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Summary

� In response to challenges from herbivores and competitors, plants use fitness-limiting

resources to produce (auto)toxic defenses. Jasmonate signaling, mediated by MYC2 transcrip-

tion factors (TF), is thought to reconfigure metabolism to minimize these formal costs of

defense and optimize fitness in complex environments.
� To study the context-dependence of this metabolic reconfiguration, we cosilenced

NaMYC2a/b by RNAi in Nicotiana attenuata and phenotyped plants in the field and increas-

ingly realistic glasshouse setups with competitors and mobile herbivores.
� NaMYC2a/b had normal phytohormonal responses, and higher growth and fitness in

herbivore-reduced environments, but were devastated in high herbivore-load environments

in the field due to diminished accumulations of specialized metabolites. In setups with com-

petitors and mobile herbivores, irMYC2a/b plants had lower fitness than empty vector (EV) in

single-genotype setups but increased fitness in mixed-genotype setups. Correlational analyses

of metabolic, resistance, and growth traits revealed the expected defense/growth associations

for most sectors of primary and specialized metabolism. Notable exceptions were some HGL-

DTGs and phenolamides that differed between single-genotype and mixed-genotype setups,

consistent with expectations of a blurred functional trichotomy of metabolites.
� MYC2 TFs mediate the reconfiguration of primary and specialized metabolic sectors to

allow plants to optimize their fitness in complex environments.

Introduction

Plants optimize resource use when attacked by herbivores to mini-
mize fitness losses (McKey, 1974; Rhoades & Cates, 1976; Herms
& Mattson, 1992); however, the mechanisms that regulate these
physiological trade-offs are not well understood. Attack from
chewing insects generally triggers a burst of jasmonate (JA) signal-
ing in plants, a burst which is dramatically amplified when insect
oral secretions (OS) are introduced into plant wounds during
feeding, which, in turn, initiates defense metabolite synthesis and
is accompanied by growth inhibition (Baldwin et al., 1997; Bald-
win & Hamilton, 2000; Heil & Baldwin, 2002; Halitschke &
Baldwin, 2003; Kessler et al., 2004; Stork et al., 2009). As a conse-
quence, apparent trade-offs occur between growth and defense.

Why the production of defenses is often associated with growth
inhibitions remains unclear, but there are several theories that
range from the architecture of the plant signaling systems that
mediate growth/defense responses to fundamental characteristics
of plant defenses. For example, many environmentally responsive
plant hormones inhibit cell division or expansion (Pauwels
et al., 2008; Zhang & Turner, 2008; Noir et al., 2013) and this
arises primarily through cross-talk with other growth-controlling

hormones such as auxin, brassinosteroids, and gibberellin (Chen
et al., 2011; Huot et al., 2014). Jasmonate signaling, a common
activator of defense, is also known to downregulate photosyn-
thetic genes (Yadav et al., 2005; Golovatskaya & Karnachuk,
2008), but photosynthetic capacity can be preserved during
coronatine-induced JA signaling (Attaran et al., 2014) and even
increases during wound-induced alkaloid inductions (Baldwin &
Ohnmeiss, 1994a). Plant defense production is known to com-
mand large fractions of whole-plant fitness-limiting (such as N)
resources (Baldwin et al., 1998; Bekaert et al., 2012), some of
which are nonrecyclable investments (Ohnmeiss & Bald-
win, 1994). Moreover, defense metabolites can also be toxic for
plants to produce (Baldwin & Callahan, 1993; Li et al., 2021).
This autotoxicity suggests that in competitive environments, a
plant’s metabolome may be influenced by its neighbors resulting
in growth inhibitions, such as for terpenes released by plants
attacked by chewing herbivores, which can decrease photosynthe-
sis by 20% for 3 d (Gog et al., 2005), morphological abnormali-
ties, such as those associated with camptothecin accumulations in
Camptotheca (Li et al., 2010), or in the requirements for their
biosynthesis in special tissues, compartmentalized storage or inac-
tivation (Clay et al., 2009; Erb & Kliebenstein, 2020). While
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some signaling systems can be engineered to decouple growth-
defense trade-offs, as demonstrated with the quintet JAZ and
PHY B mutants in Arabidopsis (Campos et al., 2016), it is clear
that in most higher plants, JA signaling plays a central role in
mediating the metabolic basis for this trade-off.

The regulatory functions of JA signaling are initiated by the
binding of JA-isoleucine (JA-Ile) conjugates to CORONATINE
INSENSITIVE 1 and the subsequent degradation of the
jasmonate-Zim-Domain repressors (JAZs), which in turn, release
the transcription factor (TF), MYC2, to activate the expression
of downstream JA-responsive genes (Huot et al., 2014; P�erez-
Salam�o et al., 2019). In un-elicited conditions, JAZ proteins
block MYC2’s activity by recruiting the general corepressors
TOPLESS (TPL) and TPL-related proteins, through an interac-
tion with the adaptor protein, Novel Interactor of JAZ (Pauwels
et al., 2010; Wasternack & Kombrink, 2010).

MYC2 is a TF with a basic helix–loop–helix (bHLH) domain,
that regulates the expression of several JA-responsive genes in
both activating and repressive manners (Dombrecht et al., 2007).
These genes are mainly involved in growth, stress response, and
specialized metabolic processes, including herbivore/pathogen
defense (Schweizer et al., 2013; Du et al., 2017), drought toler-
ance (Wang et al., 2020), circadian regulation (Shin et al., 2012),
photosynthesis, light signaling (Gupta et al., 2014), seedling
development (Srivastava et al., 2019), and leaf senescence (Ding
et al., 2022). As a master regulator of JA signaling, MYC2 regu-
lates the synthesis of most classes of specialized metabolites,
including glucosinolate, nicotine, sesquiterpenoids, lactones,
alkaloids, and phenolic acids, either directly or indirectly through
other TFs (Schweizer et al., 2013; Xu et al., 2017; Sui
et al., 2018; Hayashi et al., 2020; Huo et al., 2021).

The specialized metabolites and their function have been thor-
oughly studied in Nicotiana attenuata, a native tobacco species of
the Great Basin Desert of Utah, USA, which has been developed
as an ecological model plant. Nicotiana attenuata’s defense against
its specialist herbivore, Manduca sexta, has been extensively stud-
ied. Feeding by M. sexta larvae or applying its oral secretions and
regurgitants (OS) to puncture wounds results in a burst of JAs
(McCloud & Baldwin, 1997; Halitschke & Baldwin, 2004) and
signals the de novo biosynthesis of many proven defense metabo-
lites, such as nicotine (Steppuhn et al., 2004; Kumar et al., 2014),
phenolamides (Kaur et al., 2010; Gaquerel et al., 2014) and
phenolamine-GLV derivatives (Bai et al., 2022), 17-
hydroxygeranyllinalool diterpene glycosides (17-HGL-DTGs;
Lou & Baldwin, 2003; Heiling et al., 2010), and anti-digestive
proteins (Zavala et al., 2004; Kang et al., 2006). When the
MYC2-like TF (NaMYC2a) was silenced inN. attenuata, nicotine
levels and the expression of phenolamide biosynthetic genes were
decreased, but without affectingM. sexta larval performance or the
accumulation of 17-HGL-DTGs (Woldemariam et al., 2013).

Numerous studies have demonstrated plant growth/defense
trade-offs with JA-signaling mutants (B€omer et al., 2018; Obles-
suc et al., 2020) and exogenous JA treatments (Staswick
et al., 1992; Baldwin, 1998; Baldwin & Hamilton, 2000; Cao
et al., 2016), but the role of MYC2 as a master regulator of JA sig-
naling in these trade-offs remains unclear. Here, we used RNA

interference to cosilence NaMYC2a and NaMYC2b to explore
these trade-offs in environments with herbivores and competitors,
which are rarely included in studies of growth/defense trade-offs,
despite their central roles as selective factors for plants (Kazan &
Manners, 2013). To ensure that NaMYC2a and NaMYC2b cosi-
lencing (irMYC2a/b) plants would be a suitable genetic tool for
exploring these trade-offs, we first evaluated the performance of
irMYC2a/b plants in the glasshouse and field in both high- and
low-herbivore-load years. The herbivory-induced JA burst is both
an important internal signal activating defense accumulations,
and an important external signal used by some herbivores for host
plant recognition (Kallenbach et al., 2012) or detoxification of
plant defenses (Li et al., 2002). Moreover, as JAs are not only
identified as a defense-related hormone but also involved in the
regulation of important growth and developmental processes
(Huang et al., 2017), it was essential for our study of these trade-
offs that the herbivory-induced phytohormonal responses
remained intact while abrogating the JA-elicited responses.

We evaluated phytohormonal and metabolic responses to elici-
tations by wound and herbivore oral secretions (W +OS) treat-
ments in both the glasshouse and the field. Cosilenced irMYC2a/
b plants had normal OS-elicited JA bursts but had abrogated JA-
induced primary and specialized metabolite responses. Since the
cost of defense is not always obvious (Machado et al., 2017), is
often influenced by environmental factors such as intense compe-
tition and nutrient limitations (Cipollini et al., 2017), and could
be influenced by third-party trade-offs, such as with competitors
(File et al., 2012; Nerva et al., 2022), we planted size-matched EV
and irMYC2a/b plants in different combinations in 2 l pots, so
that the EV or irMYC2a/b would be competing with isogenic
neighbors. Plants were elicited with methyl jasmonate (MeJA) to
ensure stable defense accumulation levels, profiled for metabo-
lites, and a single neonateM. sexta larvae was placed on one of the
two size-matched competing plants and allowed to move and feed
freely for all but the penultimate instar. Larval movement
between competing plants is an important and underappreciated
aspect of induced defenses, as research with the N. attenuata–
M. sexta system has demonstrated that the plant’s powerful
delayed inducible defenses allow the plant to use this herbivore as
an offensive weapon against nearby competing plants (van Dam
et al., 2000; Stork et al., 2009; Backmann et al., 2019). To under-
stand these complex interactions, data on larval movement, final
larval mass, plant height, capsule number, plant dry mass, dam-
aged leaves number, and capsule number per dry biomass of dif-
ferent competitive combinations were regressed against primary
and specialized metabolite levels to infer metabolite functional
roles in the growth/defense balance mediated by MYC2a/b TFs.
The design and objectives of all the independent experiments in
this study are summarized in Supporting Information Fig. S1.

Materials and Methods

Plant materials and growth conditions

Nicotiana attenuata Torr. Ex Watts seeds of the 31st generation
inbred line originally collected at the DI ranch in southwestern
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Utah, USA, were used as the wild-type (WT) genotype in all
experiments. Seed germination and plant growth were performed
as described previously (Kr€ugel et al., 2002); all glasshouse exper-
iments were conducted with a day : night cycle of 16 h : 8 h, 26–
28°C : 22–24°C in a glasshouse at the Max Planck Institute for
Chemical Ecology, Jena, Germany.

For field experiments, the releases of the transformed plants
were conducted under the Animal and Plant Health Inspection
Service (APHIS) notification nos. AUTH-0000032827-22-02-
13 (2020) and AUTH-0000089709-21-03-01 (2021) and trans-
formed seeds were imported under permits 18-282-102m and
07-341-101n. Seeds were germinated on Gamborg’s B5 medium
and transferred to prehydrated 50-mm peat pellets 15 d after ger-
mination. Seedlings were watered and fertilized with iron solu-
tion (27.8 mg l�1 FeSO4�7 H2O and 39.3 mg l�1 Titriplex® III
in H2O) every other day for 2 wk, after which the plants were
transplanted into a field plot during two field seasons (2020 and
2021) and watered daily for c. 2 wk until the roots had estab-
lished and plants were able to grow without water supplementa-
tion. Rosette diameters were measured every 6–10 d during the
two field seasons.

MYC-like candidate identification and phylogenic analysis

The N. attenuata genome and protein sequences were down-
loaded through the ENSEMBL PLANTS database (http://plants.
ensembl.org/info/data/ftp/index.html). The Hidden Markov
Model (HMM) of the conservative structure domain of bHLH-
MYC_N (PF14215) was downloaded from the PFAM database
(https://www.ebi.ac.uk/interpro/) (Mistry et al., 2020). Predicted
MYC-like candidates were scanned with the HMMER 3.0 software
using the HMM file of the conserved domain of bHLH-
MYC_N (Yang et al., 2020). Protein sequences of MYC-like can-
didates (E-value < 0.001) were extracted with the TBTOOLS

v.1.09 software (Chen et al., 2020). To ensure the accuracy of the
results, the protein sequences of 25 candidates were submitted to
the NCBI website (https://www.ncbi.nlm.nih.gov/Structure/cdd/
wrpsb.cgi) for further verification. Sequence alignment and
phylogeny reconstruction were performed on MEGA 11 using
CLUSTALW and neighbor-joining packages, respectively. The gen-
erated consensus tree was tested by bootstrapping (1000 times).

Plant transformation

Gene-specific 260-bp sequences of NaMYC2a (LOC109232914)
and NaMYC2b (LOC109205493) were PCR amplified from
N. attenuata UT-WT genomic DNA (gDNA), ligated by SalI
sites, and inserted into the pSOL8DCL2 transformation vector
(GenBank no. HQ698851), yielding pSOL8MYC2a/b. PCR
was performed using Phusion High-Fidelity DNA Polymerase
(Thermo Fisher Scientific; www.thermofisher.com). gDNA was
isolated by a modified cetyltrimethylammonium bromide
method (Bubner et al., 2004). Nicotiana attenuata plants (UT-
WT 31st inbred generation) were transformed with pSOL8-
MYC2a/b T-DNA using Agrobacterium tumefaciens LBA4404
with the transformation method described in Kr€ugel

et al. (2002). Homozygous transgenic lines with single T-DNA
insertions were selected by screening T2 and T3 generation seed-
lings that showed hygromycin resistance in the expected segrega-
tion ratios. The completeness of the T-DNA integrations into
the plant genome was confirmed by diagnostic PCRs with the
respective gDNA as template. Real-time qPCR (RT-qPCR) was
used to select the best silenced transgenic lines. All sequences of
the primers used for gene amplification, cloning, diagnostic
PCRs, and RT-qPCR were given in Table S1.

Metabolite elicitations in field and glasshouse

The first stem leaves were treated with wounding and M. sexta
oral secretions (W +OS) both in the field (2021) and glasshouse,
and leaves were wounded with three rows of puncture wounds on
each side of the midrib with a fabric pattern wheel and immedi-
ately treated with 20 ll of 1 : 5 diluted M. sexta oral secretions;
plants treated with matched W + water treatments were used as
controls in glasshouse experiments; unwounded plants were used
as controls for elicitations in the field (McCloud & Bald-
win, 1997; Halitschke et al., 2001). Samples were collected at 0,
1, and 48 h, and all samples were immediately frozen on dry ice
(field) or in liquid nitrogen (glasshouse). The collected samples
were stored at �80°C for quantification of phytohormones, pri-
mary, and specialized metabolites. For MeJA treatments, lanolin
with 250 lg MeJA was applied to the adaxial surface of the first
stem leaves, and plants treated similarly with pure lanolin were
used as a control (Baldwin, 1996). Samples were collected after
72 h, immediately frozen in liquid nitrogen, and stored at
�80°C for untargeted metabonomics analysis.

Insect performance assay of noncompetitive plants

Manduca sexta performance assays with singly grown plant were
conducted on stably transformed lines in the glasshouse as
described previously (Pradhan et al., 2017; Heiling et al., 2021)
with 15 replicate plants per treatment. Glasshouse plants were
grown in a completely randomized design. Neonates were placed
on the abaxial surface of the second fully developed leaf of
rosette-stage plants. Larvae were allowed to feed for 11–13 d; lar-
val mass was recorded every 2–3 d.

Competitive experiment

Limited resources will amplify the impact of defense production
on plant growth. In order to study the impact of silencing
NaMYC2a/b on the growth-defense trade-off and evaluate
whether this trade-off is influenced by third-party factors, we
conducted a competitive experiment in the glasshouse as
described in the timeline shown in Fig. S2. Two size-matched
EV (E) or irMYC2a/b (M) seedlings were planted in different
combinations in a single 2 l pot in the glasshouse, as single (EE,
M1M1, and M1M2) and mixed-genotype (EM1, EM2, M1E,
and M2E) combinations. Seven days after seedling transfer, both
plants in the pot were elicited with 250 lg of MeJA in 20 ll lano-
lin, applied to the adaxial surface of two leaves (Baldwin, 1996)
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for 72 h to ensure that the defense system of plants were fully eli-
cited; one of the treated leaves was harvested for metabolite analy-
sis at 72 h to elucidate metabolic profile differences in EV and
irMYC2a/b under the single and mixed combination. A freshly
eclosed M. sexta neonate larvae were placed on the left of two
competing plants (plants labeled A), either an EV (E) or
irMYC2a/b (M) plant depending on the genotype treatment
group (EE, MM, EM, or ME). The larvae were allowed to feed
and move freely without any additional touching or disturbance.
Normally, larvae do not move from the leaf on which they were
‘oviposited’ for at least 2–3 d of feeding. Hence, we categorized
treatments as representing ‘high defense’ (EE), ‘weak defense’
(M1M1 and M2M2), and ‘priority defense’ (EM1, EM2) or ‘de-
layed defense’ (M1E, M2E) treatments for these larvae that were
fully capable of moving between plants in a pot as they transi-
tioned into the second instar. We recorded the location of the
caterpillar and the plant height every 2–3 d as indicated in the
timeline of Fig. S2. After the caterpillars reached the fifth instar,
the mass of each caterpillar was recorded. When the plants were
mature, the number of damaged leaves, the final capsule number,
and fresh and dry biomass of the plants were quantified.

Metabolite extraction and analysis

Extraction and chromatographic analysis procedures of primary
and specialized metabolites were based on previously published
methods (Gaquerel et al., 2010; Sch€afer et al., 2016) with small
modifications (Methods S1).

Metabolomics analysis

Raw data files were converted into netCDF format and prepro-
cessed with R packages XCMS and CAMERA using the following
parameters: centWave method; ppm = 20; snthresh = 10; peak
width = between 5 and 18 s; minfrac = 0.5; minsamp = 1;
bw = 10; mzwid = 0.01; sleep = 0.001. The FillPeaks function
from XCMS was used to fill missing features. The output data file
was submitted to METABOANALYST 5.0 for principal component
analyses (PCA) and partial least squares discriminant analyses
(PLS-DA). Log transformation (Base 10) and Pareto Scaling
(mean-centered and divided by the square root of the standard
deviation) were used for sample normalization before the analy-
sis. The significant MS features were obtained by PLS-DA with
the variable importance in projection (VIP-value) > 1 and sub-
mitted to VENNY v.2.0 https://bioinfogp.cnb.csic.es/tools/venny/
to obtain candidate features for irMYC2a/b regulation. KEGG
pathway analysis of candidate features was performed by
METABOANALYST v.5.0 (MS peak Function Analysis).

Transcriptome sequencing and transcript abundance
analysis

Total RNA was isolated from rosette leaves of N. attenuata using
the plant RNA Purification Kit (Macherey-Nagel, Düren, Ger-
many) according to the manufacturer’s instructions. Transcrip-
tome sequencing analysis was performed by the Novogene Co.

(https://www.novogene.com/). In brief, the total RNA of
W +OS-induced WT and irMYC2a/b leaves were used to con-
struct the strand-specific RNA libraries. Sequencing was per-
formed on an Illumina HiSeq platform (Illumina HiSeqTM 2500;
Illumina, San Diego, CA, USA), and gene annotation was based
on the genome of N. attenuata (Assembly NIATTr2). RT-qPCR
was performed on a Stratagene Mx3005P qPCR machine using a
TakyonTM No ROX SYBR 2X MasterMix Blue dTTP (Eurogen-
tec, Seraing, Belgium).Nicotiana attenuata housekeeping gene IF-
5A was used as an internal reference. Primer sequences are listed in
Table S1.

Statistical analysis

Statistical analysis of the data was performed using GRAPHPAD
PRISM 9.2 (GraphPad Software, La Jolla, CA, USA) and IBM SPSS
STATISTICS 23 (SPSS, v.20.0; IBM Inc., Chicago, IL, USA). Data
were evaluated using analysis of variance (ANOVA), followed by
Tukey’s honestly significant difference and two-tailed Student t-
tests. Heatmap and correlation analyses were performed using R
packages COMPLEXHEATMAP, CORRPLOT, and PSYCH.

Gene annotation number

NaMYC2a (LOC109232914), NaMYC2b (LOC109205493),
NaGGPPS (LOC109210081), NaGLS (LOC109243172),
NaAT1 (LOC109237700), NaDH29 (LOC109206371),
NaCV28 (LOC109206370), NaPAL (LOC109212354), and
NaC4H (LOC109215399).

Results

Cosilencing NaMYC2a/b robustly increased growth at the
expense of herbivore resistance

A N. attenuata-specific HMM for the bHLH-MYC_N
(PF14215) domain (Pattanaik et al., 2008) was used to identify
MYC-like TFs, from which a total 25 of nonredundant MYC-
like candidates were identified in the N. attenuata genome. The
candidate protein sequences were compared with the reported
MYC2 protein sequences of Arabidopsis thaliana (AtMYC2
AT1G32640) (Zhang et al., 2018) and tomato (SlMYC2 Soly-
c08g076930) (Du et al., 2017) by phylogenic analysis to identify
possible N. attenuata MYC2s. Phylogenic analysis indicated that
NaMYC2a, NaMYC2b, and NaMYC2_2 were in the same clade
as AtMYC2 and SlMYC2 (Fig. S3a). The transcript abundances
of NaMYC2a and NaMYC2b, but not NaMYC2_2, were
strongly increased in response to W +OS treatment (Fig. S3b);
thus, NaMYC2a and NaMYC2b were used for all subsequent
experiments. Gene-specific 260-bp sequences of NaMYC2a and
NaMYC2b were cloned, ligated with SalI sites, and inserted into a
pSOL8 vector to transform the 31st inbred generation of UT-WT
N. attenuata to generate homozygous single-insertion transgenic
lines cosilenced in NaMYC2a and NaMYC2b expression (Figs S3c,
S4a,b). The silencing efficiency of NaMYC2a in three indepen-
dently transformed lines A-17-108-1-1, A-17-110-2-1, and A-17-
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111-6-2 were 62%, 61%, and 70%, respectively, and that of
NaMYC2b were 83%, 81%, and 79%, respectively (Fig. S4c).
Transformed lines A-17-108-1-1 (irMYC2a/b#1) and A-17-110-
2-1 (irMYC2a/b#2) were used in all subsequent experiments.

The NaMYC2a and NaMYC2b cosilenced plants (irMYC2a/b)
had robustly faster growth rates at the expense of herbivore resis-
tance compared with EV plants. In individually grown plants in
the glasshouse, irMYC2a/b seedling length (Fig. 1a), rosette diam-
eter (Fig. 1b), and flowering stalk heights (Fig. 1c) were 77.3–
92.1%, 38.2%, and 10.0–19.6%, respectively, greater than those
of EV plants. Additionally, flowers of irMYC2a/b plants had

reduced corolla lengths by 13.2–20.1% (Fig. 1d). In these non-
competitive, single plant/pot conditions, capsule production rates
were initially higher, consistent with the higher vegetative growth
rates of irMYC2a/b plants, but no differences were observed in the
final capsule numbers between EV and irMYC2a/b plants
(Fig. 1e). In the glasshouse, larvae fed on irMYC2a/b were on
average 3.3–3.7 times larger than those feeding on EV (Fig. 1f).

Initially, size-matched seedlings were planted into a field plot
in the plant’s native habitat in the Great Basin Desert, over two
field seasons that differed dramatically in natural herbivore loads.
During the low-herbivore abundance year (2021), irMYC2a/b

Fig. 1 Growth and defense phenotypes in the glasshouse (a–f) and field (g, h). (a) Seedling length (n = 12–15); (b) rosette diameter (n = 9); (c) flowering
stalk heights (n = 10); (d) corolla length (n = 10); (e) capsule number (n = 10); (f) weight ofManduca sexta larvae (n = 15); (g) rosette diameter in 2021;
(h) herbivore damage and rosette diameter in 2020 (n = 12–20) of two independent lines ofMYC2a/b cosilenced (irMYC2a/b#1 and #2) and empty
vector (EV) control plants. Results of ANOVAs and Tukey’s test, and two-tailed Student’s t-test are shown (mean� SE; *, P < 0.05; **, P < 0.01;
***, P < 0.001; ****, P < 0.0001; ns, not significant). Red circles, EV plants; dark green squares, irMYC2a/b#1 plants; green triangles, irMYC2a/b#2 plants.
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plants showed the same growth advantage over EV (Fig. 1g) as
observed in the glasshouse. However, in the 2020 field season of
high herbivore loads (damage by cutworms, grasshoppers, and
tree crickets), irMYC2a/b plants were continuously damaged and
without daily insecticide spraying and manual insect removals,
none would have survived to the flowering stage (Fig. 1h).

OS-elicited phytohormonal bursts are unaltered in
irMYC2a/b plants in glasshouse and field

MYC2 is a positive regulator of the JA-signaling pathway (Kazan
& Manners, 2013), participates in a feedback loop with the
biosynthesis of jasmonic acid in Arabidopsis, and controls genes
involved in the production of phytohormones (Dombrecht
et al., 2007). However, in N. attenuata, no consistent differences
were observed between EV and irMYC2a/b plants in their OS-
elicited phytohormone levels, for JA, JA-Ile, OH-JA-Ile, SA, or
ABA in either glasshouse- (Fig. 2a) or field-grown (Fig. 2b) plants
during the low-herbivore-load field season of 2021. During the
2020 field season, irMYC2a/b plants had no undamaged leaves
with which to conduct OS-elicitation experiments.

Silencing MYC2a/b dramatically alters basal and
OS-elicited levels of primary and specialized metabolites

The metabolic responses of irMYC2a/b and EV plants to OS elici-
tation were analyzed in the field- (Fig. S5) and in glasshouse-grown
plants (Fig. 3) to evaluate their utility for the analysis of growth/de-
fense trade-offs. After 72 h, W +OS treatment of EV decreased the
concentrations of Chla and Chlb, by 47.3% and 33.8% (Fig. 3a)
and glucose, sucrose, fructose, and cellobiose, by 76.7%, 52.9%,
60.8%, and 63.1%, respectively (Fig. 3a). By contrast, these reduc-
tions were completely abolished in irMYC2a/b plants (Fig. 3a).
Additionally, independent of W +OS elicitation, irMYC2a/b had
higher amino acid levels (Fig. 3b). By contrast, irMYC2a/b plants
had decreased acyl sugar levels (O-AS) both in the glasshouse
(Fig. 3c), and field (Fig. S5). O-AS#9 was not detectable in
irMYC2a/b plants and the other O-AS were decreased by 46.3–
92.3% in irMYC2a/b compared with EV plants (Fig. 3c). Nicotine
levels in irMYC2a/b decreased by 95.6 (irMYC2a/b#1) to 96.7%
(irMYC2a/b#2) compared with EV plants (Fig. 3c). For the induci-
ble defense compounds, phenolamides and HGL-DTGs, cosilenc-
ing of NaMYC2a/b significantly reduced transcript levels of key
genes involved in phenolamide and HGL-DTG biosynthesis. The
transcript levels of NaPAL1, NaC4H, NaAT1, NaDH29, and
NaCV86 in irMYC2a/b plants were only 0.60–9.09% of those in
EV plants (Fig. 3c). Similarly, the accumulation of phenolamides
was also significantly decreased and most compounds were not
detected in irMYC2a/b plants. The induction of phenolamides,
such as N-caffeoylputrescine (CP), N0,N″-di-caffeoylspermidine
(DCS), coumaroylputrescine (COP), feruloylputrescine (FP), and
monohydrated N0,N″-di-caffeoyl spermidine (MDCS), was almost
completely abolished in irMYC2a/b plants (Figs 3c, S5). Although
cosilencingNaMYC2a/b significantly decreased the transcript levels
for key genes involved in the synthesis of HGL-DTGs (NaGGPPS
decreased by 72.3–61.5%; NaGLS by 95.3–88.5%; Fig. 3c), the

two most abundant HGL-DTGs, lyciumoside I and nicotianoside
II, were significantly increased in irMYC2a/b control plants and
were decreased after W +OS elicitation (Fig. 3c).

Competitive growth affects the MeJA-elicited responses of
EV and irMYC2a/b plants differently

Principal component analysis plots of the metabolomes of EV
plants grown without competitors revealed complete separations
of metabolomes in response to MeJA elicitation on the first two
principal components (PC1, accounting for 22%, and PC2,
accounting for 13% of the total variance). The control and eli-
cited metabolomes of irMYC2a/b plants largely overlapped, but
were completely separated from those of EV plants on PC1
(Fig. 4a). This suggests that NaMYC2a/b silencing dramatically
alters the basal metabolic profiles and abolishes the response to
MeJA elicitation. In total, 454 and 383 differential MS features
were obtained from control and MeJA-elicited plants, respec-
tively, with 203 of these MS features being shared by the two
treatments (Fig. S6a). The pathway annotation of these MS fea-
tures revealed that amino acid metabolism, carbon fixation, glu-
cose metabolism, phenylpropanoid biosynthesis, and terpenoid
backbone biosynthesis were significantly changed by NaMYC2a/b
cosilencing (Fig. S6b). Targeted metabolite analyses verified these
pathway inferences for sugars, amino acids, phenolamides, O-AS,
and HGL-DTGs (Fig. S6c).

When MeJA-elicited plants were grown with competitors, the
PCA analysis revealed that EV and irMYC2a/b metabolomes
were separated along PC1 under both single and mixed-genotype
combinations (Fig. 4b). Interestingly, when EV plants were
grown with the EV genotypes (SEV), their MeJA-elicited meta-
bolomes were slightly more divergent, than if they competed with
irMYC2a/b plants (MEV); but the opposite pattern was observed
for irMYC2a/b (Fig. 4b). In other words, under competitive-
growth conditions, the metabolic response of irMYC2a/b plants
competing with the same and different genotypes differed from
that of EV plants.

Primary and specialized metabolites that respond to growth
with different competitors

The metabolite levels of EV and irMYC2a/b in single- and
mixed-genotype competitive growth were analyzed to provide a
more granular view of the global patterns seen in the PCAs
(Fig. 5a). The metabolite heatmap revealed that most carbohy-
drates, amino acids, O-AS, and phenolamides of plants grown in
the competitive environment (Fig. 5b) have a pattern consistent
with those from plants grown in a noncompetitive environment
(Fig. S6c), namely increased primary metabolites but decreased
specialized metabolites in irMYC2a/b. However, the responses of
some HGL-DTGs, phenolamides, sugars, amino acids, and fla-
vonoids in irMYC2a/b and EV showed strong differences when
faced with different competitors (Fig. 5b). For example, in con-
trast to irMYC2a/b competing with itself (SirMYC2a/b),
irMYC2a/b competing with EV (MirMYC2a/b) had leaves with
significantly increased contents of tyrosine, tyramine, tryptophan,
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Fig. 2 Oral secretion (OS)-elicited leaf phytohormone concentrations in glasshouse- (a) and field-grown plants (b). (a) In glasshouse-grown plants
(n = 5–6), OS-elicited leaves were harvested 1 h after the treatment. (b) In field-grown plants (n = 10) OS-elicited leaves were harvested at 0, 1, and 48 h.
ABA, abscisic acid; JA, jasmonic acid; JA-Ile, jasmonoyl-isoleucine; OH-JA-Ile, hydroxy-jasmonoyl-isoleucine; SA, salicylic acid (mean� SE, ANOVA
Tukey’s test: *, P < 0.05; ***, P < 0.001; ns, not significant).
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Fig. 3 Effects of wound (W) + oral secretion (OS) elicitation on primary (a, b) and specialized metabolites and selected transcripts (c). (a) Photosynthetic
pigments and sugar contents, (b) amino acids, (c) overview pathway of quantified specialized metabolites. Genes (ID numbers given in the Materials and
Methods section): NaAT1, agmatine coumaroyltransferase; NaC4H, trans-cinnamate 4-monooxygenase; NaCV28, acetyl-CoA-benzyl alcohol
acetyltransferase-like; NaDH29, acetyl-CoA-benzyl alcohol acetyltransferase; NaGGPPS, geranylgeranyl diphosphate synthase; NaGLS, geranyl linalool
synthase; NaPAL, phenylalanine ammonia-lyase; NaPMT, putrescine N-methyltransferase. Metabolites: COP, N-coumaroylputrescine; CP, N-
caffeoylputrescine; DCS, N0,N″-di-caffeoylspermidine; FP, N-feruloylputrescine; MDCS, monohydrated N0,N″-di-caffeoylspermidine. Values are
mean� SE; n = 5 plants/treatment/genotype, two-way ANOVA, Tukey’s test. nd, not detected; solid arrows, metabolic pathways with identified synthetic
steps; dashed arrows, metabolic pathways with unidentified synthetic steps.
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nicotianoside IX, nicotianoside X, O-coumaroylquinic acid,
kaempferol-glucose-rhamnose, and rutin, and significantly
decreased contents of glucose, glutathione, nicotianoside I, nico-
tianoside II, nicotianoside V, nicotianoside VII, nicotianoside
XI, and di-feruloyl-spermidine (Fig. 5c). However, the same dif-
ferences were not found in EV plants (Fig. 5b,c). Additionally,
there was no significant difference in HGL-DTG and flavonoid
contents between MeJA-induced EV and irMYC2a/b plants
under noncompetitive (Fig. S6) and single-genotype competitive
combinations (Fig. 5b). These results indicated that the identity
of neighbor plants affects metabolic responses.

Growth and defense in a competitive environment with
mobile larvae: neighbor identity matters

We next increased the ecological realism of our analysis of growth/
defense trade-offs by adding a mobile herbivore (Fig. 6a) to the

experimental setups. We first address the consequences for larval
growth as an indicator of plant resistance. Regardless of the com-
petition combination, larvae initially placed on irMYC2a/b plants
were less likely to move to neighbor plants than those initially
placed on EV plants (Fig. 6b). Fewer larvae transferred to neigh-
bors compared with those placed on EV plants, and a greater
number of larvae returned to the irMYC2a/b plants if the neigh-
bor was an EV plant. Interestingly, this delayed movement was
observed despite the fact that larvae grew faster on irMYC2a/b
plants (which would allow them to move earlier). Larvae initially
placed on irMYC2a/b plants generally did not move much until
the third/fifth instars, while larvae initially placed on EV plants
moved earlier, from first to second instars (Fig. 6b). Compared
with larvae initially placed on EV plants, larvae initially placed on
irMYC2a/b plants gained 1.5–4.6 times more mass (Fig. 6c). In
mixed-genotypes combinations, the more larvae that moved from
irMYC2a/b to EV plants at an early age, the lower the final larval

Fig. 4 Metabolite profiling in methyl jasmonate (MeJA)-elicited leaves of plants grown singly or with a size-matched competitor. (a) Principal component
analysis (PCA) score plot of metabolites of plants in a noncompetitive-growth environment (Lanolin�MeJA elicitation); (b) PCA score plot of metabolites
of plants in a competitive-growth environment, the metabolite data comes from the same experiment as Figs 5 and 6. EV, empty vector; SEV, all EV plants
in single-genotype pots (including plant A and plant B); MEV, all EV plants in mixed-genotype pots; SirMYC2a/b, all irMYC2a/b#1 and #2 plants in single-
genotype pots; MirMYC2a/b, all irMYC2a/b#1 and #2 plants in mixed-genotype pots.
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mass; conversely, the more larvae moved from EV plants to
irMYC2a/b, the greater the final larval mass of this combination
(Fig. 6b,c).

For plants, the identity of competing plants was crucial for
growth and fitness. In the single-genotype combinations (EE,
M1M1, and M2M2), irMYC2a/b plants compared with EV
plants were 6.2% (M1M1) and 14.6% (M2M2) smaller in plant
height, 9.1% (M1M1) and 24.2% (M2M2) lower in biomass,
21.3% (M1M1) and 36.2% (M2M2) lower in capsule number,

and produced 13.1% (M1M1) and 21.3% (M2M2) fewer cap-
sules per dry biomass. However, in the mixed-genotype combina-
tions (EM1, EM2, M1E, and M2E), EV and irMYC2a/b did not
differ (Fig. 6d). The total capsule and biomass production of
plants growing in the competitive combinations of mixed-
genotypes (EM1, EM2, M1E, and M2E) was significantly greater
than those of the single-genotype combinations (EE, M1M1, and
M2M2): in EV plants (average of EV in all mixed-genotypes
combinations) increased by 4.6%, 7.0%, 18.7%, and 11.5% in

Fig. 5 Methyl jasmonate (MeJA)-elicited metabolites of leaves in single- and mixed-genotype competitive-growth combinations. (a) Schematic of the
competitive-growth setup; (b) metabolite heatmap of EV and irMYC2a/b plants under different competitive-growth combinations. The data were normal-
ized by log transformation (base 10) and Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable). (c)
Metabolites with significant differences between single- and mixed-genotype pot (mean� SE, n = 30–60, one-way ANOVA, Tukey’s test). SEV, all empty
vector (EV) plants in single-genotype pots (including Plant A and Plant B); MEV, all EV plants in mixed-genotype pots; SirMYC2a/b, all irMYC2a/b#1 and
#2 plants in single-genotype pots; MirMYC2a/b, all irMYC2a/b#1 and #2 plants in mixed-genotype pots.
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plant height, biomass, capsule number, and capsules per dry bio-
mass, while in irMYC2a/b plants (average of irMYC2a/b in all
mixed-genotypes combinations) increased by 20.6%, 27.7%,
67.8%, and 32.3%, respectively (Fig. 6d). The combined total-
pot production values revealed that when planted in mixed-
genotype combination, plants realized significantly greater fitness
than when planted in single-genotype combinations in environ-
ments with a mobile herbivore (Fig. 6d).

We next analyzed plant fitness measures in the context of the
resistance patterns created by the different treatment groups;
recall that all plants were MeJA-elicited before larvae were ‘ovi-
posited’ on a specific plant of each competitive combination. Lar-
vae initially placed on EV plants were considered a ‘priority
defense’ treatment (EM1, EM2), and those initially placed on
irMYC2a/b plants, a ‘delayed defense’ treatment (M1E, M2E).
Compared with those in priority defense treatments, plants in the
delayed-defense treatment had 29.6% (EM1 vs M1E) and 6.6%
(EM2 vs M2E) lower capsule numbers, and produced 24.7%
(EM1 vs M1E) and 12.2% (EM2 vs M2E) fewer capsules per dry
biomass (Fig. 6d). Moreover, the combination (EM2), in which
early-instar larval movement occurred in the priority defense
combination (EM1, EM2), had a 24.9% reduction in capsule
number (33.4% in EV and 13.5% in irMYC2a/b plants) in EM2
compared with EM1, whose larvae moved less frequently to the
neighboring plant. By contrast, in the delayed-defense combina-
tion (M1E, M2E), no differences in capsule numbers were
observed in M2E which had more larvae moving to the neighbor-
ing plant than did M1E (Fig. 6d).

These results indicated that in environments with competitors
and herbivores, a robust chemical defense is associated with fitness
benefits. In competitive environments, plants of the high-defense
combination (EE) had a fitness advantage over those of the weak-
defense combinations (M1M1 and M2M2). Plants of the priority
defense combinations (EM1 and EM2) realized a fitness advan-
tage over those of the delayed-defense combinations (M1E,
EM2). However, for plants with a weak-defense neighbor, it may
be detrimental to motivate early larval movement to neighboring
plants, as these can return at larger, more voracious stage.

Correlations among metabolites and plant growth and
defense: not all specialized metabolites are defenses

To reveal the associations between particular metabolites and
plant growth and defense from the previous experiment (Fig. 6),
we correlated metabolite quantities with the measures of larval
and plant performance. Specialized metabolites, such as O-AS,
nicotine, flavonoids, most phenolamides, and a small sector of
HGL-DTGs, were positively correlated with plant height, dry
biomass, and capsules number, but negatively correlated with
plant damage and larval mass and hence followed the pattern of
the classical defense metabolite, nicotine (Fig. 7). Among these,
nicotianoside IX, nicotianoside X, O-coumaroylquinic acid,
kaempferol-glucose-rhamnose, and rutin were the metabolites
found in irMYC2a/b that significantly increased in the
competitive combination of mixed genotypes (Fig. 5). However,
the quantities of di-feruloylspermidine, caffeoylspermidine,

nicotianoside I, lyciumoside IV, nicotianoside VII, and nico-
tianoside VIII, on the contrary, exhibited patterns consistent with
the classical primary metabolites, such as cellobiose, fructose, glu-
cose, sucrose, methionine, and phenylalanine, which were nega-
tively correlated with plant height, dry biomass, and capsule
number, but positively correlated with plant damage and larvae
mass (Fig. 7). Moreover, these metabolites were found to
decrease in the competitive combinations of mixed genotypes.
Coumaroylputrescine, coumaroyltyramine, nicotianoside II, and
nicotianoside XI were negatively correlated with all phenotypic
traits (Fig. 7) and were also found to decrease in the competitive
combination of mixed genotypes (Fig. 5). These correlations sug-
gest that biosynthetic pathways do not accurately predict metabo-
lite functions.

Discussion

The evolutionary mechanisms responsible for plant growth/de-
fense trade-offs have been the subject of a long and venerable
body of theory (McKey, 1974, 1979; Rhoades & Cates, 1976;
Herms & Mattson, 1992) which predates the molecular biology
revolution (Schuman & Baldwin, 2016). Here, we explored the
role of MYC2, a key regulator of JA signaling, to understand the
metabolic underpinnings of growth/defense trade-offs in natural
and experimental environments that captured some of the ecolog-
ical complexity envisioned by early theoreticians as being central
to the trade-offs, namely growth with competitors and mobile
herbivores. By comparing an N. attenuata-specific HMM for the
bHLH-MYC_N domain with the N. attenuata genome, we iden-
tified 25 MYC-like and three MYC2-like candidates of which
two (NaMYC2a and NaMYC2b) were strongly induced by
M. sexta OS elicitations (Fig. S3b). The effects of NaMYC2a/b
cosilencing on growth, defense, and metabolic performance of
plants in glasshouse and field environments confirmed MYC2’s
published effects on seedling development (Fig. 1a), shoot
growth (Fig. 1b,c,g), defense (Fig. 1f,h), and metabolic regula-
tion (Fig. 3) from other species, namely negative regulation of
root and shoot growth (Dombrecht et al., 2007; Gupta
et al., 2014; Srivastava et al., 2019), JA-induced reductions in
chlorophyll degradation and carbon assimilation (Zhu
et al., 2015; Zhuo et al., 2020; Ding et al., 2022) and herbivore
resistance (Schweizer et al., 2013; Sun et al., 2020), and the syn-
thesis of specialized metabolites responsible for resistance, such as
nicotine (Shoji & Hashimoto, 2011), terpenoids (Hong
et al., 2012; Shen et al., 2016; Sui et al., 2018), phenyl-
propanoids (Wei et al., 2022), and phenolamides (Woldemariam
et al., 2013). O-acyl sugars, a class of constitutively produced
defense metabolites in N. attenuata (Weinhold & Baldwin, 2011;
Luu et al., 2017), were also abrogated in NaMYC2a/b cosilenced
plants (Fig. 3d). MYC2 has been reported to regulate the biosyn-
thesis of phytohormones, via feedback loops, particularly in
wound-induced JA biosynthesis in A. thaliana (Dombrecht
et al., 2007; C. Zhang et al., 2020); however, we found few con-
sistent differences between EV and irMYC2a/b plants in their
OS-elicited phytohormone levels (Fig. 2), consistent with previ-
ous research (Woldemariam et al., 2013; Li et al., 2017). These
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Fig. 6 Plant and larval growth, larval movement, and plant fitness measures of setups with competing, methyl jasmonate (MeJA)-elicited plants, and mobile
larvae. (a) Schematic of the competitive experiment, irMYC2a/b, and empty vector (EV) seedlings were planted in 2 l pots in different combinations, two
rosette leaves of each plant were treated with lanolin containing 250 lg MeJA for 72 h, after which a single neonateManduca sexta larva was placed on
one of the two size-matched genotypes growing in competition and allowed to feed and move freely between the two competing plants. (b) Instar-specific
movement (pink: larvae remained on A plant; green: larvae moved to B plant) on EV and irMYC2a/b plants in the single- and mixed-genotype competition
setups. Different lowercase letters indicate significant differences among levels of larval mass (P < 0.05). (c) Larval mass on EV and irMYC2a/b plants in the
single- and mixed-genotype competition setups. (d) Plant growth (mass and height) and fitness (capsule number and biomass) of EV and irMYC2a/b plants
in the single- and mixed-genotype competition setups and total plant growth and total fitness of each combination (mean� SE, n = 15, two-way ANOVA,
Tukey’s test, different lowercase letters indicate significant differences among levels of fitness indices).
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results suggest that NaMYC2a/b in N. attenuata may consolidate
the functions of several MYC2 TFs reported in other species and
have minimal effects on phytohormone levels, a distinct advan-
tage when exploring the JA-mediated growth/defense trade-offs
in ecologically complex environments.

When irMYC2a/b plants were grown in single pots without
competitors or herbivores in the glasshouse, their realized fitness,

estimated by seed production, was not significantly greater than
that of the slower-growing EV plants (Fig. 1e); however, their
growth and likely fitness advantage became dramatically apparent
when planted in the field during a year of very low-herbivore
loads (Fig. 1g,h), confirming previous studies of costly defenses
(Baldwin, 1998; Zavala & Baldwin, 2004). Here, we show that
isogenic competitors differing only in NaMYC2a/b expression

Fig. 7 Heatmap of correlations among methyl jasmonate (MeJA)-elicited metabolites with plant growth (height, capsule, and dry mass) and defense (larval
damage and mass) phenotypes in competing and attacked Nicotiana attenuata plants. The phenotypes and metabolite data were from the competitive-
growth experiment described in Fig. 6; leaf metabolite data were collected 72 h after MeJA treatment and before plants were infested withManduca sexta
larvae. The red boxes highlight regression relationships of a classical primary (sucrose) and a specialized metabolite (nicotine) functioning in plant growth
and defense, respectively. The color gradient from red to green indicates metabolite concentrations from high to low.
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and all of the above-mentioned metabolic responses, elicited dif-
ferent metabolic responses in competing neighbors (Figs 4b, 5b,
c). In contrast to the overall metabolic stability of EV plants,
irMYC2a/b plants produced metabolic responses significantly
different when competing with themselves and EV plants. The
responses in flavonoids, HGL-DTGs, and phenolamide accumu-
lation of irMYC2a/b plants were particularly noteworthy
(Fig. 5b,c). These ‘neighbor-responses’ were associated with sig-
nificant fitness outcomes, as the combined growth and capsule
production of competing EV and irMYC2a/b plants were greater
than those of the single-genotype combinations, composed of
irMYC2a/b or EV plants (Fig. 6d). While the fitness of individ-
ual irMYC2a/b or EV plants depended very much on the feeding
and movement behavior of the mobile herbivore; overall, there
were only minor fitness differences between irMYC2a/b and EV
plants in the mixed-genotype competition combinations
(Fig. 6d). This underscores the important point that while resis-
tance traits may incur large fitness costs that result from the allo-
cation of fitness-limiting resources or autotoxicity, in complex
ecological environments, third-party effects frequently compen-
sate for these costs, resulting in no detectable differences in fitness
(Z€ust & Agrawal, 2017; Figs 4–6). These third-party effects
clearly include herbivore defense effects (Baldwin, 1998), but
others, such as signal-sharing benefits (Pierik et al., 2013), the
effectiveness of nutrient acquisition (D. Zhang et al., 2020), and
root exudates and microbiome effects (Broz et al., 2010; Huang
& Osbourn, 2019), deserve additional research.

The results of our metabolite correlation analysis (Fig. 7)
showed that the HGL-DTGs or phenolamides, which accumu-
lated differently in plants depending on their single- or mixed-
genotype environment, were functioning more like nutritional or
signaling substances, rather than defense metabolites. These func-
tional associations of metabolites that differ from the functions
that might be inferred from biosynthetic pathways are fully com-
mensurate with Matthias Erb and Daniel Kliebenstein’s insight-
ful perspective on plant metabolism, namely that of a ‘blurred
functional trichotomy’ (Erb & Kliebenstein, 2020). A growing
body of evidence has revealed that many specialized metabolites
have multiple functions beyond their functions in defense (Peer
& Murphy, 2007; Kemen et al., 2014; Maag et al., 2015; Li
et al., 2018; Muhlemann et al., 2018), for example, as primary
metabolites (Soubeyrand et al., 2018), regulators of growth and
development (Li et al., 2018; Muhlemann et al., 2018), and pro-
moters of trace element uptake (Mlad�enka et al., 2010; Hu
et al., 2018), or as chemical signals that attract beneficial insects
and microorganisms (Baldwin et al., 2006; Eckardt, 2006; Moses
et al., 2014). The role of HGL-DTG glycosides (Li et al., 2018)
and flavonoids (Yin et al., 2014; Park et al., 2020) in the regula-
tion of flower development or growth in plants has been well-
established. The differential accumulation of flavonoids, pheno-
lamides, and HGL-DTGs in plants grown in mixed-genotype
combinations may contribute via some of these nondefense
functions to the fitness advantages of growth in mixed-genotype
combinations.

The synthesis of metabolites that function as defenses can
command a substantial fraction of a plant’s carbon or nitrogen

budget (Gershenzon, 1994; Baldwin et al., 1998; Ullmann-
Zeunert et al., 2012); however, this resource investment rarely
leads to observable fitness costs or the expected allocation patterns
when plants face resource constraints. For example, reductions in
environmental N availability do not reduce, but rather increase a
plant’s allocation to N-intensive defensive compounds, such as
nicotine (Baldwin & Ohnmeiss, 1994b; Ohnmeiss & Bald-
win, 1994; Baldwin et al., 1998). Here, we see that irMYC2a/b
plants grow faster than their specialized-metabolite-producing
EV plants (Figs 1, 6d); however, despite their attenuated meta-
bolic potential, irMYC2a/b plants adjust their metabolite accu-
mulations depending on the growth/defense status of their
neighbors, much as other studies have suggested (Broz
et al., 2010).

Given that plants can adjust their metabolism in sophisticated
ways in response to their environmental context, it is worth con-
sidering how best to incorporate this environmental responsive-
ness into future research efforts on the growth/defense trade-off.
In complex ecological environments, third-party trade-offs are
the norm. Traits that provide resistance against some herbivores
may increase susceptibility to other types of herbivores, patho-
gens, and abiotic stresses (Thaler et al., 2002; Frost et al., 2008),
or influence important mutualists, such as pollinators, natural
enemies (Strauss et al., 1999; Gols, 2014), and symbiotic
microorganisms, such as arbuscular mycorrhizal fungi (Bais
et al., 2008; Tian et al., 2021). These third-party players are usu-
ally excluded from laboratory studies and conducting trade-offs
studies under field conditions is perhaps the most robust means
of not excluding players that have been important in the evolu-
tion of the environmental signaling systems that plants use to
navigate these growth/defense trade-offs. In this context, we note
that the most visually apparent differences in growth/defense
phenotypes between irMYC2a/b and EV plants occurred during
the two field seasons (Fig. 1g,h) when size-match seedlings were
planted in their native habitat.
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