

New Phytologist Supporting Information

Article title: Exploring the metabolic basis of growth/defense tradeoffs in complex environments with *Nicotiana attenuata* plants co-silenced in *NaMYC2a/b* expression

Authors: Caiqiong Yang, Yuechen Bai, Rayko Halitschke, Klaus Gase, Gundega Baldwin, and Ian T. Baldwin

Article acceptance date: 03 January 2023

The following Supporting Information is available for this article:

Fig. S1 The experimental design and rationale

Fig. S2 Timeline of competitive experimental treatments from Fig. 4b, Fig. 5, Fig.6 and Fig.7

Fig. S3 irMYC2a/b line construction

Fig. S4 irMYC2a/b line screening

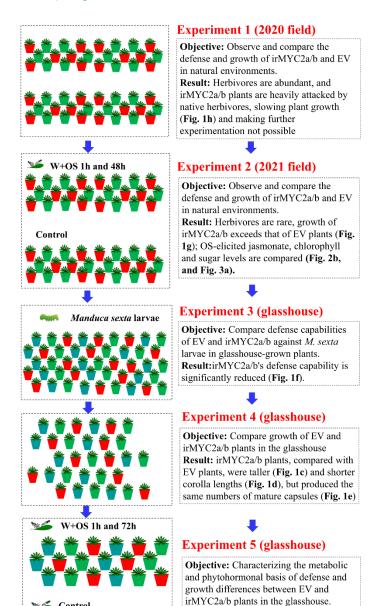
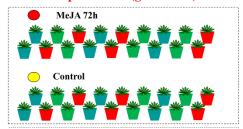
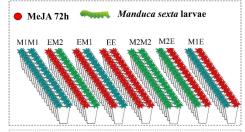

Fig. S5 Effects of W+OS elicitation on metabolites in the field (2021)

Fig. S6 Metabolomic analysis in a non-competitive environment

Methods S1 Metabolite extraction and analysis


Table S1 Primers used in this study

Empty vector
irMYC2a/b#1
irMYC2a/b#2


Experiment 6 (glasshouse)

Objective: Compare metabolic profiles of EV and irMYC2a/b plants grown in a non-competitive environment; compare MeJA- and OS-elicitation treatments to evaluate if MeJA could be used to stably activate defenses without damaging leaves, paving way for competitive-growth experiments.

Result: MeJA-treatments were consistent with OSelicitations: the metabolic profiles of EV and irMYC2a/b differed dramatically with defense metabolites significantly reduced in irMYC2a/b and not induced by MeJA (Fig. 4a and Fig. S4).

Experiment 7 (glasshouse)

Objectives: 1. Explore the effects of competing plants (third-party factors) on growth and defense tradeoffs using irMYC2a/b plants; 2. Evaluate if competing plants influence metabolism, herbivore feeding behavior, and plant growth.

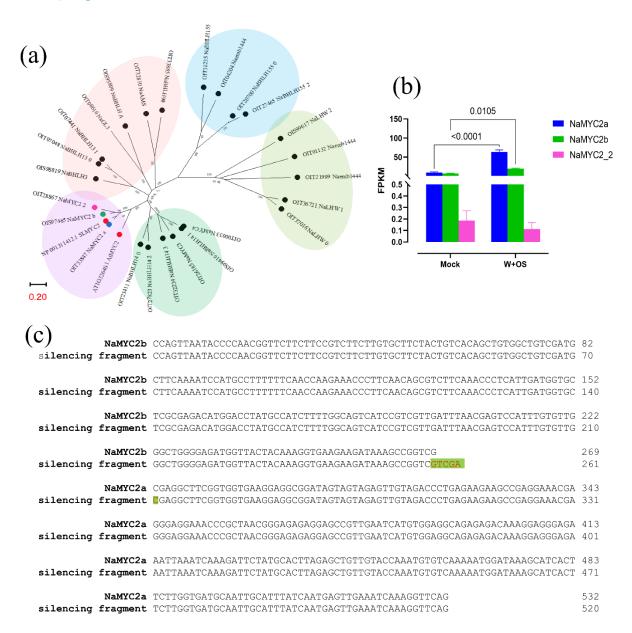
Result: In the presence of competitors and herbivores, the competing plant genotype will affect the inter-plant movement and feeding of herbivores, and plants fine-tune their metabolite accumulations in response to competing neighbors (Fig. 4b, 5, 6 and Fig. 7).

Fig. S1 Experimental design and rationale

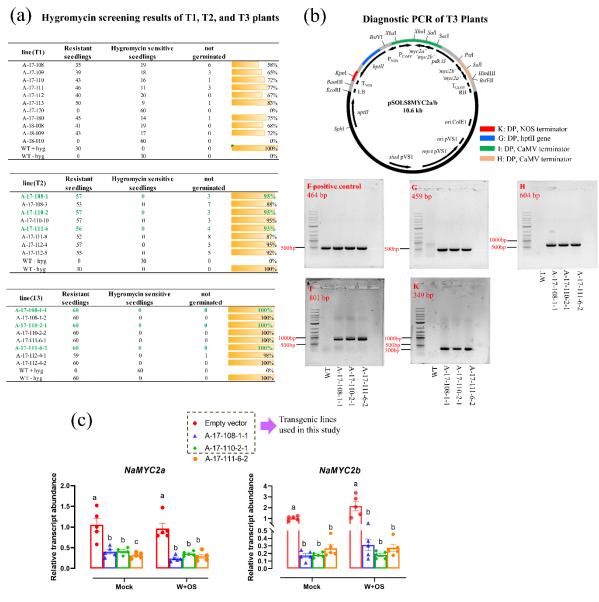

Result: Silencing NaMYC2a/b expression

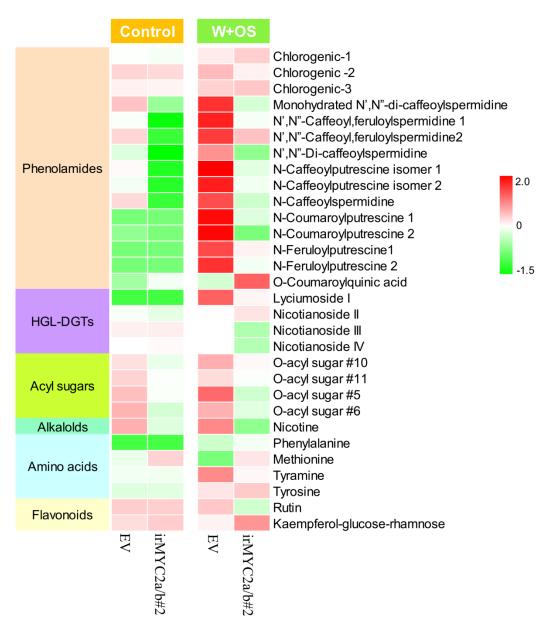
influenced both primary and secondary metabolism, but not JA signaling. (Fig. 2a;

Fig. 3b/c)



Timeline for competitive experiment


S2 Timeline of competitive experimental treatments from Fig. 4b, Fig. 5, Fig.6 and Fig.7


Fig. S3 irMYC2a/b line construction. **(a)** Phylogeny of bHLH-MYC-like family in *N. attenuata*. The consensus tree generated was tested by bootstrapping (1000 times); **(b)** transcript levels of MYC2-likes after W+OS elicitation in EV *N. attenuata* leaves; **(c)**: Sequence fragments of *NaMYC2a* and *NaMYC2b* for RNAi silencing (SalI sites were marked in green).

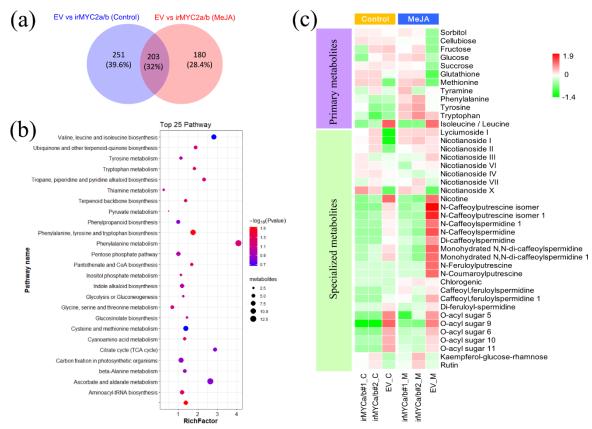

Fig. S4 irMYC2a/b line construction. **(a)** Phylogeny of bHLH-MYC-like family in *N. attenuata*. The consensus tree generated was tested by bootstrapping (1000 times); **(b)** transcript levels of MYC2-likes after W+OS elicitation in EV *N. attenuata* leaves; **c)**: Sequence fragments of *NaMYC2a* and *NaMYC2b* for RNAi silencing (SalI sites were marked in green).

Fig. S5 Effects of W+OS elicitation on metabolites in the field (2021). The data were normalized by log transformation (base 10) and Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable).

Fig. S6 Metabolomic analysis in a non-competitive environment. **(a)** Venn diagram of differential MS features between EV and irMYC2a/b (the differential MS features were obtained using partial least squares discriminant analysis (PLS-DA) with the variable importance in projection (VIP-value) > 1). **(b)** Metabolic pathways with significant differences between EV and irMYC2a/b; **(c)** Metabolite heatmap of EV and irMYC2a/b. The data were normalized by log-transformation (base 10) and Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable).

Methods S1 Metabolite extraction and analysis

Briefly, 100 mg of frozen ground leaf tissue was extracted with 1 mL precooled (-20 °C) 80% methanol (vol/vol) containing internal standards (For each sample, 10 ng D₄-ABA, 10 ng D₆-JA, 10 ng D₆-JA-Ile, 10 ng D₆-SA, 600ng testosterone). Sample mixtures were homogenized in a ball mill (Genogrinder 2000; SPEX CertiPrep) for 60s at a rate of 1100 strokes min⁻¹ then centrifuged at 4°C and 15,000 ×g for 30 min. Supernatants were transferred into 1.5-mL microcentrifuge tubes and recentrifuged for 30 min. 600 µL of supernatant were transferred to a 2-mL vial for secondary metabolite detection and a 100 µL aliquot of the supernatant was used for phytohormone quantification. For the primary metabolite quantification, 2 μL of the remaining extract was added to 98 µL aqueous solution containing a mix of ¹³C, ¹⁵N-labeled amino acids standards (949 nM ¹³C₃, ¹⁵N₁-Ala; 186 nM ¹³C₆, ¹⁵N₄-Arg; 1500 nM ¹³C₄, ¹⁵N₂-AsxAsn; 1209 nM ¹³C₄, ¹⁵N₁-AsxAsp; 648 nM ¹³C₅, ¹⁵N₂-GlxGln; 516 nM ¹³C₅, ¹⁵N₁-GlxGlu; $1465 \text{ nM} \ ^{13}\text{C}_{2}, ^{15}\text{N}_{1}\text{-Gly}; 41 \text{ nM} \ ^{13}\text{C}_{6}, ^{15}\text{N}_{3}\text{-His}; 196 \text{ nM} \ ^{13}\text{C}_{6}, ^{15}\text{N}_{1}\text{-Ile}; 522 \text{ nM} \ ^{13}\text{C}_{6}, ^{15}\text{N}_{1}\text{-Leu}; 216 \text{ nM} \ ^{13}\text{C}_{1}, ^{15}\text{N}_{1}\text{-Heu}; 216 \text{ nM} \ ^{13}\text{C}_{1}, ^{15}\text{N}_{1}, ^{15}\text{C}_{1}, ^{15}\text{N}_{1}, ^{15}\text{C}_{1}, ^{15}\text{N}_{1}, ^{15}\text$ nM $^{13}C_6$, $^{15}N_2$ -Lys; 8.1 nM $^{13}C_5$, $^{15}N_1$ -Met; 255 nM $^{13}C_9$, $^{15}N_1$ -Phe; 240 nM $^{13}C_5$, $^{15}N_1$ -Pro; 410 nM 13 C₃, 15 N₁-Ser; 404 nM 13 C₄, 15 N₁-Thr; 191 nM 13 C₉, 15 N₁-Tyr; 210 nM 13 C₅, 15 N₁-Val) to quantify amino acid content, another 2 µL of the extract was diluted 500 times in 500 pg mL⁻¹ sorbitol solution to quantify sugar content.

For photosynthetic pigment measurements, 100 mg of frozen ground leaf tissue were extracted with 1 mL methanol. Sample mixtures were homogenized in a ball mill (Genogrinder 2000; SPEX CertiPrep) for 60s at a rate of 1100 strokes min⁻¹ then twice centrifuged at 4°C and $15,000 \times g$ for 30 min each time. Then 600 μ L supernatant was transferred to a sample vial and injected directly into an HPLC system.

Analysis of amino acids and sugars was performed on a Bruker Elite EvoQ Triple quadrupole-MS equipped with a HESI (heated electrospray ionization) ion source. Samples were analyzed in MRM mode with the parameters previously published (Schäfer *et al.*, 2016).

For chromatographic separation of secondary metabolites, 1 μL of each sample was separated with an AcclaimTMC18 column (150 ×2.1 mm, 2.2 μm, ThermoFisher Scientific) equipped with a UPLC SecurityGuardTM ULTRA cartridge (Phenomenex, Catalogue#: AJO-8782). The mobile phase was composed of eluent A (de-ionized water with 0.05% formic acid and 0.1% acetonitrile) and eluent B (0.05% formic acid in acetonitrile) with a flow rate of 0.400 mL·min⁻¹. Gradient elution was as follows: 0 to 0.5 min, isocratic elution with 90% A; 0.5 to 23.5 min, 90 to 10% A; 23.5 to 25 min, and isocratic elution with 10% A. MS detection of specialized metabolites was performed on a microTOF-Q II MS system (Bruker Daltonics, Bremen, Germany) equipped with an electrospray ionization (ESI) source. MS ion collection was carried out in positive ion mode. Nitrogen was used as the collision gas; the capillary voltage was 4500 V, and the capillary exit was 140 V. The dry gas flow rate and temperature were 10 L·min⁻¹ and 200°C, respectively. Full scan mode was used for mass spectral acquisition at a repetition rate of 5 Hz.

Analysis of photosynthetic pigments was performed using an Agilent 1260 Infinity II HPLC system equipped with a DAD detector. Chromatographic peak separation was conducted on an AcclaimTMC30 column (250×4.6 mm, 5 μm, ThermoFisher Scientific). The mobile phase was composed of eluent A (methanol: ethyl acetate [1:1 v/v]), eluent B (acetonitrile), and eluent C (200 mM acetic acid in de-ionized water). Elution gradient was 0 to 3.6 min, isocratic elution with 14.5% A, 85% B, 0.5% C; 3.6 to 27 min, 14.5% to 34.5% A, 85% to 65% B, 0.5% C; 27 to 45 min isocratic elution with 34.5% A, 65% B, 0.5% C. The injection volume was set at 20 μL

and the flow rate was 1 mL·min⁻¹. Chromatographic peaks were identified by comparing retention times and UV spectra with those of standards in the 440 to 475 nm detection range.

Table S1 Primers used in this study

Name	Sequence 5' to 3'	Purpose
NaMYC2a-F	CCAAGGATTCGGGCTTCAGA	qPCR
<i>NaMYC2a-</i> R	GATCGGGCTCAGCGTGAATA	qPCR
NaMYC2b-F	AAGGCATCACTGCTTGGAGA	qPCR
<i>NaMYC2b-</i> R	TCTTGATTTGGTGGAGGACCAG	qPCR
NaIF5a-F	GTCGGACGAAGAACACCATT	qPCR
<i>NaIF5a-</i> R	CACATCACAGTTGTGGGAGG	qPCR
NaMYC2a-A-F	GCGGCGCTGCAGCCAGTTAATACCCCAACGGTTCTTC	amplification, cloning
<i>NaMYC2a-A-</i> R	GCGGCGGTCGACGACCGGCTTTATCTTCTTCACCTTTG	amplification, ligation
NaMYC2b-A-F	GCGGCGGTCGACGAGGCTTCGGTGGTGAAGGAGGCG	amplification, ligation
<i>NaMYC2b-A-</i> R	GCGGCGAAGCTTCTGAACCTTTGATTTCAACTCATTG	amplification, cloning
<i>NaMYC2a-C-</i> F	GCGGCGGAGCTCCAGTTAATACCCCAACGGTTCTTC	cloning
<i>NaMYC2b-C-</i> R	GCGGCGCTCGAGCTGAACCTTTGATTTCAACTCATTG	cloning
ECI3-21	CTTTGCCGTGAATTGCCTGAG	DP, positive control
ECI4-23	GATACTGCTATGCGAAACCTGTC	DP, positive control
HYG10-21	GAGTTTAGCGAGAGCCTGACC	DP, hptII gene
HYG11-21	GAAGAAGATGTTGGCGACCTC	DP, hptII gene
TER1-22	CTTATCTGGGAACTACTCACAC	DP, CaMV terminator
INT5-22	TTGGATTGATTACAGTTGGGAC	DP, CaMV terminator
INT6-22	TCTTCTTCGTCTTACACATCAC	DP, CaMV promoter
PROM1-20	GACGCACAATCCCACTATCC	DP, CaMV promoter
HYG12-21	GATGGCTGTGTAGAAGTACTC	DP, NOS terminator
NOT5-23	CCCGATCTAGTAACATAGATGAC	DP, NOS terminator

DP, diagnostic PCR to confirm complete T-DNA integration.

Reference

Schäfer M, Brütting C, Baldwin IT, Kallenbach M. 2016. High-throughput quantification of more than 100 primary- and secondary-metabolites, and phytohormones by a single solid-phase extraction based sample preparation with analysis by UHPLC–HESI–MS/MS. *Plant Methods* **12**(1): 30.