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A fundamental problem in re�nement veri�cation is to check that the language of behaviors of an implemen-

tation is included in the language of the speci�cation. We consider the re�nement veri�cation problem where

the implementation is a multithreaded shared memory system modeled as a multistack pushdown automaton

and the speci�cation is an input-deterministic multistack pushdown language. Our main result shows that the

context-bounded re�nement problem, where we ask that all behaviors generated in runs of bounded number

of context switches belong to a speci�cation given by a Dyck language, is decidable and coNP-complete. The

more general case of input-deterministic languages follows, with the same complexity.

Context-bounding is essential since emptiness for multipushdown automata is already undecidable, and so

is the re�nement veri�cation problem for the subclass of regular speci�cations. Input-deterministic languages

capture many non-regular speci�cations of practical interest and our result opens the way for algorithmic

analysis of these properties. The context-bounded re�nement problem is coNP-hard already with deterministic

regular speci�cations; our result demonstrates that the problem is not harder despite the stronger class of

speci�cations. Our proof introduces several general techniques for formal languages and counter programs

and shows that the search for counterexamples can be reduced in non-deterministic polynomial time to the

satis�ability problem for existential Presburger arithmetic.

These techniques are essential to ensure the coNP upper bound: existing techniques for regular speci�cations

are not powerful enough for decidability, while simple reductions lead to problems that are either undecidable

or have high complexities. As a special case, our decidability result gives an algorithmic veri�cation technique

to reason about reference counting and re-entrant locking in multithreaded programs.
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veri�cation.
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1 INTRODUCTION

1.1 Context-Bounded Refinement Verification

A fundamental problem in re�nement veri�cation is to check that the language of behaviors of
an implementation is included in the language of a given speci�cation. We consider the problem
of re�nement veri�cation where the implementation is a multithreaded shared memory program
modeled as a multistack pushdown automaton (MPDA) and the speci�cation is given by an input-
deterministic multistack pushdown automaton. An MPDA generalizes usual pushdown automata
by maintaining multiple stacks. It is input-deterministic if every step is completely determined by
the input. While the general re�nement veri�cation problem is undecidable already for regular
speci�cations, our main result shows that the context-bounded re�nement veri�cation problem is
decidable and coNP-complete. Context-bounded re�nement for regular speci�cations is already
coNP-hard; thus, our result shows that the complexity of the problem does not increase even when
the speci�cation comes from a substantially larger class!
Context-bounding is a popular and general technique to construct a parameterized sequence

of under-approximations of all behaviors of a program [Qadeer and Rehof 2005]: for each  , a
 -context-bounded analysis considers only those behaviors in which threads have been context
switched at most  times. As  increases, more and more behaviors are considered and, in the limit,
all behaviors are covered. Context-bounded analyses are decidable for many veri�cation problems
that are undecidable without the restriction. In practice, it has been very successful as a bug �nding
tool, since many bugs in practical instances can be discovered even with small values of  [Inverso
et al. 2022; La Torre et al. 2009; Musuvathi and Qadeer 2007; Qadeer and Rehof 2005].

Our result is surprising because most problems relating to context-free speci�cations are unde-
cidable. Moreover, existing techniques crucially depend on reducing context-bounded analysis to
a sequential program analysis and do not work if the speci�cation carries its own stack. Indeed,
our proof requires several new constructions of independent interest and, as we mention below,
requires new analysis techniques to avoid close-by problems with high complexity or undecidability
status.
The ability to capture input-deterministic MPDA speci�cations allows us to apply algorithmic

analysis techniques to a number of common design patterns, such as re-entrant locks or concurrent
reference counting, whose speci�cations are non-regular. In particular, the speci�cation for a
reference counted object is a counter (the count) that increases every time a new reference is taken
and decremented when it is released. The invariant tracked by the system is that the object is not
deallocated while at least one reference is active. While one can model the counter explicitly, the
resulting multithreaded program with a counter does not fall into a known decidable class and
existing techniques either apply manual proof steps or apply heuristics with no general termination
guarantees [Emmi et al. 2009; Farzan et al. 2014].

The core technical step in our result involves showing a coNP upper bound when the speci�cation
is a Dyck language (that is, a non-regular language of “matched parentheses” with several di�erent
kinds of parentheses). The more general setting follows through standard techniques. Existing
techniques to prove decidability of context-bounded reachability sequentialize the set of context-
bounded executions to a single-threaded program (see [Lal and Reps 2009] for a clear exposition).
Unfortunately, this technique does not work when the speci�cation is non-regular: the stacks of the
program and the stack of the speci�cation may interact in complex ways and an unbounded amount
of information may need to be passed across context switch points. Instead, we use characterizations
of Dyck languages and develop a number of new techniques.
We note that even in the sequential setting, most interprocedural data�ow analysis algorithms

restrict attention to regular properties—either �nite-state typestates or weighted reachability with
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weights satisfying strong algebraic properties [Reps et al. 1995, 2005; Sagiv et al. 1996]. While
there are a few instances of context-free speci�cations [Ferles et al. 2021; Madhavan et al. 2015],
these are based on heuristics and come without proofs of decidability. Instead, we use techniques
from the theories of formal languages and counter machines. Our starting point is the result that
checking whether a context-free language is contained in a Dyck language can be performed in
polynomial-time [Tozawa and Minamide 2007a] (the problem has a rich history described in more
detail below). In the next section, we describe the additional obstacles posed by our setting, which
require signi�cant new constructions.
It should be mentioned that just because the words produced by a multi-threaded program are

contained in a (context-free) Dyck language, it does not mean that the program is behaviorally
equivalent to a sequential program. First, there are languages of (context bounded) multi-threaded
recursive programs that are included in the Dyck language, but that are not context-free1. Second,
even if the set of parenthesis expressions produced by a multi-threaded program happens to be
context-free, automatically transforming the program into a sequential one would be even more
di�cult than merely checking inclusion. Thus, in any case, we need to deal with multi-threaded
programs as input.
Before we go into the technical aspects, let us mention potential practical implications. While

we explore theoretical foundations, we do show that the non-inclusion problem can be reduced
(non-deterministically in polynomial time) to the truth problem in existential Presburger arithmetic,
for which there are established and e�cient tools available [de Moura and Bjørner 2008]. Whether
our reductions are fast in practice without modi�cation, however, remains to be seen in future
work.

1.2 Challenges and Key Ingredients

As mentioned above, existing methods for checking containment in Dyck languages of sequential
recursive programs do not su�ce in the presence of context switching. These methods hinge on
the saturation technique, and in particular the fact that if the inclusion holds, then each entire
procedure can be summarized by one of �nitely many reduced words, even if this procedure is
able to generate in�nitely many words. This is not true in the concurrent setting. For example,
consider the language ! = {D=E<D̄=Ē< | <,= ≥ 0}, where D and E are words of opening parentheses
and D̄ and Ē are the corresponding matching strings of closing parentheses, i.e. DD̄ and EĒ are
well-bracketed. Then the language ! can be generated by a program with 2 threads and 3 context
switches: One thread produces D= and D̄= , the other E< and Ē< (using the call stack to store D= , and
E< , respectively).

Now one can observe that ! only contains well-bracketed words if and only if the equation
DG = E~ has a solution for numbers G,~ ≥ 0. This means, there can be non-trivial (and in�nite)
interaction between concurrently executed procedures. In particular, to prove inclusion, we cannot
summarize the two procedures (one producing D=D̄= , the other producing E<Ē<) by �nitely many
possible e�ects, but we need to reason about what they have produced when they are interrupted.
To overcome this, in addition to existing techniques (compression by straight-line programs,

Parikh images), we employ vector addition systems with states (VASS), which are an abstract model
of computation with counters. To our knowledge, VASS have not been used before in the context
of inclusion checking of recursive programs. However, the reachability problem in VASS has the
extremely high complexity of Ackermann-completeness [Czerwiński and Orlikowski 2021; Leroux
2021; Leroux and Schmitz 2019] and even two-dimensional VASS (i.e. the case of two counters,

1! = {(00̄)= (11̄)< (00̄)= (11̄)< | <,= ≥ 0} is included in the Dyck language, but is not context-free. Here, 0 and 1 are

opening brackets, and 0̄ and 1̄ are matching closing brackets. It only requires 3 context switches.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 73. Publication date: January 2023.



73:4 Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

which we are able to reduce to) is still PSPACE-complete [Blondin et al. 2021]. Therefore, we need
three novel ingredients to achieve the coNP upper bound. We expect these to be applicable to a
wider range of inclusion problems and give an overview of these techniques below.

Formally, we consider the following problem. We are given a multi-pushdown automaton (MPDA)
as input, together with a context bound  . An MPDA is an automaton with = stacks, each of which
represents the call stack of a thread in a multi-threaded shared-memory recursive program. The
input letters of MPDA are drawn from � and �̄ = {0̄ | 0 ∈ �}. Here, the letters in � (respectively,
�̄) are opening (respectively, closing) parentheses. We want to check whether all words produced
by the MPDA, with at most  context switches, belong to ��, the set of well-bracketed words over
� ∪ �̄.

We work with a characterization of �� that says non-membership of F in �� is due to three
possible violations [Ritchie and Springsteel 1972]:

(DV) a dip violation, whereF has a pre�x with more �̄ letters than � letters,
(OV) an o�set violation, where the number of � letters inF di�ers from the number of �̄ letters,
(MV) a mismatch violation, meaning an opening bracket is closed by the wrong type of closing

bracket; in other words, there is an in�x 0D1̄ for some letters 0 ≠ 1, such that D has no dip
violation and no o�set violation.

We provide an NP algorithm that detects these violations, yielding the coNP upper bound for
inclusion. Checking anMPDA for dip and o�set violations works using slight adaptations of existing
techniques; the di�cult part is detecting mismatch violations. To do the latter, we need to �nd
in�xes 0D1̄ as above. The set of words D that appear between mismatched letters 0,1̄ can also be
described by an MPDA. To make sure that such a wordD has no dip violation and no o�set violation,
one could naively equip such an MPDA with an additional counter and try to decide reachability.
Unfortunately, already for pushdown automata with an additional counter, decidability of the
reachability problem is a long-standing open problem [Englert et al. 2021; Leroux et al. 2015].

Ingredient I: Run decomposition and 2-VASS. Therefore, another approach is needed. Our �rst key
ingredient is to decompose the MPDA run reading D into a polynomial number of run pairs (c1, c2).
Here, the parts c1 and c2 of each pair (c1, c2) together form the run of a pushdown automaton
corresponding to a single stack in the run onD (but in this MPDA run, there might be an interruption
between c1 and c2). A similar decomposition has been used in [Shetty et al. 2021], but the crucial
trick here is to simulate each run pair (c1, c2) by a two-dimensional VASS (2-VASS). Speci�cally,
we simulate (c1, c2) top-down instead of left-to-right: Each step of the 2-VASS corresponds to a
letter on the stack that c1 leaves behind (and c2 consumes). In this way, c1 is simulated forward,
but c2 is simulated backward. Since the reachability relation of 2-VASS are de�nable in Presburger
arithmetic [Leroux and Sutre 2004]—the �rst-order theory of the structure (N, +, 0)—this would
allow us to build one formula in this logic that connects all the 2-VASS runs, and expresses the
existence of D.
However, this would result in much higher complexity than NP. The �rst issue is that in order

to directly construct the 2-VASS that simulates the pushdown runs, we would need to know the
minimal dip of any word generated by a given pushdown automaton. Here, the dip of a word E is
the maximal di�erence |? |�̄ − |? |� among all pre�xes ? of E . In terms of complexity, computing
this number is equivalent to the coverability problem of machines with one stack and one counter.
This problem is known to be decidable [Leroux et al. 2015], but PSPACE-hard [Englert et al. 2021],
and the best known upper bound is EXPSPACE [Englert et al. 2021].

Ingredient II: Annotations. Therefore, the second key ingredient is to circumvent this computation.
Instead of computing the minimal dips for the pushdown machines arising from the input, we �rst
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1 bool stoppingFlag = 0;

2 bool stoppingEvent = 0;

3 status = STOPPED;

4

5 main() {

6 take ();

7 status = STARTED;

8 }

9 worker(id i) {

10 assume(status == STARTED );

11 work ();

12 }

13 stopper () {

14 assume(status == STARTED );

15 stoppingFlag = 1;

16 drop ();

17 wait(stoppingEvent );

18 status = STOPPED;

19 // reclaim device

20 }

21 work() {

22 ret = take ();

23 if ret == 0 { // work on device

24 assert(status != STOPPED );

25 if (*) work (); // do more work

26 drop ();

27 }

28 }

29

30 take() {

31 if stoppingFlag return -1; // no more allowed

32 IncRef();

33 return 0;

34 }

35

36 drop() {

37 DecRef();

38 if ZeroRef()

39 notify(stoppingEvent );

40 }

41 program main || worker (1) || ... || worker(n) || stopper; // for constant n

Fig. 1. Simplified device management in Windows drivers.

enlarge the input language !: We show that one can expand the MPDAs so that (i) minimal dips
are easy to compute for the new machines and (ii) the enlarged language !′ is included in �� if
and only if ! is. The latter argument employs new insights into the Dyck language that we have
not seen in the literature. We call this process annotation (of minimal dips) and believe that this
technique will be useful for testing inclusion in �� for other types of programs.

Ingredient III: O�set-uniform 2-VASS. A further complexity issue is that in order to achieve our
NP upper bound (for non-inclusion), we need the resulting (existential) Presburger formulas to be
computable in NP. Unfortunately, it is not possible (unless NP = PSPACE) to compute in NP an
existential Presburger formula for the reachability relation of a given 2-VASS (if, as in our case, the
counter updates are given in binary): This is because already the reachability problem for 2-VASS
is PSPACE-complete [Blondin et al. 2021]. Therefore, our third key ingredient is to observe that the
resulting 2-VASS inhabit a newly-identi�ed subclass (o�set-uniform 2-VASS), for which we show
that one can in NP compute an existential Presburger formula for their reachability relation.

Putting all these ingredients together, we can construct in NP an existential Presburger formula
that expresses the existence of a word D as above. Since truth of existential Presburger arithmetic is
decidable in NP [Borosh and Treybig 1976], we obtain the desired NP algorithm for non-inclusion.

1.3 Concrete Motivating Examples

Let us consider a concrete example. Figure 1 shows a simpli�ed example of a concurrent reference-
counted implementation in device management within the Windows kernel (this example is a
simpli�cation of the code from Qadeer and Wu [2004], which can be considered an early precursor
to context-bounded analyses). Each device maintains a reference count. When the device needs to
be stopped, a protocol ensures that the device is not unloaded until the reference counts are given
up. That is, a stopper process sets a stoppingFlag preventing further requests and waits for the
existing references to be given up. When the reference count reaches zero, the stopper is noti�ed
and the device is stopped. We assume each statement is executed atomically but context switches
can occur in between. In language-theoretic terms, the concurrent implementation generates a
language over IncRef, DecRef, ZeroRef, and Error (error is raised if the assertion on line 24
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fails). A natural speci�cation for the program is that (1) there is no Error, (2) on termination, each
behavior has exactly the same number of increment and decrement operators, (3) every pre�x has
at least as many increments as decrements, and (4) zero checks are correct. Seen as a sequence
over the reference counts, the counter should always be non-negative, be equal to zero i� a zero
test succeeds, and be zero at the end. Since the counter can grow unboundedly, the speci�cation
is not regular and the example is beyond the scope of known decidable classes. In contrast, the
speci�cation is an input-deterministic MPDA language (in fact, it can be encoded by a two-letter
Dyck language) and our result shows that it is algorithmically decidable. We note that the program
violates the speci�cation (how?) and a violation can be found with a context bound of 1.2

Another situation where we need to check inclusion in the Dyck language is the veri�cation
of programs that generate code or documents with nesting structures [Madhavan et al. 2015]
(see also [Ferles et al. 2021]). First, most modern programming languages feature several kinds of
parentheses (for control �ow, function calls, arithmetical expressions) that need to be well-nested.
Second, document formats with tree-like structure (such as XML) require opening and closing tags
to match. Thus, for verifying syntactic correctness of the generated code or documents, checking
inclusion in the Dyck language is a necessary step.

1.4 Related Work

Context-bounded reachability was introduced by Qadeer and Rehof [2005] as a decidable procedure
for underapproximating the reachable state space of a multi-threaded shared memory program.
The restriction was inspired by the empirical observation that a small context bound is often
su�cient to identify many bugs in concurrent code [Musuvathi and Qadeer 2007]. Since then, the
decidability and complexity frontier of context-bounding in several associated models has been
explored intensively [Atig et al. 2011; Baumann et al. 2020; Inverso et al. 2022; La Torre et al. 2009,
2010; Lal and Reps 2009; Madhusudan and Parlato 2011; Meyer et al. 2018; Shetty et al. 2021; Torre
et al. 2020]. Atig et al. [2011] extended decidability of context-bounded reachability to a model with
dynamic spawning of threads. Baumann et al. [2021] showed liveness veri�cation is also decidable
in this setting. Madhusudan and Parlato [2011] prove a very general decidability result based on
bounded treewidth. Lal et al. [2008] showed that context-bounded analysis can be generalized to
a setting in which the data comes from an in�nite domain that satis�es certain “nice” properties,
namely, it forms a bounded idempotent semiring. Their result implies, in particular, decidability of
some quantitative properties such as the length of the shortest path between con�gurations.
Visibly pushdown automata (or equivalently, automata over nested words) have been studied

as subclasses of context-free languages with good decidability properties [Alur and Madhusudan
2004, 2009]. They have been the basis for de�ning speci�cation logics and decidability results for
model checking [Alur et al. 2011, 2004]. However, most work on software model checking with
nested word speci�cations have been applied to the sequential setting. Further, since the language
inclusion problem for arbitrary CFLs into visibly pushdown automata is undecidable [Filiot et al.
2018, Prop. 11], we cannot derive analogous results with visibly pushdown speci�cations. There
are practical speci�cations (such as reference counting on two objects) that are input-deterministic
MPDA languages but not visibly pushdown languages.
Our proof uses several language-theoretic techniques that have been applied to the inclusion

problem for context-free languages. Balanced context free languages have been studied since the

2Consider the execution in which main �nishes, followed by a worker thread that executes line 31, �nds stoppingFlag is

false, and then gets swapped out just before executing line 32. At this point, the stopper is scheduled, sets stoppingFlag

to true, and calls drop. Since the reference count is one, drop decrements, checks that the reference count is zero, and sets

stoppingEvent. The stopper continues to run and stops and reclaims the device. At this point, the interrupted worker

runs again, performs the increment and fails the assertion since the device is stopped.
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1960s. The Dyck inclusion problem for CFLs has been studied by many researchers. A polynomial
time algorithm for inclusion in the unary Dyck language (balanced parenthesis languages with one
kind of parentheses) was given by Knuth [1967]. Berstel and Boasson [2002] built on this result,
giving an algorithm for Dyck inclusion over an arbitrary alphabet. Finally, Tozawa and Minamide
[2007a] showed a polynomial-time procedure for the problem3.
Inclusion in Dyck languages has also been studied for languages beyond the context-free lan-

guages. Maneth and Seidl [2018] have shown that if there is only one pair of parentheses, then
inclusion is decidable for ranges of MSO tree-to-string transducers. They also provide various
complexity bounds, depending on how the language is speci�ed. Moreover, Löbel et al. [2021] show
that for general Dyck languages, inclusion is decidable in polynomial time for ranges of two-copy
tree-to-string transducers. Their result is incomparable to ours: First, there are MPDA languages4

(with context-switching bound) that cannot be produced by two-copy tree-to-string transducers.
Second, as far as we can see, their methods are fundamentally insu�cient to deal with our setting5.
However, their procedure also deals with non-trivial phenomena that do not occur in our setting.
On the negative side, Kobayashi [2019] shows that for order-2 pushdown automata (a level in the
hierarchy of higher-order pushdown automata), inclusion in the Dyck language is undecidable,
already for one pair of parentheses.
The inclusion problem is known to be decidable between arbitrary context-free languages and

those accepted by superdeterministic pushdown automata [Greibach and Friedman 1980]. We leave
to future work if our techniques extend to the class of superdeterministic speci�cations.
In the context of program veri�cation, Madhavan et al. [2015] studied heuristic algorithms for

context-free inclusion, inspired by algorithms for decidable instances of context-free language
equivalence between LL(k) grammars [Olshansky and Pnueli 1977; Rosenkrantz and Stearns 1970].
They showed that their rewrite rules could prove inclusion for several problems in practice, but
did not show any general decidability result. Unfortunately, decidability of equivalence does
not entail decidability of inclusion: checking if a linear LL(1) language is included in another is
already undecidable [Friedman 1976]. Thus, the heuristic procedures of Madhavan et al. [2015] are
unlikely to lead to decidability. Furthermore, the fact that equivalence is decidable for deterministic
pushdown automata [Sénizergues 1997] has been applied to equivalence checking of Idealized
Algol [Murawski et al. 2005; Ong 2002]. However, since inclusion is undecidable for deterministic
pushdown automata, this does not apply to our setting.
Our work was inspired by Ferles et al. [2021], who studied safety veri�cation of sequential

programs against context-free speci�cations. We observed that the examples of context-free speci-
�cations in [Ferles et al. 2021] fall into the subclass of input-deterministic MPDA languages. Our
result is a generalization of their work to the multithreaded setting. Since their implementation is
based on the heuristic rewrites for checking context-free language inclusion from [Madhavan et al.
2015], they do not provide decidability or tractability results.

3There is also a polynomial-time algorithm due to Bertoni et al. [2011, Theorem 2] for inclusion of context-free languages

in certain languages  de�ned by rewriting systems. It is claimed in [Bertoni et al. 2011, Lemma 5] that the algorithm also

applies to  = �� , but unfortunately, this is not the case. They assume that the monoid induced by the Dyck reduction↠

(see Section 2) is cancellative, but it is not: The words 00̄0 = 0 · 0̄0 and 0 = 0 · Y are congruent, but 0̄0 and Y are not.
4For example, one can show that the language {0<1=0<1=#2:3ℓ2:3ℓ | <,=,:, ℓ ≥ 0} is not produced by a two-copy

tree-to-string transducer.
5Intuitively, the two-copy restriction means that the words are built from two “context-free parts”. Then, inclusion can only

hold if the left part (resp. right part) has a Dyck normal form of only opening (resp. closing) parentheses. This allows Löbel

et al. [2021] to analyze the two parts separately and then apply techniques for free groups. Roughly speaking, our setting

allows arbitrary numbers of alternations among context-free parts, yielding more varied cross-part cancellation patterns.
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2 CONTEXT-BOUNDED INCLUSION FOR MULTISTACK PUSHDOWN AUTOMATA

Programs. We take a language-theoretic view and de�ne our programming model as multistack
pushdown automata [Madhusudan and Parlato 2011].
We de�ne some notation. For = ∈ N we de�ne [=] = {1, 2, . . . , =}, and furthermore for<,= ∈ Z

with< ≤ = we de�ne [<,=] = {<,< + 1, . . . , =}. We use bold letters such as b to denote vectors
over N and x for a vector of variables over N. We will also write 18 to denote the 8

Cℎ component of b.
Let� be a �nite alphabet. We write�Y to denote�∪ {Y}. We write �̄ = {0̄ | 0 ∈ �}. Furthermore, if
G = 0̄ for some 0 ∈ �, then we de�ne Ḡ = 0; that is, the function ·̄ : � ∪ �̄ → � ∪ �̄ is an involution.
Moreover, given a stringF ∈ (� ∪ �̄)∗,F = 01 · · ·0= , 01, . . . , 0= ∈ � ∪ �̄, we de�ne F̄ = 0̄= · · · 0̄1.
A Multistack Pushdown Automaton with < stacks (<-MPDA, or just MPDA) is a tuple M =

(&,@0, Σ, Γ, X,&� )where& is a �nite set of states,@0 ∈ & is the initial state, Σ is a �nite input alphabet,
Γ is a �nite stack alphabet, X = (Xpush, Xpop) de�nes a transition relation, and&� ⊆ & is a set of �nal
states. We de�ne Xpush ⊆ &×ΣY×&×Γ×[<] as the set of push moves and Xpop ⊆ &×ΣY×Γ×&×[<]

as the set of pop moves. The size ofM is de�ned as |M| = |& | + |Σ| +< · |Γ | + |Xpush | + |Xpop |.
A con�guration of M is a tuple 2 = (@,F1,F2, . . . ,F<), where @ ∈ & and for each 8 ∈ [<],

F8 ∈ Γ
∗ is the stack content of stack 8 . There is a transition 2

0
−−−−−−−→
push9 (W )

2 ′ from con�guration

2 = (@,F1,F2, . . . ,F<) to con�guration 2 ′ = (@′,F ′
1
,F ′

2
, . . . ,F ′

<) i� there is (@, 0, @′, W, 9) ∈ Xpush,

F ′
9 = WF 9 and for all 8 ≠ 9, 8 ∈ [<] we haveF ′

9 = F 9 . Similarly, 2
0

−−−−−−→
pop9 (W )

2 ′ i� there is (@, 0,W, @′, 9) ∈

Xpop,F 9 = WF
′
9 and for all 8 ≠ 9, 8 ∈ [<], we haveF ′

9 = F 9 . In both cases we write 2
0
−→9 2

′ to denote

any transition involving stack 9 , or just 2
0
−→ 2 ′, if both stack number and operation do not matter.

We furthermore extend this notation to words F ∈ Σ
∗. For F = 0102 · · ·0= and a sequence of

transitions 20
01
−→9 21

02
−→9 . . .

0=
−−→9 2= all involving the same stack 9 , we also write 20

F
−→9 2= .

Similarly, for F = 0102 · · ·0= and a sequence of transitions 20
01
−→ 21

02
−→ . . .

0=
−−→ 2= involving any

number of stacks, we write 20
F
−→ 2= .

A run ofM over a wordF ∈ Σ
∗ is a sequence of transitions c = (@0, Y, Y, . . . , Y)

F
−→ (@5 , Y, Y, . . . , Y),

where @5 ∈ &� is a �nal state. In this case we say thatF is a word accepted byM and the language
!(M) is the set of all such words.

Intuitively, an<-MPDA represents a shared memory multithreaded program with< (recursive)
threads, with shared state space & . A con�guration (@,F1, . . . ,F<) describes a shared state @ and
the stacks of the< threads containingF1 toF< , respectively. Each transition corresponds to a step
of some thread; in a step, a thread can push symbols on to its stack (a function call) or pop symbols
from its stack (a return), based on the shared state & . A run corresponds to an execution of the
program. The alphabet Σ consists of visible events of a run, such as API calls like lock or unlock
or program events like acquiring or releasing a reference.

Example 2.1. We present some simple examples to give an intuition on how “usual” multithreaded
shared memory programs can be encoded as MPDAs. Fig. 2(a) contains a simple multithreaded
program that runs = copies of a thread T. Each thread T nondeterministically calls a recursive
procedure a with a Boolean argument (“choose”). The procedure a writes out a string of bits, by
taking a re-entrant lock and nondeterministically deciding to call itself recursively or to return
by giving up the lock. We model the program as an MPDA with = stacks, one for each thread. We
use the stack alphabet 0 and 1 to store the execution stack for a, and additional letters to track the
program location of each thread. We use lock and unlock as the alphabet of visible events. The
control states in& capture the control �ow structure of the program. Since there is no other shared
state, a single control state coordinates the scheduling. For each thread, the scheduler pops the top
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1 T() {

2 choose a(0); || a(1);

3 }

4 a(bool b) {

5 lock();

6 write(b);

7 if *

8 choose a(0); || a(1);

9 unlock();

10 }

11 program

12 T() || T() || ... || T()

1 global resource [1..t];

2 // initially , all resources are valid

3 W() {

4 rsrc = resource [1]; assume(rsrc.valid);

5 IncRef(rsrc);

6 while (*) {

7 assert(rsrc.valid);

8 choose i in [1..t];

9 new_rsrc = resource[i]; assume(new_rsrc.valid);

10 DecRef(rsrc);

11 rsrc = new_rsrc;

12 IncRef(rsrc);

13 }

14 DecRef(rsrc);

15 }

16 Cleanup () {

17 choose j in [1..t];

18 if ZeroRef(resource[j])

19 resource[j].valid = 0;

20 }

21 program W() || W() || ... || W() || Cleanup ()

Fig. 2. (a) Re-entrant locks (b) reference counting

(to �nd the current control state), applies the operation (lock, unlock, write, or a nondeterministic
choice among further calls), and pushes the new control state.
Fig. 2(b) contains a simple example with reference counts. There is a set of reference counted

resources. Resources are valid (can be used) or invalid (freed). When the reference count for a
resource reaches zero, it can be garbage collected by a Cleanup process. Each thread goes over the
resources, acquiring a new resource and releasing the old one. Again, each thread has its own stack.
The visible events, in red, correspond to taking and releasing references, and using a resource. In an
MPDA encoding, the global state will contain, in addition to control coordination states, the state
for each resource. Reasoning whether assert is only called on valid resources is still nontrivial. In
fact, the program has a bug.6 □

Speci�cations: Dyck Languages. We are interested in speci�cations given by Dyck languages. Let
� be an alphabet and let Σ = � ∪ �̄ for the involution ·̄. For a word F ∈ Σ

∗, the Dyck reduction
↠ ⊆ Σ

∗ × Σ
∗ is de�ned byF ↠ F ′ i� there exist words D, E ∈ Σ

∗ and 0 ∈ � such thatF = D00̄E and
F ′

= DE . We represent the re�exive, transitive closure of↠ by↠∗ as usual. A wordF is said to be
reduced if 00̄ is not an in�x ofF for any 0 ∈ �. It is well known that there exists a unique reduced
word DyckNF(F) called the normal form ofF , for any given wordF such thatF ↠∗ DyckNF(F).
The Dyck language (over �) �� is de�ned as �� = {F ∈ Σ

∗ | DyckNF(F) = Y}.
Intuitively, think of letters 0 in � as “opening brackets” and 0̄ as the corresponding “closing

brackets.” Viewed this way, a Dyck language is the language of all words with matched brackets.

Example 2.2. We give some examples of Dyck speci�cations. We use context-free grammar (CFG)
notation for the languages. A re-entrant lock satis�es the speci�cation

( → Y | lock ( unlock (

Now, in multithreaded programs, a re-entrant lock is “blocked” for other threads as soon as one
thread takes one lock. So, one could reduce the problem to checking correct usage for each lock.

6If rsrc and new_rsrc refer to the same resource, then an interruption of W on line 11 by Cleanup can free the resource.

When W is resumed, it increments the reference to an invalid resource on line 12 and fails the assertion on line 7.
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However, this is not true for other re-entrant lock types, such as Android’s WakeLock, that prevents
the device from going to sleep when some threads are performing important work. A WakeLock
satis�es the same speci�cation as a re-entrant lock, but allows multiple threads to hold the lock
(multiple times) simultaneously (when it is used in reference counting mode).

A single reference counted object, such as those in the examples above, satis�es the speci�cation

( → Y | IncRef ( DecRef (

This speci�cation does not allow checking if a reference count is zero, but we can allow such checks
by a slight encoding trick. We introduce a new letter Z (to mark an empty counter explicitly) and
use the two-letter Dyck language

( → Y | Z ( Z̄( | IncRef ( DecRef (

In the program, we start by emitting a Z on initializing a refcount, and we emit a Z̄ on termination.
Each successful zero test emits Z̄ Z and each unsuccessful zero test emits DecRef IncRef. This
encoding ensures that a valid run of the program performs the zero tests correctly. □

Context-bounded Inclusion. Ideally, we would like to check if the language !(P) of a program over
an alphabet Σ is contained in a speci�cation ��. Unfortunately, this problem is undecidable, since
the emptiness problem for 2-MPDAs is already undecidable. Thus, we focus on the context-bounded
language of a program.

A context-switch in a run c = 20
01
−→
B1

· · ·
0=
−−→
B=

2= of an<-MPDA is a pair of consecutive transitions

28
08+1
−−−→
B8+1

28+1
08+2
−−−→
B8+2

28+2 such that B8+1 and B8+2 are stack operations on stacks 9 and : , respectively, for

some 9 ≠ : . This context-switch is associated with stack 9 . The total number of context-switches
2Bc (8) associated with stack 8 in a run c is called the context-switch number of stack 8 . A contiguous
sequence of transitions between two context-switches where all stack operations are performed on
stack 8 (alternately between 20 and the �rst context switch, or between the last context switch and
2=) is called a segment of stack 8 . The run c is said to be  -context-bounded if its total number of
context switches does not exceed  , i.e.

∑

8∈[<] 2Bc (8) ≤  . The  -context-bounded language of M,
denoted ! (M), is the set of words accepted by the  -context-bounded runs of M.
The context-bounded Dyck inclusion problem is given as:

Input: An MPDAM with alphabet Σ = � ∪ �̄ and a number  in unary.
Question: Is ! (M) ⊆ ��?

Our main result is the following theorem.

Theorem 2.3. The context-bounded Dyck inclusion problem is coNP-complete.

coNP-hardness for Dyck inclusion, even with |�| = 1, follows easily from the NP-hardness of
context-bounded state reachability [Qadeer and Rehof 2005]. Given an instance of state reachability,
we transform the program to output Y on each transition and to output a single 0̄ on reaching
the target state. Thus, the language of the program is {Y} if the target state is never reached and
{0̄} ⊈ � {0} if it is reached.
When< = 1, we note that an<-MPDA reduces to the model of pushdown automata. Pushdown

automata accept exactly the class of context-free languages (CFLs). For this special case, Tozawa
and Minamide [2007a] show that inclusion can be checked in polynomial time.

Theorem 2.4 ([Tozawa and Minamide 2007a]). Given a CFL ! ⊆ (� ∪ �̄)∗, we can decide in
polynomial time whether ! ⊆ ��.

Our proof will extend this result to the  -context-bounded language ! (M) for< > 1. As we
shall see, the extension requires several new techniques.
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More General Speci�cations. Although Theorem 2.3 is ostensibly about the Dyck languages, it
applies to signi�cantly more complex speci�cations. An MPDA, over some input alphabet Σ (not
necessarily�∪ �̄) is called input-deterministic if (i) there are no transitions reading Y from the input
and (ii) for every state @ and every letter G ∈ Σ, there is at most one outgoing edge from @ that
reads G . Slightly extending the syntax of MPDA, we also allow an input-deterministic MPDA to
(a) carry a sequence of stack operations on each transition (instead of just a single stack operation)
and (b) specify an initial and �nal stack content for each stack (with the obvious semantics). Thus,
the MPDA satis�es a strong determinism property that requires every step to solely depend on
the input. (In contrast, in deterministic pushdown automata, a step may also depend on the stack;
input-determinism disallows this.)
The (context-bounded) input-deterministic MPDA inclusion problem is the following:

Given An MPDAM, a number  in unary, and an input-deterministic MPDA N .
Question Does ! (M) ⊆ !(N)?

Note that the size of an input-deterministic MPDA compared to a general MPDA is (a) increased
multiplicatively by the length of the longest sequence of stack operations occurring on one of its
transitions, and then (b) increased additively by the lengths of each initial and �nal stack content.

Corollary 2.5. The input-deterministic MPDA inclusion problem is coNP-complete.

Proof. SupposeN has ℓ stacks with the stack alphabet�. For each 8 ∈ {1, . . . , ℓ}, we construct an
MPDAM8 such that ! (M8 ) ⊆ (�∪�̄)∗ and we have ! (M) ⊆ !(N) if and only if ! (M8 ) ⊆ ��
for every 8 ∈ {1, . . . , ℓ}. We achieve this using a simple product construction ofM and N : A run
of M, reading F ∈ Σ

∗, results in a run of M8 that reads as input the word DBĒ , where (i) D is the
initial content of stack 8 , (ii) B ∈ (� ∪ �̄)∗ is the unique sequence of stack operations that N would
perform on stack 8 when readingF , and (iii) E is the �nal content of stack 8 speci�ed in N . Here,
0 ∈ � stands for pushing of 0 and 0̄ stands for popping 0. IfF does not lead N into a �nal control
state, then M8 notices this, because the copy of M has reached a �nal state, but N has not. In that
case, M8 also reads 01̄ for some 0, 1 ∈ �, 0 ≠ 1. Then, we clearly have ! (M8 ) ⊆ �� for every
8 ∈ {1, . . . , ℓ} if and only if ! (M) ⊆ !(N). Thus, Theorem 2.3 yields the coNP upper bound.

Since every Dyck language is also the language of an input-deterministic MPDA, the lower
bound is inherited from Theorem 2.3 as well. □

Example 2.6. The natural speci�cation for Fig. 2(b) is an input-deterministic C-MPDA, where the
previous speci�cation for reference counts with zero tests is maintained for each of the C resources. In
fact, with input-deterministicMPDAs, the speci�cation for reference counts with zero tests becomes
simpler because the machine can e.g. perform multiple zero tests simultaneously (by employing
transitions carrying sequences of stack operations). We remark that both Fig. 1 and Fig. 2(b) do not
satisfy the speci�cation because both can raise Error. We invite the reader to �nd the problems,
and note that  = 1 is su�cient to �nd the problems in each case (for the solutions, see Footnotes 2
and 6, respectively). These examples are taken from real bugs in Windows drivers (see [Qadeer and
Wu 2004]) and in the Python runtime system (see https://www.python.org/doc/essays/refcnt/). □

The rest of the paper is devoted to show the upper bound in Theorem 2.3.

3 CHECKING INCLUSION

Let M be an<-MPDA over an alphabet Σ = � ∪ �̄ and let  be given in unary. We show the non-
inclusion problem ! (M) ⊈ �� is in NP, by showing a sequence of nondeterministic polynomial
time reductions to a problem in NP.
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We shall assume familiarity with some basic concepts of language theory in our proof, such
as pushdown automata (PDA), context-free grammars (CFG), and straight-line programs (SLP)
representing compressed words; see, e.g., [Lohrey 2012; Sipser 2012] for more details.

3.1 Ways to Violate Dyck Inclusion and Proof Outline

For any alphabet Θ and words D, E ∈ Θ
∗, we say that D is a pre�x of E if one can write E = DF

for some F ∈ Θ
∗. In this case, we write D ≤pre E . For a language ! ⊆ Θ

∗, we de�ne pref (!) =

{D ∈ Θ
∗ | ∃E ∈ ! : D ≤pre E} to be the set of all pre�xes of words in !. Let � be an alphabet, let

Σ = � ∪ �̄, and consider the Dyck language ��. For a word F ∈ Σ
∗, de�ne the o�set Δ(F) of

F as Δ(F) = |F |� − |F |�̄ where |F |Γ denotes the number of letters in F belonging to Γ ⊆ Σ. A
language ! is o�set-uniform if Δ(D) = Δ(E) for all D, E ∈ !. The dip (or drop) 3 (F) ofF is de�ned
as 3 (F) = max{−Δ(D) | D ≤pre F}. We de�ne 4 (F) = (3 (F),Δ(F)). Observe that if |�| = 1 then
F ∈ �� if and only if 4 (F) = (0, 0).

Take an arbitrary language ! ⊆ Σ
∗ such that ! ⊈ ��. We will rely on the fact that there is a

wordF ∈ ! witnessing the non-inclusion that satis�es one of the following violation conditions:

(OV) an o�set violation Δ(F) ≠ 0,
(DV) a dip violation, where there is a pre�x D ofF with 3 (D) > 0, or
(MV) a mismatch violation, where there exists a pair 0, 1̄ (for some 0 ≠ 1) of mismatched letters in

F , i.e.F contains an in�x 0E1̄ where 4 (E) = (0, 0).

For example, F1 = 00̄0̄0 has a dip violation due to the pre�x D = 00̄0̄; F2 = 000̄ has an o�set
violation andF3 = 000̄1̄ has a mismatch violation.

This characterization of the language �� was �rst observed by Ritchie and Springsteel [1972],
who used it to show that membership in �� can be decided in deterministic logspace. It is known
as the “level trick” ([Lipton and Zalcstein 1977]) and has also been used by Tozawa and Minamide
[2007b] in a polynomial-time algorithm to check inclusion of a given context-free language in ��.

Algorithm 1 shows the outline of our procedure. Starting with the -context-bounded language of
anMPDA, we �rst decompose the language into a �nite union of shu�es of context-free languages
(Section 3.2); intuitively, each shu�e corresponds to one of (exponentially many) context switch
sequences. Our algorithm guesses the speci�c context switch sequence (and so the shu�e) that
leads to a violation.
Working directly with the shu�e is not enough, since we cannot e�ciently compute dips.

Therefore, our �rst step (Section 3.3) is to apply a procedure that expands the language of the
shu�e into an annotated shu�e such that Dyck inclusion is maintained but dips are easy to compute.

The rest of the algorithm works with the annotated shu�e. We �rst check for o�set violations in
polynomial time (Section 3.4). If the check succeeds, we nondeterministically guess if there is a dip
(Section 3.5) or a mismatch violation (Section 3.6), and we provide NP algorithms for each check.

Overall, the algorithm runs in nondeterministic polynomial time.

3.2 FromMPDA Runs to Shu�les

Next, we de�ne a class of languages, called shu�es, such that the context-bounded inclusion
problem reduces to checking violations on shu�es.

Let Σ = �∪�̄. LetM = (&,@0, Σ, Γ, X,&� ) be an<-MPDA. A context-switch sequence of length : is
a sequence f = (@0, C1, @1, . . . , C: , @: ) where C1, . . . , C: ∈ [1,<] are stack numbers, and @0, . . . , @: ∈ &

are states with @: ∈ &� . The language !f (P) ⊆ Σ
∗ contains all wordsD1 . . . D: so that there exists an

accepting run 20
D1
−→C1 21

D2
−→C2 . . .

D:
−−→C: 2: of P where con�guration 28 is in state @8 for all 8 ∈ [0, :].

We can write ! (M) =
⋃

f !f (M) where f ranges over all exponentially many context-switch
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Algorithm 1: Checking non-inclusion of ! (M) for an MPDA" and context bound  in
the Dyck language in NP

MPDAM over the alphabet Σ = � ∪ �̄,  in unary
View ! (M) as a �nite union of shu�es and guess a shu�e ! (Section 3.2)
Turn ! into an annotated shu�e !ann with ! ⊆ �� i� !ann ⊆ �� (Proposition 3.1)
Check in polynomial time if !ann has an o�set violation (Lemma 3.2)
if !ann has o�set violation then return “found violation” ;

/* Now we know that each context-free language in !ann is offset-uniform */

guess violation type do
violation dip do

Detect a dip violation in !ann in NP (Lemma 3.5)
if dip violation found then return “found violation” ;

violation mismatch do
Detect a mismatch violation in !ann in NP (Lemma 3.6)
if mismatch violation found then return “found violation” ;

sequences of length at most  . Each context-switch sequence is encoded by a string polynomial in
|M| and in  .
Each language !f is a shu�e of< context-free languages !1, . . . , !< , describing the behaviors of

the< stacks. Such a context-free language !C has the form !C ⊆ Σ
∗#Σ∗# · · · #Σ∗, see Fig. 3 for an

illustration.
Let us introduce some notation for building words of the MPDA from the languages !C . We will

de�ne this in a slightly more general setting, because our algorithms will work with languages
over somewhat larger alphabets than Σ. Speci�cally, we assume that there is some alphabet Π ⊇ Σ

with the distinguished letter # ∈ Π \ Σ. We call the letters in Π \ Σ auxiliary letters. Moreover, we
assume that the words in each language !C contain the auxiliary letters uniformly, meaning there
are $1, . . . , $: ∈ Π \ Σ with !C ⊆ Σ

∗$1Σ
∗ · · · $:Σ

∗. Here $8 and $9 for 8 ≠ 9 need not necessarily be
di�erent symbols. In particular, each word in !C contains the same number of occurrences of #. We
write Π\# := Π \ {#}.

For a word F ∈ Π
∗, we write F (1) , . . . ,F (=) for the factors obtained by cutting up F along

the separator #. Thus, we have F = F (1)#F (2)# . . . #F (=) with F (1) , . . . ,F (=) ∈ (Π\#)
∗. With the

context-switch sequence f = (@0, C1, @1, . . . , C: , @: ) we associate the shu�e function.

shuff : (Π
∗
\##)

:1−1Π
∗
\# × . . . × (Π∗

\##)
:<−1

Π
∗
\# → Π

∗
\#

shuff (F1, . . . ,F<) = F
( 91)
C1

· · ·F
( 9: )
C:

where :C = |{8 | C8 = C}| is the number of segments of stack C , and 98 = |{ℓ ≤ 8 | Cℓ = C8 }| is the
number of segments of stack C8 occurring before the (current) 8th segment.

We extend this de�nition to languages. If !1, . . . ,< ⊆ Π
∗ are languages with !C ⊆ (Π∗

\#
#):C−1Π∗

\#

for 1 ≤ C ≤ <, then we de�ne

shuff (!1, . . . , !<) = {shuff (F1, . . . ,F<) | FC ∈ !C for 1 ≤ C ≤ <}.

A shu�e is a language of the form shuff (!1, . . . , !<) for a context-switch sequence f and context-

free languages !C ⊆ (Π∗
\#
#):C−1Π∗

\#
. It is easy to see that every language !f (M) is a shu�e.

Therefore, in order to show that ! (M) ⊆ �� can be checked in coNP, it su�ces to show that
given a shu�e ! ⊆ Π

∗, we can decide ! ⊆ �� in coNP.
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# # # #

Fig. 3. An MPDA run consisting of seven segments which belong to three di�erent stacks (blue, red, green).

The behavior of each stack is described by a segmented context-free language.

3.3 Annotation

We begin with a preprocessing step. Let P be a pushdown automaton over the input alphabet Σ.
We de�ne the function 3 : & ×& → N ∪ {∞} to yield the minimal drop of any word read between
a state pair (from empty stack to empty stack), i.e.

3 (?, @) = inf{3 (F) | F ∈ Σ
∗
: (?, Y)

F
−→ (@, Y)}.

If there is noF ∈ Σ
∗ with (?, Y)

F
−→ (@, Y), then we have 3 (?, @) = ∞.

An annotated pushdown automaton is a pushdown automaton P together with a table for the
function 3 for P. Speci�cally, if an algorithm takes an annotated pushdown automaton as an input,
we simplify terminology and say it has an annotated context-free language as input.7 Likewise,
an annotated shu�e is a shu�e, where all the PDAs that describe the participating context-free
languages are annotated.
Computing the function 3 for an arbitrary given PDA is polynomial-time inter-reducible with

the coverability problem for one-dimensional pushdown vector addition systems with states [Leroux
et al. 2015]. The best known complexity upper bound for this problem is EXPSPACE (according to
[Englert et al. 2021]), and the problem is PSPACE-hard [Englert et al. 2021]. Therefore, in order to
get an NP upper bound in our setting, we need a new idea. The �rst key insight of our algorithm is
that we can slightly expand the input language so that (1) inclusion in �� is preserved and (2) the
function 3 can be computed for the expanded language in polynomial time. The following will be
proven in Section 4.

Proposition 3.1 (Annotation). Given a shu�e ! ⊆ Σ
∗, we can compute in polynomial time an

annotated shu�e !ann ⊆ Σ
∗ such that !ann ⊆ �� if and only if ! ⊆ ��.

3.4 Checking O�set Violations in P

To check if ! has an o�set violation, we check if it is o�set-uniform and, if so, check that all o�sets
are zero. We need a few preliminaries about straight line programs (SLPs) (see Section 4 for more
details). Recall that an SLP is a CFG whose language consists of precisely one string. For an SLP A,
we write eval(A) for this string; note that eval(A) can be exponentially longer than the size of A.
Moreover, given a CFG G, one can compute in polynomial time for each productive nonterminal -
of G an SLP A- , such that one can derive the word eval(A- ) from - in G. It should be stressed
that the latter procedure really computes an SLP A- that encodes a single arbitrary word among
those generated by - : Of course, - may generate in�nitely many words, but for the purposes of
our algorithm, it su�ces to construct an SLP for one such word, and it does not matter which one.

7 We can convert annotated PDAs to annotated CFGs, where an annotation maps nonterminals to N ∪ {∞}. Let P be an

annotated PDA for ! ⊆ Σ
∗#Σ∗. Recall the standard conversion of P to a CFG [Sipser 2012]. The grammar has nonterminals of

the form-?,@ for each state pair ?,@, and the following productions: (i) For states ?,@, A add the production-?,@ → -?,A-A,@ .

(ii) For all transitions ?
0

−−−−−−→
push(W )

?′, @′
1

−−−−−−→
pop(W )

@ add the production -?,@ → 0-?′,@′1. Observe that 3 (-?,@) := 3 (?,@) is a

valid annotation for the grammar, i.e. 3 (-?,@) = inf {3 (F) | F ∈ Σ
∗ : (?, Y)

F
−−→ (@, Y) }. Thus, we are justi�ed in saying

annotated context-free language.
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Lemma 3.2 (O�set Violation in P). Given a shu�e ! ⊆ Σ
∗, there is a polynomial-time procedure

to check if Δ(F) = 0 for allF ∈ !.

Proof. Given a shu�e ! = shuff (!1, . . . , !<), we test whether each !8 is o�set-uniform, and,
if so, compute the unique o�set. If one of the languages !8 is not o�set-uniform then ! is not
o�set-uniform, and we can reject. Otherwise, we test whether the sum of all o�sets is zero.
Hence, we only need to show a polynomial time procedure to test whether a context-free !

is o�set-uniform, and, if so, compute the o�set. Suppose ! is given by a context-free grammar
G = (#, Σ, %, (). Checking whether ! is o�set-uniform can be done using [Bertoni et al. 2011,
Theorem 2] but we include an easy proof for the sake of completeness. For each productive
nonterminals - of G let A- be an SLP such that the word eval(A- ) can be derived from - in G.
Such SLPs can be computed in polynomial-time by Lemma 4.3(2). We stress that here, all we need
from A- is that eval(A- ) can be generated by -—it does not matter for the algorithm which word
we pick. This is because in the next step, we compute the o�set Δ- of eval(A- ) for each productive
nonterminal - ∈ # : If ! is o�set-uniform, then all words derivable by - have the same o�set. Thus,
by computing Δ- as the o�set of eval(A- ), we compute the o�set that every word derivable from
- should have, if ! is o�set-uniform. The �nal step is to verify this:

Observe that now, ! is o�set-uniform if and only if (i) for all (- → 0) ∈ % we have Δ- = Δ(0)

and (ii) for all (- → ./ ) ∈ % we have Δ- = Δ. + Δ/ . This can be veri�ed easily by checking the
equality for each production of G. □

3.5 Checking Dip Violations in NP

The check for dip violations depends on the Parikh image of a shu�e and the representation of the
dip as an existential Presburger formula. Recall that the Parikh image of a word D ∈ Σ

∗ is a function
Parikh(D) : Σ → N such that, for every G ∈ Σ, we have Parikh(D) (G) = |D |G , where |D |G denotes
the number of occurrences of G in D. We extend the de�nition to the Parikh image of a language
! ⊆ Σ

∗: Parikh(!) = {Parikh(D) | D ∈ !}. We employ the usual isomorphism between Σ → N and
N |Σ | , corresponding to any �xed total ordering on the alphabet Σ, and consider the functions as
vectors of natural numbers.

We shall use a result of Verma et al. [2005] that the Parikh image of a context-free language is
representable in existential Presburger arithmetic.

Recall that Presburger arithmetic is the �rst order theory of the structure (N, +, ≤, 0, 1). The exis-
tential fragment of Presburger arithmetic (denoted ∃PA below) consists of existentially quanti�ed
formulas in prenex normal form. Satis�ability of ∃PA is NP-complete [Borosh and Treybig 1976].
We say that we can compute an ∃PA formula in NP for a relation ' ⊆ N: if there is a non-

deterministic polynomial-time algorithm where each branch computes an ∃PA formula i8 with :
free variables such that if i1, . . . , i= are the formulas of all the branches, then

(=1, . . . , =: ) ∈ ' ⇐⇒
∨

8∈[1,=]

i8 (=1, . . . , =: ).

Proposition 3.3 ([Verma et al. 2005]). There is a polynomial time procedure that takes as input
a context-free language ! and produces an ∃PA formula Ψ! (G1, . . . , G |Σ |) such that x ∈ Parikh(!) i�
Ψ! (x1, . . . , x |Σ |).

Moreover, we will tacitly use the well-known fact that given an SLP A, one can compute the
vector Parikh(eval(A)) in polynomial time (with entries represented in binary) [Lohrey 2012].

We extend Proposition 3.3 to shu�es.

Lemma 3.4. Given a shu�e ! ⊆ Σ
∗, one can compute in polynomial time an ∃PA formula for

Parikh(pref (!)).
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Proof. If ! = shuff (!1, . . . , !<), then Parikh(!) =
∑<
8=1 Parikh(cΣ (!8 )) where cΣ removes all

occurrences of #. We can compute ∃PA formulas for each Parikh(cΣ (!8 )) in polynomial-time
by Proposition 3.3 and combine them to get Parikh(!).

Next, we can write pref (!) as a union of : shu�es where : is the total number of segments in f .
The 8-th shu�e contains those pre�xes of words in ! which end in the 8-th segment. More

precisely, suppose that ! = shuff (!1, . . . , !<) where shuff (F1, . . . ,F<) = F
( 91)
C1

. . .F
( 9: )
C:

for some
numbers 98 , C8 . We can write pref (!) = %1 ∪ · · · ∪ %: where

%8 = {F
( 91)
C1

. . .F
( 98−1)
C8−1

E | F1 ∈ !1, . . . ,F< ∈ !<, E is a pre�x ofF
( 98 )
C8

}.

Observe that %8 is a shu�e of the languages  8,1, . . . ,  8,< , which are de�ned by

 8,C8 = {F
(1)
C8

# . . . #F
( 98−1)
C8

#E | FC8 ∈ !C8 , E is a pre�x ofF
( 98 )
C8

}

and

 8,C = {F
(1)
C # . . . #F

(:C )
C | FC ∈ !C } where :C = |{ℓ < 8 | Cℓ = C}|

for all C ≠ C8 . It is easy to construct CFGs for these languages from the ones for !1 to !< . Com-
putability of ∃PA formulas then again follows from Proposition 3.3. □

Lemma3.5 (DipViolation inNP). Given a shu�e! ⊆ Σ
∗, there is a nondeterministic polynomial-

time procedure to check if there is aF ∈ ! and a pre�x D ofF with 3 (D) < 0.

Proof. To verify whether ! contains a dip violation, we construct the ∃PA formula k from
Lemma 3.4 and use the NP satis�ability procedure of ∃PA to check whether there exists a vector
x ∈ NΣ and a letter 0 ∈ � with x [0] < x [0̄] satisfyingk . □

In fact, a slightly more involved procedure shows dip violations can be checked in polynomial
time. We omit this construction for simplicity.

3.6 Mismatch Violations in NP

It remains to detect mismatch violations in NP.

Lemma 3.6 (Mismatch Violations in NP). Given an annotated, o�set-uniform shu�e ! ⊆ Σ
∗,

we can decide in NP whether ! has a mismatch violation.

The Marked One-counter Problem. We shall reduce detecting mismatch violations to the following
combinatorial problem. A wordF ∈ (Σ ∪ {#})∗ of the formF = #E# with 4 (E) = (0, 0) is a marked
one-counter word. A factor that is a marked one-counter word is called a marked one-counter factor.
The marked one-counter problem is the following:

Given An o�set-uniform, annotated shu�e ! ⊆ Σ
∗#Σ∗#Σ∗.

Question Does ! contain a marked one-counter factor?

Proposition 3.7. Given an o�set-uniform annotated shu�e! ⊆ Σ
∗, one can compute in polynomial

time o�set-uniform, annotated shu�es !′
1
, . . . , !′= ⊆ Σ

∗#Σ∗#Σ∗ such that ! contains a mismatch
violation if and only if some !′8 contains a marked one-counter factor.

The intuition behind the reduction is as follows. Let ! = shuff (!1, . . . , !<) for a context-switch
sequence f (@0, C1, @1, . . . , C: , @: ) and context-free languages !; ⊆ (Σ∗#):;−1Σ∗ with

∑<
;=1 :; = : being

the total number of segments.
For the reduction, we guess the location of the letters 0, 1̄ such that 0F ′1̄ is the in�x witnessing

the mismatch violation. Since the 0 and 1̄ could potentially be located in segments belonging to
di�erent stacks, we also need to guess which segment contains each of these two letters a priori, as
well as the identity of these letters. Thus we have a polynomial (quadratic in the number of segments
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: and quadratic in |�|) number of languages !′
8, 9,0,1̄

where 8, 9 ∈ [0, :], 8 ≤ 9, 0 ∈ �,1 ∈ � \ {0},

such that 0 (resp. 1̄) is located in segment 8 (resp. 9 ). To construct these shu�es from !, we modify
the PDA for the language that provides the 8th (resp. 9th) segment of the shu�e, such that it reads
a #-symbol instead of exactly one 0 (resp. 1̄) in the input at the correct position.

Given Proposition 3.7, it remains to solve the marked one-counter problem for shu�es of o�set-
uniform annotated context-free languages.

3.7 Reachability Relations

We will need some more notation. For a word F ∈ Σ
∗, we de�ne d (F) ⊆ N × N to be the set of

all (=,<) ∈ N × N such that = ≥ 3 (F) and< = = + Δ(F). In other words, d (F) is the reachability
relation induced by F , interpreted as counter instructions: We have (=,<) ∈ d (F) if and only if
interpretingF as a sequence of counter instructions (a letter 0 ∈ � signifying an increment and
0̄ ∈ �̄ signifying decrement) leads from counter value = to counter value<, while staying above
zero. In particular, we have 4 (F) = (0, 0) if and only if (0, 0) ∈ d (F).
Consider again the marked one-counter problem. We are given a shu�e ! ⊆ Σ

∗#Σ∗#Σ∗ and we
want to decide, in NP, whether there exists a word D#E#F ∈ ! with (0, 0) ∈ d (E). Let � = {E ∈

Σ
∗ | ∃D,F ∈ Σ

∗ : D#E#F ∈ !} be the set of those factors in between #. So, the marked one-counter
problem can be solved in NP if we can check in NP if (0, 0) ∈ d (F) for someF ∈ � .

Let ! = shuff (!1, . . . , !<) for some o�set-uniform, annotated context-free languages !1, . . . , !< .
We will need a slight modi�cation of the notationF (8) forF ∈ Γ

∗: WhileF (8) means we split upF
along the separator # and then take the 8-th factor, we wantF ⟨8 ⟩ to mean that we split upF at both
auxiliary letters, # and #, and then take the 8-th factor. Thus, ifF = 0111#1̄1̄1̄2#2̄012#2̄1̄0̄0̄, then we
obtain the two decompositions

F =

F (1)

︷︸︸︷

0111
︸︷︷︸

F ⟨1⟩

#

F (2)

︷          ︸︸          ︷

1̄1̄1̄2
︸︷︷︸

F ⟨2⟩

# 2̄012
︸︷︷︸

F ⟨3⟩

#

F (3)

︷︸︸︷

2̄1̄0̄0̄
︸︷︷︸

F ⟨4⟩

.

The set of possible factors E is obtained by concatenating certain segments of the participating
languages !1, . . . , !< . This means, by inspection of the context-switch sequence f , we can �nd
indices C1, . . . , CA and 91, . . . , 9A such that

� = {F
⟨91 ⟩
C1

· · ·F
⟨9A ⟩
CA

| FC8 ∈ !C8 for 8 ∈ [1, A ]}.

Thus, we need to check if there is some F ∈ � such that (0, 0) ∈ d (F) in NP. The following
proposition is the key technical step in the computation.

Proposition 3.8. Given an o�set-uniform, annotated context-free language ! ⊆ (Σ∗#):Σ∗, we can
compute in NP an ∃PA formula for the relation

⋃

F∈!

d (F (1) ) × · · · × d (F (:+1) ) ⊆ N2(:+1) .

Assuming o�set-uniformity and annotations in Proposition 3.8 is crucial. Without these assump-
tions, we could use the proposition to test whether a context-free language over {0, 0̄} intersects the
Dyck-language � {0} . This is equivalent to the reachability problem for one-dimensional pushdown
vector addition systems with states, which is not known to be decidable [Leroux et al. 2015].

Proposition 3.8 is su�cient to compute ∃PA formulas for each portion of a word in � . In the
proof of Lemma 3.6, we will apply Proposition 3.8 and then combine these formulas using the
following observation, which directly follows from the de�nition of d .
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Lemma 3.9. LetD1, . . . , DB ∈ Σ
∗. Then (=,<) ∈ d (D1 · · ·DB ) if and only if there are =1,<1, . . . , =B ,<B

∈ N with (=8 ,<8 ) ∈ d (D8 ) for every 8 ∈ [1, B] and = = =1,<1 = =2, . . . ,<B−1 = =B , and<B =<.

Before we prove Proposition 3.8, let us see how it can be used to check (0, 0) ∈ d (� ) in NP, and
thus to prove Lemma 3.6.

Proof of Lemma 3.6. By Proposition 3.8, we can inNP compute an ∃PA formulaiC for C ∈ [1,<]

with free variables =C,1,<C,1, . . . , =C,: ,<C,: such that

iC (=C,1,<C,1, . . . , =C,: ,<C,: ) ⇐⇒ ∃F ∈ !C : (=C, 9 ,<C, 9 ) ∈ d (F
⟨9 ⟩) for all 9 ∈ [1, :] .

Hence, by Lemma 3.9, we have (0, 0) ∈ d (� ) if and only if

<∧

C=1

iC ∧ 0 = =C1, 91 ∧<C1, 91 = =C2, 92 ∧ · · · ∧<CA−1, 9A−1 = =CA , 9A ∧<CA , 9A = 0. (1)

Finally, note that our application of Proposition 3.8 means that each iC is a disjunction of (expo-
nentially many) ∃PA formulas and we can only guess one of these disjuncts. Therefore, we guess,
for each C ∈ [1,<], a disjunct of iC , and then replace iC in Eq. (1) by this disjunct. Then clearly,
one of the resulting formulas is satis�able if and only if (0, 0) ∈ d (� ). Together with the fact that
satis�ability of ∃PA is in NP, this allows us to decide (0, 0) ∈ d (� ) in NP and so to solve the marked
one-counter problem. By Proposition 3.7, this is su�cient to also prove that checking mismatch
violations is in NP (Lemma 3.6). □

It remains to prove Proposition 3.8. We accomplish this in two steps. The �rst step is the special
case : = 1, i.e., ! ⊆ Σ

∗#Σ∗. For this special case, we will employ two-dimensional vector addition
systems. The second step will lift the construction to all : using cancellation graphs.

3.8 Proposition 3.8: Special Case : = 1

Vector addition systems with states. A (3-dimensional) vector addition system with states (short
3-VASS) is a pair (&,) ), where & is a �nite set of states, ) ⊆ & × Z3 × & is its set of transitions.
When we represent a 3-VASS in memory, we will store the numbers in transitions in binary. A
con�guration is an element of&×N3 and instead of (@, x), we also write@(x). For two con�gurations
? (x) and @(y), we write ? (x) → @(y) if there exists a transition (?, z, @) ∈ ) such that y = x + z.

By
∗
−→, we denote the re�exive, transitive closure of →.
Hence, computation steps in VASS can only happen if all counter values remain non-negative.

However, sometimes, it will be useful to talk about hypothetical steps between so-called “pseudo-
con�gurations”, which may contain negative numbers. A pseudo-con�guration is a pair in & × Z3 .
For pseudo-con�gurations ? (x), @(y) ∈ & × Z3 , we write ? (x) →Z @(y) if there exists a transition

(?, z, @) ∈ ) with y = x + z. Again,
∗
−→Z is the re�exive, transitive closure of →Z.

A 2-VASS is called o�set-uniform if for any two states ?, @ and any runs ? (=1, =2)
∗
−→Z @(<1,<2)

and ? (=′
1
, =′

2
)

∗
−→Z @(<

′
1
,<′

2
), we have

(<2 −<1) − (=2 − =1) = (<′
2 −<

′
1) − (=′2 − =

′
1).

Proposition 3.10. Given an o�set-uniform 2-VASS and states ?, @, we can compute in NP an ∃PA
formula for the reachability relation

{(=1, =2,<1,<2) ∈ N
4 | ? (=1, =2)

∗
−→ @(<1,<2)}. (2)

We will prove Proposition 3.10 in Section 5. Now Proposition 3.10 allows us to prove Proposi-
tion 3.8 in the special case : = 1:
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#

Fig. 4. Illustration of Proposition 3.11

Proposition 3.11. Given an o�set-uniform, annotated context-free language ! ⊆ Σ
∗#Σ∗, we can

compute in NP an ∃PA formula for the relation
⋃

F∈!

d (F (1) ) × d (F (2) ) ⊆ N4.

Proof. Let G = (#, Σ, %, () be an annotated grammar for ! ⊆ Σ
∗#Σ∗, after establishing Chomsky

normal form. We compute for every nonterminal - the o�set Δ(- ) in polynomial time, and we
de�ne Δ− (- ) = 3 (- ) and Δ+ (- ) = Δ(- ) +3 (- ). Let us describe intuitively how the 2-VASS works.
Consider a derivation tree of G for a wordF (1)#F (2) and consider the path from the root to the leaf
labeled by the separator #, as shown in Fig. 4. The 2-VASS traverses this path from the root to the
#-leaf. While doing so, it applies the e�ects of the subtrees to the sides of the path (shown in blue and
red in Fig. 4) to its counters. More precisely, it either adds the e�ect of a left-branching nonterminal
(blue in Fig. 4) to the �rst counter, or subtracts the e�ect of a right-branching nonterminal (red in
Fig. 4) from the second counter. Note that although the o�set of a nonterminal - is unique, namely
Δ(- ), its dip is not uniquely determined. The 2-VASS will always assume the minimal dip 3 (- ),
which is enough to capture the union of the reachability relations d (F (1) ) and d (F (2) ) when F
ranges over all words in !.

More formally, let ## ⊆ # be the set of nonterminals with !(##) ⊆ Σ
∗#Σ∗. The 2-VASS has state

set ## ∪ {#} (and some auxiliary states) such that for all - ∈ ## we have
⋃

F∈! (- )

d (F (1) ) × d (F (2) ) = {(=1,<1,<2, =2) | - (=1, =2)
∗
−→ #(<1,<2)}.

Note that here, the entries of d (F (1) ) × d (F (2) ) require<1 and<2 to be in the middle, because the
2-VASS simulates the wordF (2) from right to left. Then the statement follows from Proposition 3.10.
The 2-VASS contains the following transitions

-
(−Δ− (. ),0)
−−−−−−−−→ •

(Δ+ (. ),0)
−−−−−−−→ / for each - → ./ with / ∈ ##

-
(0,−Δ+ (/ ))
−−−−−−−−→ •

(0,Δ− (/ ))
−−−−−−−→ . for each - → ./ with . ∈ ##

-
(0,0)
−−−→ # for all - → #.

Here, • represents a fresh state introduced for each production. O�set-uniformity is inherited from
G. Correctness can be veri�ed by induction. □

3.9 Proposition 3.8: General Case

It remains to prove Proposition 3.8. This means, we need to lift Proposition 3.11, i.e. the case of
! ⊆ Σ

∗#Σ∗, to the more general case of ! ⊆ (Σ∗#):Σ∗. Having established Proposition 3.11, the
general case is conceptually simple and follows.
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#

#

#

#

run length

PDA stack height

Fig. 5. Decomposing a segmented PDA run into 2-segmented runs (bo�om) via cancellation graph (top).

Decomposing runs. The key idea is that each run of our PDA for ! ⊆ (Σ∗#):Σ∗ reading a word
D0#D1 · · · #D: can be decomposed into pairs (c1, c2) of sub-runs c1 and c2 such that

(1) each sub-run c1 and c2 reads an in�x of some D8 , 8 ∈ [0, :], and
(2) c1 produces a stack content F which is completely consumed by c2. Here, we refer to the

stack of the PDA itself, not the input letters (which can also be seen as stack operations).

This is illustrated in Fig. 5 (bottom). We decompose as follows. We go from left to right through the
run for D0#D1 · · · #D: , beginning at D0. We pick the longest pre�x c1 of the run on D0 so that there is
an 8 ∈ [0, :] such that each push in c1 has its corresponding pop either (i) still within the run on D0
or (ii) in the run on the segment D8 . In Fig. 5, the �rst pair (c1, c2) is the one in red, and we have
8 = 4, because the red sub-run on the left cancels with the red sub-run on the right.

One can then notice that c1 corresponds to a sub-run c2 of the run on D8 so that all pushes within
c1 that are not popped within the run on D0, are popped in c2. Now we have found our �rst pair
of sub-runs. To �nd the next pair, we continue along D0 until we encounter a push that is popped
outside of D0 and D8 . In Fig. 5, this would be the blue pair, which has pushes within D0 matched by
pops in D2. This then yields a new pair (c ′

1
, c ′

2
), etc. At some point we will also �nish decomposing

the run on D0, at which point we move on to D1 and so on. In Fig. 5, each pair (c1, c2) corresponds
to one edge in the graph above the PDA run.
As in Fig. 5 (top), the pairs (c1, c2) are edges in a graph, which we call “cancellation graph”.

Slightly more formally, a cancellation graph is a graph� = (+ , �, _), where+ = [0, :], � ⊆ + ×+ is
a set of edges with 8 < 9 for each (8, 9) ∈ �, and _ is a labeling function that maps nodes and edges
to the states occupied by the PDA at the beginning and end at each subrun.
Each cancellation graph requires polynomially many bits to store. Therefore, the algorithm for

Proposition 3.8 can guess a cancellation graph and then computes in NP an ∃PA formula for the
d relation covering all runs that decompose using this cancellation graph. To this end, it applies
Proposition 3.8 to each pair (c1, c2) and then combines the formulas using Lemma 3.9.
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1 0̄0 2̄

o�set

pre�x length

Fig. 6. Illustration of Lemma 4.1

4 COMPUTING ANNOTATIONS

In this section, we prove Proposition 3.1. As mentioned before, the language !ann is a superset
of the input language !. We will argue that !ann ⊆ �� if and only if ! ⊆ �� by observing that
all words in !ann are obtained from words in ! by free group reductions. Let us give some context
on this. Recall that Σ = � ∪ �̄. It is a classical fact (and follows easily from the de�nition of ��)
that for D, E ∈ Σ

∗, we have DE ∈ �� if and only if D00̄E ∈ ��. If we �ip 0 and 0̄, the same is not
true—inserting 0̄0 can spoil membership in ��: We have Y ∈ ��, but 0̄0 ∉ ��.

In fact, allowing 0̄0 to be deleted in addition to 00̄ leads to free group reductions: ForF,F ′ ∈ Γ
∗,

we write F ↣ F ′ if there are D, E ∈ Γ
∗ and 0 ∈ � with F ′

= DE and either (i) F = D00̄E or
(ii)F = D0̄0E . Moreover,↣∗ denotes the re�exive transitive closure of↣. Then, the language of
allF ∈ Σ

∗ withF ↣∗ Y is called the word problem of the free group (over �) and checking inclusion
there is often algorithmically easier than inclusion in ��.

We observe here, somewhat surprisingly, that applying free group reductions preserves member-
ship in ��, in one direction:

Lemma 4.1. Let D, E ∈ Σ
∗ and 0 ∈ �. If D0̄0E ∈ ��, then also DE ∈ ��.

Proof. For each type of violation, we can check that if DE has a violation, then D0̄0E has one as
well. For dip and o�set violations, this is obvious. Finally, suppose DE has a mismatch violation, say
with a factor 1F2̄ , where 4 (F) = (0, 0) and 1 ≠ 2 . If both 1 and 2̄ are in the same factor (D or E) of
DE , then this mismatch violation also exists in D0̄0E . Otherwise, 1 occurs in D, 2̄ occurs in E , and 0̄0
is inserted inside ofF . LetF ′ be the word obtained by inserting 0̄0 intoF .

If 4 (F ′) = (0, 0), then the same 1 and 2̄ constitute a mismatch violation for D0̄0E . Otherwise, we
must have 3 (F ′) = 1, because the o�sets in F can only sink by at most 1 if we merely insert 0̄0.
But then we are in a situation as in Fig. 6: all four letters, 1, 0̄, 0, and 2̄ , are on the same level. Since
1 ≠ 2 , we must have 0 ≠ 1 or 0 ≠ 2 (otherwise, 1 = 0 = 2). Therefore, there must be a mismatch
violation in D0̄0E between 1 and 0̄ or between 0 and 2̄ . □

Lemma 4.1 motivates the following de�nition. For a language ! ⊆ Γ
∗, we de�ne

!⋄ := {F ′ ∈ Γ
∗ | ∃F ∈ ! : F ↣∗ F ′}.

Lemma 4.1 tells us that applying free group reductions preserves membership in ��:

Corollary 4.2. For ! ⊆ Σ
∗, we have ! ⊆ �� if and only if !⋄ ⊆ ��.

Proof. The “if” follows from ! ⊆ !⋄ and the “only if” follows by induction from Lemma 4.1 and
from the fact that for any D, E ∈ Σ

∗ and 0 ∈ �, we have D00̄E ∈ �� if and only if DE ∈ ��. □

Corollary 4.2 will let us argue that ! ⊆ !ann ⊆ !⋄, which implies !ann ⊆ �� if and only if ! ⊆ ��.

Compressed Words and Straight Line Programs. Our annotation procedure will also employ known
algorithms on compressed words, represented by context-free grammars accepting exactly one
word. A straight-line program (SLP) is a context-free grammar A where every nonterminal -
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produces exactly one word, denoted by eval(- ). The word produced by the starting nonterminal
is denoted by eval(A). In the following we summarize a few results that we will need. For more
details, we refer to the survey on algorithms on SLP-compressed words by Lohrey [Lohrey 2012].
We stress that in (2), the mentioned algorithm computes an SLP for a single arbitrary word derivable
from - (among a potentially in�nite set). We employ this fact in algorithms where it does not
matter which word is picked.

Lemma 4.3. (1) Given two SLPs A and A′, there is a polynomial-time procedure to check if
eval(A) = eval(A′).

(2) Given a context-free grammar G, we can compute in polynomial time for each productive
nonterminal - of G an SLP A- such that eval(A- ) is one of the words that can be derived from
- in G. Formally, eval(A- ) ∈ !G (- ).

(3) Given an SLP A for a word 01 . . . 0= and two positions 1 ≤ 8 ≤ 9 ≤ =, one can compute an SLP
for the factor 08 . . . 0 9 in polynomial time.

(4) Given SLPs A1,A2, one can compute in polynomial time an SLP A such that eval(A) is the
longest common pre�x of eval(A1) and eval(A2).

(5) Given an SLP A with |eval(A) |# = : for some : given in unary, we can compute in polynomial
time SLPs A0, . . . ,A: such that eval(A) = eval(A0)#eval(A1) · · · #eval(A: ).

(6) Given an SLP A with eval(A) ∈ �̄∗�∗, we can compute in polynomial time SLPs A1,A2 such

that eval(A) = eval(A1)eval(A2).

Proof. Statement (1) is a well-known result for SLPs [Plandowski 1994]. For statement (2) we
compute all productive nonterminals using a propagation algorithm, similar to solving satis�ability
for Horn formulas. Every time a new productive nonterminal is identi�ed, we additionally pick a
witnessing production and include it in the SLP. Statement (3) can be found in [Schleimer 2008,
Theorem 2.9], in more generality. To compute the longest common pre�x (statement (4)), we do a
binary search over the set of pre�xes with the help of statement (3) and the fact that equality of
two SLPs can be tested in polynomial time (statement (1)).
For statement (5), for every nonterminal - in A we compute the set of positions %- of the

#-symbols in eval(- ). Assuming Chomsky normal form, this can be done in polynomial time by a
bottom-up computation. For a rule - → # we set %- = {1} and for a rule - → 0 with 0 ≠ # we set
%- = ∅. For a rule - → ./ we set %- = %. ∪ (%/ + |eval(. ) |). With the positions for the starting
nonterminal in hand, we can decompose A into : + 1 SLPs using statement (4).

For statement (6), again, we perform a bottom-up computation.We compute for every nonterminal
- whether eval(- ) contains symbols from �, symbols from �̄, and if it contains both, we compute
the position of the rightmost �̄-symbol. Finally, we split the SLP along the position computed for
the starting nonterminal using statement (4). □

Lemma 4.4. Given an SLP A, one can compute an annotated PDA for {eval(A)} in polynomial time.

Proof. We can assume that A = (#, Σ, %, () is in Chomsky normal form. For any nonterminal -
inA, let Δ- and3- denote Δ(eval(- )) and3 (eval(- )). These values can be computed in polynomial
time for all nonterminals using the following equations:

Δ- = Δ(0), 3- = 3 (0) for all productions - → 0

Δ- = Δ. + Δ/ , 3- = max{3. , 3/ − Δ. } for all productions - → ./ .
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In particular we can compute 3 (eval(A)) = 3( . Let %
′ ⊆ % be the set of all productions of A of the

form - → ./ . The PDA P has states & = {A, @} ∪ {@?,1, @?,2 | ? ∈ % ′} and its stack alphabet is the
set # of nonterminals of A. Furthermore, its transitions are

A
Y

−−−−−−→
push(()

@

@
0

−−−−−→
pop(- )

@ for all productions - → 0

@
Y

−−−−−→
pop(- )

@?,1
Y

−−−−−−→
push(/ )

@?,2
Y

−−−−−−→
push(. )

@ for all productions ? = - → ./ .

It remains to construct a valid annotation 3 for P. To this end we also construct an auxiliary
function Δ : & ×& → Z ∪ {∞}, which we will discard at the end. We begin by setting some initial
values based on matching push- and pop-transitions:

• 3 (A, @) = 3 (eval(A)), Δ(A, @) = Δ(eval(A)),
• if there is a production ?( = ( → ./ ∈ % ′ then 3 (A, @?( ,1) = 0 = Δ(A, @?( ,1),
• for all ? = - → ./ ∈ % ′: 3 (@?,1, @) = 3- , 3 (@?,2, @) = 3. , Δ(@?,1, @) = Δ- , Δ(@?,2, @) = Δ. ,
– if there is a production ?. = . → . ′/ ′ ∈ % ′ then 3 (@?,1, @?. ,1) = 3/ , Δ(@?,1, @?. ,1) = Δ/ ,
– if there is a production ?/ = / → . ′/ ′ ∈ % ′ then 3 (@?,2, @?/ ,1) = 0 = Δ(@?,2, @?/ ,1),

• 3 and Δ initially set to ∞ on all other inputs.

From here we iteratively compute further values similarly to the equations above. Let ? ′, @′, A ′ ∈ & be
states with 3 (? ′, @′) ≠ ∞, Δ(? ′, @′) ≠ ∞, 3 (@′, A ′) ≠ ∞, Δ(@′, A ′) ≠ ∞, and 3 (? ′, A ′) = ∞ = Δ(? ′, A ′).
Then we set 3 (? ′, A ′) = max{3 (? ′, @′), 3 (@′, A ′) − Δ(? ′, @′)}, and Δ(? ′, A ′) = Δ(? ′, @′) + Δ(@′, A ′). It
su�ces to compute these values only once, since for states ? ′, @′ ∈ & there is a unique wordF ∈ Σ

∗

with (? ′, Y)
F
−→ (@′, Y). This is because P was constructed to simulate an SLP. □

Lemma 4.5. Suppose ! ⊆ Σ
∗ and there are G,~ ∈ Σ

∗ such that G!~ ⊆ ��. Moreover, suppose
D̄C̄CE ∈ DyckNF(!) such that D, E ∈ �∗ and C is the longest common pre�x of CD and CE . Then for every
F ∈ !, we have 3 (F) ≥ |D |.

Proof. Since GD̄C̄CE~ ∈ �� we can conclude DyckNF(G) = 4D and DyckNF(~) = Ē 5̄ for some
4, 5 ∈ �∗. Now 4 and 5 must have the same length because Δ(4 5̄ ) = Δ(4DD̄C̄CEĒ 5̄ ) = 0. Suppose
there is a word F ∈ ! with 3 (F) < |D |. We claim that DFĒ ∈ ��: Since DFĒ is a factor of
DyckNF(G)FDyckNF(~) = 4DFĒ 5̄ ∈ �� it contains no mismatched letters. Furthermore Δ(DFĒ) =
0 since Δ(4DFĒ 5̄ ) = 0 and Δ(4 5̄ ) = 0, and 3 (DFĒ) = 0 since 3 (F) < |D |, proving the claim.
Since 3 (F) < |D | the normal form DyckNF(DF) has a pre�x which is a proper pre�x D1 of D.

Since DFĒ ∈ ��, D1 must also be a pre�x of E . This contradicts the assumption that C is the longest
common pre�x of CD and CE . □

For a PDA P over Σ ∪ {#} and states ?, @ let !?,@ (P) be the set of all words F ∈ Σ
∗ with

(?, Y)
F
−→ (@, Y). A state @ of P is productive if it occurs on some accepting run of P.

Lemma 4.6. Given a shu�e ! ⊆ Σ
∗ and productive states ?, @ in a PDA P for !, one can compute in

polynomial time SLPs for words G,~ ∈ Σ
∗ such that G!?,@ (P)~ ⊆ !.

Proof. Let P$ be a PDA which accepts all words G$~ such that P has runs of the form (@0, Y)
G
−→

(?, B), (?, Y)
I
−→ (@, Y), and (@, B)

~
−→ (@5 , Y) where @5 is a �nal state, B ∈ Γ

∗, G,~ ∈ (Σ ∪ {#})∗, and
I ∈ Σ

∗. Such a PDA P$ works by guessing a subrun between the states ? and @, in which it reads
a single $-symbol instead of the input symbols. Furthermore, it can make sure that the subrun

corresponds to a run (?, Y)
I
−→ (@, Y) by initially pushing a special marker and �nally popping it.
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Let ! = shuff (!1, . . . , !<), and let !$ be the modi�ed shu�e where the PDA P is replaced by P$.
Then each word G$~ ∈ !$ satis�es G!?,@ (P)~ ⊆ !. To compute SLPs for such words G,~, we compute
for each context-free language !8 an SLP A8 with F8 := eval(A8 ) ∈ !8 . Then shuff (F1, . . . ,F<)

is of the form G$~. Using Lemma 4.3(5) we can compute SLPs for the segments of each F8 . By
concatenating these SLPs in the proper order we obtain an SLP for G$~. Finally, we obtain SLPs for
G and ~ by again applying Lemma 4.3(5). □

We need a �nal ingredient: computing the Dyck normal form of a compressed word in polynomial
time. This is a key step in [Tozawa and Minamide 2007a].

Lemma 4.7 ([Tozawa andMinamide 2007a, Proposition 3(iii)]). Given an SLPAwith eval(A) ∈
Σ
∗, we can compute in polynomial time an SLP A′ with eval(A′) = DyckNF(eval(A)).

We are now ready to prove Proposition 3.1.

Proof. As a �rst step, for each participating PDA P and any states ?, @ in P, we use Lemma 4.6
to compute in polynomial time words G?,@ and ~?,@ as SLPs such that the language  ?,@ :=

G?,@!?,@ (P)~?,@ is a subset of !. Since  ?,@ is a context-free language, for which we can easily
compute a PDA, we can use Theorem 2.4 to check  ?,@ ⊆ �� in polynomial time for each pair ?, @.
If for some states ?, @, this inclusion does not hold, then clearly ! ⊈ �� and our algorithm can just
return the shu�e {0̄} for some 0 ∈ �, for which we can clearly compute an annotated shu�e.

Thus, suppose  ?,@ ⊆ �� for every ?, @. Now for each ?, @, we check in polynomial time whether
!?,@ (P) is empty. If it is, then we can just set 3 (?, @) = ∞. Otherwise, !?,@ (P) is not empty and
we can compute a member in the form of an SLP by converting into a context-free grammar and
applying Lemma 4.3(2). Furthermore, using Lemma 4.7 and Lemma 4.3(6) we can compute SLPs for
D?,@, E?,@ ∈ �∗ such that D̄?,@E?,@ ∈ DyckNF(!?,@ (P)). By Lemma 4.3(4), we can compute SLPs for
words A?,@, B?,@, C?,@ ∈ �∗ such that C?,@ is the longest common pre�x of D?,@, E?,@ and D?,@ = C?,@A?,@
and E?,@ = C?,@B?,@ .
Now we modify P as follows. Between ? and @, we add a gadget: We build an annotated PDA

P?,@ for {Ā?,@B?,@} using Lemma 4.4 and glue it between ? and @ as follows:

? @0 @1 @P?,@
push(2) pop(2)

(3)

Here, the dashed box represents the PDA P?,@ and @0 and @1 are its initial and �nal state, respectively.
Moreover, 2 is a fresh letter not used in P or P?,@ . After performing this addition for every state
pair (?, @), we arrive at the new PDA P ′. Furthermore, by replacing each PDA P in ! with P ′, we
obtain the new shu�e !′ ⊆ Σ

∗. We claim that:

(i) !′ ⊆ �� if and only if ! ⊆ �� and
(ii) 3P′ (?, @) = |A?,@ | for states ?, @ appearing in P

We begin with (ii). First, since Ā?,@B?,@ belongs to !?,@ (P
′) by construction, the value |A?,@ | is actually

achieved as 3 (F) for someF ∈ !?,@ (P
′). Hence, 3P′ (?, @) ≤ |A?,@ |. Conversely, letF be any word

in !?,@ (P
′). Then Lemma 4.5 tells us that 3 (F) ≥ |A?,@ |. Therefore, 3P′ (?, @) = |A?,@ |.

For (i), we claim that ! ⊆ !′ ⊆ !⋄ and conclude the equivalence by Corollary 4.2. For the
inclusion !′ ⊆ !⋄, observe that any word in !′ is obtained from a word in ! by replacing factors
from !?,@ (P) by words Ā?,@B?,@ as constructed above. Moreover, the word Ā?,@B?,@ can be obtained
from D̄?,@E?,@ = Ā?,@C̄?,@C?,@B?,@ by deleting C̄?,@C?,@ . Hence, we have Ā?,@B?,@ ∈ !?,@ (P)⋄. Therefore,
every wordF ′ ∈ ! can be written as

F ′
= E0D

′
1E1 · · ·D

′
=E=,
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where each D ′8 satis�es D8 ↣
∗ D ′8 for some D8 ∈ Σ

∗ with

F = E0D1E1 · · ·D=E= ∈ !.

In particular, we haveF ↣∗ F ′ and thusF ′ ∈ !⋄. Hence !′ ⊆ !⋄, which yields the claim.
Finally, notice that this means we can produce a complete annotation for !′: For states ?, @ that

are newly introduced (as part of the gadget in Eq. (3)), we already have 3P′ (?, @), since P?,@ is
already annotated. For state pairs consisting of one state from P and one state of some P?,@ , we set
3 to ∞. This is correct because by construction, it is not possible to read a word from Σ

∗ between
such a state pair (because of the push and pop of 2 in Eq. (3)). □

5 REACHABILITY RELATIONS OF OFFSET-UNIFORM 2-VASS

Let us now prove Proposition 3.10. The key idea is to construct a 1-VASS so that reachability in our
2-VASS can be expressed in terms of reachability in the 1-VASS, to which we apply the following:

Proposition 5.1 ([Li et al. 2020]). Given a 1-VASS and states ?, @, one can construct in polynomial

time an ∃PA formula for the relation {(G,~) ∈ N2 | ? (G)
∗
−→ @(~)}.

The 1-VASS essentially tracks one of the two counters. Here, we need to take extra precautions
to make sure the corresponding run in the 2-VASS will stay non-negative even in the counter we
do not track explicitly. To this end, we distinguish two cases: Roughly speaking, we distinguish
whether the counter di�erence in the initial con�guration is (in a certain sense)

(A) large, in which case o�set-uniformity implies that the initially larger counter automatically
stays non-negative, or

(B) small, in which case the counter di�erence will always stay small and we can add gadgets
that make sure the untracked counter stays non-negative.

We need a simple lemma.

Lemma 5.2. Given an o�set-uniform 2-VASS and some distinguished state ? , one can compute in
polynomial time, a number c@ for each state @ such that:

? (=1, =2)
∗
−→ @(<1,<2) implies<2 −<1 = =2 − =1 + c@

for any con�gurations ? (=1, =2), @(<1,<2).

Proof. Given the 2-VASS, construct a directed graph� with vertices& where for each transition

A
(D1,D2)
−−−−−→ @ in the 2-VASS, there is an edge A → B labeled with the number D2 − D1. For each state @

that is reachable from ? in � , we take a path from ? from to @ and set c@ to be the sum of all labels
on this path. For states @ that are not reachable from ? in � , we know that @ can never be reached
from ? in the 2-VASS, so we can just set c@ = 0. It is easy to check that the c@ are as desired. □

Let us now formally prove Proposition 3.10.

Proof of Proposition 3.10. Let+ = (&,) ) be an o�set-uniform 2-VASS. First, we use Lemma 5.2
on distinguished state ? to compute a number cA ∈ Z for each state A . Let # = max{|cA | | A ∈ &}.
Note that # might be exponential (because the cA might be), but can be stored in binary.

Recall the two cases (A) and (B) described intuitively below Proposition 5.1. In order to simulate
case (A), we simply have a 1-VASS that just tracks one of the counters. Thus, for 8 = 1, 2, we

construct the 1-VASS +8 , which has a transition A
D8
−→ B for each transition A

(D1,D2)
−−−−−→ B of our 2-VASS.

In order to simulate case (B), we have a 1-VASS that depends on the small counter di�erence X
in the beginning. Here, “small” will mean X ∈ [−#, # ]. Thus, for each X ∈ [−#, # ], we de�ne
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the 1-VASS +X as follows. Each transition A
(D1,D2)
−−−−−→ B is transformed as follows into a sequence of

transitions in +X :

A B
(D1, D2)

{ A B
D1 X + cB −(X + cB )

where the unlabeled states are newly introduced. Here, the idea is that in each con�guration
B (<1,<2) reachable from ? (=1, =1 + X), we must have<2 −<1 = X + cB . Therefore, the 1-VASS +X
simulates the �rst counter by �rst only adding D1. Then, it temporarily switches to the counter
value of the second counter in the original 2-VASS run, using the fact that this value is obtained by
adding X + cB . This way, it makes sure that also the second counter value remains non-negative.
After this temporary switch, it switches back to the �rst counter by subtracting X + cB .

We claim that then we have ? (=1, =2)
∗
−→ @(<1,<2) if and only if (<2 −<1) − (=2 − =1) = c@ and

one of the following holds:

(1) =1 > =2 + # and ? (=2)
∗
−→+2 @(<2),

(2) =2 > =1 + # and ? (=1)
∗
−→+1 @(<1), or

(3) =2 − =1 ∈ [−#, # ] and for X := =2 − =1, we have ? (=1)
∗
−→+X @(<1).

In our claim, the “only if” direction follows directly by construction and o�set-uniformity. For
the “if” direction, we consider each case. In the �rst case, we start in a con�guration ? (=1, =2)
with =1 > =2 + # . By o�set-unifomity and the choice of the numbers cA , this implies that in any
reachable con�guration A (<1,<2), we have<2 −<1 = =2 − =1 + cA < −# + cA ≤ 0, which implies
<1 ≥ <2. Therefore, any transition sequence (starting in ? (=1, =2)) in our 2-VASS that keeps the
second counter non-negative will automatically keep the �rst one non-negative. This proves the “if”
direction in the �rst case. The second case is analogous. For the third case, we have argued above

that the 1-VASS+X guarantees that ? (=1)
∗
−→+X @(<1) implies that ? (=1, =1 +X)

∗
−→ @(<1,<1 +X +c@).

This proves the claim. By our claim, the following formula de�nes the relation Eq. (2) (Page 18):
[

k ∧ =1 > =2 + # ∧ i2 (=2,<2)

]

∨

[

k ∧ =2 > =1 + # ∧ i1 (=1,<1)

]

∨
∨

X ∈[−#,# ]

[

k ∧ =2 − =1 = X ∧ iX (=1,<1)

] (4)

Here, i8 is an ∃PA formula for ?-@-reachability in +8 for 8 = 1, 2 and iX is an ∃PA formula for
?-@-reachability in +X , and k is the ∃PA formula expressing (<2 −<1) − (=2 − =1) = c@ . The
formulas i1, i2, and iX can be constructed according to Proposition 5.1. We can clearly implement
a non-deterministic polynomial-time algorithm that produces one of the (exponentially many)
disjuncts of Eq. (4). □

6 CONCLUSION

We have described a coNP decision procedure for the context-bounded re�nement problem for
multithreaded shared memory programs against an expressive class of non-regular speci�cations.
Our procedure provides the �rst automated technique for a number of common design patterns in
concurrent systems, such as reference counted resources. We note that while our proof involves
a number of subtle constructions, the �nal decision procedure is an encoding into existential
Presburger arithmetic, for which e�cient SMT solvers exist. Thus, we expect these checks to work
well in practice, but leave empirical evaluation to future work.

There are two immediate directions for future work. The �rst expands the class of programs
to include dynamic spawning of threads [Atig et al. 2011] (in our current model, the number of
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threads is �xed). The second expands the class of speci�cations. There is a procedure (albeit doubly
exponential) to decide if a CFL is included in a superdeterministic CFL [Greibach and Friedman
1980]. We do not know if our algorithm generalizes to this class of speci�cations. On the other
hand, we do not know of natural speci�cations that lie outside our class but are superdeterministic.
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