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Abstract

We study the late-time properties of pseudo-(Rényi) entropy of locally excited states in rational
conformal field theories (RCFTs). The two non-orthogonal locally excited states used to construct
the transition matrix are generated by acting different descendant operators on the vacuum. We
prove that for the cases where two descendant operators are generated by a single Virasoro generator
respectively acting on a primary operator, the late-time excess of pseudo-entropy and pseudo-Rényi
entropy always coincides with the logarithmic of the quantum dimension of the corresponding
primary operator. Furthermore, we consider two linear combination operators generated by the
generic summation of Virasoro generators. We find their pseudo-Rényi entropy and pseudo-entropy
may get additional contributions, as the mixing of holomorphic and anti-holomorphic parts of
the correlation function enhances the entanglement. Finally, we assert the pseudo-Rényi entropy
and pseudo-entropy are still the logarithmic quantum dimension of the primary operator when
the correlation function of linear combination operators can be divided into the product of its
holomorphic part and anti-holomorphic part. We offer some examples to illustrate the phenomenon.
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1 Introduction

The discovery of AdS/CFT correspondence [1-3] has motivated much research related to quantum
information theory in the high-energy physics community in recent years. Among them, quantum
entanglement, as a carrier of quantum information, play an increasingly significant role in probing
the structure of quantum field theories (QFTs) [4-10], the emergence of geometry [11-13], black hole
information paradox [14H18].

Recently, a new entanglement measure, called pseudo-entropy, was proposed in [19] as a generaliza-
tion of entanglement entropy. Specifically, pseudo-entropy is a two-state vector version of entanglement
entropy, defined as follows. Given two non-orthogonal states |¢)) and |p) in the Hilbert space Hs of a
composed quantum system S = AU B, we first constructs an operator called transition matriz acting

on Hs,

o — 10Nl pype
T =0~ tend] M

The pseudo-entropy of subsystem A, then, is obtained by calculating the von Neumann entropy of the

reduced transition matrix 7j4¢' = trp [T¥l%),

S(TI) = —tr[ TP 10g TV19). 2)



In general, the reduced transition matrix is non-Hermitian and pseudo-entropy can be complex-valued.
When |¢) = [¢), pseudo-entropy reduces to entanglement entropy. Like entanglement entropy, in

practice, especially in QFT's, one usually computes a quantity called pseudo-Rényi entropy,

n 1 n
S§) = = logtr[(T1%)"], (3)

-n
instead of pseudo-entropy to avoid the computation of the logarithm of the matrix. The limit n — 1
gives back the pseudo-entropy.

Pseudo-entropy is originally proposed from the study of the generalization of holography entangle-
ment entropy [19]. In the AdS/CFT context, the pseudo-entropy of a boundary subsystem is proposed
to be dual to the area of a minimal surface in the Euclidean time-dependent AdS space [19]. In ad-
dition, it is found that pseudo-entropy is closely related to the postselection experiments in quantum
information (i.e., in addition to the initial state, the system’s final state is also specified [20]). The
first is that the input of the pseudo-entropy—transition matrix plays the role of density matrix
when one computes the weak values [21}[22] of observables in the post-selected system. Secondly,
pseudo-entropy is considered to characterize the averaged number of EPR pairs that could have been
distilled in the post-selected systems [19,23]. There are also many research interests and prospects
driving the study of pseudo-entropy in QFTs [24H30]. See [31H36] for other related developments of
pseudo-entropy.

The present paper aims to study the properties of pseudo-entropy of locally descendant excited
states in two-dimensional (2D) conformal field theories (CFTs). Our study can be traced back to the
research on entanglement entropy in local quantum quenches in 2D CFTs [37—52]E| It is found that
the excess of Rényi entropy of the local primary or descendant excited states in rational conformal
field theories (RCFTs) saturates to a constant equal to the logarithm of the quantum dimension [62]
of the local operator’s conformal family [39,/44/45]. Such saturation is well explained by the picture
of quasiparticle pairs propagation [38]. The related research is extended to the pseudo-entropy in
parallel [30]. When considering the real-time evolution of the pseudo-Rényi entropy of locally primary
excited states in RCF'Ts, the early-time behavior of the excess of pseudo-Rényi entropy depends on the
respective spatial positions of two identical primary operators, which is not universal. Nevertheless,
its late-time behavior is universal, which only depends on the quantum dimension of the primary
operator, just like the entanglement entropy. The result suggests that the picture of quasiparticle
pairs propagation is preserved in the pseudo-entropy. We generalize the previous study [30] on the
pseudo-(Rényi) entropy to descendant operators in this paper. Specifically, we would like to explore
the late-time behavior of pseudo-Rényi entropy of two descendant operators in RCFTs. We construct
the transition matrix using two locally excited states created by the operator

Val@)= > oy [[L-ml-70) (4)
{ni}{n;} 3

5See [53H61] for studies on other information quantities (such as information metric, negativity, reflected entropy, etc)
in local or global quantum quenches in CFTs.




and evaluate the pseudo-Rényi entropy using the replica method [5] and conformal mapping. In ,
O(x) is a primary operator in Schrodinger picture with chiral and anti-chiral conformal dimension
A, L, (L_,) are holomorphic (anti-holomorphic) Virasoro generators, and Un;}n;y € C are su-
perposition coefficients. Since the two-point function between descendant operators of different levels
does not vanish, the transition matrices we are permitted to construct have more degrees of freedom
than the cases of the primary operator. It is interesting to see whether the late-time behavior of the
pseudo-(Rényi) entropy of subsystems corresponding to these transition matrices has contributions
other than the quantum dimension.

The rest of this paper is organized as follows. In section |2 we briefly review the replica method for
locally excited states in 2D CFTs and provide our convention and some useful formulae for the later
calculations. In section [3| we mainly focus on the late-time behavior of the 2nd pseudo-Rényi entropy
of locally descendant excited states. For simplicity, we study the cases that a single holomorphic
Virasoro generator generates the descendants. More general and complicated situations are discussed
in section [4] where we derive the late-time behavior of the k-th pseudo-Rényi entropy for the generic
descendant states. We end with conclusions and prospects in section [bl Some calculation details are

presented in the appendices.

2 Setup in 2D CFTs

2.1 Replica method with local operators

Our focus is the pseudo-Rényi entropy of locally excited states created by acting the operator V,
on the ground state in RCFTs, which can be formulated in the path integral formalism using the
replica method. W can consider a RCFT that lives on a plane and has a vacuum state |2). We firstly
prepare two locally excited states using V,, to construct a real-time evolved transition matrix 7'1|2(t),

— ol x = o €H T 1|2 — 71Ht‘w1><¢2|eth
1) = Va(z1)|2),  |¢2) = Va(z2)|0), T 5(t) = Toalon) © (5)

Notice that an infinitesimally small parameter ¢ has been introduced to suppress the high energy
modes [63]. We can obtain the reduced transition matrix of subsystem A at time ¢t by tracing out the
degrees of freedom of A¢ (the complement of A), ,7.1|2( t) = trac[T'2(t)]. It turns out that the excess
of the n-th pseudo-Rényi entropy of A with respect to the ground state, defined as AS™) (T i‘z(t)) =
SE(TY2 () — S™ (trac [|9)(€]), is of the form [30]

ASM(TP(t)) = log H (W1, Wap—1) V) (war, Bk,
—nlog(Va(wl,wl)VﬁT(wg,wg)}gl] (6)

using the replica method. In @, >n denotes a m-sheeted Riemann surface with cuts on each copy
corresponding to A, and (wap_1, Wor_1)and (wak, War) are coordinates on the kth-sheet surface. The

term in the first line is given by a 2n-point correlation function on ¥,, while a two-point function



gives the one in the second line on ¥;. We can have

Wop_1 =1+t — 1€, wWop = X9 + 1+ i€,

Wor_1 =x1 —t + 1€, Wor = Ty — 1 — €. (7)
2.2 Convention and useful formulae

The 2n-point correlation function on ¥, in Eq.@ can be evaluated with the help of a conformal
mapping of X, to the complex plane ;. The subsystem is A = [0, c0) hereafter for convenience. We

can then map ¥, to 31 using the simple conformal mapping
w=2". (8)

Let us first focus on the case of n = 2. The calculation of AS (2)(’51'2(75)) is related to the four-point
function known pretty well for exactly solvable CFTs. In our convention, using Eq., the 4 points

21, 22, 23, z4 in the complex plane are given by

Z1=—z3=1vV—x1 —t+1ie, Zz1=—Zz3=—1vV—x1 +1— i€,
29 = —Z4 = i\/ —x9 —t — ie, 29 = —Z24 = —i\/ —zo+ T+ 1€. (9)
The key point is that one should treat t+ie as a pure imaginary number in all algebraic calculations and

take t to be real only in the final expression of the pseudo-Rényi entropy. To evaluate the four-point

correlation function, it is useful to focus on the cross ratios

212234 (x1 + 29 + 21) —1—2\/(1‘1 +t)(ze + t) + €2 + 1e(xy — 9)

(
213224 4/ (z1 +t)(z2 + ) + € +ie(w) — 32) 7
o F12Z3 (z1 4 22 — 2t) + 24/ (21 — t) (22 — t) + €2 —ie(z1 — 22) (10)
213224 4\/(.%'1 — t)(.%'g — t) + € — ’iE(ZL’l — 372) ’
where z;; = z; — z;, and a useful relation is
1 —p= 214223 (11)

z13224
Since we are mainly interested in the late-time (¢ — o) behavior of pseudo-Rényi entropy, one can
find some useful late-time formulae from ()

lim z1 ~ lim z4 ~ —\/1?, lim 2o ~ lim z3 ~ \/i,
t—00 t—o00 t—00 t—o00

lim z19 ~ lim z13 ~ —\/ﬂ lim 294 ~ lim 234 ~ \/7;7
t—00 t—00 t—o0 t—o0
. . 1
lim z14 ~ lim 293 ~ ¢/ —. (12)
t—o00 t—00 t

For the cross ratios (n,7), as shown in 30|, we can have

(1'2 — T + 2i€)2 (.%'2 — T — 2i€)2

Jm () = (1 + 1612 . 162 )= (1,0),
1 1 1 1. .

Oim ~ o 0;05m ~ e 0;0;0km ~ 5 0;0;0,,0m ~ tj(l £i#k#I). (13)
2 2



For general n-th pseudo-Rényi entropy, the 2n points z1, 29, ..., 225, in the z-coordinates are given by

k+1/2 k+1/2
Zopy1 =€ (—x1 —t+ ie)%, Zoppr =€ T (—xy 4t — ie)%,
ck+1/2 o 1 _ _ ck+1/2 L1
Zopyo =€ n T (—mg —t —i€)n, ZFgpp=e T w (—xodt+ie)n, (k=0,..n—1). (14)

3 Second pseudo-Rényi entropy ASEE) for descendent operators

The pseudo-Rényi entropy for locally excited states can be regarded as a generalization of the Rényi
entropy for locally excited states [19]. In RCFTs, it is known that the excess of the Rényi entropy
saturates to a constant equal to the logarithm of the quantum dimension of the inserted primary
operator [|39]. A similar result for pseudo-Rényi entropy is found in [30], and the result also holds
for Rényi entropy constructed by two descendent operators in [45]. However, [45] only considers the
late-time behavior of Rényi entropy established by two descendent operators with the same Virasoro
generators and at the same insertion spatial coordinates. The pseudo-Rényi entropy with two descen-
dent operators at different levels is still unknown. This section will explore the 2nd pseudo-Rényi

entropy for some specific descendent operators.

31 ASY for V, = L_,0, V=0

We first consider the simplest case, which is different from the previous studies [30]: V,(z1) =
L_10(z1), Vg(z2) = O(x2). The 2nd pseudo-Rényi entropy, which, according to (6]), is related to

a four-point function on X,

L1 O(wy, 1) O (wa, w2) L1 O (w3, w3) OF (wy, w4)) 5,
(L,l(’)(wl,wl)OT(wzawﬂ%l .

exp{—AS® (TH2(1))) = (15)

For the first descendant operators, the transformation law of them under the conformal mapping
w = 22 is given by
{/

where the prime denotes the derivative with respect to z or z. Then the four-point function in (15

00 (s m7) = (ut) = ()~ (<w;>-180<zz-,a> N 0<zz-,zi>) , (16)

can be written in the light of correlators on the plane as

(L_10(wy, 1) O (wy, Wa) L1 O(ws3, @3)OT (wy, ©4))x,

4
=(TL1e0172%) - (G s 0OMO'@00G)0 )5, + A% ) (5 50O OB ),

Oow1 Ows owy

le ( 823 )2 82?1}3

823 ( (92’1 )282w1
6z§

(00(1)0"(2)0(3)0"(4))5, — A 5.2
21

(O(1)0'(2)00(3)0" (@), ).
(17)

B Ow1 *0ws Ows “ 0w



where we use the notation O(i) = O(z;, %;). Due to the conformal symmetry, we can express the

four-point functions involved in ((17]) as follows

(O(1)O1(2)0(3)0"(4))s, =|z13224] **G(n, 1),
(00(1)01(2)0(3)0"(4))x, =|213224| 120, G(n, 7)) — 2!213224\“@(77777)7

2A
(0(1)01(2)00(3)0"(4))5, =|213224~*28:, G, 77) + 7B|Z13224|_4AG(71,77),

_ . 2A _ _
(00(1)01(2)00(3)01(4))s, =|z13224|*20.,0:,G(n, 1) + 713!213224\ 12(0,, — 054)G(n,7)

—2A(2A +1 _ _
L Z2ACAHD) G, ), (18)
213
where
Gn.n) = Iim [2*4(0(z, 2)0(L 1O, 1)0(0,0)}s,. (19)

Under the conformal mapping between Yo and X1, we can have

(L_10(wy, 1) O (wy, Be) L_1O(ws3, @3)OT (wy, ©4))x,

~ ~ ~ 1 2A 2A(2A + 1) )
_5-8A 2A AN a8 _ _
=272 21 202324| " “7 | 213224 {421,23 {@1@3 + o (0z, — 0z) 2, }G(ﬁﬂ?)
A2 A 2A A 2A
=G, 7)) — —— 0., — 221G, ) — —— 0., + = |Gy, 1) b 20
# 1G0T [on — 260 - o= o + 2G| (20)

At the late times (t — o0), as shown in [30], n and 77 approach to 1 and 0, respectively, which leads to
the following late time behavior of G(n,n) for RCFTs

lim G(n,7) ~ dg' (1 —n) 227722, (21)

t—o00
where dp is the quantum dimension of the operator ©. Hence we can obtain

278,

. 17 —2A ——2A . =\~ 240,
Jlim 9, G(n, ) ~=—= g do' (1 —n) 227722, Jim 9:,G(n,7) = —

n —9A ——
_:7 dO( 77) 2A77 2Aa

2A0,,0,.m ._ oA __ 2A(2A 4+ 1)0,,105,m _ oA __
lim 9:,0:,G(n,7) 17177377%1(1 — ) 2By A ( (1_3});" 2ol — ) 285728 (22)
On the other hand, the two-point function in is
1 —2A 1
L_10(wy, 1) O (wa, @ = Oy = - : 23
(L—10(wy, w1)O' (w2, w2)) s, oo~ wn JonA (23)

Substituting (20 and ( into (| and setting z3 = —21, 24 = —22, we obtain

lim exp{—A5® <T,i‘2<t>>}

A"ﬁ*zg QA(QA 1 (Z%*ZS)Q 2A2 2 Z
3 +1) AQ2A +1)

%2 T]ZA(l T])QA —1 [ 2 82122 642723 42229 .
~ Az 4221 (1 —n)do (1—mn)2do 21(1 —n)do 223do
52,2 2252
LA A[Ms";fz; A }+A[2A81zfz22 LA }}
421 do 42’% (1—-n)do z1do 4,210’ (1 =n)do z1do
:d(_g . (24)



In going from the second to the third line, we use Eq.@ and perform the Laurent expansion at infinity.

The late-time limit of the 2nd pseudo-Rényi entropy is thus given by
; (2) (7112 -
tll)rglo ASPN(TH2(t)) = log do. (25)

In this simplest case, the late-time behavior of the 2nd pseudo-Rényi entropy of L_10O with O is the

same as that of the primary operator O.
3.2 ASY for V,=L_,0, V=0

We next consider a more complicated case that V, is a general n-level descendant associated with the

Virasoro generator L_,, and Vj is still a primary. The two-point function of V,, and V3 reads [64]
(n+1)A

n
21

<L7n0(w1, wl)O(wg, @2)) = |w12 |_4A. (26)

We then compute the four-point function on ¥s. Under the conformal transformation, the level n

descendant transforms as
L_nO(ws, w;) = (w)) "B (@) AL, 0(z, %) + ... (27)

The ellipsis stands for operators with lower conformal dimensions, contributing to lower-order singu-

larity in the correlation functions. Then at a late time
(O™ (wy, w1) O (ws, w2) O™ (w3, w3) O (wy, w4)) 5,
4
~(TT i 722) (wh) ™ (wl) (0 (1)01(2)0 M (3)0T(4)) s, (28)
i=1

We can pick out the most singular terms of the four-point function on the z-plane in . According to
and in appendix the leading contribution at late time in (O™ (1)01(2)0(=")(3)Of(4))x,
should be

(n;ﬁl)A<O(1)OT(2)O(")(3)(’)7(4»21 + ;na—zi <O(1)@T(2)O(fn)(3)@T(4)>21
41
(" ;le)A - jﬁl) (= ;;A - jffl)<0(1)OT(2)0(3)OT(4)>21 o
41 23

2‘2’13224’_4Ad(_91(1 o 77)_2A77_2A
9 <(n —1)2A2 _ (n=1A 2A9,n  (n—1)A 2407

21253 AL el Zytahy 11—
N 1 ' <2A(2A +1)0.,m - 0.um N 2A8228z477)> n (29)
2t (1—mn)? L=
Combine , with ¢ — oo, the leading-order behavior of exp{—AS(Q) (7'Al|2(t))} is
lim e—25? (T4 ®)
t—o00
N wil y 1 e <(n —1)2A2 B (n—1)A ' 200.,m (n—1)A ' 2A0.,n
(n+1)2A2 © 4nzpzp 0 2 2 st 1=m 2t 1
1 2A(2A +1)04,n - 02 2A0,,0:,m
+ Ln—1,n—1 ’ (1 — 17)2 + 1—mn +
41 %23
1
~— ... 30
ot (30)



Again, the ellipsis denotes terms with sub-leading contributions. Hence the late-time limit of the 2nd
pseudo-Rényi entropy of the transition matrix constructed by a primary O and its n-level descendant

L_,0 is still logdp.

3.3 ASY for V, = L_,0, Vs =L_,,0

In this subsection, we use the conformal block and operator product expansion (OPE) to show the
phenomenon discovered in previous subsections is true for a general case: V,, = L_,,0, Vg = L_,,,0.

In terms of [64], the two-point function of V,, and V3 read&ﬁ

(L_pO(wy,w1)L_p, O(w2,w2))s,

! (=)™ (w1 —wg)™™" !

12 wis |42
L(m+n) (em (m?* — 1) n (n® — 1) 4+ 24A(m + n)(m +n + 1)(mn — 1))
< L(m +2)T(n + 2) +12A(A(m + 1)(n +1) + 2)) :

(31)
The late-time behavior of the four point function on s of @ can be derived according to
(O (motmi)0t(3)0 ™ (4))s,
4
~ (LT 1wf722) (wh) ™ (wh) =™ (wh) =™ (wly) ™0 (O™ (2)0M (3)0 ™ (4)) s, (32)
i=1

We can next pick out the most singular terms of the four-point function on the z-plane in .
According to , the leading contribution at late time in (OC™)(1)OT(2)0")(3)Ot(4))x, comes

SHere the following equation to simplify the result has been used

ke m)(—k+m+1D)(k+n—1) _ 2(m*n+m(2n*—1) —n(n+1)) L(m+n)
(k+ 1)l(n —2)! - T(m + )l(n +2) —mm+Ln+2.

k=1



from the OPE of O=")(1)O"(4) and O1(2)0=")(3) .

(O (@)oo (3) 0™ 4)s,
4
~ (LTl 722 (wr = w2) ™™ (wy — wa) ™™ "G, m) (= 1) "
=1
1
( ©120(m 4 2)2T(n + 2)2
—2(m + 1)(m*n +m(2n® — 1) = n(n + 1))T(m + n))((—(=1)*) """ "T'(m + n)

Ae™(=1)"" " ((m(m + 1)n — 2)T'(m + 2)T'(n + 2)

(m(m? — 1)e™n(—=1)"""(c(n? — 1) + 24A) 4 24Ae™™ (n + 1)1 (m(2mn — m +n? — 1) —n))

+12A(=1) " (m 4 2)0(n + 2)(17"(n + 1)(A + m(A +n)) + (—=1) ™™™ (2 — mn(n + 1))))
1
n(n+1)I'(m+2)I'(n—1)
(m(m? = 1)(=1)"n(=1)""(c(n? — 1) + 24A) + 24A(=1)™(n + D)1™ " (m(m(2n — 1) + n? — 1) — n))

5 Alm o DA+ m)1m 2 (1) Dm +n)

+12A1%(n — 1)((=1)™(n + 1)(A + m(A +n)) + (=)™ 1™ (mn(n + 1) — 2)))
1
mIl(m)I'(n + 2)
(m(m? — 1)(=1)"n(=1)"""(c(n? — 1) + 24A) + 24A(=1)"(n 4+ 1)1 (m(m(2n — 1) + n* — 1) — n))

I'(m+n)

%A(m )12 (—1)"2men

F12A(m 4 DI"((=1)™(n + 1)(A + m(A +n)) + (=1)™ 1™ (mn(n + 1) — 2)))
1
144(m + 1)T(m — DT (m)C(m + 2)20(n — 1)T(n + 2)
((=1)™ 1 =20m4m) (_1)=m=n(e(m? — 1) + 24A)T(m + n)((m + 1)(=1)"Fln(=1)™ "D (m)C(m + 2)

+

(c(n? — 1) + 24A)T(m + n) + 12A1"T(m — 1)((m + 1T (m)((=1)™(=n — 1)I'(m + 2)T'(n + 2)
(A+m(A+n))+ (1)1 ((mn(n+1) —2)T'(m + 2)T'(n + 2) + 2n(n + 1)T'(m + n)))

—2(=1)™1™(n 4 1)(2mn — m +n® — DI (m + 2)I'(m + n))))) +... (33)

The complete derivation detail of Eq. is shown in appendix
Combine and and take the limit ¢ — oo, the leading-order behavior of exp{—AS® (7j|2(t))}
is

1[2 1
}E?o o~ A5 (TaP®) - + .. (34)
o

The ellipsis denotes terms with sub-leading contributions. The late-time limit of the 2nd pseudo-Rényi
entropy of the transition matrix constructed by a m-level descendant operator L_,,O and a n-level

descendant operator L_, O is logdp.

4 k-th pseudo-Rényi entropy for generic descendent states

In the previous section, the 2nd pseudo-Rényi entropy corresponding to L_, O and L_,,O is the same
as the 2nd pseudo-Rényi entropy of the corresponding primary operator O at a late time, and they
all equal to the logarithm of the quantum dimension of the primary operator. However, to derive

the pseudo-entropy, it is reasonable to consider the k-th pseudo-Rényi entropy and take k analytic



continuation to 1. In this section, the late-time behavior of k-th pseudo-Rényi entropy with two linear

combination descendent operators will be checked whether it is still log dp.

4.1 ASY for v, =L_,0, Vs =L_,0

We begin with calculating the general case discussed above: V, = L_,0, V3 = L_,,0. Since the
anti-holomorphic part of these operators is still primary, we only focus on the holomorphic part here.

The late-time behavior of the 2k-point function on ¥ can be derived according to (27))

(O (w) O™ (wy) ... O™ (w1 ) O™ (woy ), |

~F(wi,wa, . .. wag, myn, AYOT(1)OE™T(2) .0 2k — 1)OT™ (2k))s, + ..., (35)
where
2k
F(wi,wa, ... wap,myn, A) = (T Jwf|722) (wh) ™ (wh) ™™ ... (why,_q) ™" (why,) ™" (36)
=1

is the leading factor coming from the conformal transformation between correlation functions on X
and correlation functions on Y.

According to , at the late-time limit, we can find the following relations

W2 — W1 grjitl
—€

1
li i — i ~ k thk ~
tgglo(22z+4 22i41) ™ 0,
1
0 (Borro — Foieg) v WL W2 —2mifz 4
tll}l’.glo(ZQl_i_Q 2214_1) ~ Tt e E tk ~ 0. (37)

Hence the leading term of 2k-point correlation function on 3; comes from the OPE of
O (2i 4 1)OE™1(2i + 4), ie.,
(O (MOE™2) . oM (2k — 1) (2k))s,
~D14D3g ... Dajp_39:(O(1)OT(2) ... O(2k — 1)OT(2k))x, (38)
where Da; 11 2i44 is a derivative operator that only contains constants related to the information of two

descendant operators and derivatives coming from the most singular part of the OPE of O™ (20 +
O™ (24 + 4),
Dojt1,2i+4 = D(02i41, O2i44;m,n, ¢, A). (39)
See appendix [B| for a concrete example of the D-operator. We need to pick up the proper channel
to expand the 2k-point function into the holomorphic and the anti-holomorphic part, as graphically
shown in figure [Il In each channel, only the identity operator contributes to the final result. Hence,
the 2k-point function breaks up into k& two-point functions for the holomorphic part(and k for the
anti-holomorphic part).
(O M)oEm2) L o 2k — 1O (2k))y,
~(Foo[O))F 1Dy 4Ds g . . . Dop 306 (O(1)OT(4)) 5, (O(3)OT(6))s, . . . (O(2k — 3)O1(2k))s,
~(Foo[O)* 1O (10 ™ (4))5, (0T (3)0C™(6))x, ... (O (2K = 3)0 ™ (2k))x,. (40)
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4 36 5 2kz2 2k-3 1 4 6 5 2k-2 2k-3

1 2k 2k

Foo [0] g
2 2k-1 2 2k-1
1 4 3 6 zki(zk_z / 3 6 2k-\3\(2k

2k-3
s Y | 2k . 4 2k-1
(Foo [0 , o (Foo [ODF1 1

2k-1

Figure 1: k — 1 fusion transformations to obtain ASXC)

In the last line, the fact that Dy; 1 243 is a linear operator, and coordinates z; and z; are independent
for i # j has been applied.
Changing back into the w-coordinate, with the leading divergent term being transformed homo-

geneously and keeping the most divergent term, we can find

T (41)

The two-point function of descendent operators on ¥ and that on ¥y are similar at late time

(O™ (w2 11) O™ (woy44)) 5,

N(w§i+1)_A_n(w/2i+4)_A_m<0(_n) (22041) O™ (20144)) 5,

_ i A _ il A Co(m,n)
N(k‘zkl 1e2mk) A n(kzki 1627rz - ) A—m -
2 2 ((22i41 — 22i+4)€*™ i )2Atmtn
—27i L) (—A—n k=l _A—n kol _A—m Com,n k1 m+n
el T ) TA R ) (w2‘+1—ug2‘+4))m+m+”(kt e
Ne(_Q’”%)(_A_”)<O(_”)(w1)(’)(_m”(w2))gl. (42)

Therefore, at a late time, for two descendent operators with a single Virasoro generator, we still have

lim AS®) = logdo, and its pseudo-entropy is log do.

t—00

4.2 ASXC) for Linear combination of descendent operators

Let us consider two linear combination operators constructed by operators in (O’s conformal family.
Volw, @) =3 CiVi(w,m),  Vi(w, @) = L_(se b (7, Ow, ), (43)

Va(w, @) = CiV}(w,w), V{(w, @) = L_gxnL_z0'(w, w), (44)

where L—{Ki} = L*kilL*kiZ'“L*k (0 S kil S kig S S k‘mi), and L—{Ri} = L_E“L_Eﬁ...L_Ei s

Sy
in;

(0 < ki1 < kig < ... < kin,). Likewise for L_¢kn and L_(zn- If the combination coefficients C;

11



(C!) are required to be dimensionless, all V;(w,w) (V;(w,@)) should have the same mass dimension,

denoted as N (N’). This indicates that {K;} and {K!} satisfy

M:\

[Ki| +]Kil = N, |Kj[+|Kj| =N, (K| = ka |Kil = ’5) (45)

1

J

The two point function of V;, and Vjp is

<Va(w1’ wl)VB(MQ, 1172))21
= Z Z CiC]/- <L_{Ki}0(w1)L_{K§_}OT (’U)2)>21 <E7{I_{i}0(u_)1)f’—{f(;}OT(w2)>21

:ZZCC/‘ co({Ki} {Kj}) co({K:}, {Kj})

20+ K|+ K| (- — i+ K]
ws) + K[+ K (wl_w2)2A+\Kz|+|K]|

(46)

where the coefficient ¢y depends on the decomposition of generic Virasoro generators. At the late

time, the 2k-point function reads

<Va(w17 wl)vﬁ(w% U_JQ) s Va(w%—lv wi%ﬂ)vﬂ(whk’w?k»zk

422 22D CiuCly Ci , O,
i1

iok—1 Jok

<L—{Ki1}O(wl)Lf{K;é}OT(wQ) o Ly, O Lok 1O (war)) s,
<E_{K }O(@l)i_{ﬁ-/ }O]L(u_)g) . "E—{Ki% 1}0(11_]2]9,1>L (K’ }OT(ka»Ek

J2k
(“ZZ 2Dl Co O,
i1

iog—1 Jok

<L—{Ki1}O(W1)L7{K;4}@T(W4)>zk e <L—{Ki2k_3}O(w%f?))Lf{K;%}OT(w%)>2k
(L_k,yO@1)L (g }OT(w2)>Zk"'<[_’—{Ri2k 1}0(?1721@71)E_{kjf.%}OT(@%»Ek

~dgF Y ZZ NN a0, C
11

iog—1 Jok

o({Kil},{ K3, co({Kiny s} {57, })

20Ky [+IK], | 20+ |Kiy, 5|+

(w1 — wy) (wop—3 — wzk) Kz

co({Ki, } {K},}) co({Kiy, ., }: {K, D)

)2A+|K¢1|+|R§2\ o )2A+|K2k 1K,

47
(Wak—1 — Wak 47

(w1 — W
The first formula transforms the correlation function on ¥, into combinations of its holomorphic and
anti-holomorphic parts. In the second formula, we have extracted its leading term on X, separated
it into k two-point functions using the fusion rule, and then changed the correlation function on ¥4

back to Y. The third formula has used the property of the two-point part on 3 .
Combine and , the k-th pseudo-Rényi entropy for linear combination of descendent oper-

12



ators is

1 <Va(w17 1E1)V5(w2, U_JQ) e Va(w%*h wizkﬂ)v,@(wj%?w?/c»zk

ASH) = 1
o8 (Vo (wr, @1) Vs (w2, @2)) 5, )F

C1-k
- log {do(kl) X
Z co Z Ci1 v C],'cho({KhL {K34}) oo CO({KiQk—3}7 {K],'Qk})cﬂ({f{h}v {KJIQ}) v CO({Kizk—l}’ {K;Qk})
(5 CiCleo (K AR Deo (LK (KT D) }
(48)

~

For the last formula, we have applied the restrictive condition and the fact that when € — 0, all
z; and Z; are real.

There are two types of contributions to the pseudo-entropy of two linear combination operators.
The first one takes a universal form, depending on the quantum dimension of the corresponding
primary operator. There may also have an extra contribution to the pseudo-entropy. To see this,

consider the 2nd pseudo-Rényi entropy,

AS® ~ log do
> > CiyCiCFLC% co({ Ky b { K, eo({ K }, { K, Peo ({ Ky 3, { K, ) eo({ K }, { K7, })

—log [ == (O3 CiCleo({K: Yy (K eo({Ki}, {K) )2

(49)
In general, the numerator is not equal to the denominator in the last line of . So the k-th pseudo-
Renyi entropy may acquire additional correction. It is zero when correlation functions containing V,,
and V3 can be divided into the product of the holomorphic part and antiholomorphic part. How-
ever, the extra correction may be nonzero in general. The following two examples can illustrate the

phenomenon.

e Example 1 with Va(wl, 11)1) = (L_l + I_/_l)O(wl,ﬂ)l) Vg(wg,wg) = (L_l + I_/_l)O(wg, 71)2)

The two-point function is

| —4A(A £ 1)

<Va(w1,w1)V5(w2,w2)>El - m (50)

Formula is easy to check. Here, we replace z1 + ¢ and z9 + ¢ into wy and we in the final

result. The four-point function is

_ _ _ _ 8A2(16A + 1+ 8A
<Vo¢(w17wl)vﬁ(w25w2)Va(w3)w3)VB(w47w4)>Eg ~ (3(71 — 1}2)8A+4 ) (51)

We explicitly show how to compute the four-point function on Yo without showing the derivation

of in detail. Again we keep the final result replaced by z1 and zs.

From and , we can have

AS? ~logde + log 2. (52)

13



In this case, the correlation function of V, and V3 can not be divided into the product of the
holomorphic part and antiholomorphic part, and AS®) contains an extra correction log 2 besides

log dp.

e Example 2 with Va(wl,wl) = L—{Kl}f/—{f(l}o((wlawl)v Vﬁ(wg,u_)g) = L_{Ké}if{@}@(wg,wg)

According to , the two-point function on Y; reads

<Vo¢(w17 wl)Vﬁ (w27 7~T12)>21

=(L_tx,yO(w1) L_ (53O (w2)) 5, (L _ (1,3 O(@1) Ly g, OF (09) ) 5,
co({£1}, {K5}) co({K1}, {K3})

- (w1 — wg)2AHEHES () — )28+ K1I+IK| (53)
The 2k-point correlation function is
(Va(wr, w1) Vg (wa, w2) . .. Va(war—1, Wiy, _, ) Va(wjy,,, War)) s,
=(L_{5,3O0(w1) L_530% (wa) . .. L_¢,30(wop—1) L5301 (war)) 5,
(L_ {5y O(@1)L_ gy O (w9) ... Ly, O(ap—1) L_ (1, O (W) )5,
~dp Y (L_ (k3 O(w1) L_gy3OT(wa)) s, - - (Lo (1,3 O(wak—3) L_ (553 O (wan)) 5,
(L_ (g O@1) Ly, O (w2)) 5, - (L1, Ot 1) L7, OF (war)) 3,
g co{E{KG)) co({K1}, {K35})
o (wy — w4)2A+\K1\+|K§\ (wop—3 — w2k)2A+|K1|+IK§|
co({K1}, {K3}) co({K1}, {K3}) (54)

— - =S .,
(01 — w2)2A+\K1\+|K2\ )2A+|K1|+IK2|

(Wag—1 — Wa,
In this case the correlation function of V,, and V3 can be divided, and lim AS k) = log dp, i.e.

t—o0
AS®) has no extra correction.

5 Conclusion and prospect

In this paper, we investigate the pseudo-Rényi entropy of local descendent operators in RCFTs, ex-
tending the previous studies in [30] [39] [45]. In [30] [45], it has been found that the late-time excess
of the pseudo-Rényi entropy of two primary states and the Rényi entropy of a descendent state equal
to the logarithmic quantum dimension of the primary operator in RCFTs. It is a natural question to
consider the pseudo-Rényi entropy of the descendent states.

Firstly, we show that in some special cases: V, = L_10, V3 = O and V, = L_,0, V3 = O
with O being primary, the late-time excess of the 2nd pseudo-Rényi entropy @ is still logarithmic
of the quantum dimension of the primary operator. Using the conformal block and operator product
expansion, we compute the 2nd pseudo-Rényi entropy constructed by two descendent operators with

different Virasoro generators. We show that their 2nd pseudo-Rényi entropy is the same as their

14



primaries for such states. Although the calculation looks quite complicated, the leading divergent
terms in the late time limit are simple, behaving as the one for primary operators.

Further, we compute k-th pseudo-Rényi entropy with two descendent operators L_,,O and L_,,O.
We extract the most divergent term of the 2k-point function on ¥ with an overall factor F , and
then associate the 2k-point function of descendent operators with the 2k-point function of primary

operators with some derivative operators of the form
Dait1,2i44 = D(O2it1, Daira; m,m, ¢, A). (55)

We find the 2k-point function breaks up into k two-point functions for the holomorphic part(and k for
the anti-holomorphic part). The two-point function only depends on the conformal weight and some
constant . As a result, in this case, the pseudo-entropy of the descendent operators is the same as
primaries.
Finally, we discuss the most generic descendent operators, which are two linear combination oper-
ators constructed by operators in O’s conformal family
Vo(wy, w1) =Y CiVi(wy,m1), V(wa, @) =Y CjV(wa, ). (56)
- .

J
Unsurprisingly, we find that the pseudo-Rényi entropy of these operators is generally different from

that of the primary operator . The entropies are the same as the ones of the primary when the
correlation function of Vi, and V3 can be divided into the product of the holomorphic part and the
anti-holomorphic part. A typical example is

Va(wl,ﬂ)l) :L_{Kl}i_{m}(’)(wl,wl), Vﬂ(ﬂ)g,ﬂ)g) :L_{Ké}l_/_{f(é}(’)(wg,wg). (57)
Otherwise, there is an extra contribution. A typical example of extra contribution is

Va(’wl,wl) = (L_1 + [_z_l)O(wl,'lfjl), Vﬁ(U)Q,’lI)Q) = (L_l + I_/_l)(’)(wg,’lﬂg). (58)

In general, the k-th pseudo-Rényi entropy for two linear combination operators only depends on the

coefficients of the two-point functions and the combination coefficients,

ASH) ~ . i k: log {do(kl)x

Sy Oy co({K s Y AEG ) - co({ Ky b UK Neo({Ka VAR . co({ Ky} AR, D)
(% Cllao({(Ki} AR Deo({Ko ), (K )F }
(59)

Noticing the current results in RCFTs, one can directly calculate the pseudo-entropy of generic local

operators in Liouville CF'T, holographic CFTs, non-diagonal CFTs, etc. Since the spectra in such
theories have different structures, the associated pseudo-entropy will be highly different from those
in RCFTs. In particular, since holomorphic and antiholomorphic conformal blocks have different
structures in non-diagonal CFTs, the late-time behavior of the entanglement entropy and pseudo-
entropy associated with locally excited states will not be the same as the ones demonstrated in the

current paper. We would like to leave them to future work.
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A Reduction of (0= (1)O0"(2)0="(3)0t(4))s,
With following the standard way [64], we can compute the four-point function (O (1)01(2)O(=")(3)O1(4))x,

in this section.

(O (1)0T(2) 0 (3)01(4))x,

" omi 274 " )THT(2)0(1)0N ()0 (3)0T (),
-1 dz A(O(1)O1(2) 0™ (3)0T4))s, | 8:,(0(1)O1(2) O™ (3)OT (4))s;, B
2w Jegzy) (2 — 2) ! { (2 — 22)? " z— 29 + regls ZQ)}
- z n TL2 — & n

(n + HOMOIROHEO @), (A +n)(OWOROEHO W),
(z — z3)kt2 (2 — 23)2

M

k=1
4 95100 )O1(2)0M(3)01(4))s,

+ reg(z — 23)}

z— 23
-1 Az [AOWOIR2)0TE)0N ), | 0:,(0M)0TR0TIE)O0T M), |
i b G P * T ez
== D2 100101203101 (W)s, + -2 (01)0' 0 301 (4)s,
21 221
+ 208000120 0! W), + 25000100 @),
41
. (n(n? — 1)c/12 + 2nA) (2n — (O (1)OF(2)O(3)Ot (4))5;,
(=1 (n+ Dl(n —2)! 2
n—1
S R (00010 )0t @),
+(=1) ; (k+Di(n—2) o iF
+ =2 00)01 20 @01 W), + 2500010 @O w)x, (60)
31

B Reduction of(O"(1)0™1(2)0")(3)0m)t(4))y,

In terms of (12), the most divergent term of (O (DO (2)0) (3) O™ (4))x, should only

contain zi4 and 293, as any terms containing 23,294,212 and z34 are subleading. So we can firstly
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expand O(1)’s Virasoro generator,

<O(—n)(1)(’)(—m)T(2)O(—n)(3)0(—m)f(4)>21
T % o )(Z_Ozy_l<T(z)0(1)0<‘m>*(2>0<-”>(3)0<-m>T(4)>Zl

z m(m? — 1)e m
‘1'7£< >ﬂd—<0<1>0(‘"‘”<2>0<‘"><3>< R ol

2mi z—z)" 1

m—1
m 4 N m e
+; Z—Z4k+2 ()+(z—24)20 + 2z — 2z )1
(n+m—1! m(m?—1)c/12 4+ 2mA
(m+ 1)l(n—2)! szfm

~(=D)" (00O (20 (3)0T(4))s,

m—1
1y (n+k—-1! (m+Fk) (=m)t ()¢9 (—) (31 ()~ (m—E))T
+(=1) ; G+ D=3 e (COOTIROTE)0 (4)s,
N (n— 1)(nA +m)
241

(OO (20 (30 (4))s, . (61)

(O(1)O™1(2)0=" (3)0 ™) (4))5,

04

n—1
241

The correlation function with four Virasoro generators is deformed into correlation functions containing

no more than 3 Virasoro generators. We can then expand O(4)’s Virasoro generator,

(OO (2)0CM (30 (4)y,
oL T 010200 3)0t @),

211 e(21) (Z - Z4)m_1

v R0+ 22 oo @0t W),

Form and , we can read the exact form of D 4 introduced in

(n+m—1)! m(m?—1)c/12 4+ 2mA
(m+1)l(n—2)! 2t

m—1
n m+Ek-=1! (m+k) (m—k-1)A o
+(=1) ;(kﬂ)!(n—z)! ok ( mok )

Dyq=(—-1)"

214 214

(n—=1)(A4+m), (m—-1)A o1
+ n ( m - m_l)
241 214 214
0y ,(m—1)A 0
SO dmo DA G (63)
Z41 “14 214
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We can expand O(2)’s Virasoro generator and O(3)’s Virasoro generator in a similar way,

(O(1HOE™1(2) 0 (3)01(4))x,
dz

c(z3) (Z — 22

ym—1 (OMT(2)01(2)0 (3)07(4))s,

2 2 1o )
o 75(23) (d_1<0(1)0T(2)( ( (z 1—),2/3;721;2 2 A(’)(3)

(n + l) —(n—1) (A + n) -n 03 (—n) 1
D P I e AP L
. (n+m—1)! nn?-1)c/12+2nA

n—1

m (m+1-1! (n+1) (—(n—1)
O i et (02000 0y,

4 (m — 12):§(3A +n) <(9(1)(’)T(2)O(*")(S)OT(4)>21 _ Zfil <(’)(1)OT(2)(’)(7”) (3)(9T(4))21
32

Finally, we can have

OO0 @0 @)y, ~ T D2G - P
%23 293

where G is (O(1)01(2)0(3)0t(4))x,, and in late-time limit, it’s dy,' (1 — 1) 2277248,
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Combining ,, and , we have

(O ()OO0 (B0 (4)s,

m (n+m =1 m(m?—1)c/12 + 2mA n (m+m-—1)!
N“')(m+1wn—2ﬂ 2 “_”(n+nmm—2ﬂ 2

n—1
Cm (m+i-1! (n+l) (n—Il-DA
L i g O T C

(m —1)(A + n)((n an)AG B SQIG) _ W} 1 (n(n;j)AG N (n — i)A@gG _(n —nl)agG azai o))
23 %23 Z32 %23 #23 #23 %23
(m—k—1)A L, (n+m—1)! nn?-1)c/12+2nA

K_l)(n+—uun1—2ﬁ 2t “

n(n? —1)c/12 + 2nAG

Z55
m—1
n m+k—-1)! (m+k)
+ (-1
(=1) I;(lwrl) (n—2)! otk { 2k
n—1
(m+I1-1)! (n+1l), (n—1-1)A Do
+ (=™ G — G
(=1) - (I + 1) m —2)! et ( P P )
N (: (n _nl)AG— fglG) B ml l(n(nn—Jj)AG_’_ (n— }Z)AagG_ (n —nl)agG 0302 o)
253 253 255 253 %23 23 23
(n+m—1)! n(n?—1)c/12 +2nA
G
(n+1)l(m —2)! z$+" 16+
n—1
+1-1)! +1 -1 - 1 010 A+ 010
i § e D 8y g Ay (b (oD 00
=1 (L +1)l(m —2)! %23 223 %93 %32 295 Zog
- (n(n )Aa G ( )A8163G _ (n — 1)8182G 618362G)]}
m—1 n+1 223 2513 233 1
(m— 1)A[(_1)n (n+m—1)! nn®—1)c/12+ QnAG
(n+1)!(m —2)! 2t

1 _q)n

n—1
(m+1-1)! (n—l—l)((n—l—l)AG_ n(?? 6)

+ (=)™ m m

IZ (l + ) ( - 2) 223+l 293 : %93
(m — 1)(A—|—n)((n —nl)AG_ SQIG) B ml l(n(n11—+})AG+ (n— }l)AagG_ (n— 1)82G 0302 &)
255 “23 223 232 223 #23 #23 293

1 . (n+m—1) nn?-1)c/12+2nA
=t D i — ) B He
n—1

m+l—1) (n—i—l)((n—l 1A 0102 G)—i—( )iA%—n)(( 1)A 6182(}’)
%33 233

)" 01G —
Z (I+ 1) m —2)! pmt P ' 2t
1 1A —1
n(n—1)A G + (n—1) 0105 (n n)alazG B 3155?2 o)
#23 %23

m—l( n+1
23
(n+m—1! nn®-1)c/12+2nA
m-+n G

(n+ 1)l(m —2)! 255
0o (m—l)(A—{—n)((n—l)A 1))

n—1
l—l ! —1-1)A
mz m+ (nnj:rl) (n n—l ) G- n—Il— 1G)+ m
— —2)! 23 Zo3 232 %23 223

(n=1A% , (=13, s

1 m(m— I)A[(_l)n

— G
prml ot 2 2 2y 1 )
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(n+m—1)! n(n?—1)c/12 + 2nA

ST (G )n(n+1)!(m—2)! 4"

m+l — 1) (n+l) (n [ — )A 0409
21 m~+l ( n—I 84G n—I(—1
— (I +D!(m —2)! 223 223 223

+( )(A—f—n)(( DA 9, — 848?6’)
232 223 293

1 —1 — DA —1
- (n(nnH) 84G—|- (n Zl 8483G _ (n )8482G _ 8463(132 G)]

Z39 Z93 23 23 253
(m—1) . (n+m—1)! n(n? —1)c/12+2nA

(m+1—1) (n+1), (n—1—-1)A 0105 (m—1(A+n) (n— DA 0105
+ (=)™ ( G — Q) + G — A2
P> L+ 1)!(m —2)! 2t 2! T ) 232 ( R
HA -1
— 810 (n — ) 0105 ., (n n)31<92 a_ 317?2(132 )
Z32 23 733 #23 %23
— ) _
1 (n+m—1! nn%-1)c/12+ QnAa WXe

~ e Y T im0 PaE

G

@)

n—1
m (m+i-1)! (n+1),(n—-1-1)A 040102
+(=1) Z I+ Dl(m —2)! 2t ( w0406 = 5 G)

23 <23
+( )(A+n)(( )AaaG 040102

255 Zy3 223

1 n(n—1)A —1)A8,0,0 n— 10040102 ., 9101930
ml((nﬂ) ouinG + N VR0 (= V)0ii0a 2. (66)

n n
32 23 #23 223 23

rG)

The correlation function of four descendent operators becomes the correlation functions of their cor-
responding primary operators with some constants and derivatives.

For i # j # k # [, we can have
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