.0 22.02 0.0085 −0.344 38.0 13645 −11146.6 0.087 0.201
SXS:BBH:2538 3.0 28.01 0.0056 −0.132 48.6 20622 −18189.4 0.125 0.321
SXS:BBH:2539 3.0 22.02 0.0083 −0.344 31.6 10465 −8036.2 0.126 0.036
SXS:BBH:2540 3.0 17.30 0.0120 −37.880 19.2 4898 −2477.2 0.130 0.071
SXS:BBH:2541 3.0 28.01 0.0055 −0.132 39.9 15662 −13320.9 0.163 0.231
SXS:BBH:2542 3.0 26.02 0.0061 −0.177 32.7 11606 −9310.5 0.180 0.419
SXS:BBH:2543 3.0 28.01 0.0053 −0.132 32.2 11710 −9499.1 0.206 0.293
SXS:BBH:2544 3.0 55.01 0.0015 −0.009 29.4 14782 −13129.2 0.350 0.874
SXS:BBH:2545 4.0 18.02 0.0120 −0.476 37.9 12437 −9510.8 0.021 0.347
SXS:BBH:2546 4.0 20.02 0.0098 −0.312 34.5 10987 −8148.1 0.096 0.776
SXS:BBH:2547 4.0 26.01 0.0061 −0.109 37.5 13397 −10781.8 0.180 0.054
SXS:BBH:2548 4.0 28.01 0.0053 −0.082 37.1 13523 −10988.7 0.206 0.892
SXS:BBH:2549 4.0 34.01 0.0038 −0.038 40.3 16521 −14126.4 0.239 0.005
SXS:BBH:2550 4.0 55.01 0.0015 −0.006 33.5 16935 −15062.7 0.351 0.259
SXS:BBH:2551 4.0 65.01 0.0010 −0.003 20.9 10100 −8730.3 0.451 0.568
SXS:BBH:2552 6.0 18.02 0.0119 −0.212 48.4 16030 −12334.2 0.021 0.866
SXS:BBH:2553 6.0 20.01 0.0098 −0.139 43.7 14068 −10489.5 0.097 0.401
SXS:BBH:2554 6.0 26.01 0.0061 −0.049 47.6 17088 −13796.0 0.181 0.481
SXS:BBH:2555 6.0 28.01 0.0053 −0.036 46.8 17218 −14034.1 0.207 0.224
SXS:BBH:2556 6.0 34.01 0.0038 −0.017 50.8 21006 −18008.4 0.241 0.205
SXS:BBH:2557 6.0 45.01 0.0022 −0.006 40.6 18243 −15790.5 0.334 0.662
SXS:BBH:2558 6.0 65.00 0.0010 −0.001 25.5 12597 −10937.6 0.453 0.066
SXS:BBH:2559 8.0 14.52 0.0164 −0.267 34.6 9005 −4512.5 0.009 0.718
SXS:BBH:2560 8.0 20.01 0.0097 −0.073 53.1 17191 −12852.9 0.097 0.076
SXS:BBH:2561 8.0 26.01 0.0061 −0.026 57.8 20874 −16885.6 0.183 0.033
SXS:BBH:2562 8.0 28.01 0.0053 −0.019 56.6 20959 −17129.4 0.209 0.654
SXS:BBH:2563 8.0 28.01 0.0052 −0.019 43.9 14883 −11378.5 0.261 0.160
SXS:BBH:2564 10.0 14.51 0.0164 −0.156 40.3 10495 −5209.6 0.012 0.312

(Table continued)
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configurations develop a very complex structure in the
waveform due to the eccentricity of the orbits followed by
the BHs. Figure 1 also shows a zoom-in of the merger part
on the waveforms, to highlight the similarity of the merger
and ringdown parts of the waveform with different eccen-
tricities.3 Merger and ringdown of the high and low
eccentricity inspirals agree well with each other, indicating
that the circularization hypothesis is accurately fulfilled for
our dataset, consistently with the findings in [54,59,61].
We note that recently some unexpected dependence of the
kick velocity on eccentricity was found in [85]. A similar
analysis of the kick velocity can be performed on our
dataset, and we leave such study of the final velocity as well
as other remnant properties for future work.

B. Eccentricity, azimuthal frequency & mean anomaly

We start with the eccentricity definition proposed by
Mora & Will [86],

eΩorb
¼

ffiffiffiffiffiffiffiffiffi
Ωp

orb

p
−

ffiffiffiffiffiffiffiffiffi
Ωa

orb

p
ffiffiffiffiffiffiffiffiffi
Ωp

orb

p þ ffiffiffiffiffiffiffiffiffi
Ωa

orb

p ; ð4Þ

where Ωp
orb and Ωa

orb are the values of the orbital frequency at
consecutive periastron and apastron passages, i.e., maxima
and minima of ΩorbðtÞ. Equation (4) is easy to compute
from orbital trajectories and reduces precisely to the normal
eccentricity in the Newtonian limit [86]. eΩorb

was for instance
used in [56] to analyse generic precessing & eccentric BBH
inspirals. To avoid the coordinate-dependence of Ωorb, recent
papers (e.g., [61]) have applied Eq. (4) to frequencies directly
defined from the gravitational radiation:

eω22
¼

ffiffiffiffiffiffiffi
ωp
22

p
−

ffiffiffiffiffiffiffi
ωa
22

p
ffiffiffiffiffiffiffi
ωp
22

p þ ffiffiffiffiffiffiffi
ωa
22

p ; ð5Þ

where ωa, ωp refer to the (2,2)-mode frequency ω22 at
apastron and periastron, respectively. This procedure is
illustrated in the top panel of Fig. 2: The time-dependent
ω22ðtÞ has maxima ω22

p
;i and minima ω22

a
;i indicated with the

black and orange dots, where the integer i labels the extrema.
The maxima and minima correspond to periastron and
apastron passages, respectively, and occur at times tpi and tai .
We show below in Sec. III that eω22

disagrees with eΩorb
;

most notably, eω22
does not have the correct Newtonian

limit. Therefore, we introduce a new eccentricity definition
egw measured from the frequency of the (2,2)-mode, which
has the correct Newtonian limit,

egw ¼ cosðψ=3Þ −
ffiffiffi
3

p
sinðψ=3Þ; ð6aÞ

with

ψ ¼ arctan

�
1 − e2ω22

2eω22

�
: ð6bÞ

This new gravitational-wave frequency egw is also plotted
in the top panel of Fig. 2. The dashed curve for egw is
obtained by constructing interpolating functions through all

TABLE I. (Continued)

Initial data Physical properties

SXS ID 1=q D0=M0 M0Ω0 a0 × 106 Norbits Tmerger=M ðTref − TmergerÞ=M erefgw lref=ð2πÞ
SXS:BBH:2565 10.0 15.01 0.0156 −0.136 43.9 11870 −6587.3 0.015 0.147
SXS:BBH:2566 10.0 30.00 0.0045 −0.008 49.2 17153 −13297.8 0.289 0.938
SXS:BBH:2567 10.0 28.01 0.0050 −0.011 39.8 12581 −8926.6 0.315 0.047
SXS:BBH:2568 10.0 45.00 0.0022 −0.002 57.8 26144 −22709.4 0.335 0.299

FIG. 1. Visualization of simulations at two eccentricities each
for three different mass-ratios. Shown is hþ at inclination angle
ι ¼ π=3 and coalescence phase ϕ ¼ 0, for a binary of total mass
of 60 M⊙ at a distance of 430 Mpc. For ease of plotting, the
waveforms are offset vertically. On each waveform, the location
is marked where the orbit-averaged GW frequency hω22i equals
our reference value Mωref

22 ¼ 0.042; for M ¼ 60 M⊙ this corre-
sponds to a GW frequency of 22.6 Hz, near the start of the
frequency band of current GW detectors. The right panel enlarges
the merger part of the signals.

3The waveforms in Fig. 1 were time-shifted for the merger to
occur at t ¼ 0. Furthermore, the low-eccentricity simulations
(shown in grey) were phase-shifted to have the same phase at
merger as the plotted high-eccentricity simulation.
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maxima fω22
p
;ig and through all minima fω22;

a
i g, and then

evaluating Eqs. (5) and (6) for these interpolating functions.
The average azimuthal frequency from the (2,2)-mode

for the interval between the i-th and iþ 1-th periastron
passages is defined as

hω22ii ¼
1

tpiþ1 − tpi

Z
tpiþ1

tpi

ω22ðtÞdt ð7Þ

¼ ϕ22ðtpiþ1Þ − ϕ22ðtpi Þ
tpiþ1 − tpi

: ð8Þ

We associate this frequency with the temporal midpoint,

t̂pi ¼ 1

2
ðtpiþ1 þ tpi Þ; ð9Þ

and interpolate the discrete fðt̂pi ; hω22iiÞg data to obtain a
continuous hω22iðtÞ curve. This curve is also included
in Fig. 2.
The mean anomaly of the eccentric binary is defined

as [87]

l ¼ 2π
t − tpi

tpiþ1 − tpi
; ð10Þ

where tpi and tpiþ1 are the times of the periastron-passages
immediately before and after the time t of interest, and is
plotted in the lower panel of Fig. 2.

The NR quantities introduced so far are used in Fig. 3
to illustrate the entire NR dataset produced in this work.
Figure 3 shows the tracks of each simulation in the
parameter space spanned by the orbit-averaged (2,2)-mode
frequency, hω22i and the eccentricity, egw. Each simulation
is color-coded by its mass ratio. We also indicate the value
of the mean anomaly at the reference frequency used to
perform the analysis. One can observe that the mean
anomaly at the reference frequency is randomly distributed.
We assess the accuracy of the simulations by computing the
unfaithfulness between waveforms at different resolution in
Appendix B, and we obtain that our dataset of simulations
has a median maximum mismatch between different
resolutions of < 10−3, indicating a convergent behavior
of the waveforms with increasing resolution.

C. Quantities for comparisons with small
mass-ratio theory

In our comparisons with small mass-ratio perturbation
theory, we will also utilize several more quantities extracted
from the NR simulations. We define an orbit-averaged
radial frequency based on the periastron passages as

hΩr
22ii ¼

2π

tpiþ1 − tpi
; ð11Þ

which is interpolated to a continuous hΩr
22iðtÞ curve. From

this, we compute periastron advance K as the ratio between
the azimuthal and radial frequencies [88],

FIG. 2. Top panel: Time evolution of the frequency of the
(2,2)-mode (solid blue line) for the simulation SXS:BBH:2558.
The values of the (2,2)-mode frequency at periastron and apastron
are indicated with orange and black dots, respectively. These are
used to compute the orbit-averaged frequency of the (2,2)-mode
(solid red curve), and the eccentricity egw (dashed green curve)
through Eq. (6). Bottom panel: Time evolution of the mean
anomaly (solid purple line) computed using Eq. (10) for the same
simulation as in the top panel. The vertical dashed gray lines in
both panels correspond to the times of the periastron passages.

FIG. 3. Parameter space coverage of the NR simulations
produced in this work. Each curve corresponds to one NR
simulation in the orbit-averaged (2,2)-mode frequency, hω22i,
and eccentricity, egw, plane. The simulations start at high
eccentricity and low frequencies (bottom right side), and along
the evolution the eccentricity decays with increasing orbital
frequency (left top part of the panel). The curves are colored
according to the inverse mass ratio 1=q of the simulation, and we
indicate also the values of the mean anomaly at the reference
frequency, lref , of Mωref

22 ¼ 0.042, at which the comparison to
SMR results is performed in Sec. VI.
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K ¼ hω22i=2
hΩr

22i
: ð12Þ

The instantaneous energy and angular momentum fluxes
are computed from the GW modes, hlm, using the expres-
sions [89],

_Egw ¼ 1

16π

X∞
l¼2

Xþl

m¼−l
j _hlmðtÞj2; ð13Þ

_Jgwz ¼ 1

16π

X∞
l¼2

Xþl

m¼−l
ð−mÞℑ½ _h�lmðtÞhlmðtÞ�; ð14Þ

where _h ¼ dh=dt, ℑ the indicates the imaginary part and
_h�lm denotes the complex conjugate of _hlm. In the case of
nonspinning binaries only the z-component of the angular
momentum flux is nonzero. Analogous to Eq. (7) we define
the orbit average of either of these fluxes as

hXii ¼
1

tpiþ1 − tpi

Z
tpiþ1

tpi

XðtÞdt: ð15Þ

We associate these discrete averages over each radial
oscillation period with the midtime t̂pi , and interpolate to
obtain continuous functions h _EgwiðtÞ and h _Jgwz iðtÞ. A first
estimate of the peaks is computed using an envelope
subtraction method as in [56]. Each estimate of the peak
is used to set a window of ∼30M on which a polynomial fit
is performed. Finally, this polynomial fit is used to compute
the value of the peak.

III. DISCUSSION ABOUT ECCENTRICITY
DEFINITIONS

There is a large variety of measures of eccentricity in
use in general relativity [90]. Many of these measures
derive from the trajectories of the binaries and are
therefore coordinate dependent. This makes them generally
unsuitable for comparisons between different modeling
approaches, which may be computed in different gauges or
where there may be no well-defined notion of trajectory at
all. However, one gauge invariant observable common to
all approaches to modeling gravitational waves from
compact binaries is the waveform itself. In this sense, it
may seem more reasonable to define eccentricity in terms
of gravitational wave quantities rather than quantities
dependent on the trajectories of the black holes.
A gravitational wave mode (see Sec. II), has an instanta-

neous frequency ωlm ¼ _ϕlm, which can be related in the
inspiral regime to the instantaneous orbital Ωorb ¼ _ϕorb by
the approximation [16],

ωlm ≈mΩorb: ð16Þ

However, as eccentricity increases the approximation of
Eq. (16) is no longer valid as can be observed in the top
panel of Fig. 4, where the left- and right-hand sides of
Eq. (16) in the case of the ðl; mÞ ¼ ð2; 2Þ multipole are
displayed. In the top plot of Fig. 4, the upper and bottom
panels correspond to a q ¼ 1=6 configuration with two
different initial eccentricities e0ω22

¼ 0.03, 0.63, respec-
tively. The relation between the orbital and the (2,2)-mode

FIG. 4. Top panel: Time evolution of the (2,2)-mode frequency
extracted for two mass-ratio 1=q ¼ 6 NR simulations (SXS:
BBH:2545 and SXS:BBH:2551 described in Table I) with two
different initial eccentricities. For each simulation twice the
orbital frequency 2Ωorb (blue solid lines), the frequency of the
(2,2)-mode (red solid lines), ω22, and the 1PN expression for
the frequency of the (2,2)-mode from Eq. (17) evaluated using

the NR coordinates, ω1PN;c⃗NR
22 , (black dashed lines) are shown.

Additionally, the orbit-averaged values of the frequency of the
(2,2)-mode (red dash-dotted lines), hω22i, and twice the orbit-
averaged orbital frequency (blue dots), 2hΩorbi, are displayed for
each configuration. Bottom panel: Eccentricity evolution com-
puted from the orbital and (2,2)-mode frequencies using Eqs. (5)
and (6), and the 1PN expression for the eccentricity of the

(2,2)-mode computed from (18) using NR coordinates, e1PN;c⃗NRω22

(black dashed lines).
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frequency is no longer the simple factor 2, as in the
quasicircular case. In order to derive the relation between
both frequencies in the more generic eccentric case, we use
PN theory. Specifically, we compute ω22 at 1PN order
using the instantaneous gravitational modes from [91]. We
obtain a 1PN-accurate expression for ω22 in harmonic
coordinates of the form,

ω1PN
22 ¼ F ðν; r; _r; ̈r; _ϕ; ϕ̈Þ; ð17Þ

where ̈r denotes two time derivatives on r. The explicit
expression for F is given in Eq. (C6) in Appendix C 1
together with details of the derivation. Because of
_ϕ ¼ Ωorb, Eq. (17) is a relation between ω22 and Ωorb.
The top panel of Fig. 4 shows that the use of Eq. (17)

with NR coordinates (ω1PN;c⃗NR
22 in the figure) agrees notably

better with the (2,2)-mode NR frequency than 2Ωorb. The
deviations in Eq. (16) increase with eccentricity. The
relative error can be larger than 10%, whereas Eq. (17)
leads to differences smaller than 1%.
It is important to note that the scaling relation in Eq. (16)

between orbital and gravitational wave frequencies is still
satisfied in an orbit-averaged sense. This is shown in the
upper panel of Fig. 4 for the orbit-averaged frequencies
hω22i (solid red lines) and hΩorbi (blue dots).
Let us now turn to eccentricity defined from the extrema

of a frequency. Equation (5) can be evaluated from ω22

(as written), or from the orbital frequency Ωorb. Because
ω22ðtÞ and ΩorbðtÞ have modulations of different amplitude
(as seen in the top panels of Fig. 4), the corresponding
eccentricities eω22

and eΩorb
are also different, as visible in

the lower panels of Fig. 4.4 Given the remarkable agree-
ment of the PN approximation toω22 with respect to the NR
values, one can insert Eq. (17) into the right-hand side of
Eq. (5), expand the corresponding expressions up to 1PN,
and obtain an approximation for eω22

in terms of the
coordinates as

e1PNω22
¼ Gðν; ra;p;Ωa;p

orb ; ̈ra;pÞ; ð18Þ

where the expression for G is given by (C14) in
Appendix C 1, and the subscripts/superscripts a, p refer
to the apastron and periastron, respectively. The bottom
panel of Fig. 4 shows that Eq. (18) successfully reproduces
eω22

. Given the overall agreement, we do not pursue to
explore higher PN orders, or possible resummations of this
PN expression to improve its behavior in the strong field

regime, and we leave possible extensions of these expres-
sions, like the inclusion of spin effects, for future work.
The relations in Eqs. (17) and (18) allow one to obtain an

estimate of the eccentricity measured from the (2,2)-mode
frequency from the coordinates of the system. This can be
useful, for instance, to set an eccentricity reduction or
eccentricity control procedure based on the eccentricity
measured from the waveforms instead of the trajectories
without having to evolve the system such that the gravi-
tational waves reach the extraction radii, and thus, saving
computational time.
Equation (18), as used in the lower panel of Fig. 4, still

utilizes the NR trajectory. If one substitutes in a PN
trajectory in the quasi-Keplerian parametrization [92],
one obtains relations between eΩorb

or eω22
and the PN

eccentricity parameters, most notably the widely used et
[91,93–100].
A detailed derivation of the relation eΩorb

− et up to 3PN
order for nonspinning binaries can be found in Appendix C 2.
We focus here on the relation eω22

− et, which is derived up
to 1PN order in Appendix C 3, providing

e1PNω22
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2 − et

p ð1þ etÞ − ð1 − etÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ et

p
ffiffiffiffiffiffiffiffiffiffiffiffi
2 − et

p ð1þ etÞ þ ð1 − etÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ et

p

− γxet
ð54ηþ 101Þe2t þ 192η − 1380

84ðe4t − 5e2t þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − e2t

p
þ 4Þ

; ð19Þ

where x ¼ Ω2=3
orb , and γ ¼ 1=c2 is a bookkeeping parameter

identifying the 1-PN corrections. At Newtonian order,
Eq. (19) reduces to

e0PNω22
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2 − et

p ð1þ etÞ − ð1 − etÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ et

p
ffiffiffiffiffiffiffiffiffiffiffiffi
2 − et

p ð1þ etÞ þ ð1 − etÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ et

p : ð20Þ

While Eq. (20) achieves the right limits for circular and
parabolic orbits—e0PNω22

ðet¼0Þ¼0 and e0PNω22
ðet¼1Þ¼1—it

disagrees otherwise. This can be easily seen by expanding
Eq. (20) for small eccentricities,

e0PNω22
¼ 3

4
et þ

11

64
e3t þOðe5t Þ; ð21Þ

which explicitly demonstrates that for small eccentricities in
the Newtonian limit, eω22

does not reduce to et, but rather to
3=4et. An expansion of Eq. (20) in the large eccentricity
limit 1 − et ≪ 1 yields

1 − e0PNω22
¼

ffiffiffi
3

p
ð1 − etÞ þOðð1 − etÞ2Þ; ð22Þ

which also exhibits a wrong slope (
ffiffiffi
3

p
) for et near 1.

Equations (21) and (22) show that the definition of eccen-
tricity based on the (2,2)-mode frequency will be different
from the Newtonian definition of eccentricity in the two
limits of the bound case. Additional PN orders will introduce

4The eccentricity curves in the lower panels show a spurious
bump close to merger arising from the interpolation of the
maxima and minima close to the plunge. Our analysis focuses
on the inspiral regime and is not affected by this feature. We leave
to future work the improvement of the eccentricity measurement
in the transition from inspiral to plunge.
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higher frequency corrections to the Newtonian behavior,
whose impact in the leading Newtonian correction factors
between the eccentricity will depend on the region of the
parameter space considered.
The relation etðeω22

Þ at Newtonian order can be obtained
by inverting Eq. (20),

ψ ¼ arctan
�
1 − e2ω22

2eω22

�
;

e0PNt ¼ cosðψ=3Þ −
ffiffiffi
3

p
sinðψ=3Þ: ð23Þ

Applying Eq. (23) to eω22
will yield an eccentricity-

definition that reduces to the Newtonian definition of
eccentricity.
As a consequence of the previous analysis we propose a

new definition of eccentricity measured from the frequency
of the (2,2)-mode, which corrects the naive result eω22

obtained from the extrema of ω22 by Eq. (23),

egw ≡ e0PNt ðeω22
Þ: ð24Þ

By construction, egw reduces to the Newtonian definition
of eccentricity in the Newtonian limit. In the bottom panel
of Fig. 4, egw is shown to be closer to eΩorb

than eω22
. Both

egw and eΩorb
have the correct Newtonian limit, and the

differences may be explained due to coordinate effects
affecting eΩorb

, and higher PN terms, as egw is obtained
from Eq. (20).
This new definition of eccentricity is adopted throughout

the rest of the paper, and its applications to data analysis are
further investigated in upcoming work [101].

IV. SMR THEORY AND DATA

In the small mass-ratio (SMR) limit, the dynamics of a
black hole binary can be described through the gravitational
self-force formalism. For the inspiral part of the waveform,
this formalism leads to a systematic expansion of the
waveform in integer powers of the symmetric mass-ratio
ν. This expansion is known as the postadiabatic (PA)
expansion. In this section, we introduce the necessary
parts of this formalism to produce SMR eccentric inspirals
for comparison to our NR data. For a more in depth review
of the formalism see e.g., [21,102].

A. Equations of motion

In the SMR limit an eccentric inspiral of nonspinning
black holes can be described as a series of evolving
(perturbed) eccentric orbits in a Schwarzschild background.
Eccentric orbits in Schwarzschild are often identified by
their semilatus rectum p and geodesic eccentricity eg,
which in turn are defined through the periastron and
apastron positions, rp and ra,

p ¼ 2rarp
ra þ rp

; ð25Þ

and

eg ¼
ra − rp
ra þ rp

: ð26Þ

The position along the eccentric orbit is tracked by a phase qr
conjugate to the radial action, defined such that qr ¼ 0
mod 2π corresponds to the orbit being at periastron. The
equations of motion for the evolution of the inspiral can be
described as an expansion in the symmetric mass ratio ν
(keeping the total mass M fixed),

dp
dt

¼ 0þ νFpðp; eg; qrÞ þOðν2Þ; ð27aÞ

deg
dt

¼ 0þ νFegðp; eg; qrÞ þOðν2Þ; ð27bÞ

dqr
dt

¼ Ωr
geoðp; egÞ þ νfrðp; eg; qrÞ þOðν2Þ; ð27cÞ

dϕ
dt

¼ Ωgeoðp; egÞ þ νfrðp; eg; qrÞ þOðν2Þ; ð27dÞ

where t is retarded time at future null infinity, Ωr
geo and Ωgeo

are the geodesic radial and azimuthal frequencies (with
respect to t), and theF’s and f are the first order (gravitational
self-force) corrections to the equations of motion.
By applying a near-identity (averaging) transformation

Eqs. (27) can be put in an orbit averaged form (without loss
of generality) [103]. The leading terms give rise to the
adiabatic (or 0-post-adiabatic, 0PA) approximation to the
inspiral equations of motion,

dp
dt

¼ νhFpiðp; egÞ; ð28aÞ

deg
dt

¼ νhFegiðp; egÞ; ð28bÞ

dqr
dt

¼ Ωr
geoðp; egÞ; ð28cÞ

dϕ
dt

¼ Ωgeoðp; egÞ: ð28dÞ

The next order in ν in the approximation—the 1-post-
adiabatic or 1PA order—requires knowledge of the average
parts of the second order Fp and Feg , i.e., the second order
gravitational self-force. Despite major progress in calculat-
ing the second order self-force and corresponding 1PA
corrections for nonspinning quasicircular inspirals
[63,104,105], there are no second-order self-force results
yet for eccentric inspirals. Without the input of the second
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order self-force, any 1PA corrections based purely on the
conservative part of the first-order self-force are not gauge
invariant [106], and not suitable for comparison with NR.
Consequently, for this work we will focus on comparisons
with the adiabatic (0PA) SMR results.

B. Gravitational wave strain

The gravitational wave strain produced by a test particle
orbiting a Schwarzschild black hole can be found by
solving the Teukolsky equation for ψ4. We write ψ4 at
future null infinity as

lim
r→∞

rψ4 ¼ ν
X
lmn

Zlmn−2Ylmðθobs;ϕobsÞe−iϖmnt; ð29Þ

where ϖmn ¼ mΩgeo þ nΩr
geo, and Zlmn are the mode

amplitudes. The strain-modes at infinity, Eq. (1), are then
given as

hlm ¼ −2ν
X
n

Zlmn

ϖ2
mn

e−iϖmnt ð30Þ

¼ ν
X
n

Almnðp; egÞe−iðmϕþnqrÞ; ð31Þ

where in the last step we have written the strain explicitly in
terms of the variable evolved by Eq. (28). To obtain the
strain produced by an adiabatic (0PA) inspiral, one simply
elevates the geodesics variables ðp; eg; qr; qϕÞ in Eq. (31) to
their inspiral (evolving) counterparts in Eq. (28).

C. SMR data and interpolation

To produce SMR 0PA waveforms5 we need the various
quantities appearing on the right-hand sides of Eqs. (28)
and (31). The 0th order “frequencies” Ω are known
analytically [107], while the hFpi, hFegi, and Almn need
to be calculated numerically. All three may be obtained by
solving the Teukolsky equation sourced by a test mass
following an eccentric geodesic to obtain the Zlmn’s in
Eq. (29), which we do using the arbitrary precision
frequency domain code developed in [108–110].
Specifically, we calculate hFpi, hFegi, andZlmn on a grid

of Chebyshev nodes in x ¼ ðMΩgeoÞ2=3 (18 nodes between
0.001 and 0.130) and eg (12 nodes between 0 and 0.5), and
interpolate the results using Chebyshev polynomials. The
resulting interpolant has a typical relative interpolation
error of about 10−5.
Note that the SMR 0PA inspiral waveforms generated

here could in principle have been generated with Fast
EMRI Waveforms (FEW) framework [111–113]. We chose
a different approach because FEW was not yet publicly
available when this project started and to retain a better

control over numerical errors in the model. In particular, the
FEW model was not designed to faithfully reproduce the
minima and maxima of the waveform frequency ω22.

D. Frequencies

From a (0PA) SMR inspiral we have two distinct ways of
obtaining the average orbital and radial frequencies. We can
apply the procedure of Secs. II B and II C to extract the
average orbital hω22i and radial frequencies hΩr

22i from the
SMR 0PA waveform. We will denote these frequencies
hω0PAi and Ωr

0PA. Alternatively, we have the instantaneous
geodesic frequencies Ωgeo and Ωr

geo as they appeared in
Eq. (28). In the ν → 0 limit, i.e., when there is no inspiral,
Eq. (31) gives the following expression of the waveform
frequency ωlm:

ωlm ¼ −ℑ
d
dt

log

�X
n

Almnðp; egÞe−iðmϕþnqrÞ
�

ð32Þ

¼ ℜ

P
nðmdϕ

dt þ n dqr
dt ÞAlmnðp; egÞe−iðmϕþnqrÞP

nAlmnðp; egÞe−iðmϕþnqrÞ ð33Þ

¼mΩgeoðp;egÞþΩr
geoðp;egÞℜ

P
nnAlmnðp;egÞe−inqrP
nAlmnðp;egÞe−inqr

:

ð34Þ

From this we note that the waveform frequency is exactly
2π periodic in qr, and consequently the radial period is
exactly 2π=Ωr

geo. A less obvious observation is that the
average of the second term in (32) vanishes after averaging
over a radial period. A sufficient condition for this to be
true is

jAlm0ðp; egÞj >
����
X
n≠0

Almnðp; egÞe−inqr
����; ð35Þ

since this guarantees that
P

nAlmnðp; egÞe−inqr is con-
fined to a half of the complex plane and must return to the
same complex argument after one period. The condition
(35) is clearly satisfied for low eccentricity orbits since
Almn ¼ OðegnÞ. However, condition (35) is easily violated
by high eccentricity zoom-whirl orbits. Nonetheless, we
observe empirically that the average of the second term
(32) vanishes in all geodesic waveforms used in this work.
We thus find that in the ν → 0 limit we have exactly,

Ωr
0PA ¼ Ωr

geo; and hω0PAi ¼ 2Ωgeo: ð36Þ

This, of course, does not come as a surprise, since this
is precisely what the frequency recovery procedure of
Secs. II B and II C was designed to achieve. However,
using the SMR 0PA inspiral waveforms we can now
investigate what happens for finite values of ν when the5In the language of [105] this would be a 0PAT1 waveform.
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system is evolving. Figure 5 shows both the frequencies,
Ωr

0PA and hω0PAi=2, recovered from a SMR 0PAwaveform
at equal mass (ν ¼ 1=4) and the geodesic frequencies, Ωr

geo

and Ωgeo, inferred from the underlying inspiral dynamics.
Even at equal mass there is hardly any perceivable differ-
ence between the two sets of frequencies.
To compare the frequencies obtained through the two

procedures more closely we pick three frequencies along
the adiabatic inspiral depicted in Fig. 5. For each of these
frequencies we generate a series of adiabatic inspirals with
symmetric mass-ratios varying between ν ¼ 10−3 and
ν ¼ 1=4 going through that point (and randomized initial
values of qr). For each of these inspirals we extract the
azimuthal and radial frequency from the waveform using
the procedure of Secs. II B and II C. Figure 6 shows the
difference between these frequencies and the corresponding
values obtained directly from the underlying geodesic. We
observe a small, but measurable, difference between the
two sets of frequencies, which appears to grow linearly
with ν and is larger for higher frequencies. Since the SMR
0PA waveform contains no higher order frequency correc-
tions, this difference arises purely from unintended side
effects of the frequency recovery procedure. Some con-
tributing factors are the averaging over a radial period while
the inspiral is evolving, and limitations in establishing a
radial period in the first place.

E. Eccentricity

To calculate the gauge invariant eccentricty egw for a
SMR 0PA waveform we again have two options. First, we

can follow the procedure of Secs. II B and II C to determine
the minima and maxima of ω22 of the SMR 0PAwaveform,
and compute egw using Eqs. (5) and (6). Wewill refer to this
as e0PAgw .
Alternatively, we want to obtain egw directly from the

dynamical variables p and eg. Unfortunately, there is no
analytic closed form expression for egw in terms of p and
eg. Instead we start from the (numerical) “snapshot”
waveform generated by a test particle going around a
geodesic with fixed p and eg. The snapshot waveform hlm
is a biperoidic function of the radial and azimuthal phases
qr and ϕ as described by Eq. (31). Using the expression for
ω22 in Eq. (32), we find the minima and maxima of the
frequency with respect to qr and calculate the correspond-
ing eω22

, which can be input to (6) to provide egw. We will
refer to this quantity as egeogw .
We obtain a numerical representation of the function

egeogw ðp; egÞ by taking grid of numerical SMR solutions
of the Teukolsky equation, and interpolating the result
with Chebyshev polynomials to obtain egeogw with a
relative accuracy of 10−7 across the relevant parameter
space. Conversely, we can numerically invert this
relationship to obtain a function for p and eg given x
and egeogw .
Figure 7 explores the difference between egeogw and e0PAgw

for adiabatic inspirals. As expected, the difference between
these two approaches for obtaining egw vanishes in the
ν → 0 limit. For ν ≠ 0, this difference grows again propor-
tional to ν, similarly to Fig. 6.

FIG. 5. Frequency extraction procedure applied to an SMR
waveform at 0PA at equal mass. The solid curves arise directly
from the SMR inspiral and its dynamics. The filled circles are
the result of applying our frequency extraction procedure to the
maxima of the instantaneous frequency ω22ðtÞ. Even at equal
mass where the inspiral is fastest, the recovered orbital averaged
azimuthal and radial frequencies agree well with the geodesic
frequencies of the underlying SMR dynamics. This figure is
analogous to Fig. 4.

FIG. 6. Absolute relative difference between the frequencies
from the waveform (azimuthal hω0PAi=2 and radial Ωr

0PA), and
the frequencies from the geodesic inspiral (azimuthal Ωgeo and
radial Ωr

geo), as a function of symmetric mass ratio ν at three
selected points along the inspiral from Fig. 5. The frequencies
extracted from the waveforms, hω0PAi and Ωr

0PA, have been
computed using the orbit-average procedure of Secs. II B and II C
employing the periastron passages. The gray line indicates a
linearly increasing ν-dependence.
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F. Geodesic snapshot vs inspiral waveform quantities

The preceding subsections have explored the difference
between extracting the frequencies Ωϕ=r, and eccentricity
egw from evolving adiabatic (0PA) waveforms and extracting
the same information from geodesic “snapshots” that are not
evolving at all. The relative difference between the two
methods is found to beOðνÞ. For the comparisons in the rest
of this work we choose to work with the geodesic snapshot
SMR quantities, since these can in general be obtained more
efficiently and reliably. For the leading order comparisons
this will not make a difference. However, for any higher
order corrections that we infer, we must be aware that these
also contain a next-to-leading order correction due to
comparing NR quantities from an evolving waveform with
SMR geodesic snapshot quantities.

V. CHOOSING “INDEPENDENT” VARIABLES

In this section we study several options for the variables
describing the state of a binary inspiral. We present some of
the choices of variables made in the literature when
comparing SMR and NR results, discuss their applicability
in the eccentric case and, finally, describe the choice of
variables which better adapt to our study.
The instantaneous state of a nonspinning eccentric

binary is captured by four dynamical variables. For
example, in the SMR setup these are the ðp; eg; qr;ϕÞ that
appear in Eq. (27). In this work we are interested in
comparing quantities that are observable for a distant
observer. Since the instantaneous value of ϕ is completely
degenerate with the position of this observer, it carries no

useful information about the state of the binary. Moreover,
we are presently interested in observables that are inte-
grated over a radial cycle, eliminating qr. Thus we can
identify the instantaneous state of the binary with two
variables, like ðp; egÞ. Of course, ðp; egÞ are not gauge
invariant and therefore not useful to find an NR simulation
in the same instantaneous state. In order to compare the
SMR and NR results, we need a set of two variables that
can fix the instantaneous state of the binary and be
unambiguously computed both in NR and the SMR
formalism.
One pair of variables extensively used in the literature

[56,64] are the azimuthal and radial frequencies hΩorbi and
hΩr

orbi defined in analogy to Eqs. (7) and (11) from the
orbital frequency Ωorb. These two frequencies can be
calculated analytically at geodesic order in the SMR
formalism [107], and they can be extracted from NR data
[56]. However, since they are derived from the coordinate
trajectories in NR, they are not fully gauge invariant (e.g.,
Fig. 17 of [114]).
A second possibility are frequencies computed from the

gravitational radiation instead, e.g., hω22i and hΩr
22i, which

are manifestly gauge invariant. Then, as shown in Secs. III
and IV, the orbit-averaged azimuthal frequencies from the
waveform and the trajectories can be related by a factor 2,
while the radial frequency stays the same. These frequen-
cies are plotted in the top panel of Fig. 8. For some portions
of NR simulations the ratio hω22i=ð2hΩr

22iÞ lies below the
value of the corresponding circular orbit at the same hω22i,
i.e., the NR frequencies fall outside the range spanned by
geodesics. It might be possible to rectify this situation by
applying a linear mass-ratio gravitational self-force cor-
rection to the NR frequencies. This would, however, result
in a very convoluted analysis requiring SMR inputs on the
NR side of the comparison. Thus, to avoid such a
complication we discard the radial and azimuthal frequen-
cies as independent variables to describe both NR and SMR
eccentric inspirals.
A third possibility as a pair of independent variables

are the binding energy, Eb, and the dimensionless angular
momentum, j. This pair of variables has been extensively
used for comparisons between NR simulations and
effective-one-body (EOB) evolutions [115–117]. Both
quantities can be analytically calculated at geodesic order
in the SMR formalism [107], and they can also be extracted
from the NR simulations. Nonetheless, the computation of
the reduced angular momentum and the binding energy
from NR simulations requires the application of some
unknown offsets to both quantities. This is due to the fact
that Eb and j are reconstructed by integrating the fluxes to
infinity and using the initial (ADM) or final mass and
angular momentum. However, the fluxes at the start of the
simulations, due to junk radiation, and at the end, due to the
exponential power decay during ringdown, are not very
well resolved. Consequently, the obtained Eb–j curves are

FIG. 7. Comparison of egw obtained directly from the geodesic
strain egeogw with egw from an evolving adiabatic inspiral, e0PAgw as a
function of the geodesic frequency Ωgeo. The main panel shows
an equal mass inspiral (ν ¼ 1=4). The inset shows the absolute
difference between the two approaches at three selected points
along the inspiral for varying mass-ratios. The gray lines in the
inset indicate the a linearly growing symmetric mass ratio
dependence.
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generally off by a shift in the Eb–j plane [116]. Even after
that shift is applied, it is possible that the NR data exist
in the region of the Eb–j plane that is inaccessible by
geodesics. Thus, in order to avoid the introduction of
systematics from the determination of the offset in Eb and j,
here we do not consider them as independent variables for
the mapping between SMR and NR configurations.
Finally, we present a combination of variables such that

Schwarzschild geodesics and NR simulations lie in the
same region of parameter space. These variables are the
eccentricity measure egw, defined in Eqs. (5) and (6), and
the orbit-averaged azimuthal frequency computed from the
(2,2)-mode, hω22i, defined in Eq. (7). The lower panel of
Fig. 8 displays egw as a function of hω22i, for the NR
simulations in Table I and for Schwarzschild geodesics.
The egw–hω22i plane is naturally overlapping for both NR
and Schwarzschild geodesics, without the need of any

shifts or rescalings. This eccentricity definition by con-
struction spans the range from 0 (circular) to 1 (parabolic
orbit). This remains true at any level of the SMR approxi-
mation. Additionally, we note that given a (2,2)-mode
waveform egw is uniquely determined, and thus, it is a
gauge invariant observable.
However, we note that the leading order contribution to

egw cannot be computed analytically in the SMR formalism
but requires solving the first order field equations numeri-
cally. Similarly, the next-to-leading order in mass-ratio
correction to egw requires the second order metric pertur-
bation, which has not yet been calculated for eccentric
orbits. Consequently, calculating the next-to-leading order
contribution to the expansion of any observable at fixed egw
and hω22i requires obtaining the second order metric
perturbation. (The only exception to this are quantities at
fixed egw ¼ 0 or egw ¼ 1, since the higher order corrections
to these values are zero by construction.)
In the limit egw → 0, fixing egw and hω22i reduces to the

usual comparisons done for quasicircular inspirals. Hence,
we consider these two variables, egw and hω22i, as our
independent variables for the comparison of NR and SMR
inspirals.

VI. RESULTS

In this section we compare the energy and angular
momentum fluxes, as well as the periastron advance,
obtained from NR and SMR adiabatic evolutions, and
provide constraints on the magnitude of the next order term
in the SMR expansion for the mass ratios considered here.
We consider the orbit-averaged energy and angular
momentum fluxes from the NR simulations in Table I,
computed using Eqs. (13)–(15), as well as the periastron
advance K, computed using Eq. (12).
The orbit-averaged fluxes extracted from the NR sim-

ulations are illustrated in the top two rows of Fig. 9. In order
to reduce the dynamical range of the fluxes, we rescale
them with the Newtonian (0PN) quasicircular values for
these quantities [16],

h _EQC;0PN
gw i ¼ 32

5
ν2Ω10=3

orb ; ð37aÞ

h_JQC;0PNz;gw i ¼ 32

5
ν2Ω7=3

orb : ð37bÞ

Here, Ωorb denotes the orbital frequency for which we
substitute hω22i=2; see Sec. III for details.
The rescaling by Eqs. (37) produces a smooth depend-

ence of the fluxes in parameter space, with practically
no curves crossing each other. This is because most of
the mass ratio dependence is already accounted for by the
rescaling factors. In the right-hand panels, the data are
plotted as function of egw only. This projection highlights
how well the normalization accounts for the ν- and
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FIG. 8. Top panel: Ratio of the orbit-averaged azimuthal
and radial frequencies computed from the (2,2)-mode,
hω22i=ð2hΩr

22iÞ, as a function of the orbit-averaged frequency,
hω22i. The colored curves represent the NR simulations in
Table I, whereas the grey shaded area indicates the region
covered by Schwarzschild geodesics, bounded by the diagonal
black curve representing quasi-circular geodesics. Bottom panel:
Eccentricity, egw, computed using Eqs. (5) and (6), as a function
of hω22i, for the same NR simulations as in the upper panel.
While geodesics exist at all eccentricities, we have only generated
SMR configurations in the grey shaded area. In both panels each
NR simulation has been color-coded according to its symmetric
mass ratio ν.

ECCENTRIC BINARY BLACK HOLES: COMPARING NUMERICAL … PHYS. REV. D 106, 124040 (2022)

124040-13



hω22i-dependence, with only the eccentricity-dependence
remaining. The eccentricity dependence qualitatively
resembles the expected analytical behaviour for the energy
flux for eccentric binaries with corrections of the form

∼ 1
ð1−e2Þx ð1þ ae2 þ be4 þ � � �Þ, where x ¼ 7=2 or 2, for the

energy and angular momentum fluxes respectively, while a
and b are coefficients which can be found in [118,119]. We
do not introduce eccentric corrections to the rescaling
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FIG. 9. Left column: From top to bottom energy flux, angular momentum flux and periastron advance extracted from the NR
simulations in Table I as a function of eccentricity, egw, and orbit-averaged azimuthal frequency, hω22i. Each curve corresponds to a NR
simulation in Table I, and is color-coded by symmetric mass ratio ν. The energy and angular momentum fluxes are rescaled by the
quasicircular Newtonian expressions in Eqs. (37). The red planes indicate the reference frequency Mωref

22 ¼ 0.042. Right column:
Projection of the left plots, in the Z–egw plane, where Z indicates the quantity in the z-axis (fluxes or periastron advance). The red-white
circles indicate the points where each NR simulation passes the reference frequency Mωref

22 ¼ 0.042.
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factors as our eccentricity definition, egw, only reduces to
the temporal eccentricity, et, at Newtonian order, while
higher PN order corrections may be important to reproduce
the eccentricity dependence of the NR fluxes, especially at
the end of the inspiral regime. Hence, we leave the
exploration of the eccentricity dependence of the NR fluxes
for future work.
The periastron advance is not rescaled, since the

Newtonian value is simply 1 by Kepler’s first law. As a
consequence, a larger dependence of this quantity on mass
ratio is observed when projected into the KNR − egw plane.
While the values corresponding to a fixed reference of
ωref
22 ¼ 0.042 (red circles) as a function of eccentricity show

a similar behavior as the fluxes. Overall, the inspection of
the NR curves in Fig. 9 indicates that most of the mass ratio
dependence may be already captured by the leading order
mass ratio contribution.
Moving to the comparison of NR against SMR results,

the NR and SMR fluxes rescaled by the leading order
symmetric mass ratio squared as well as the periastron
advance, are shown in Figs. 10–12 for three different
reference frequencies representative of the full inspiral,
Mωref

22 ¼ 0.034, 0.042, 0.063. The SMR fluxes are deter-
mined numerically from geodesic snapshots at the quan-
tities selected in Sec. V, ðν; egw;ωref

22 Þ, as explained in
Sec. IV. The SMR values for the periastron advance
correspond to the analytic geodesic result for the periastron
advance, which can be readily obtained from expressions
available in the Black Hole Perturbation Toolkit [120],

KSMR ¼
2pK

�
4eg

p−6þ2eg

�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp − 6þ 2egÞ

p ; ð38Þ

where K is the complete elliptical integral of the first kind,
and p and eg have been evaluated at the corresponding
values of ωref

22 and egw.
In the case of the fluxes (Figs. 10 and 11), both NR and

SMR show qualitatively good agreement, which is main-
tained with increasing eccentricity. This indicates that the
effect of eccentricity is well captured by the SMR calcu-
lations. Additionally, the dependence on mass ratio when
rescaling by the leading order symmetric mass ratio
contribution is small. The qualitative agreement between
the NR and SMR degrades with increasing reference
frequency, as expected because higher order mass ratio
corrections are larger in the strong field. The periastron
advance, shown in Fig. 12, has a stronger dependence on
mass ratio than the fluxes, especially at high frequencies.
As in the case of the fluxes, with increasing eccentricity the
agreement of the periastron advance between NR and SMR
does not substantially degrade, indicating that eccentric
effects are accurately described within SMR theory using
adiabatic evolutions. Overall, for both fluxes and periastron

advance the SMR curves overestimate the NR results for all
frequencies, mass ratios and eccentricities.
Before proceeding to a more quantitative comparison of

the difference between NR and SMR, we assess the accuracy
of the NR values shown in Figs. 10–12 by comparing
NR data obtained with different numerical settings. The data
in Figs. 10–12 were obtained from the highest numerical
resolution (Lev3) with applied center-of-mass (CoM)

FIG. 10. Orbit-averaged energy flux rescaled by the leading
order symmetric mass ratio dependence ðν−2Þ as a function of
eccentricity at three different reference frequencies, Mωref

22 ¼
0.034, 0.042, 0.063. Each marker corresponds to a NR simulation
at the specified reference frequency, and it is color coded by mass
ratio. The solid lines are the leading order SMR energy flux.

FIG. 11. Orbit-averaged angular momentum flux rescaled by
the leading order symmetric mass ratio dependence ðν−2Þ as a
function of eccentricity at three different reference frequencies,
Mωref

22 ¼ 0.034, 0.042, 0.063. Each marker corresponds to a NR
simulation at the specified reference frequency, and it is color
coded by mass ratio. The solid lines are the leading order SMR
angular momentum flux.
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correction,6 extrapolation order 4, and all the spin-weighted
spherical harmonic modes up to l ≤ 8. For the particular
reference frequency of ωref

22 ¼ 0.042, we show in Fig. 13 the
absolute difference between the quantities computed from
this reference waveform against the same quantities calcu-
lated from a waveform, where one of the previous conditions
is modified at a time. Precisely, the differences are computed
against a waveform without CoM correction; using extrapo-
lation order 3; a lower resolution (Lev2), and also in the
case in which only l ≤ 4 modes are included. The largest
differences for the three quantities typically occur when
comparing against the lower resolution (Lev2). Furthermore,
the individual errors are summed in quadrature for an overall
error estimate for the subsequent analysis.
We now perform a more quantitative comparison of

SMR and NR results for the particular reference frequency,
ωref
22 ¼ 0.042. The difference between the SMR and NR

fluxes rescaled by the leading order power of symmetric
mass ratio as a function of eccentricity are shown in the
top and mid left panels of Fig. 14, while in the bottom
panels the differences for periastron advance are displayed.
Each data point carries the error bar determined through
the analysis in Fig. 13. We see that at 0PA order there is
already good agreement between NR and SMR results,
with relative differences typically of the order ≲10%, with
the largest discrepancies occurring at equal masses, as
expected from a small mass ratio expansion.

Given the visible mass ratio trends in the left panels of
Fig. 14, we rescale by another power of symmetric mass
ratio to estimate the magnitude of the unknown 1PA
contributions. The right panels of Fig. 14 show that this

FIG. 12. Periastron advance as a function of eccentricity at
three different frequencies, Mωref

22 ¼ 0.034, 0.042, 0.063. Each
marker corresponds to a NR simulation at the specified reference
frequency, and it is color coded by mass ratio. The solid lines
correspond to joining the values of the geodesic periastron
precession at the same ðν; egw;ωref

22 Þ values as the NR configu-
rations.

FIG. 13. Error estimates for the energy and angular momentum
fluxes, and the periastron advance computed from the NR
simulations in Table I at a reference frequency of ωref

22 ¼ 0.042.
Taking as a reference data computed from the waveform computed
with highest numerical resolution (Lev3), with extrapolation order
4, CoM correction, and all the modes up to l ≤ 8, we compute the
absolute difference that arises when each one of these conditions is
changed, i.e., comparing to the values computed from the wave-
form with extrapolation order 3; without CoM correction; against a
lower resolution; and against the waveform with incomplete modes
only up to l ≤ 4. In the case of periastron advance the impact of
higher order modes is not assessed as this quantity is computed
from the (2,2)-mode. The orange circles represent the quadrature
sum of the individual error contributions.

6We perform center-of-mass correction and extrapolation of
the waveforms using the scri package [121], which implements
the methods developed in [122–124].

ANTONI RAMOS-BUADES et al. PHYS. REV. D 106, 124040 (2022)

124040-16



scaling collapses the three quantities into one-dimensional
curves. These one-dimensional curves represent the next-
to-leading order 1PA contribution to the respective quan-
tity, as a function of eccentricity. The small residual spread
in mass ratio in these curves represents unknown yet higher
order terms. The fact that the right panels of Fig. 14
collapse to quasi one-dimensional curves indicates that
such ≥ 2PA contributions are small compared to the 1PA
contribution.

Additionally, we have added to the right top and mid
panels of Fig. 14 the second order self-force results for the
quasicircular fluxes from [63]. The agreement is good, but a
small shift is noticeable between the quasicircular results
with respect to our eccentric results. This feature may be a
consequence due to the fact that the results from [63] are
based on a two-timescale expansion computed from the
self-force dynamics, while our fluxes are averaged over a
radial period of an evolving SMR waveform. However, a

FIG. 14. Left panels: Difference between the SMR and NR fluxes and periastron advance as a function of eccentricity at a reference
frequency of ωref

22 ¼ 0.042. The energy and angular momentum fluxes (top and mid panels) have been rescaled by the leading order
symmetric mass ratio power, ν−2. Right panels: Same quantity as in the corresponding left plot rescaled by an additional power in
symmetric mass ratio. In all panels each point is color-coded by symmetric mass ratio and carries the error bar computed in Fig. 13. The
red dots in right top and mid panels corresponds to the quasicircular second order self-force results from [63]. In the right bottom plot
the gray dot refers to the SMR prediction for quasicircular binaries from [88], and the dots circled by magenta disks correspond to the
periastron advance values for the q ¼ 1; 1=8 quasicircular NR simulations computed in [88].
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more detailed study is required to determine the source of
this small discrepancy, which is within the error bars.
In the case of the periastron advance, when rescaling by

an additional power of symmetric mass ratio in the bottom
right panel of Fig. 14, we include also the quasi-circular
1PA SMR result [64,65] and the two quasicircular non-
spinning NR simulations (q ¼ 1; 1=8) from [88]. The
eccentric results have comparatively large error bars at
small eccentricities because the amplitude of the oscilla-
tions inω22 (from which all quantities are derived) becomes
small and more difficult to resolve. A similar shift as in the
case of the fluxes is present in the bottom right panel of
Fig. 14 between the quasicircular results from [88] and
the low-eccentricity data points of our new analysis. We
leave for future work the precise determination of such
small differences between our results for the fluxes and the
periastron advance, and the existing quasicircular results
from the literature.
Finally, we remark that the dependence of the fluxes and

periastron advance with eccentricity resembles a functional
form as expected from the PN results [118,119,125], where
for instance the eccentric corrections to the fluxes are of the
form ∼ 1

ð1−e2Þx ð1þ ae2 þ � � �Þ, where x and a are coeffi-

cients to be determined. This suggests that fitting such
results as a function of eccentricity and mass ratio could
provide some phenomenological expressions for the
unknown 1PA SMR terms as a function of eccentricity,
mass ratio and frequency, as a similar eccentricity depend-
ence is observed for other frequencies in the inspiral. We
leave such a task for future work, as well as the production
of new eccentric NR simulations at smaller mass ratios,
which may help assess the contributions of the unknown
higher order terms in the SMR perturbation theory for
eccentric nonspinning binaries.

VII. CONCLUSIONS

We have presented a new set of BBH NR simulations
produced with the SpEC code with the objective of
exploring the accuracy of the small mass-ratio expansion
for eccentric nonspinning binary black holes. In particular,
our study aims to extend recent work [41] on assessing the
accuracy of the SMR theory for nonspinning quasicircular
BBH to nonspinning eccentric BBHs.
The simulations produced in this work cover mass ratios,

q ∈ ½0.1; 1�, initial eccentricities, e0gw ∈ ½0.01; 0.8�, and
initial mean anomalies close to apastron, l0 ∼ π. Each
simulation is performed at three different resolutions,
and most of them have ≳20 orbits, which makes our
dataset the one with the longest eccentric BBH simulations
to date.
These simulations are compared to waveforms produced

using the gravitational self-force formalism. Using an
existing frequency domain Teukolsky code [108–110],
we have generated eccentric inspirals in a Schwarzschild

background that are accurate to leading order in the SMR
expansion.
As a first step towards comparing the NR and SMR

results, we adapted the orbit-average method from [56] to
extract the radial and azimuthal frequencies, the energy and
angular momentum fluxes, and measure the eccentricity
from waveforms. We have validated this procedure to
extract orbit-averaged frequencies by using the 0PA inspi-
rals, where the geodesic azimuthal and radial frequencies
are provided as an outcome of performing such evolutions.
We find that the procedure of extracting the frequencies,
and eccentricities produces relative differences of 10−5

in the early inspiral, while the discrepancies increase up
to ∼10−2 close to merger due to a combination of the
boundary effects and the rapid increase of the frequencies,
which is a clear limitation of the procedure. Thus, we
restrict this study to the inspiral part of the waveform, and
leave for future work an improvement of the extraction
procedure to describe more faithfully the transition from
inspiral to plunge of the signal.
We investigated eccentricity eΩorb

defined from the
orbital frequency and eccentricity eω22

defined from the
gravitational wave (2,2) mode, and found them to system-
atically differ. Using PN theory we have derived relations
between different definitions of eccentricity. The instanta-
neous orbital and (2,2)-mode frequency are not related by
the simple factor 2 for eccentric binaries, as is the case of
the orbit-averaged frequencies, and thus, we have provided
PN-accurate expressions relating both, which produce
relative differences of ∼10−2 when tested on NR simu-
lations. Furthermore, we have provided PN-accurate
expressions relating eΩorb

, eω22
and the temporal eccentric-

ity, et. We show that in the Newtonian limit eω22
∼ 3et=4, so

that eω22
does not have the correct Newtonian limit. In

Eq. (6), we propose a new eccentricity definition egw based
on the (2,2)-mode frequency, which reduces to et in the
Newtonian limit.
Comparisons between NR and SMR require a map

which associates a SMR inspiral with the instantaneous
state of an eccentric NR inspiral. We investigated several
proposals in the literature for variables that identify the
same inspiral in the NR simulations and SMR evolutions.
We find that some choices used in the literature lead to the
NR simulations lying outside the range spanned by the
geodesic results, hampering comparisons. We propose to
use as variables the orbit-averaged azimuthal frequency,
hω22i, and eccentricity egw, measured both from the
instantaneous frequency of the (2,2)-mode, which do not
suffer from this limitation.
Moving to the comparison between NR and SMR

results, we have focused on the energy and angular
momentum fluxes, as well as the periastron advance.
Overall, we find good agreement between the NR and
SMR values, with relative differences typically ≲10%, and
no particular degradation with increasing eccentricity.
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We assess the contributions coming from the unknown
higher order term in the PA expansion (1PA) by considering
the difference between the NR and SMR fluxes and
periastron advance. After rescaling by the symmetric
mass-ratio cubed, we find that the differences collapse to
one dimensional curves as a function of eccentricity with
very small spread in mass ratio; see Fig. 14. This behavior
indicates that the next order term in the SMR expansion
(2PA) has a very small contribution compared to the 1PA
term. Furthermore, we compare these differences for the
fluxes and the periastron against available results in the
literature for quasicircular binaries from [63,88], and find
that the results are consistent with our findings, except for
small shifts which are within the error bars. We leave for
future work the precise determination of the origin of this
small feature.
The eccentricity dependence of the fluxes and periastron

advance rescaled by symmetric mass ratio also suggests a
functional form similar to the one predicted by the known
PN results [118,119,125]. An interesting extension of the
work presented here would be the modeling of these
differences between the adiabatic SMR inspirals and the
NR simulations, by fitting them as a function of mass ratio,
eccentricity and orbit-averaged frequency fq; egw; hω22ig,
and provide some phenomenological expressions which
can be used to compute the unknown 1PA term for the
fluxes and periastron advance. Another possible future
direction is to focus on comparing the phasing between NR
and SMR, and extend previous studies for quasicircular
binaries [41] to the eccentric case.
Future work will also include extending our set of

simulations to higher mass ratios, and to gradually incor-
porate spins. Other applications of the simulations will
include the calculation of the redshift factor [126], extend-
ing current studies on quasicircular binaries [127] to the
eccentric case. Finally, these simulations will also be of
paramount relevance to assess the accuracy of the currently
existing inspiral-merger-ringdown eccentric waveform
models [57,128–131].
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APPENDIX A: NUMERICAL RELATIVITY
INITIAL CONDITIONS

The quasiequilibrium, extended conformal thin sand-
wich initial data used by SpEC requires choice of two sets
of input parameters. The first set consists of masses and
spins of the two black holes. The second set determines
the orbital configuration of the two BHs. This second set
consists of an initial separation D0=M0, an initial instanta-
neous orbital frequencyM0Ω0 and the initial instantaneous
radial velocity a0 ¼ _r=r (see [80–82] for details). Our task
is to determine this second set of initial-data parameters
such that the subsequent evolution has an eccentricity close
to a certain desired value e0 and an inspiral of reasonable
length (20–50 orbits).
Let us first point out three considerations that will

influence our procedure: First, as discussed in Sec. II A
the present radial map used in SpEC cannot accommodate
that the distance between the two black holes increases
by more than a factor 1.5. We will avoid this problem by
starting NR simulation near apastron.7 Second, there are
previous results on how the tangential momentum in an
eccentric binary varies with the eccentricity. Specifically,
we will utilize the correction factor of the tangential
momentum [49],

λ0t ðr; e; ν; signÞ ¼ 1þ sign ×
e
2
×

�
1 −

1

r
ð2þ νÞ

	
; ðA1Þ

where r is the orbital separation and sign ¼ �1 is the sign
of the correction [49]. While this correction has been
derived in the low eccentricity limit, it has been shown
[61] to be useful to determine the initial parameters in
eccentric moving puncture simulations. We average the
correction with both signs to arrive at

λ̄0t ðr; e; νÞ ¼
1

2
×

�
λ0t ðr; e; ν;−1Þ þ

1

λ0t ðr; e; ν;þ1Þ
	
; ðA2Þ

as in Eq. (2.3) of [61]. The third consideration concerns
the choice of coordinates: our SpEC simulations start
from superposed harmonic Kerr (SHK) data [78],
whereas Eq. (A1) was derived in Arnowitt-Desner-Misner
transverse-traceless (ADMTT) coordinates. Therefore, we
will also employ a coordinate transformation from ADMTT
coordinates to harmonic coordinates.
Overall, we proceed as follows:
(1) Choose mass-ratio q ≤ 1, and a desired eccentricity

e0. Set spins χ i ¼ 0, masses m1 ¼ 1=ð1þ qÞ,

7Very recently a new radial map has been developed and
implemented in SpEC, which avoids these restrictions.
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m2 ¼ q=ð1þ qÞ (so that M0 ¼ m1 þm2 ¼ 1),
and ν ¼ m1m2=M2

0 ¼ q=ð1þ qÞ2.
(2) Choose a tentative initial separation as the apastron

distance of a Newtonian binary with periastron
distance of rp ¼ 9M0, i.e., D̃0 ¼ ð1þ e0Þ×
ð1 − e0Þ−1rp. If a PN evolution with the same
parameters indicates that the inspiral may be too
short, increase D̃0.

(3) Compute 3.5PN quasicircular estimates for the
tangential and radial momenta, p0

t ; p0
r in ADMTT

coordinates using Eqs. (A2) and (2.16) in [61].
(4) Calculate the correction factor λ̄t using Eq. (A2).
(5) Construct the ADMTT position and momentum

vectors in Cartesian coordinates,

xADMTT ¼ ð0; D̃0; 0Þ; ðA3Þ

pADMTT ¼ ðp0
r ; λ̄0t p0

t ; 0Þ: ðA4Þ

Here, we placed the black holes on the y-axis. Note
that λ̄t ≤ 1, so that the tangential momentum is
reduced, consistent with our goal to start at apastron.

(6) Apply the transformation from ADM to harmonic
coordinates [132] to obtain the position and velocity
vector in harmonic coordinates,

xH ¼ Y½xADMTT; pADMTT�; ðA5Þ

vH ¼ V½xADMTT; pADMTT�; ðA6Þ

where Y and V are operators mapping the ADM
coordinates to harmonic coordinates expanded up to
3PN order [132]. (Note that the expressions in [132]
are restricted to nonspinning binaries.)

(7) Read of the initial data parameters from the position
and velocity vectors in harmonic coordinates,

D0 ¼ jxHj; ðA7Þ

Ω0 ¼
jxH × vHj

D2
0

; ðA8Þ

a0 ¼
vH · xH

D2
0

; ðA9Þ

where Euclidean vector operations are used.
Figure 15 compares the target eccentricity e0 with the

actual eccentricity e0gw achieved near the start of each
simulation. There is an offset between these eccentricities.
We note that specially for high eccentricities the use of
the correction factor is not accurate due to the fact that
it is an expression derived in the low eccentricity limit.
Furthermore, we attribute the larger differences between
our target and measured initial eccentricities as compared
to other studies like [61] due to the assumptions on the

identification we made between harmonic and superposed
harmonic coordinates, and inaccuracies in the PN expres-
sions for the eccentric corrections being amplified due to
the transformation from the ADM to the harmonic gauge.
The calculation of the initial parameters presented in

this section is useful for placing points in the eccentric
parameter space with a limited accuracy. In the future we
plan to adopt an iterative procedure to specify the desired
initial eccentricity and mean anomaly as done in [58,133],
to accurately and efficiently populate the eccentric param-
eter space.

APPENDIX B: NUMERICAL RELATIVITY
WAVEFORM QUALITY

In this appendix we assess the accuracy of the NR
waveforms listed in Table I. For each simulation SpEC
employs multiple subdomains. The shape, size and number
of subdomains is dynamically varied during the simulations
according to the spectral adaptive mesh refinement (AMR)
procedure [79,134]. The accuracy of the simulations is
controlled by a tolerance parameter which determines when
AMR should add or remove grid points within a given
subdomain, and when a subdomain should be split into
two, or when two neighboring subdomains should be
combined into one. As a consequence, it is difficult to
obtain strict convergence as a function of the AMR
tolerance parameter. Convergence may fail, for instance,
due to two identical simulation having different AMR
tolerances in a particular subdomain modifying the number
of grid points in it, or different subdomain boundaries in a
particular time. Notwithstanding these issues, most simu-
lations in the SXS catalog show convergence with the AMR
tolerance [50].
In this work we have run each simulation at three

different AMR tolerances, henceforth called different

FIG. 15. Initial eccentricity (crosses), e0gw, as defined in Eq. (6),
measured from the NR simulations in Table I, and initial
eccentricity (dots), e0, specified in Eq. (A2), as a function of
the merger time of the simulations. Each simulation is color-
coded according to its inverse mass ratio.
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resolutions for brevity. This appendix extends the error
analysis of our main results with calculations of the
mismatch between waveforms obtained at the highest
and second highest resolutions.
Following Ossokine et al. 2020 [135], we compute the

SNR-weighted mismatch between waveforms computed
from the highest and the next-to-highest resolutions. The
mismatches are computed for binary masses 20 M⊙ ≤
M ≤ 200M⊙, and using as a Power Spectral Density
(PSD), the Advanced LIGO’s zero-detuned high-power
design sensitivity curve [136]. When both waveforms are in
band, we use fmin ¼ 10 Hz and fmax ¼ 2048 Hz, as the
lower and upper bounds of the integral. For waveforms
where this is not the case, we set fmin ¼ 1.05fstart, where
fstart is the starting frequency of the NR waveform. To
represent dependence on M, we compute the mean and the
maximum over M. The results of the mismatch calculation
are shown in Fig. 16. The vertical dashed lines denote the

median values of each distribution. We note that the median
value of the maximum mismatch is below 10−3, while for
the mean mismatch is ∼10−4. Three simulations (SXS:
BBH:2517, SXS:BBH:2525, SXS:BBH:2564) have maxi-
mum mismatches above 1%, M̄SNR

max ¼ 0.011; 0.065, 0.041,
respectively. The highest mismatch occurs for SXS:
BBH:2525 which is both the shortest evolution in our
dataset (making it more prone to systematics due to the
ringdown transition in SpEC [68,70]), and which was also
the first simulation produced in our dataset, so it does not
take into account some improvements in SpEC, which
have been introduced during this project (see Sec. II for
details). Overall, the mismatches are comparable to the
ones obtained in the SXS catalog for quasicircular binaries
[50] (see Fig. 9 there, but note that [50] uses a flat PSD).
This indicates that SpEC is capable to perform simulation
of eccentric BBH with a numerical error comparable to the
quasicircular case.

APPENDIX C: CALCULATION OF eω22

IN PN EXPANSIONS

In this appendix we use PN theory to investigate the
relation among eω22

, eΩorb
and the post-Newtonian et [137].

In the following, we set the total mass, M ¼ 1, to ease the
notation.

1. Relation eω22
− eΩorb

Section III showed that the differences between eω22
and

eΩorb
can be explained within PN theory. This appendix

derives the relations used there at 1PN using harmonic
coordinates. As a first step, we calculate eω22

from h22 at the
1PN order [91],

h22 ¼ 4ν

ffiffiffi
π

5

r h
Ĥ0PN

22 þ γĤ1PN
22

i
e−2iϕ; ðC1Þ

Ĥ0PN
22 ¼ 1

r
− _r2 þ 2ir_r _ϕþr2 _ϕ2; ðC2Þ

Ĥ1PN
22 ¼

�
9

14
−
27ν

14

�
r4 _ϕ4 þ i_r

��
45ν

7
þ 25

21

�
_ϕþ

�
9

7
−
27ν

7

�
r3 _ϕ3

	
þ 1

r2

�
ν

2
− 5

�
þ
�
26ν

7
þ 11

42

�
r _ϕ2

þ i

�
9

7
−
27ν

7

�
r_r3 _ϕþ _r2

r

�
−
16ν

7
−
15

14

�
þ
�
27ν

14
−

9

14

�
_r4; ðC3Þ

where γ ¼ 1
c2 is the PN order bookkeeping parameter, i is the imaginary unit, r is the radial separation, ϕ is the orbital phase

and the overdot represents a time derivative.
Taking the complex argument of Eq. (C1) and expanding to 1PN order yields

ϕ1PN
22 ¼ −2ϕþ δþ γr_r _ϕ

41r3 _ϕ2 þ 47r_r2 þ 235 − 2νð51r3 _ϕ2 þ 60r_r2 − 57Þ
21ðC2

1 þ C2
2Þ

ðC4Þ

with C1 ¼ r3 _ϕ2 − r_r2 þ 1, C2 ¼ 2r2 _r _ϕ, tan δ ¼ C2=C1.

FIG. 16. Histograms of the SNR-weighted mismatch between
the two highest resolutions for each simulation in Table I. The
orange and green distributions correspond to the mean and
maximum mismatch over the total mass range considered
M ¼ ½20; 200� M⊙. The vertical dashed lines correspond to the
median values of the distributions.
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The frequency ω22 entering the definition of eω22
can be

expressed as

ω22 ≡ dϕ22

dt
¼ ∂ϕ22

∂r
_rþ ∂ϕ22

∂_r
̈rþ ∂ϕ22

∂ϕ
_ϕþ ∂ϕ22

∂ _ϕ
ϕ̈: ðC5Þ

Expanding Eq. (C5) at 1PN order, we obtain

ω1PN
22 ¼ F ðν; r; _r; ̈r; _ϕ; ϕ̈Þ ¼ ω0

22 þ γω1
22; ðC6Þ

where

ω0
22 ¼

−2
C2
1 þ C2

2

½ _ϕ − ð̈rrþ ð4þ ̈rr2Þ_r2 − 2r_r4Þr _ϕþ r3ð2 − ̈rr2 þ 3r_r2Þ _ϕ3 þ r6 _ϕ5 þ ϕ̈r2 _rð−1þ r_r2 þ r3 _ϕ2Þ�; ðC7Þ

ω1
22 ¼

−1
21ðC2

1 þ C2
2Þ2

½ð1 − r_r2Þð_r2ð−235 − 114νþ 7r_r2ð−47þ 18νÞÞ þ ̈rrð−235 − 114νþ r_r2ð18ð−47þ νÞ

þ r_r2ð−47þ 120νÞÞÞÞ _ϕþ r3ð2_r2ð388þ r_r2ð875þ r_r2ð53 − 138νÞ − 84νÞ þ 432νÞ þ ̈rrð−7ð73þ 18νÞ
þ r_r2ðr_r2ð29 − 66νÞ þ 2ð53þ 576νÞÞÞÞ _ϕ3 þ r6ð_r2ð1093þ 4r_r2ð47 − 120νÞ þ 774νÞ þ ̈rrð−317þ 90ν

þ r_r2ð−59þ 156νÞÞÞ _ϕ5 þ r9ð̈rr − 2_r2Þð−41þ 102νÞ _ϕ7 þ ϕ̈r_rðð−1þ r_r2Þ2ð−235 − 114ν

þ r_r2ð−47þ 120νÞÞ þ r3ð347þ 534νþ r_r2ð810 − 624νþ r_r2ð−29þ 66νÞÞÞ _ϕ2 þ r6ðr_r2ð59 − 156νÞ
þ 7ð89þ 78νÞÞ _ϕ4 þ r9ð41 − 102νÞ _ϕ6Þ�: ðC8Þ

This result is used in the main text in Eq. (17).
At the turning points apastron and periastron, _r ¼ 0 and

ϕ̈ ¼ 0, and Eq. (C6) simplifies to

ω1PNa;p
22 ¼ 2 _ϕð1 − ̈rr2 þ r3 _ϕ2Þ

1þ r3 _ϕ2

þ γ
̈rr _ϕ½235þ 114νþ ð41 − 102νÞr3 _ϕ2�

21ð1þ r3 _ϕ2Þ2 ðC9Þ

At apastron, ̈r < 0 whereas at periastron ̈r > 0.
Substituting Eq. (C9) into Eq. (5), and replacing
_ϕ ¼ Ωorb, one obtains

eω22
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp
22ðrp;Ωp

orb; ̈rp; ν; γÞ
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωa
22ðra;Ωa

orb; ̈ra; ν; γÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp
22ðrp;Ωp

orb; ̈rp; ν; γÞ
q

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωa
22ðra;Ωa

orb; ̈ra; ν; γÞ
p ;

ðC10Þ

where fra;p;Ωa;p
orb ; ̈ra;pg indicate the corresponding quan-

tities at apastron and periastron, respectively. Expanding
Eq. (C10) to 1PN order yields

e1PNω22
≡ Gðν; ra;p;Ωa;p

orb ; ̈ra;pÞ ¼ e0ω22
þ γe1ω22

; ðC11Þ

where

e0ω22
¼ α−

αþ
; ðC12Þ

e1ω22
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðra;Ωa

orb; ̈raÞΩp
orbð1þ r2pð̈rp þ rpðΩp

orbÞ2ÞÞ
q

42ð1þ r3pðΩp
orbÞ2Þ1=2α21

×

�̈
rarað−235 − 114νþ r3að−41þ 102νÞðΩa

orbÞ2Þ
ð1þ r3aðΩa

orbÞ2Þð−1þ r2að̈ra − raðΩa
orbÞ2ÞÞ

þ ̈rprpð235þ 114νþ r3pð41 − 102νÞðΩp
orbÞ2Þ

ð1þ r3pðΩp
orbÞ2Þð1þ r2pð̈rp þ rpðΩp

orbÞ2ÞÞ
	
;

ðC13Þ

with

α� ¼ Δðrp;Ωp
orb; −̈rpÞ1=2 � Δðra;Ωa

orb; ̈raÞ1=2; ðC14Þ

Δðr;Ωorb; ̈rÞ ¼ 2Ωorb

�
1 −

̈rr2

1þ r3Ω2
orb

�
: ðC15Þ

This result is used in the main text in Eq. (18).
The expressions derived above can be useful to estimate

ω22, or the eccentricity eω22
, for NR simulations, where the

trajectories are output in Cartesian or polar coordinates8

and are typically cleaner quantities than the frequencies
of the extracted waveform modes, especially for finite

8We note that the expressions derived above correspond to
harmonic coordinates [91], while NR coordinates typically do
not correspond to these ones. Thus, one should transform the
harmonic coordinates to the ones used by the corresponding NR
code. However, in practice we find that for our SpEC simulations
not performing such a transformation still provides accurate
results.
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difference codes [44]. Another application of Eq. (C10) is
for eccentricity reduction/control purposes, where short
evolutions are done to iteratively converge to the desired
value of eccentricity. In these methods [44,49,81,82]
one typically chooses a trajectory-based definition of
eccentricity instead of a waveform-based one due to the
extra computational cost, which involves the evolution of
the gravitational radiation reaching the extraction radii.
However, with the expressions provided in Eq. (C10), one
can obtain an approximation of eω22

from the coordinates.

2. Relation eΩorb
− et

Most eccentric waveform models for compact binaries
use PN theory to describe the inspiral regime and/or
their initial parameters [92–100,129,131,138]. A commonly
used description of eccentric orbits is the quasi-Keplerian
parametrization [92] where three different eccentricity
parameters et, er and eϕ describe the orbit [137]. These
three eccentricities are not independent from each other,
and they are all related at a given PN order. Eccentric PN
waveform models typically use the temporal eccentricity, et,
as the eccentricity parameter. In the following, PN-accurate

expressions between the eccentricity defined from the orbital
frequency, eΩorb

, and et, are computed.
In order to perform this calculation we use the 3PN

expression for Ωorb, which can be found in Appendix A of
[54]. The calculation of eΩorb

requires the values of the
orbital frequency at periastron and apastron, which corre-
spond to values of the eccentric anomaly of u ¼ 0 and
u ¼ π, respectively. Thus, at the turning points, the orbital
frequency can be expressed as

Ωa;p
orb ¼ x3=2ðΩ0PN

orb þ γΩ1PN
orb þ γ2Ω2PN

orb þ γ3Ω3PN
orb Þ; ðC16Þ

where γ is the PN bookkeeping parameter. Using the
abbreviation ϵ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2t
p

, the contributions at different
PN order can be written as

Ω0PN
orb ¼ 1

ð1� etÞ2
ϵ; ðC17Þ

Ω1PN
orb ¼ �ðν − 4Þetx

ð1� etÞ2ϵ
; ðC18Þ

Ω2PN
orb ¼ �x2

12ϵ3ð1� etÞ2
½�9e2t þ ð−5ν2 þ 35ν − 48Þe3t þ etð−ν2 þ νð−41þ 72ϵÞ − 180ϵþ 24Þ ∓ 18ð−5þ 2νÞð−1þ ϵÞ�;

ðC19Þ

Ω3PN
orb ¼ ∓x3

13440ϵ5ð1� etÞ2
½−560νð3ν2 − 59ν − 36Þe5t ∓ 70ð960ν2 þ ð123π2 − 10880Þνþ 2880Þðϵ − 1Þ

∓ 1680ð2ν3 − 27ν2 − 29νþ 12Þe4t þ 560e3t ðν2ð288ϵ − 334Þ þ νð389 − 852ϵÞ þ 960ϵþ 2ν3 − 936Þ
∓ 3e2t ð1120ν2ð46ϵ − 85Þ þ νð−239680ϵ − 7175π2 þ 584944Þ þ 2240ð150ϵ − 227Þ þ 1120ν3Þ
þ 4etð140ν2ð432ϵ − 421Þ þ νð4305π2ϵ − 555520ϵþ 130796Þ þ 6720ð55ϵ − 23Þ þ 140ν3Þ�; ðC20Þ

where the upper sign corresponds to apastron and the lower
sign corresponds to periastron. To derive Eq. (C20) we
assumed that the value of x is the same at apastron and
periastron as it corresponds to an orbit-averaged frequency,
which is evolved using the radiation reaction equations in
an adiabatic evolution. This approximation may not be
accurately fulfilled when postadiabatic effects become
more relevant as in the case of the binary close to merger.
Substituting Eq. (C20) into Eq. (4) and PN-expanding the
result to 3PN order, one obtains

eΩorb
¼ e0PNΩorb

þ γe1PNΩorb
þ γ2e2PNΩorb

þ γ3e3PNΩorb
; ðC21Þ

where

e0PNΩorb
¼ et; ðC22Þ

e1PNΩorb
¼ x

2
ð4 − νÞet; ðC23Þ

e2PNΩorb
¼ x2et

24ð1 − e2t Þ
½12ð−2þ 15ϵ − 4e2t Þ

þ νð13e2t − 72ϵþ 41Þ þ ν2ð1 − e2t Þ�; ðC24Þ

e3PNΩorb
¼ x3et
24ð1− e2t Þ2

�
24ð−17þ 30ϵþ 9ð1− e2t Þ þ 10ϵ3Þ

þ ν

�
5832

35
þ
�
123π2

8
− 1708

�
ϵþ 9

2
ð1− e2t Þ− 42ϵ3

þ 62ð1− e2t Þ2
�
þ ν2

�
−258þ 252ϵþ 73ð1− e2t Þ

− 72ϵ3 þ 21

2
ð1− e2t Þ2

�
þ 1

2
ν3ð1− e2t Þ2

	
: ðC25Þ
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We note that in the derivation of Eq. (C22) only the
instantaneous contributions to the orbital frequency up to
3PN order have been used, while tail contributions or spin
terms, which would appear beyond 1PN order, have been
neglected. We leave for future work including spin effects,
as well as contributions from the tail terms.

3. Relation eω22
− et

This derivation proceeds similarly to appendix C 1, but
starting from the quasi-Keplerian parametrization. We start

with 1PN expressions for the (2,2)-mode waveform, h22, in
the quasi-Keplerian parametrization [91],

hQK
22 ¼ 4νx

ffiffiffi
π

5

r h
ĥ0PN22 þ γĥ1PN22

i
e−2iϕ; ðC26Þ

ĥ0PN22 ¼ 2

½1 − et cosðuÞ�2
�
1 − e2t þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
et sinðuÞ

−
1

2
et cosðuÞ½1 − et cosðuÞ�

	
; ðC27Þ

Ĥ1PN
22 ¼ −

x
42ð1− e2t Þð1− et cosðuÞÞ3

½ð64ν− 278Þe4t þ ð46νþ 64Þe2t þ e3t cos3ðuÞðð17ν− 57Þe2t − 17ν− 27Þ

þ e2t cos2ðuÞðð114− 34νÞe2t þ 34νþ 54Þ þ et cosðuÞðð114− 34νÞe4t þ ð207− 89νÞe2t þ 123ν− 405Þ

þ i
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

q
et sinðuÞðð272− 46νÞe2t þ et cosðuÞðð34ν− 114Þe2t þ 50ν− 138Þ− 38ν− 20Þ− 110νþ 214�: ðC28Þ

The phase of Eq. (C28) can be written as

ϕ1PN
22 ¼ tan−1

�
A0

A1

�
þ γ

xet
B0

½sinðuÞðð103 − 78ηÞe4t þ ð917 − 294ηÞe2t þ 72ð4η − 13ÞÞ þ etð2 sinð2uÞðð117η − 340Þe2t
− 54ηþ 277Þ þ etð21ðη − 1Þet sinð4uÞ þ sinð3uÞð−6ηðe2t þ 13Þ þ 79e2t þ 5ÞÞÞ�; ðC29Þ

where

A0 ¼ 4et

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
sinðuÞ cosð2ϕÞ þ sinð2ϕÞð−e2t cosð2uÞ þ 2et cosðuÞ þ 3e2t − 4Þ; ðC30Þ

A1 ¼ 4et

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
sinðuÞ sinð2ϕÞ þ cosð2ϕÞðe2t cosð2uÞ − 2et cosðuÞ − 3e2t þ 4Þ; ðC31Þ

B0 ¼ 42

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

q
ðet cosðuÞ − 1Þ2ð2e3t cos3ðuÞ − e2t cosð2uÞ þ 7e2t − 8Þ: ðC32Þ

The time derivative of ϕ1PN
22 ðx; et; u;ϕÞ can be expressed in functional form as

ω1PN
22 ≡ dϕ1PN;QK

22

dt
¼ ∂ϕ22

∂x
_xþ ∂ϕ22

∂et
_et þ

∂ϕ22

∂u
_uþ ∂ϕ22

∂ϕ
_ϕ: ðC33Þ

The time derivatives _x, _et and _ϕ can be found in [54,139],
while for the eccentric anomaly, u, we use the Kepler
equation at Newtonian order to write9

_u ¼
_lþ _et sin u
1 − et cos u

; ðC34Þ

where l is the mean anomaly, and an expression for _l in the
quasi-Keplerian parametrization can be found in [54]. We

note that the 3PN Kepler equation can be found in [54,139];
however, we restrict to low PN order for simplicity of
the calculations, and to avoid the introduction of the true
anomaly, which substantially complicates the higher order
calculations [140].
At 1PN order, one can write the following expression for

the frequency of the (2,2)-mode,

ωQK;1PN
22 ¼ ωQK;0

22 þ γωQK;1
22 ; ðC35Þ

where

9We note that there are no 1PN order corrections to the Kepler
equation, and that the first higher order PN correction enters at
2PN order [92,140].
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ωQK;0
22 ¼ −

2x3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ðe2t cosð2uÞ − 4et cosðuÞ − 5e2t þ 8Þ

ðet cosðuÞ − 1Þ2ð2e3t cos3ðuÞ − e2t cosð2uÞ þ 7e2t − 8Þ ; ðC36Þ

ωQK;1
22 ¼ x5=2et

168
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2t

p
ðet cosðuÞ− 1Þ4ðe2t ðcosð2uÞ− 2et cos3ðuÞÞ− 7e2t þ 8Þ2

½cosðuÞðð5155− 1605νÞe8t þ 21ð86νþ 213Þe6t

− 24ð279νþ 838Þe4t þ 16ð288ν− 1321Þe2t þ 768ð115− 16νÞÞ þ etð−4ð7ð102ν− 253Þe6t þ ð19781− 4995νÞe4t
þ ð6936ν− 43318Þe2t − 4608νþ 33120Þ þ e5t cosð7uÞðð5− 15νÞe2t − 6νþ 79Þ− 14e4t cosð6uÞðð6ν− 32Þe2t
− 21νþ 92Þ þ e3t cosð5uÞðð3νþ 461Þe4t þ 9ð166ν− 445Þe2t − 2484νþ 7492Þ þ 4e2t cosð4uÞðð849− 174νÞe4t
þ ð509− 1107νÞe2t þ 2016ν− 4298Þ þ et cosð3uÞð−495ðν− 5Þe6t þ ð6306ν− 27043Þe4t þ 20ð1535− 69νÞe2t
− 336ð32ν− 57ÞÞ þ 2 cosð2uÞð6ð95νþ 708Þe6t − 3ð1553νþ 964Þe4t þ 8ð642νþ 619Þe2t þ 128ð33ν− 214ÞÞÞ�:

ðC37Þ

Evaluating Eq. (C35) at the turning points, apastron, u ¼ π, and periastron, u ¼ 0, one obtains

ωa;p
22 ðx; et; ηÞ ¼

4x3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ðet � 1Þ2ð2 ∓ etÞ

� γ
x5=2etð11ð6η − 23Þe2t � ð607 − 78ηÞet þ 96η − 690Þ

21
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2t

p
ðe2t þ et − 2Þ2

; ðC38Þ

where the upper and lower signs correspond to apastron and periastron, respectively.
Finally, substituting the result of Eq. (C38) into the eccentricity definition of Eq. (5), and expanding to 1PN order one

obtains

e1PN;QKω22
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2 − et

p ð1þ etÞ − ð1 − etÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ et

p
ffiffiffiffiffiffiffiffiffiffiffiffi
2 − et

p ð1þ etÞ þ ð1 − etÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ et

p − γxet
ð54ηþ 101Þe2t þ 192η − 1380

84ðe4t − 5e2t þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − e2t

p
þ 4Þ

: ðC39Þ

This is Eq. (19) from the main text.

[1] J. Aasi et al. (LIGO Scientific Collaboration), Advanced
LIGO, Classical Quantum Gravity 32, 074001 (2015).

[2] F. Acernese et al. (VIRGO Collaboration), Advanced
Virgo: A second-generation interferometric gravitational
wave detector, Classical Quantum Gravity 32, 024001
(2015).

[3] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Binary Black Hole Mergers in the first Advanced
LIGO Observing Run, Phys. Rev. X 6, 041015 (2016); 8,
039903(E) (2018).

[4] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GWTC-1: A Gravitational-Wave Transient Catalog
of Compact Binary Mergers Observed by LIGO and Virgo
during the First and Second Observing Runs, Phys. Rev. X
9, 031040 (2019).

[5] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GWTC-2: Compact Binary Coalescences Observed
by LIGO and Virgo during the First Half of the Third
Observing Run, Phys. Rev. X 11, 021053 (2021).

[6] R. Abbott et al. (LIGO Scientific, VIRGO, and KAGRA
Collaborations), GWTC-3: Compact binary coalescences

observed by LIGO and Virgo during the second part of the
third observing run, arXiv:2111.03606.

[7] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tion), Binary black hole population properties inferred
from the first and second observing runs of Advanced
LIGO and Advanced Virgo, Astrophys. J. Lett. 882, L24
(2019).

[8] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M.
Zaldarriaga, New binary black hole mergers in the second
observing run of Advanced LIGO and Advanced Virgo,
Phys. Rev. D 101, 083030 (2020).

[9] A. H. Nitz, S. Kumar, Y.-F. Wang, S. Kastha, S. Wu, M.
Schäfer, R. Dhurkunde, and C. D. Capano, 4-OGC: Cata-
log of gravitational waves from compact-binary mergers,
arXiv:2112.06878.

[10] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW190412: Observation of a binary-black-hole
coalescence with asymmetric masses, Phys. Rev. D 102,
043015 (2020).

[11] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW190814: Gravitational waves from the

ECCENTRIC BINARY BLACK HOLES: COMPARING NUMERICAL … PHYS. REV. D 106, 124040 (2022)

124040-25

https://doi.org/10.1088/0264-9381/32/11/115012
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.8.039903
https://doi.org/10.1103/PhysRevX.8.039903
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://arXiv.org/abs/2111.03606
https://doi.org/10.3847/2041-8213/ab3800
https://doi.org/10.3847/2041-8213/ab3800
https://doi.org/10.1103/PhysRevD.101.083030
https://arXiv.org/abs/2112.06878
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.1103/PhysRevD.102.043015


coalescence of a 23 solar mass black hole with a 2.6 solar
mass compact object, Astrophys. J. Lett. 896, L44 (2020),

[12] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Population properties of compact objects from the
second LIGO-Virgo gravitational-wave transient catalog,
Astrophys. J. Lett. 913, L7 (2021).

[13] M. L. Katz, L. Z. Kelley, F. Dosopoulou, S. Berry, L.
Blecha, and S. L. Larson, Probing massive black hole
binary populations with LISA, Mon. Not. R. Astron. Soc.
491, 2301 (2020).

[14] J. R. Gair, A. Sesana, E. Berti, and M. Volonteri, Con-
straining properties of the black hole population using
LISA, Classical Quantum Gravity 28, 094018 (2011).

[15] K. Jani, D. Shoemaker, and C. Cutler, Detectability of
intermediate-mass black holes in multiband gravitational
wave astronomy, Nat. Astron. 4, 260 (2020).

[16] L. Blanchet, Gravitational radiation from post-Newtonian
sources and inspiralling compact binaries, Living Rev.
Relativity 17, 2 (2014).

[17] A. Cristofoli, N. E. J. Bjerrum-Bohr, P. H. Damgaard, and
P. Vanhove, Post-Minkowskian Hamiltonians in general
relativity, Phys. Rev. D 100, 084040 (2019).

[18] A. Buonanno and T. Damour, Effective one-body approach
to general relativistic two-body dynamics, Phys. Rev. D
59, 084006 (1999).

[19] T. Damour, Introductory lectures on the effective one body
formalism, Int. J. Mod. Phys. A 23, 1130 (2008).

[20] P. Ajith et al., Phenomenological template family for
black-hole coalescence waveforms, Classical Quantum
Gravity 24, S689 (2007).

[21] A. Pound and B. Wardell, Black hole perturbation theory
and gravitational self-force, arXiv:2101.04592.

[22] L. Lehner and F. Pretorius, Numerical relativity and astro-
physics, Annu. Rev. Astron. Astrophys. 52, 661 (2014).

[23] S. F. Portegies Zwart and S. McMillan, Black hole mergers
in the universe, Astrophys. J. Lett. 528, L17 (2000).

[24] I. Mandel and R. O’Shaughnessy, Compact binary coa-
lescences in the band of ground-based gravitational-wave
detectors, Classical Quantum Gravity 27, 114007 (2010).

[25] J. Samsing, M. MacLeod, and E. Ramirez-Ruiz, The
formation of eccentric compact binary inspirals and the
role of gravitational wave emission in binary-single stellar
encounters, Astrophys. J. 784, 71 (2014).

[26] C. L. Rodriguez and A. Loeb, Redshift evolution of the
black hole merger rate from globular clusters, Astrophys. J.
Lett. 866, L5 (2018).

[27] G. Fragione and B. Kocsis, Black Hole Mergers from an
Evolving Population of Globular Clusters, Phys. Rev. Lett.
121, 161103 (2018).

[28] M. Zevin, J. Samsing, C. Rodriguez, C.-J. Haster, and E.
Ramirez-Ruiz, Eccentric black hole mergers in dense star
clusters: The role of binary–binary encounters, Astrophys.
J. 871, 91 (2019).

[29] M. Zevin, I. M. Romero-Shaw, K. Kremer, E. Thrane, and
P. D. Lasky, Implications of eccentric observations on
binary black hole formation channels, Astrophys. J. Lett.
921, L43 (2021).

[30] I. M. Romero-Shaw, P. D. Lasky, and E. Thrane, Searching
for eccentricity: Signatures of dynamical formation in the

first gravitational-wave transient catalogue of LIGO and
Virgo, Mon. Not. R. Astron. Soc. 490, 5210 (2019).

[31] V. Gayathri, J. Healy, J. Lange, B. O’Brien, M.
Szczepanczyk, I. Bartos, M. Campanelli, S. Klimenko,
C. O. Lousto, and R. O’Shaughnessy, Eccentricity estimate
for black hole mergers with numerical relativity simula-
tions, Nat. Astron. 6, 344 (2022).

[32] I. M. Romero-Shaw, P. D. Lasky, E. Thrane, and J. C.
Bustillo, GW190521: Orbital eccentricity and signatures of
dynamical formation in a binary black hole merger signal,
Astrophys. J. Lett. 903, L5 (2020).

[33] J. C. Bustillo, N. Sanchis-Gual, A. Torres-Forné, J. A.
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