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Abstract

In this article, we define an algebraic version of the Knizhnik–Zamolodchikov functor for
the degenerate double affine Hecke algebras (a.k.a. trigonometric Cherednik algebras). We
compare it with the KZ monodromy functor constructed by Varagnolo–Vasserot. We prove the
double centraliser property for our functor and give a characterisation of its kernel. We establish
these results for a family of algebras, called quiver double Hecke algebras, which includes the
degenerate double affine Hecke algebras as special cases.

Introduction

Degenerate double affine Hecke algebras

The degenerate double affine Hecke algebras (dDAHA), also known as trigonometric Cherednik
algebras, were introduced by I. Cherednik in his study of integration of the trigonometric form
of the Knizhnik–Zamolodchikov equations (KZ) [8].

The degenerate double affine Hecke algebras, unlike their non-degenerate version and its
rational degeneration, are not “symmetric”: it contains a polynomial subalgebra and a Laurent
polynomial subalgebra. Due to this asymmetry, one can adopt two different points of view to
study the dDAHA: either viewing it

(i) as the algebra generated by regular functions on a torus T∨ attached to a root system R,
the Weyl group of R acting the torus T∨ and the trigonometric Dunkl operators on it, or

(ii) as the algebra generated by Demazure-like difference operators on E, where E is an affine
space which carries an affine root system; this is the affine version of the graded affine
Hecke algebras of G. Lusztig [25].

The former approach allows one to apply various techniques of D-modules, symplectic geometry
and is closer to the theory of rational Cherednik algebras [14, 1]; the latter approach allows
one to apply cohomological, K-theoretic or sheaf-theoretic methods [10, 35], and is closer to the
(non-degenerate) double affine Hecke algebras.

In the present work, we will adopt the second approach most of the time. We show that with
this point of view, the dDAHAs can be easily generalised and are quite flexible in the choice of
parameters. We show also that some of the features from first approach can be recovered with
the second approach, namely the integration of the KZ equations.

Quiver Hecke algebras

The quiver Hecke algebras, also known as Khovanov–Lauda–Rouquier algebras, were introduced
in [21] and [30]. They were introduced in the purpose of categorifying the Drinfel’d–Jimbo
quantum groups for Kac–Moody algebras as well as their integrable representations.
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It was proven by Brundan–Kleshchev–McNamara [6] and Kato [20] that quiver Hecke
algebras for Dynkin quivers of finite ADE types have pretty nice homological properties.
Retrospectively speaking, they proved that the categories of graded modules over these algebras
carry an affine highest weight structure in the sense of [22]. As a consequence, these algebras
have finite global dimension. However, once one goes beyond the family of finite type, the quiver
Hecke algebras often have infinite global dimension. The simplest example would be the cyclic
quivers of length ≥ 2. According to the result of Brundan–Kleshchev [5] and Rouquier [30],
the quiver Hecke algebras of cyclic quivers are equivalent to affine Hecke algebras for GLn with
parameter at roots of unity. The representation theory of affine Hecke algebras at roots of unity
is known to share several features of the modular representation theory finite groups. Notably,
there are fewer simple modules in the modular case than there are in the ordinary case.

One approach to the modular representation theory is to resolve this lack of simple objects
by finding a larger, but better behaved category, of which the modular category is a quotient.
In the case of modular representation theory of symmetric groups, one uses the Schur algebras
as resolution via the Schur–Weyl duality. In the same spirit, for Hecke algebras of complex
reflection groups, the rational Cherednik algebras provide resolution, as it was first established
in [16]. For affine Hecke algebras, the resolution would be the degenerate double affine Hecke
algebras. This perspective appeared in [34], where degenerate DAHAs are viewed as replace-
ment for affine q-Schur algebras in relation with affine Hecke algebras cf. §2.2 and §4. We will
introduce a new family of algebras, called quiver double Hecke algebras, which we believe to
play the rôle of “resolution” for quiver Hecke algebras.

Results of the present article

Let (V,R) be an irreducible finite root system and let (E, S) be its affinisation (the definition is
recalled in §1.1). In particular, E ∼= V is a euclidean affine space. We fix a basis ∆0 ⊂ R, which
extends in a standard way to an affine basis ∆ ⊂ S. The affine Weyl group WS is generated
by affine simple reflections sa for a ∈ ∆ and the finite Weyl group WR ⊂ WS is the subgroup
generated by sa for a ∈ ∆0. The extended affine Weyl group W̃S acts on S.

The degenerate double affine Hecke algebra attached to (E, S) is given by H = CWS⊗C[E]
as vector space. The multiplication of H depends on a function h : S −→ C, called parameters,
see §2 for the precise definition. For λ ∈ E, let Oλ(H) denote the category of finitely generated
H-modules on which the subalgebra C[E] acts locally finitely with eigenvalues lying in the orbit
WS · λ ⊂ E.

The affine Hecke algebra attached to (V,R) given by K = HR ⊗ C[T ], where HR is the
Iwahori-Hecke algebra of type (WR,∆0) and C[T ] is the group algebra of the weight lattice of
the root system (V,R). See §3.1 for the precise definition. For ℓ ∈ V , let Oℓ(K) denote the
category of finite-dimensional K-modules on which the subalgebra C[T ] acts with eigenvalues
lying in the orbit WR · ℓ ⊂ T .

There is an exponential map exp : E −→ T . Fix λ0 ∈ E and let ℓ0 = exp(λ0) ∈ T . Denote
by V : Oλ0(H) −→ Oℓ0(K) the monodromy functor for the Knizhnik–Zamolodchikov equations
introduced by Varagnolo–Vasserot in [34]. We show in Proposition 27 that M is a quotient
functor. The first main result is the following:

Theorem A (=Definition 96+Proposition 29). There is a quotient functor V : Oλ0(H) −→
Oℓ0(K) defined in algebraic terms such that

kerV = kerV.

We expect that there exists an isomorphism V ∼= V. In order to construct V, we in-
troduce in §2.5 and §3.4 two auxiliary algebras Hλ0 and Kℓ0 and show in Proposition 12
and Proposition 17 that Hλ0 and Kℓ0 are Morita-equivalent respectively to Oλ0(H) and
Oℓ0(K). By analysing the structure of the quiver-Hecke-like algebras Hλ0 and Kℓ0 , we show
in Theorem 82 that there exists an idempotent eγ ∈ Hλ0 such that the idempotent subalgebra
eγHλ0eγ is isomorphic to Kℓ0 . This allows us to define the functor V as the idempotent
truncation by eγ .

The second main result concerns V:

Theorem B (=Theorem 105+Theorem 108). The following statements hold:

(i) The functor V satisfies the double centraliser property (i.e. fully faithful on projective
objects) after passing to a suitable completion of Oλ0(H) and Oℓ0(K).
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(ii) The kernel kerV is the Serre subcategory generated by simple objects L ∈ Oλ0(H) such
that the projective envelope of L in the completion of Oλ0(H) is not relatively injective
with respect to the categorical centre Z(Oλ0(H)).

Notice that by the comparison result Theorem A, the statements of Theorem B also hold
for V. The second statement of Theorem B implies in particular that the subcategory kerV
is an invariant of the category Oλ0(H). In fact, we construct V and establish Theorem B for
a greater family of algebras, quiver double Hecke algebras, which are introduced in §6.3. This
family of algebras seems to be related to a localised Iwahori version of Coulomb branch algebras
of Braverman–Finkelberg–Nakajima [3] for semisimple groups.

Related works

As mentioned above, the algebra A
ω that we introduce in Part II is expected to be related to

Iwahori version of the quantised Coulomb branch algebras. There exist in the literature some
works on the representation theory of such algebras with an approach similar to ours.

In [37], B. Webster studied a module category of the rational Cherednik algebra for the
complex reflection group G(ℓ, 1, n) whose objects admit a weight decomposition for the action
of a polynomial subalgebra defined by Dunkl–Opdam [13]. He introduced an algebraic version
of the KZ functor and he classified the simple objects of that category. The results were later
generalised in [23], to the rational Cherednik algebra for G(ℓ, d, n).

Our construction of KZ functor V can be regarded as a variant of theirs. One can expect
that their functor also satisfies the properties listed in Theorem B.

Organisation

This paper is composed of two parts. The first part serves mainly as preliminary materials and
motivation for the second part. The proof of most of the statements in the first part can be
found in the literature [25, 9, 28, 34, 33].

We review briefly the affine root systems in §1.1, the dDAHAs in §2 and the affine Hecke
algebras (AHA) in §3.1. We introduce the idempotent form of these algebras, each controlling a
block of the categoryO of both algebras. The definition of idempotent forms is a straightforward
generalisation of the result of Brundan–Kleshchev [5] and Rouquier [30] on the equivalence
between affine Hecke algebras for GLn and quiver Hecke algebras for linear and cyclic quivers.

We recall in §4 the monodromy functor V introduced in [34] as the trigonometric counterpart
of the KZ functor of [16]. We prove that it is a quotient functor in the sense of Gabriel.

We discuss in §5 the relations between the monodromy functor V and the functor V, which
will be defined in algebraic terms in §10.6.

In the second part we introduce quiver double Hecke algebras (QDHA). They can be viewed
as a generalisation of degenerate double affine Hecke algebras (dDAHA) or as an affinisation of
quiver Hecke algebras (QHA).

In §6, we introduce the quiver double Hecke algebras Aω attached to an affine root system
(E, S) with spectrum being a WS-orbit in E and with parameter ω. We define the filtration
by length on A

ω in §6.4 and prove the basis theorem in §6.5 with this filtration. We study the
associated graded grF A

ω of the filtration by length in §6.6.
In §7, we study the categories of graded and ungraded A

ω-modules. We introduce in §7.6
a functor of induction from the quiver Hecke algebras attached to the finite root system (V,R)
underlying (E, S).

In §8, we study good filtrations on A
ω-modules and use it to define the Gelfand–Kirillov

dimension of an A
ω-module. We prove that “induced A

ω-modules” are of maximal Gelfand–
Kirillov dimension.

In §9, we introduce the quiver Hecke algebra B
ω attached to a finite root system (V,R) and

with parameter ω. We prove a basis theorem for B
ω and we introduce a Frobenius form on

B
ω.

In §10, we prove that the algebra B
ω is isomorphic to an idempotent subalgebra of A

ω.
We use this isomorphism to define the Knizhnik–Zamolodchikov functor V, which is a quotient
functor. We give characterisations for the kernel of V in §10.7 and §10.9. The double centraliser
property for V is proven in §10.8.

In Appendix A, we collect some basic facts about the category of pro-objects of abelian
categories, which are used to construct completions of the categories Oλ0(H) and Oℓ0(K).
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Part I

Degenerate double affine Hecke algebras

1 Reminder on affine root systems

We review the notion of affine root systems. The reference is [27].

1.1 Affine reflections on euclidean spaces

Let E be an affine euclidean space of dimension n > 0 and let V be its vector space of
translations. In particular, V is equipped with a positive definite scalar product 〈−,−〉 :
V × V −→ R. The dual space V ∗ is identified with V via the scalar product 〈−,−〉. Let
R[E]≤1 be the space of affine functions on E. We have a map of differential ∂ : R[E]≤1 −→ V ∗

whose kernel is the set of constant functions. The space R[E]≤1 is equipped with a symmetric
bilinear form 〈f, g〉 = 〈∂f, ∂g〉. For any non-constant function f ∈ R[E]≤1, let f∨ = 2f/|f |2

and define the reflection with respect to the zero hyperplane of f :

sf : E −→ E, sf (x) = x− f∨(x)∂f

and

sf : R[E]≤1 −→ R[E]≤1, sf(g) = g − 〈f∨, g〉f.

It extends to an automorphism of the ring of C-valued polynomial functions sf : C[E] −→ C[E].

1.2 Affine root systems

An affine root system on E is the pair (E, S), where S ⊂ R[E]≤1 is a subset satisfying the
following conditions:

(i) S spans R[E]≤1 and the elements of S are non-constant functions on E;

(ii) sa(b) ∈ S for all a, b ∈ S;

(iii) 〈a∨, b〉 ∈ Z for all a, b ∈ S;

(iv) the group WS of auto-isometries on E generated by {sa ; a ∈ S} acts properly on E.

The group WS is called the affine Weyl group (or simply the Weyl group of S). An affine root
system (E, S) is called irreducible if there is no partition S = S1 ⊔ S2 with 〈−,−〉 |S1×S2= 0
and S1 6= ∅ and S2 6= ∅; it is called reduced if a ∈ S implies 2a /∈ S.

Let (E, S) be an affine root system. The set R = ∂(S) ⊂ V ∗ is a finite root system on V .
Let P = PR ⊂ V denote the weight lattice, QR = ZR the root lattice, P∨ = P∨

R the coweight
lattice and Q∨ = Q∨

R = ZR∨ the coroot lattice.
Conversely, let (V,R) be an irreducible finite root system, reduced or not. Define Rred =

R \ 2R to be the set of indivisible roots. Let P = PR be the weight lattice and Q = QR the
root lattice; we define the affinisation of (V,R) to be the affine root system (E, S) with E = V
and

S = 〈α+ n ; n ∈ Z, α ∈ Rred〉 ⊔ 〈α+ 2m+ 1 ; m ∈ Z, α ∈ R ∩ 2R〉.

Given a basis ∆0 ⊂ R, we form ∆ = ∆0 ∪ {a0}, where a0 = 1− θ with θ ∈ R being the highest
root with respect to the basis ∆0.
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1.3 Affine Weyl group

Let (E, S) be the affinisation of (V,R), which is an irreducible reduced affine root system. A
basis of S is an R-linearly independent subset ∆ ⊂ S such that the following conditions are
satisfied:

(i) S ⊂ N∆ ∪ −N∆;

(ii) the set
⋂
a∈∆ {x ∈ E ; a(x) > 0} is non-empty.

The WS-action on S induces a simple transitive WS-action on the set of bases of S. Upon fixing
a basis ∆ of S, let S+ = S ∩N∆ and S− = S ∩−N∆ denote the sets of positive and negative
roots.

The parabolic Coxeter subgroup WR = 〈sa ; a ∈ ∆0〉 of WS can be identified with the Weyl
group of the finite root system (V,R) and there is an isomorphism

Q∨
R ⋊WR

∼=WS

(µ,w) 7→ Xµw,

where the element Xµ acts on S by a 7→ a − 〈∂a, µ〉. The extended affine Weyl group is
defined to be W̃S = P∨ ⋊WR. It acts on S by extending the WS-action by the same formula
Xµa = a− 〈∂a, µ〉 for µ ∈ P∨.

The length function is defined to be

ℓ : W̃S −→ N, ℓ(w) = #
(
S+ ∩ w−1S−

)
.

It extends the usual length function on the Coxeter group WS with respect to the set of
generators {sa}a∈∆. We will need the following formula for the length function.

Proposition 1. For µ ∈ P∨ and w ∈ WR, we have

ℓ(wXµ) =
∑

α∈R+
red

∩w−1R−

red

|〈α, µ〉 + 1|+
∑

α∈R+
red

∩w−1R+
red

|〈α, µ〉|+
∑

α∈R+∩2R

|〈α, µ〉|

2
.

ℓ(Xµw) =
∑

α∈R+
red∩wR

−

red

|〈α, µ〉 − 1|+
∑

α∈R+
red∩wR

+
red

|〈α, µ〉|+
∑

α∈R+∩2R

|〈α, µ〉|

2
.

These formulae can be obtained by counting the set S+ ∩ w−1S− along the fibres of the
differential map ∂ : S → R.

1.4 Alcoves

For each affine root a ∈ S, let Ha = {λ ∈ E ; a(λ) = 0} be the vanishing locus of a. The affine
hyperplanes {Ha}a∈S yield a simplicial cellular decomposition of E. The open cells are called
alcoves. Thus the set of connected components

π0

(
E \

⋃

a∈S

Ha

)

is the set of alcoves. The affine Weyl group WS acts simply transitively on it. When a basis
∆ ⊂ S is given, the fundamental alcove is defined to be ν0 =

⋂
a∈∆ {x ∈ E ; a(x) > 0}.

2 Reminder on degenerate double affine Hecke algebra

Let (E, S,∆) be an irreducible reduced affine root system with a basis. We define in this section
the degenerate double affine Hecke algebra H attached to (E, S,∆) and its idempotent form
Hλ0 , which is a block algebra for the category O of H.
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2.1 Degenerate double affine Hecke algebra H

Let h = {ha}a∈S be a W̃S-invariant family of complex numbers. The degenerate double affine
Hecke algebra with parameters h attached to the affine root system S is the associative unital C-
algebra on the vector space H = CWS⊗C[E] whose multiplication satisfies following properties:

• Each of the subspaces CWS and C[E] is given the usual ring structure, so that they are
subalgebras of H.

• w ∈ CWS and f ∈ C[E] multiply by juxtaposition: (w ⊗ 1)(1⊗ f) = w ⊗ f .

• a ∈ ∆ and f ∈ C[E] satisfy the equation:

(sa ⊗ 1) (1⊗ f)− (1⊗ sa(f)) (sa ⊗ 1) = 1⊗ ha
f − sa(f)

a
.

2.2 Global dimension of H

Put a filtration F on H as follows:

F≤−1H = 0, F≤0H = CWS , F≤1H = (F≤0H)C[E]≤1, F≤nH = (F≤1H)n, n ≥ 2.

Namely, H is filtered by its polynomial part C[E]. The filtration F is compatible with the
multiplication and its associated graded ring is given by the skew tensor product grF H ∼=
CWR ⋉ (CQ∨ ⊗C[V ]). Since dim.gl H ≤ dim.gl grF H ([18, D.2.6]) and since dim.gl CWR ⋉

(CQ∨ ⊗C[V ]) = 2r, where r = rkS = dimE, we have the following:

Proposition 2. The global dimension of H is at most 2r.

2.3 Category O

For each λ ∈ EC, let mλ ⊂ C[E] be the defining ideal of the closed point λ ∈ E. Given any
module M ∈ H -Mod, for each λ ∈ EC consider the generalised λ-weight space in M :

Mλ =
⋃

N≥0

{
a ∈M ; mNλ a = 0

}
.

For any λ0 ∈ EC, we define Oλ0 (H) to be the full subcategory of finitely generated left H-
modules H -mod consisting of those M such that

M =
⊕

λ∈WS λ0

Mλ.

In other words, the polynomial subalgebra C[E] acts locally finitely on M with eigenvalues in
the WS-orbit of λ0 ∈ EC.

From the triangular decomposition H = CQ∨ ⊗CWR ⊗C[E], we deduce the following:

Proposition 3. For every λ0 ∈ E, every object of Oλ0(H) is a coherent CQ∨-module.

2.4 Block algebra H∧

λ0

In order to study the category Oλ0(H), it is often useful to consider a certain completion of the
polynomial part C[E] at the orbit WSλ0 ⊂ E. The completion of H that we will consider is
similar to the one from [12] in the context of Gelfand–Zetlin algebras. A similar construction
has been employed in [33] for double affine Hecke algebras.

Fix once and for all λ0 ∈ EC. Define for each λ ∈ WSλ0 a polynomial ring Polλ = C[V ]
and let Pol =

⊕
λ∈WSλ0

Polλ. Define the completion

P̂olλ = lim
←−
N

Polλ /m
N
0 Polλ = CJV K, P̂ol =

⊕

λ∈WSλ0

P̂olλ,

where m0 ⊂ Polλ is the defining ideal of 0 ∈ V . The completion P̂olλ is equipped with the

m0-adic topology and P̂ol is equipped with the colimit topology.

For λ ∈WSλ0, the translation λ∗ : VC
λ+
−−→ EC yields an isomorphism

λ∗ : C[E] ∼= C[V ] = Polλ .
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We define an action of H on Pol:

ψ = (ψλ)λ : H −→ Endcont(P̂ol), ψλ : H −→ Homcont(P̂olλ, P̂ol).

by setting, for f ∈ C[E] and a ∈ ∆,

ψλ(f) = λ∗f (4)

ψλ(sa − 1) =

{
−λ

∗(a−ha)
λ∗a (s∂a − 1) ∈ Homcont(P̂olλ, P̂olλ) a(λ) = 0

λ∗(ha−a)
λ∗a − (saλ)

∗(a−ha)
(saλ)∗a

s∂a ∈ Homcont(P̂olλ, P̂olλ + P̂olsaλ) a(λ) 6= 0
. (5)

Lemma 6. The map ψ defines a faithful continuous action of H on P̂ol.

Let H
∧
λ0
⊂ Endcont(P̂ol) be the closure of the image of ψ. It has a set of topological

generators which reflects better than H the weight-space decomposition of objects of Oλ0(H).
For λ ∈WSλ0, we define a function ordλ : S+ −→ Z≥−1 by

ordλ(a) = ordz=a(λ)(z − ha)z
−1. (7)

Lemma 8. The topological algebra H∧
λ0

is topologically generated by the following elements:

(i) for each λ ∈ WSλ0, the projector e(λ) : P̂ol −→ P̂olλ ⊂ P̂ol,

(ii) the polynomial ring C[V ], which acts diagonally on P̂ol by multiplication on each factor

P̂olλ = CJV K,

(iii) for each a ∈ ∆ an operator τa =
∑
λ∈WSλ0

τae(λ) : P̂ol −→ P̂ol, where

τae(λ) : P̂olλ −→ P̂olsaλ, τaf =

{
(∂a)−1(s∂a(f)− f) ordλ(a) = −1

(∂a)ordλ(a)s∂a(f) ordλ(a) ≥ 0
(9)

for f ∈ P̂olλ = CJV K, where ∂a ∈ R is the differential of a ∈ S and s∂a : CJV K −→ CJV K
is the reflection with respect to the finite root ∂a ∈ R, see §1.1.

Proof. Let A ⊂ Endcont(P̂ol) denote the closure of the subalgebra generated by the three set
of operators e(λ), C[V ] and τa. We need to show that A = H∧

λ0
.

Consider the restriction ψ |C[E]. It factorises as

C[E] −→
∏

λ∈WSλ0

lim
←−
k

C[E]/mkλ
∼=
−→
∏

λ

P̂olλ,

where mλ ⊂ C[E] is the defining ideal of the closed point λ ∈ E. The Chinese remainder

theorem implies that the map has dense image. In particular, e(λ) ∈ P̂olλ ⊂ P̂ol lies in the
closure of image for each λ ∈ WSλ0. Therefore, H

∧
λ0

contains the closure of ψ(C[E])e(λ)

in Homcont(P̂ol, P̂ol); the latter is equal to the algebra CJV Ke(λ) which acts on P̂olλ by

multiplication. Thus we have P̂ol ⊂ A and P̂ol ⊂ H∧
λ0

. It remains to show that {ψ(sa)}a∈∆ lies
in A and {τa}a∈∆ lies in H∧

λ0
.

For each a ∈ ∆ and λ ∈ WSλ0, by comparison of the formulae (4) and (9), we see that
the elements e(saλ)ψ(sa − 1)e(λ) and τae(λ) generate the same cyclic left CJV K-submodule of

Homcont(P̂olλ, P̂olsaλ). In particular, τae(λ) lies in H∧
λ0

and conversely, e(saλ)ψ(sa − 1)e(λ)
lies in A. For λ ∈ WSλ0 such that saλ = λ, we have ψ(sa − 1)e(λ) = e(λ)ψ(sa − 1)e(λ) ∈ A.
For λ ∈WSλ0 such that saλ 6= λ, we have

ψ(sa − 1)e(λ) = e(λ)ψ(sa − 1)e(λ) + e(saλ)ψ(sa − 1)e(λ),

e(λ)ψ(sa − 1)e(λ) =
λ∗(ha − a)

λ∗a
, e(saλ)ψ(sa − 1)e(λ) = −

(saλ)
∗(a− ha)

(saλ)∗a
s∂a;

since λ∗(ha − a)/λ∗a ∈ CJV Ke(λ) ⊂ A, it follows that ψ(sa − 1)e(λ) ∈ A. Summing over the
idempotents, we obtain

ψ(sa − 1) =
∑

λ∈WSλ0

ψ(sa − 1)e(λ) ∈ A, τa =
∑

λ∈WSλ0

τae(λ) ∈ H
∧
λ0
.

The result follows.
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Let H
∧
λ0

-modsm be the category of finitely generated H
∧
λ0

-modules M such that for each
element m ∈ M , the annihilator annH∧

λ0
(m) is an open left ideal of H∧

λ0
. Notice that these

conditions imply

M =
⊕

λ∈WSλ0

e(λ)M and dim e(λ)M <∞, for M ∈ H
∧
λ0

-modsm.

Lemma 10. The restriction ψ∗ yields an equivalence of categories

H
∧
λ0

-modsm ∼= Oλ0(H).

2.5 Idempotent form Hλ0

In view of Lemma 10 and Lemma 8, in order to study the block Oλ0(H), it is convenient to
consider the subalgebra generated by the generators given in Lemma 8.

Observe that the operators {e(λ)}λ∈WSλ0
, C[V ] and {τa}a∈∆ preserve the dense submodule

Pol ⊂ P̂ol. Let Hλ0 be the associative (non-unital) subalgebra of EndC(Pol) generated these
operators. Let Hλ0 -mod0 be the category of finitely generated Hλ0 -mod0-modules M such
that M =

⊕
λ∈WSλ0

e(λ)M and such that the subspace V ∗ ⊂ C[V ] acts locally nilpotently on
M .

Lemma 11. There is a natural inclusion Hλ0 →֒ H∧
λ0

with dense image, which induces an
equivalence of categories by pulling back the module-structure:

H
∧
λ0

-modsm
∼=
−→ Hλ0 -mod0 .

Proof. By the density of the submodule Pol ⊂ P̂ol and Lemma 8, there is a unique inclusion
Hλ0 →֒ H∧

λ0
with dense image which fixes the generators {e(λ)}λ∈WSλ0

, C[V ] and {τa}a∈∆.
The assertion on the equivalence of category follows straightforward from the density.

Combining the equivalences of Lemma 10 and Lemma 11, we obtain the following result:

Proposition 12. There is an equivalence of categories

Oλ0(H) ∼= Hλ0 -mod0 .

Remark 13. In §6, we will attach to each family of functions {ωλ}λ∈WSλ0
an algebra A

ω. We
will study them in a larger generality. The algebra Hλ0 is the special case where ωλ = ordλ for
λ ∈ WSλ0.

2.6 Central subalgebra Z∧

For λ ∈ WSλ0, let Wλ denote the stabiliser of λ in WS . The stabiliser Wλ is a finite parabolic
subgroup of the Coxeter group WS . The affine Weyl group WS acts on the vector space VC
via the finite quotient∗ ∂W : WS −→ WS/Q

∨ ∼= WR. Let Z∧ = CJV KWλ0 be the ring of Wλ0 -
invariant formal power series. Since Wλ0 acts by reflections on V , the ring Z∧ is a complete
regular local ring. Let mZ ⊂ Z∧ be the maximal ideal.

For each λ ∈WSλ0, we define a homomorphism Z∧ −→ P̂olλ: choosing a w ∈WS such that

wλ0 = λ, we let f 7→ w(f) ∈ CJV KWwλ ⊂ P̂olλ. This map is clearly independent of the choice

of w and it identify Z∧ with the invariant subspace CJV KWwλ . The space P̂ol is regarded as a
Z∧-module via the diagonal action. It is easy to observe that Z∧ lies in the centre of H∧

λ0
.

Remark 14. One can show that Z∧ coincides with the centre of H∧
λ0

; however, we do not need
this fact.

3 Reminder on affine Hecke algebra

We keep the notation (V,R,∆0), (E, S,∆) and h = {ha}a∈S as above.

∗The notation is chosen so that (∂Ww)(∂a) = ∂(wa) for a ∈ S and w ∈ WS as well as ∂W sa = s∂a for a ∈ S.
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3.1 Extended affine Hecke algebras

Put

v = {vα}α∈R , vα =

{
exp(πihα) α ∈ Rred

exp(πihα+1) α ∈ R ∩ 2R
.

Recall that W̃∨
S = P ⋊WR is the dual extended affine Weyl group (we identify WR with WR∨

via the correspondence sα ↔ sα∨). Define the extended affine braid group BS for the dual root
system (V ∗, R∨) to be the group generated by Tw for w ∈ W̃∨

S with the following relation for
each y, w ∈ W̃∨

S :

TyTw = Tyw, if ℓ(yw) = ℓ(y) + ℓ(w).

The extended affine Hecke algebra in parameters v, denoted by K, is the quotient of the
group algebra CBS by the following relations for α ∈ ∆0, in the case where R is reduced:

(Tsα − v
2
α)(Tsθ∨ + 1) = 0, (Ts0 − v

2
θ)(Ts0 + 1) = 0

where s0 ∈ W̃∨
S is the reflection with respect to the affine simple root and θ ∈ R+ is the highest

root. In the case where R is non-reduced, let β ∈ ∆0 be the simple root such that 2β ∈ R. Let
K be the quotient of CBS by the following relations for α ∈ ∆0 \ {β}:

(Tsα − v
2
α)(Tsα + 1) = 0

(Tsβ − v
2
βvθ)(Tsβ + 1) = 0

(Ts0 − v
2
βv

−1
θ )(Ts0 + 1) = 0.

3.2 Bernstein–Lusztig presentation

Choose a square root v
1/2
θ of vθ. Define a group homomorphism v : BS −→ C

× by setting
v(sα) = vα for α ∈ ∆0 and v(s0) = vθ in the case where R is reduced; v(sα) = vα,

v(sβ) = vβv
1/2
θ and v(s0) = vβv

−1/2
θ in the case where R is non-reduced and β ∈ ∆0 with

2β ∈ R and α ∈ ∆0 \ {β}.
There is a subalgebra CP ⊂ K given by µ 7→ v(µ)Tµ for µ ∈ P ⊂ W̃∨

S dominant with
respect to the basis ∆0. For β ∈ P in general, we decompose it into β = β′ − β′′ with β′ and
β′′ dominant and set Y β = Tβ′T−1

β′′ . Then there is a decomposition

K = HR ⊗CP,

where HR is the subalgebra generated by {Tsα}a∈∆0 and CP is the subalgebra generated by{
Y β
}
β∈P

, with the following commutation relations: for each f ∈ CP ,

Tsαf − sα(f)Tsα = (v2α − 1)
f − sα(f)

1− Y −α
, α ∈ ∆0, 2α /∈ R (15)

Tsβf − sβ(f)Tsβ =
(
(v2βvθ − 1) +

(
v2β − vθ

)
Y −β

) f − sβ(f)
1− Y −2β

, β ∈ ∆0, 2β ∈ R. (16)

3.3 Finite dimensional modules

Let T be the torus defined by T = Q∨ ⊗C
× so that Q∨ = X∗(T ) is its group of cocharacters

and P = X
∗(T ) is its group of characters. We view C[T ] = CP as a subalgebra of K.

For each ℓ ∈ T , let mℓ ⊂ CP denote the defining ideal of the closed point ℓ, which is
generated by Y β − Y β(ℓ) ∈ CP for all β ∈ P . Given any module M ∈ K -Mod, consider for
each ℓ ∈ T the generalised ℓ-weight space in M of the action of the subalgebra CP ⊂ K:

Mℓ =
⋃

N≥0

{
a ∈M ; mNℓ a = 0

}
.

For any ℓ0 ∈ T , we define Oℓ0 (K) to be the full subcategory of K -mod consisting of those
M ∈ K -mod which admit a decomposition by weight:

M =
⊕

ℓ∈Wℓ0

Mℓ.
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3.4 Idempotent form Kℓ0

Fix ℓ0 ∈ T . As in the case of H, we define an algebra which is more adapted to the study
of the block Oℓ0(K). Define for each ℓ ∈ WRℓ0 a polynomial ring Polℓ = C[V ] and let
Pol =

⊕
ℓ∈WRℓ0

Polℓ. For each ℓ, define e(ℓ) : Pol −→ Pol to be the idempotent linear

endomorphism of projection onto the factor Polℓ. Let R+
red = R+ \ 2R+ denote the set of

indivisible positive roots. In view of (15), for ℓ ∈WRℓ0, we define a function ordℓ : R
+
red −→ Z:

ordℓ(α) =

{
ordz=Y α(ℓ)(z − v

2
α)(z − 1)−1 2α /∈ R

ordz=Y α(ℓ)(z − v
2
α)(z + vθ)(z

2 − 1)−1 2α ∈ R.

For each α ∈ ∆0 and ℓ ∈WRℓ0, we define an operator ταe(ℓ) : Polℓ −→ Polsαℓ by

ταe(ℓ) =

{
α−1(sα − 1) ordℓ(α) = −1

αordℓ(α)sα ordℓ(α) ≥ 0
.

Here sα : C[V ] −→ C[V ] is the reflection with respect to α.
Let Kℓ0 be the associative subalgebra of EndC(Pol) generated by fe(ℓ) and ταe(ℓ) for

f ∈ C[V ], α ∈ ∆0 and ℓ ∈ WRℓ0. Let Kℓ0 -mod0 be the category of finitely generated
Kλ0 -mod0-modules M such that the subspace V ∗ ⊂ C[V ] acts locally nilpotently on M . Same
arguments as Lemma 10 and Lemma 11 show that:

Proposition 17. There is an equivalence of categories

Oℓ0 (K) ∼= Kℓ0 -mod0 .

Remark 18. In §9, we will attach to each family of functions {ωℓ}ℓ∈WRℓ0
an algebra B

ω. The
algebra Kλ0 is the special case of Bω with ωℓ = ordℓ for ℓ ∈ WRℓ0.

4 The monodromy functor V

In this section, we review the construction of the monodromy functor of [34], which is a
trigonometric analogue of the Knizhnik–Zamolodchikov functor introduced in [16] for rational
Cherednik algebras. We prove in Proposition 27 that this functor is a quotient functor.

Keep the notation (E, S,∆) and a0 ∈ ∆ as above. In addition, we fix λ0 ∈ EC. Consider
the following exponential map

EC
∼= VC = Q∨ ⊗C

exp
−−→ Q∨ ⊗C

× = T (19)

µ⊗ r 7→ µ⊗ e2πir.

Put ℓ0 = exp(λ0). For simplifying the notation, denote C0 = Oλ0 (H) and B0 = Oℓ0 (K).

4.1 Dunkl operators

Consider the dual torus T∨ = P ⊗C
×. The ring of regular functions C[T∨] is isomorphic to

the group algebra of the coroot lattice CQ∨:

CQ∨ ∼=
−→ C[T∨]

Q∨ ∋ µ 7→ Xµ

For each ξ ∈ V ∗, let ∂ξ ∈ Γ (T∨, TT∨)
T∨

be the translation-invariant vector field on T∨ such
that ∂ξ |e= ξ under the isomorphism TT∨ |e∼= V . We view ∂ξ as a linear differential operator
on T∨, so that ∂ξ(X

µ) = 〈ξ, µ〉Xµ for each µ ∈ Q∨.

The regular part of T∨ is defined as T∨
◦ =

⋂
α∈R+

{
Xα∨

6= 1
}
⊂ T∨. Let D(T∨

◦ ) denote the

ring of algebraic differential operators on T∨
◦ .

For ξ ∈ V ∗, the trigonometric Dunkl operator Dξ : C[T∨] −→ C[T∨] is the C-linear
operator defined as follows:

Dξ(f) = ∂ξ(f)−
∑

α∈R+

hα〈ξ, α
∨〉
f − sα(f)

1−X−α∨ + 〈ξ, ρ∨h 〉f, ρ∨h =
1

2

∑

α∈∆+

hαα
∨ ∈ VC.
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We consider Dξ as an element of D(T∨
◦ )⋊WR.

According to [34, 4.1], the following homomorphism of C-algebras

C[T∨]⊗CWR ⊗C[V ] = H −→ D(T∨
◦ )⋊WR

Xµ ⊗ w ⊗ 1 7→ Xµ ⊗ w

1⊗ 1⊗ ξ 7→ Dξ

extends to an isomorphism C[T∨
◦ ]⊗C[T∨] H

∼= D(T∨
◦ )⋊WR.

4.2 Monodromy functor V

Let [T∨
◦ /WR] be the quotient stack. According to [17, 2.5], there is an isomorphism between the

orbifold fundamental group π1([T
∨
◦ /WR]) and the extended affine braid group BS from §3.1.

If M ∈ Oλ0(H), then

M◦ = C[T∨
◦ ]⊗C[T∨] M

is a W -equivariant D(T∨
◦ )-module, which is in fact an integrable connection with regular

singularities. Therefore the monodromy representation on the vector space of flat sections
of M on (the universal covering of) the orbifold [T∨

◦ /W ] defines a BS-module, which is denoted
by V(M). It is shown in [34, 5.1] that the BS-action on V(M) factorises through the surjective
algebra homomorphism CBS −→ K and yields an exact functor

V : Oλ0(H) −→ Oℓ0(K).

4.3 Central actions of Z∧ intertwined by V

For convenience, we denote C0 = Oλ0(H) and B0 = Oℓ0(K). Recall the central subalgebra
Z∧ = CJV KWλ0 defined in §2.6. Let Z(C0) = End(idC0) and Z(B0) = End(idB0) denote the
categorical centres.

Let Wλ0 be the stabiliser of λ0 ∈ EC in WS and let Wℓ0 be the stabiliser of ℓ0 ∈ T in WR.
Let λ̄0 be the image of λ0 in EC/Wλ0 and let ℓ̄0 be the image of ℓ0 in T/Wℓ0 . The exponential
map (19) induces an analytic map

expλ0 : EC/Wλ0 −→ T/Wℓ0 ,

which is locally biholomorphic near λ̄0. The push-forward along expλ0 at λ̄0 yields an iso-
morphism of complete local rings

expλ0
∗ : O∧

EC/Wλ0
,λ̄0

∼
−→ O∧

T/Wℓ0
,ℓ̄0
.

Note that Z∧ ∼= O∧
EC/Wλ0

,λ̄0
. For each w ∈ WS , the action of w on EC and on T (the latter

via the quotient map ∂W from §2.6) induces

w∗ : O∧
EC/Wλ0

,λ̄0

∼
−→ OEC/Wwλ0

,wλ̄0
, w∗ : O∧

T/Wℓ0
,ℓ̄0
∼= O∧

T/Wwℓ0
,wℓ̄0

.

We define homomorphisms Z∧ −→ Z (C0) and Z∧ −→ Z (B0) as follows: for any M ∈ C0, we
decompose M =

⊕
λ∈WS λ0

Mλ and for each λ = wλ0, an element f ∈ Z∧ acts by w∗f on Mλ.
This depends only on the weight λ but not on the choice of w. Similarly, for any N ∈ B0, we
decompose N =

⊕
ℓ∈WR ℓ0

Nℓ. For each ℓ = wℓ0, an element f ∈ Z∧ acts by multiplication by

w∗ exp
λ0
∗ f on Nℓ.

Lemma 20. The functor V : C0 −→ B0 intertwines the Z∧-actions on C0 and B0.

Proof. Recall that the graded affine Hecke algebra is the subalgebra

H = CWR ⊗ SymV ∗
C ⊂ H.

11



For each weight λ ∈ VC, let Oλ(H) be the category of finite-dimensional H-modules on which
the action of the polynomial part SymVC has weights lying in the orbit WSλ ⊂ VC.

There is a functor of induction

IndH

H
: H -mod −→ H -mod, IndH

H
M = H⊗H M

and for each weight λ ∈ EC, it restricts to

IndH
H
: Oλ(H) −→ Oλ(H)

Let I ⊂ C0 denote the essential image of IndH
H
. It is known that I generates C0 — indeed, the

module P (λ)n = H/H ·mnλ lies in I and the family {P (λ)n}n∈N, λ∈WSλ0
generate C0. Therefore,

it suffices to show that the restriction V |I intertwines the actions of Z∧. We shall apply the
deformation argument from [34, 5.1] to check this statement.

Let O = CJ̟K and let K = C((̟)). Let ε ∈ V ∗
C

be any regular coweight and put
λ0,O = λ0 + ̟ε ∈ V ∗

O. Put HO = H ⊗ O and KO = K ⊗ O. For each λO ∈ WSλ0,O and
for n ∈ Z≥1, let

mλO
= 〈βO − 〈βO, λO〉 ; β ∈ VO〉 ⊂ SymO V

∗
O, mλK

= mλO
[̟−1],

Sλn
O
= SymO V

∗
O/m

n
λO
, Sλn

K
= Sλn

O
[̟−1],

P (λO)n = HO ⊗SymO V ∗
O
Sλn

O
, P (λK)n = HK[̟

−1].

Note that all these objects are flat over O. Let P (λO)
∇
n be the space of flat sections of the

affine Knizhnik–Zamolodchikov equation (AKZ) on the constant vector bundle on T∨
◦ of fibre

P (λO)n. The monodromy representation yields a KO = K⊗O action on P (λO)
∇
n .

Since the stabiliser of λO in WS is trivial, there is an eigenspace decomposition

P (λK)n =
⊕

w∈WR

(P (λK)n)wλK
, (P (λK)n)wλK

= bwSλn
K
,

where each bwSλn
K

is a free Sλn
K
-module of rank 1. Consider the boundary point of T∨:

lim
n→+∞

exp(niρ) =
(
Xα∨

= 0
)
α∈R+

, where ρ = (1/2)
∑

α∈R+

α.

Applying the Frobenius method around this point, we obtain a fundamental solution
{
b∇w
}
w∈WR

of the AKZ equation on T∨
◦ which satisfies

b∇w (exp(µ)) = e−2πi(〈µ,ρ∨h 〉+µ) · (bw +G(µ))

for µ ∈ V ∗
C

such that Im 〈µ, α∨〉 ≫ 0, ∀α ∈ ∆+,

where G(µ) is a P (λK)n-valued analytic function in µ with such that

G(µ) −→ 0 when Im 〈α, µ〉 −→ +∞, ∀α ∈ ∆+.

The fundamental solution induces an Sλn
K
-linear isomorphism

P (λK)n
∼
−→ P (λK)

∇
n , bw 7→ b∇w . (21)

Under this isomorphism, the monodromy operator on the right-hand side corresponding to
β ∈ X is identified with e2πiβ on the left-hand side. Put

Z∧
O =

(
(SymV ∗

O)
Wλ0

)∧
λ̄0,O

, Z∧
K = Z∧

O[̟
−1] ∼= (SymV ∗

K)
∧
λ̄0,O

.

We define the action of Z∧
O and Z∧

K on HO-modules and HK-modules in a similar way.
Since the action of Z∧

K on P (λK)n coincides with the action of the polynomial part SymV ∗
K ⊂

H up to twists by elements of WR, the induced action of Z∧
K on the KK-module P (λK)

∇
n is

identified with the exponentiation of the action of Z∧
K on the P (λK)n under (21).

Since the O-lattices P (λO)n ⊂ P (λK)n and P (λO)∇n ⊂ P (λK)
∇
n are stable under the action

of the subring Z∧
O ⊂ Z

∧
K, the functor M 7→ M∇ also intertwines the two Z∧

O-actions. Put
P (λ)n = P (λO)n ⊗O C. Then P (λ)n 7→ P (λ)∇n = V(P (λ)n) also intertwines the two Z∧-
actions. Finally, since the family of modules P (λ)n for λ ∈ WSλ0 and n ≥ 1 generates the
category Oλ0 (H), the functor V restricted to I intertwine the Z∧-actions as asserted.
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4.4 Completion of categories

Since the affine Hecke algebra K is of finite rank over its centre, namely (CP )W , B0 = Oℓ0(K)
is equivalent to the category of modules of finite length over some semi-perfect algebra. It is
also the case for C0 = Oλ0(H). In particular, they are both noetherian-artinian. Consider the
category of pro-objects† Pro(C0) and Pro(B0). We have two central actions introduced in §4.3

Z∧ −→ End(idC0)
∼= End(idPro(C0))

Z∧ −→ End (idB0)
∼= End(idPro(B0)).

By Lemma 20, the functor V : C0 −→ B0 intertwines these Z∧-actions. The extension V :
Pro(C0) −→ Pro(B0) still intertwines the Z∧-actions.

Define C ⊂ Pro(C0) to be the subcategory consisting of objects M ∈ Pro(C0) such that
M/mkZM ∈ C0 for all k ≥ 0. Similarly we define B ⊂ Pro(B0) to be the subcategory consisting
of objects N ∈ Pro(B0) such that M/mkZM ∈ C0 for all k ≥ 0.

Lemma 22. For each simple object L ∈ C0 (resp. L ∈ B0), its projective cover P(L) ∈ Pro(C0)
(resp. P(L) ∈ Pro(B0)) lies in C (resp. B).

Proof. Notice that by the general result Proposition 114, the objects of C0 (resp. B0) admit
projective covers in Pro(C0) (resp. Pro(B0)). The statement holds obviously for B0 because K

is of finite rank over its centre. For C0, by Proposition 12, there is an equivalence C0 ∼= Hλ0 and
the algebra Hλ0 is Morita-equivalent to an algebra of finite rank over its centre, cf. §7.4.

Lemma 23. The functor V : Pro(C0) −→ Pro(B0) restricts to V : C −→ B.

Proof. If M ∈ C, then M/mkZM ∈ C0 and by Lemma 20, V(M)/mkZV(M) ∼= V(M/mkZM) ∈ B0.
It follows that V(M) ∈ B.

4.5 Right adjoint of V

Recall that B0 = Oℓ0(K) and C0 = Oλ0(H).

Lemma 24. The functor V : C0 −→ B0 admits a right adjoint functor V
⊤ : B0 −→ C0.

Proof. We first define a functor V
⊤ : B0 −→ Ind(C0) with natural isomorphisms

HomB0 (V(M), N) ∼= HomInd(C0)

(
M,V⊤(N)

)
(25)

for M ∈ C0 and N ∈ B0. For any N ∈ B0, let

FN : Cop0 −→ C -Mod, FN : M 7→ HomB0 (V(M), N)

and let

FN (M)min = FN (M) \
⋃

06=M ′⊂M

FN (M/M ′).

Here, we regard FN (M/M ′) as a subspace of FN (M) by the right exactness of FN . Let IN
be the category whose objects are pairs (M,a), where M ∈ C0 and a ∈ FN (M)min, and whose
morphisms are defined by

HomIN
((M,a), (M ′, a′)) = {f ∈ HomC0(M,M ′) ; FN (f)(a′) = a} .

We set

V
⊤(N) = “ lim

−→
”

(M,a)∈IN

M ∈ Ind(C0).

According to [32, 3.5, Lemma 6], V⊤(N) represents the functor FN , so V⊤ satisfies the desired
adjoint property (25).

Now we show that in fact the object V⊤(N) in Ind(C0) lies in the subcategory C0. Let
PC ∈ C be the sum of all projective indecomposable objects (up to isomorphism) of C so that

†The basic properties of categories of pro-objects are reviewed in Appendix A.
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for any M ∈ C0, the dimension of HomC(PC ,M) is equal to the length of M . Since V(PC) ∈ B
is a finitely generated K-module, the vector space HomB (V(PC), N) is finite-dimensional. On
the other hand, there are isomorphisms

lim
−→

M⊂V
⊤(N)

M∈C0

HomC (PC,M) ∼= lim
−→

M⊂V
⊤(N)

M∈C0

lim
−→

Q⊂PC

PC/Q∈C0

HomC0 (PC/Q,M) (26)

∼= lim
−→

Q⊂PC

PC/Q∈C0

HomInd(C0)

(
PC/Q,V

⊤(N)
)

∼= lim
−→

Q⊂PC

PC/Q∈C0

HomB0 (V(PC/Q), N)

∼= HomPro(B0)

(
“ lim
←−

”
Q⊂PC

PC/Q∈C0

V(PC/Q), N

)
∼= HomB (V(PC), N) .

The first and the fourth isomorphisms are due to (110) of Appendix A; the second one is
exchanging the order of the two colimits and it holds due to the definition of morphisms between
ind-objects; the third one is due to (25); the last one is due to Lemma 23.

Since N ∈ B0, there is some integer n such that mnZN = 0. Since V(PC) ∈ B, the quotient
V(PC)/m

n
ZV(PC) lies in B0. Thus the Hom-space

HomB(V(PC), N) ∼= HomB0(V(PC)/m
n
ZV(PC), N)

is finite-dimensional. The above isomorphisms (26) imply that the length of the subobjects
M ⊂ V⊤(N) such thatM ∈ C0 is bounded. It follows that V⊤(N) lies in C0 by Proposition 112 (iii).
Thus V⊤ : B0 −→ C0 is a right adjoint to V.

4.6 V is a quotient functor

Proposition 27. The monodromy functor V : C0 −→ B0 is a quotient functor.

Proof. Recall that D(T∨
◦ ) is the ring of algebraic linear differential operators on the regular

part T∨
◦ of the dual torus T∨ = P ⊗ C

×. By construction, the functor V factorises into the
following

H -Mod D (T∨
◦ )⋊WR -Mod

C0 connrsWR
(T∨

◦ ) CBS -modfini

B0

loc

V

RH

where connrsWR
(T∨

◦ ) is the subcategory of D (T∨
◦ ) ⋊ WR -mod consisting of WR-equivariant

integrable connections on T∨
◦ which have regular singularities along the boundary. The arrow

in the first line is the localisation functor loc = C[T∨
◦ ]⊗C[T∨] −, whose right adjoint loc⊤ is

the restriction of the action of H◦ = D (T∨
◦ )⋊WR to H. The restriction of loc to C0 factorises

through the inclusion of subcategory

connrsWR
(T∨

◦ ) →֒ D (T∨
◦ )⋊WR -Mod

and gives the first arrow of the second line. The functor RH is the Riemann–Hilbert correspond-
ence (the Knizhnik–Zamolodchikov equations have regular singularities [28]), due to Deligne [11,
2.17+5.9], between algebraic connections with regular singularities and finite-dimensional rep-
resentations of the fundamental group π1 ([T

∨
◦ /WR]) ∼= BS .

We show that V admits a section functor in the sense of Gabriel [15]. We have shown
in Lemma 24 that V admits a right adjoint functor V⊤. The functor V⊤ can be described as
follows:

B0 →֒ CBS -modfini ∼= connrsWR
(T∨

◦ ) −→ C0,
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where the last arrow is the functor which sends an object M ∈ connrsWR
(T∨

◦ ) to the biggest
H-submodule of M which lies in C0, denoted by M |C0⊂ M . We show that the adjunction
counit V ◦ V⊤ −→ idB0 is an isomorphism. We first show that it is a monomorphism: for any
M ∈ connrsWR

(T∨
◦ ), we have C[T∨

◦ ] ⊗C[T∨] M ∼= M ; by the flatness of C[T∨
◦ ] over C[T∨], the

inclusion M |C0 →֒M gives rise to a monomorphism

C[T∨
◦ ]⊗C[T∨] (M |C0) −→ C[T∨

◦ ]⊗C[T∨] M ∼=M ;

composing it with the Riemann–Hilbert correspondence, we see that V ◦ V⊤ −→ idB0 is a
monomorphism.

Let N ∈ B0. By the exactness of V, to show that the adjunction counit VV
⊤N →֒ N is an

isomorphism, it suffices to find an H-submodule of RH−1(N) whose localisation to T∨
◦ is equal

to RH−1(N). There exists a surjection

⊕

i∈I

P (ℓi)ni
−→ N

where I is an index set and P (ℓi)ni
= K/K · mni

ℓi
. By [34, 5.1 (i)], for each i ∈ I there is an

induced module P (λi)ni
= H/H ·mni

λi
∈ C0 such that exp(λi) = ℓi and V

(
P (λi)ni

)
∼= P (ℓi)ni

.

Hence the image of P (λi)ni
in RH−1(N) is an H-submodule which satisfies the requirement.

We conclude that V ◦ V⊤ ∼= idB0 ; therefore V⊤ is a section functor for V.
By the criterion of Gabriel [15, 3.2, Prop 5], V is a quotient functor.

5 Comparison of V and V

5.1 The functors V and V

In Part II, we will study the idempotent forms Hλ0 and Kℓ0 in a broader context, cf. Remark 13
and Remark 18. Specifically, in §10.6, we will introduce a quotient functor for graded modules
V : Hλ0 -gmod −→ Kℓ0 -gmod. It has an ungraded version V : Hλ0 -mod0 −→ Kλ0 -mod0.
On the other hand, by Proposition 12 and Proposition 17, we have equivalences of categories
Oλ0(H) ∼= Hλ0 -mod0 and Oℓ0(K) ∼= Kλ0 -mod0. The situation can be depicted in a diagram:

Oλ0(H) Oℓ0(K)

Hλ0 -mod0 Kℓ0 -mod0

V

∼= ∼=
V

Conjecture 28. There is an isomorphism of functors V ∼= V.

In the rest of this section, we use results from Part II to prove a weaker version of this
statement.

5.2 Comparison of the kernels

By Proposition 27 and §10.6, the functors V and V are already known to be quotient functors.
The following proposition generalises a result from [24], where the geometric construction of
the dDAHA was used.

Proposition 29. The kernels kerV and kerV are identified via the equivalence Oλ0(H) ∼=
Hλ0 -mod0.

Proof. Let F : Oλ0 (H)
∼
−→ Hλ0 -mod0 denote the equivalence from Proposition 12. We show

that for every object M ∈ Oλ0(H), the condition Theorem 97 (iii) for FM implies VM = 0.
Let M =

⊕
λ∈WSλ0

Mλ be the decomposition into generalised weight spaces of C[E] and let

M≤t =
⊕

λ∈WSλ0

‖λ‖≤t

Mλ, for t ∈ R≥0.

Note that under the equivalence F , the generalised weight spaceMλ is identified with e(λ)F (Mλ).
Following the same arguments as in the proof (iii)⇒(iv) of Theorem 97, we have saMt ≤Mt+δ
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for every t ∈ R≥0 and a ∈ ∆. Let U = C[E]≤1 +
∑

a∈∆C · sa ⊂ H so that U generates H

as C-algebra. Then, by the assumption (iii), we see that for each finite-dimensional subspace
L ⊂M and each ε > 0,

lim
n−→∞

dim (UnL) /nr−1+ε = 0, r = rkR.

Hence we obtain dimGK,HM ≤ r−1, and in particular dimGK,C[T∨]M ≤ r−1 for the subalgebra
C[T∨] = CQ∨ ⊂ H. As the algebra C[T∨] is commutative and by Proposition 3, M is coherent
over C[T∨], the Gelfand–Kirillov dimension of M coincides with the Krull dimension of the
subvariety SuppT∨ M ⊂ T∨. As the localisation of M on the regular part T∨

◦ must be locally
free, we see that it must be zero since dim T∨

◦ = r > dimSuppM . Hence VM = 0 by the
definition of V. We see that kerV ⊂ F (kerV).

Since V and V are both quotient functors on noetherian-artinian categories, by comparison
of the rank of the Grothendieck groups

rkK0 (kerV) = rkK0 (Oλ0(H))− rkK0 (Oℓ0(K))

= rkK0 (Hλ0 -mod0)− rkK0 (Kℓ0 -mod0) = rkK0 (kerV) ,

we see that kerV = F (kerV).

Part II

Quiver Hecke algebras

6 Quiver double Hecke algebra

Fix an irreducible based finite root system (V,R,∆0) and let (E, S,∆) be its affinisation. In
this section we will also abbreviate P = PR, Q = QR, P∨ = P∨

R and Q∨ = Q∨
R.

6.1 The polynomial matrix algebra A
o

Fix once and for all λ0 ∈ E. Define for each λ ∈ WSλ0 a polynomial ring Polλ = C[V ] and
let PolWSλ0 =

⊕
λ∈WSλ0

Polλ. For each λ, define e(λ) : PolWSλ0 ։ Polλ ⊂ PolWSλ0 to be the
projection onto the factor Polλ.

For each a ∈ ∆, define an operator τoa : PolWSλ0 −→ PolWSλ0 by

τoa =
∑

λ∈WSλ0

τoae(λ), τoae(λ) : Polλ0 −→ Polsaλ0 ,

τoae(λ) =

{
(∂a)−1(s∂a − 1) a(λ) = 0

s∂a a(λ) 6= 0
.

Here ∂a ∈ R is the differential of a ∈ S, cf. §1.1.
Let A

o = A
o(E, S,∆, λ0) be the associative (non-unital) subalgebra of EndC(PolWSλ0)

generated by fe(λ) and τoae(λ) for f ∈ C[V ], a ∈ ∆ and λ ∈WSλ0 .

6.2 Centre Z

For λ ∈ WSλ0, let Wλ be the stabiliser of λ in WS . The stabiliser Wλ is a finite parabolic
subgroup of the Coxeter group WS . The affine Weyl group WS acts on the vector space V via
the finite quotient ∂W : WS −→WS/Q

∨ ∼=WR. Let Z = C[V ]Wλ0 be the ring of Wλ0 -invariant
polynomials, graded by the degree of monomials. Since Wλ0 acts by reflections on V , the ring
Z is a graded polynomial ring. Let mZ ⊂ Z be the unique homogeneous maximal ideal.

For each λ ∈ WSλ0, we define a homomorphism Z −→ Polλ: choosing a w ∈ WS such that
wλ0 = λ, we let f 7→ w(f) ∈ C[V ]Wλ ⊂ Polλ. This map is clearly independent of the choice of
w and it identifies Z with the invariant subspace C[V ]Wλ . The infinite sum PolWSλ0 is regarded
as a Z-module via the diagonal action.

The following are standard results from the invariant theory for reflection groups:

Proposition 30. The following statements hold:
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(i) For each λ ∈WSλ0, the Z-module Polλ is free of rank #Wλ = #Wλ0 .

(ii) For any w ∈ WS , choose a reduced expression w = sal · · · sa1 and put τowe(λ) =
τoal · · · τ

o
a1e(λ) for each λ ∈ WSλ0. Then the element τowe(λ) is independent of the choice

of the reduced expression for w and moreover, there is a decomposition

HomZ (Polλ,PolWSλ0) =
⊕

w∈WS

τowC[V ]e(λ).

(iii) The A
o-action on PolWSλ0 commutes with Z and yields an isomorphism

A
o ∼
−→

⊕

λ∈WSλ0

HomZ(Polλ,PolWSλ0)

6.3 Subalgebras A
ω of Ao

Let ω = {ωλ}λ∈WSλ0
be a family of functions ωλ : S+ −→ Z≥−1 satisfying the following

properties:

(i) ωλ(a) = −1 implies a(λ) = 0;

(ii) for w ∈ WS and b ∈ S+ ∩ w−1S+ we have ωλ(b) = ωwλ(wb).

One may extend ωλ to a function ω̃λ : S −→ Z≥−1 by choosing w ∈ WS such that wa ∈ S+

and setting ω̃λ(a) = ωwλ(wa). We require ω to satisfy the following property:

(iii) For some (thus every) λ ∈ WSλ0, the extended function ω̃λ : S −→ Z≥−1 has finite
support.

We call the family {ωλ}λ∈WSλ0
a family of order functions. The order functions can be

characterised as follows:

Lemma 31. Every family of order functions {ωλ}λ∈WSλ0
is determined by the Wλ0-invariant

finitely supported function ω̃λ0 : S −→ Z≥−1 satisfying

ω̃λ0(a) = −1⇒ a(λ0) = 0 ∀a ∈ S.

Define an operator τωa =
∑
λ∈WSλ0

τωa e(λ) ∈ EndZ(PolWSλ0) with τωa e(λ) : Polλ −→ Polsaλ
by setting

τωa e(λ) =

{
(∂α)−1(s∂a − 1) ωλ(a) = −1

(∂α)ωλ(a)s∂a ωλ(a) ≥ 0

so that τωa e(λ) ∈ A
o.

Definition 32. The quiver double Hecke algebra‡
A
ω = A(E, S,∆, λ0, ω) is defined to be the

subalgebra of Ao generated by C[V ]e(λ) and τωa e(λ) for λ ∈WS and a ∈ ∆.

We also introduce the rational function field and its matrix algebra:

Ratλ = FracPolλ = Polλ⊗Z FracZ, Rat =
⊕

λ∈WSλ0

Ratλ

A
−∞ =

⊕

λ∈WSλ0

HomFracZ(Ratλ,Rat) = A
o ⊗Z FracZ, τ−∞

a = sa,

where Frac means the field of fractions.

Example 33.

(i) Let o =
{
a 7→ −δa(λ)=0

}
λ∈WSλ0

denote the smallest family of order functions. We recover
the matrix algebra A

o.

‡In this definition, the assumption that λ0 ∈ E plays no essential role. We could have asked λ0 to belong to some

set on which WS acts transitively with finite parabolic stabiliser subgroups. However, the euclidean geometry of E

will facilitate some arguments.
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(ii) Let ω = {0}λ∈WSλ0
be the zero constant function. Then A

ω = PolWSλ0 ⋊WS is the skew
tensor product. If Wλ0 = 1, then A

ω = C[V ] ≀WS is the wreath product.

(iii) Let E = R, let ǫ be the coordinate function on R and let S = {±2ǫ}+Z, so that (E, S) is

the affine root system of type A
(1)
1 . Choose the basis ∆ = {a1 = 2ǫ, a0 = 1−2ǫ}. The affine

Weyl group WS is generated by s0 and s1, where s1 (resp. s0) is the orthogonal reflection
with respect to 0 ∈ E (resp. 1/2 ∈ E). Set λ0 = 1/4 ∈ E, so that WSλ0 = 1/4 + (1/2)Z
and Wλ0 = 1. It follows that Polλ = C[ǫ] for all λ ∈ WSλ0 and A

o is the matrix algebra
over C[ǫ] of rank WSλ0.

Set

ω̃λ0(a) =

{
1 a ∈ ∆

0 a ∈ S \∆

and define the family of order functions ω = {ωλ}λ∈WSλ0
by ωwλ0(a) = ω̃λ0(w

−1a). It
follows that A

ω is equal to the idempotent form of the dDAHA Hλ0 introduced in §2.5
with parameter ha = 1/2 for all a ∈ S. We can depict the algebra A

ω with the following
diagram:

· · · Pol−3/4 Pol3/4 Pol1/4 Pol−1/4 Pol5/4 · · · ,

s

τ1

s

s

τ0

−ǫ s

ǫ s

τ1

s

s

τ0

s

where s : C[ǫ] −→ C[ǫ] is given by the substitution ǫ 7→ −ǫ.

Remark 34. We may view A
ω as an affinisation of the quiver Hecke algebra Rβ(Γ) attached

to a certain quiver Γ = (I,H) and a dimension vector β ∈ NI, cf. Remark 73. The parameter
ω is an analogue of the polynomials Qi,j(u, v) in Rouquier’s definition of quiver Hecke algebras.

Remark 35. Following [36, §2.3], one can write down a complete list of relations between
the generators τωa e(λ), C[V ]e(λ) for the algebra A

ω in the manner of Khovanov–Lauda–
Rouquier. The most sophisticated is the braid relation between pairs of generators from
{τωa e(λ)}a∈∆,λ∈WSλ0 . We will only prove a weaker version of it in Lemma 39, which is enough
for our needs.

6.4 Filtration by length

Definition 36. We define the filtration by length {F≤nA
ω}n∈N on A

ω by

F≤nA
ω =

∑

λ∈WSλ0

n∑

k=0

∑

(a1,...,ak)∈∆k

C[V ]τωa1 · · · τ
ω
ak
e(λ).

In general, it is hard to express the operators τωa1 · · · τ
ω
ak ; however, the leading term is easy

to describe.

Lemma 37. Let w = sal · · · sa1 be a reduced expression and let λ ∈ WSλ0. Then

(i) For any f ∈ C[V ], and any family of order functions ω there is a commutation relation:

fτωal · · · τ
ω
a1e(λ) ≡ τ

ω
al
· · · τωa1 w

−1(f)e(λ) mod F≤l−1A
ω.

(ii) For any pair of families of order functions ω and ω′ such that ω ≤ ω′ (pointwise), there
is a congruence relation:

τω
′

al
· · · τω

′

a1 e(λ) ≡ τ
ω
al
· · · τωa1

( ∏

b∈S+∩w−1S−

(−∂b)ω
′
λ(b)−ωλ(b)

)
e(λ) mod F≤l−1A

ω.

Proof. We prove the statement (i) by induction on the length l = ℓ(w). It is trivial for l = 0.
For l = 1:

(fτωa − τ
ω
a s∂a(f))e(λ) =

{
(∂a)−1(s∂a(f)− f)e(λ) ωλ(a) = −1

0 ωλ(a) ≥ 0
(38)
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It belongs to F≤0A
ω
e(λ) = C[V ]e(λ) in both cases.

For l > 1, by the induction hypothesis, we get

(fτωal · · · τ
ω
a1 − τ

ω
al · · · τ

ω
a1 w

−1(f))e(λ)

= (fτωal − τ
ω
al
sal(f))τ

ω
al−1
· · · τωa1e(λ)

+ τωal(sal(f)τ
ω
al−1
· · · τωa1 − τ

ω
al−1
· · · τωa1 w

−1(f))e(λ) ∈ F≤l−1A
ω,

whence (i).
We prove (ii) by induction on l = ℓ(w). Put w′ = sal−1

· · · sa1 and λ′ = w′λ. Then

τω
′

al
· · · τω

′

a1 e(λ) = (∂al)
ω′

λ′(al)−ωλ′ (al)τωalτ
ω′

al−1
· · · τω

′

a1 e(λ)

=
(
(∂al)

ω′

λ′(al)−ωλ′(al)τωal − τ
ω
al
(−∂al)

ω′

λ′ (al)−ωλ′(al)
)
τω

′

al−1
· · · τω

′

a1 e(λ)

+ τωal(−∂al)
ω′

λ′ (al)−ωλ′(al)τω
′

al−1
· · · τω

′

a1 e(λ).

By (38), the first term belongs to F≤l−1A
ω; the second term, by the statement (i) for w′ =

ail−1
· · · ai1 , satisfies

τωal(−∂al)
ω′

λ′ (al)−ωλ′(al)τω
′

al−1
· · · τω

′

a1 e(λ) ≡ τ
ω
al
τω

′

al−1
· · · τω

′

a1 w
′−1
(
(−∂al)

ω′

λ′ (al)−ωλ′(al)
)
e(λ)

= τωalτ
ω′

al−1
· · · τω

′

a1

(
−∂(w′−1al)

)ω′
λ(w

′−1al)−ωλ(w
′−1al)

e(λ).

Here we have used the hypothesis that ωλ(w
′−1al) = ωλ′(al). Using the induction hypothesis,

we obtain

τω
′

al
· · · τω

′

a1 e(λ) ≡ τ
ω
al
τω

′

al−1
· · · τω

′

a1

(
(−∂(w′−1al))

ω′
λ(w

′−1al)−ωλ(w
′−1al)

)
e(λ)

≡ τωal · · · τ
ω
a1

( ∏

b∈S+∩w−1S−

(−∂b)ω
′
λ(b)−ωλ(b)

)
e(λ).

The last equation is due to the relation S+ ∩ w−1S− = S+ ∩ w′−1S− ∪
{
w′−1al

}
. This

proves (ii).

6.5 Basis theorem

We aim to prove an analogue of Proposition 30 for the subalgebra A
ω ⊂ A

o.

Lemma 39 (braid relation). For any family of ordered functions {ωλ}λ∈WSλ0
, the images of

the operators τωa e(λ) in grFAω satisfies the braid relations: for a, b ∈ ∆ with a 6= b, let ma,b be
the order of sasb in WS . If ma,b 6=∞, then

τωa τ
ω
b τ

ω
a · · ·︸ ︷︷ ︸

ma,b

e(λ) ≡ τωb τ
ω
a τ

ω
b · · ·︸ ︷︷ ︸

ma,b

e(λ) mod F≤ma,b−1A
ω .

Proof. The statement is empty for ma,b = ∞, so we assume ma,b 6= ∞. Let Wa,b ⊂ WS be
the parabolic subgroup generated by sa and sb, let w0 ∈ Wa,b be the longest element and
let Sa,b ⊂ S be the sub-root system spanned by a and b. Let A

ω
a,b be the subalgebra of Aω

generated by C[V ]e(λ), τωa e(λ) and τωb e(λ) for λ ∈WSλ0 and let F≤nA
ω
a,b be the filtration by

length defined as in Definition 36. It suffices to show the following

τωa τ
ω
b τ

ω
a · · ·︸ ︷︷ ︸

ma,b

e(λ) ≡ τωb τ
ω
a τ

ω
b · · ·︸ ︷︷ ︸

ma,b

e(λ) mod F≤ma,b−1A
ω
a,b.

because there is an inclusion F≤ma,b−1A
ω
a,b ⊂ F≤ma,b−1A

ω. An analogue of Lemma 37 is valid
for this subalgebra with the filtration F≤nA

ω
a,b.

We first prove the braid relation for the family ω′ = {ω′
λ}λ∈WSλ0 , where ω′

λ(c) = max{ωλ(c), 0}.

Since ω′
λ(c) ≥ 0 for all c ∈ S+

a,b, the braid relation for τω
′

a and τω
′

b follows from the following
formula (with similar proof as Lemma 37 (ii)):

τω
′

a τω
′

b τω
′

a · · ·︸ ︷︷ ︸
ma,b

e(λ) = s∂as∂bs∂b · · ·︸ ︷︷ ︸
ma,b

∏

c∈S+
a,b

(−∂c)ω
′
λ(c)e(λ).
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Let d =
∏

c∈S+
a,b

ωc(λ)=−1

(∂c). By Lemma 37 (ii), we have

τω
′

a τω
′

b τω
′

a · · ·︸ ︷︷ ︸
ma,b

e(λ) ≡ τωa τ
ω
b τ

ω
a · · ·︸ ︷︷ ︸

ma,b

d e(λ) mod F≤ma,b−1A
ω
a,b.

Write X = (τωa τ
ω
b τ

ω
a · · ·︸ ︷︷ ︸

ma,b

− τωb τ
ω
a τ

ω
b · · ·︸ ︷︷ ︸

ma,b

)e(λ), so that X · d ∈ e(w0λ)
(
F≤ma,b−1A

ω
a,b

)
e(λ).

Moreover, by Lemma 37 (ii), we have

X ≡ (τoa τ
o
b τ

o
a · · ·︸ ︷︷ ︸

ma,b

− τob τ
o
aτ

o
b · · ·︸ ︷︷ ︸

ma,b

)
∏

c∈S+
a,b

(−∂c)ωλ(c)−oλ(c)e(λ) mod F≤ma,b−1A
o
a,b

However, the elements τoae(λ) satisfy the braid relations in A
o
a,b by Proposition 30 (ii). It

follows that X ∈ F≤ma,b−1A
o
a,b (notice that A

ω
a,b ⊆ A

o
a,b). We claim that for 0 ≤ j ≤

ma,b − 1, the quotient F≤jA
o
a,be(λ)/F≤jA

ω
a,be(λ) is right d-torsion-free. This will imply that

X ∈ F≤ma,b−1A
ω
a,b and complete the proof.

We prove the claim by induction on j. For j = 0, this is obvious since F≤0A
o
a,b = F≤0A

ω
a,b.

Assume j ∈ [1,ma,b − 1]. The quotient grFj A
ω
a,be(λ) is spanned over C[V ] by τωa τ

ω
b τ

ω
a · · ·︸ ︷︷ ︸
j

e(λ)

and τωb τ
ω
a τ

ω
b · · ·︸ ︷︷ ︸
j

e(λ) since any non-reduced word in a, b of length ≤ j contains consecutive letters

aa or bb and since (τωa )
2, (τωb )

2 ∈ F≤1A
ω
a,b. Similarly, grFj A

o
a,be(λ) is spanned over C[V ] by

τoaτ
o
b τ

o
a · · ·︸ ︷︷ ︸
j

e(λ) and τob τ
o
a τ

o
b · · ·︸ ︷︷ ︸
j

e(λ). Moreover, by Proposition 30, grFj A
o
a,be(λ) is free of rank 2

over C[V ]. Denote w = sasbsa · · ·︸ ︷︷ ︸
j

. Since ω ≥ o, by Lemma 37 (ii), we have

τωa τ
ω
b τ

ω
a · · ·︸ ︷︷ ︸
j

≡ τoa τ
o
b τ

o
a · · ·︸ ︷︷ ︸
j




∏

c∈S+
a,b

∩w−1S−

a,b

(−∂c)ωλ(c)−oλ(c)


 mod F≤j−1A

o
a,b.

The prime factors of d are ∂c for c ∈ S+
a,b such that ωλ(c) = −1. Therefore d and the product

∏

c∈S+
a,b

∩w−1S−

a,b

(−∂c)ωλ(c)−oλ(c)

are relatively prime. The same argument applies to the other product τωb τ
ω
a τ

ω
b · · · .

It follows that grFj A
ω
a,be(λ) and grFj A

o
a,be(λ) are both free over C[V ] of rank 2, and the

matrix representing the C[V ]-linear map ϕ : grFj A
ω
a,be(λ) −→ grFj A

o
a,be(λ) (which is induced

from the inclusion A
ω
a,be(λ) ⊂ A

o
a,be(λ)) is diagonal with entries prime to d. Hence cokerϕ is

d-torsion free. The snake lemma yields a short exact sequence

0 −→
F≤j−1A

o
a,be(λ)

F≤j−1A
ω
a,be(λ)

−→
F≤jA

o
a,be(λ)

F≤jA
ω
a,be(λ)

−→ cokerϕ −→ 0,

in which the first term is also d-torsion-free by induction hypothesis, and so is the middle term
d-torsion-free, whence the claim is proven.

Theorem 40. For each w ∈ WS, choose a reduced expression w = sal · · · sa1 and put τωw =
τωal · · · τ

ω
a1 . Then there is a decomposition

A
ω =

⊕

λ∈WSλ0

⊕

w∈WS

C[V ]τωwe(λ).

Proof. By dévissage, it suffices to show that for each n ∈ N,

grFn A
ω =

⊕

λ∈WSλ0

⊕

w∈WS

ℓ(w)=n

C[V ]τωwe(λ).
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It follows from the braid relations for τωa in grFAω proven in Lemma 39 and the fact that
(τωa )

2
e(λ) ∈ F≤1A

ω, that these elements τωw span grFnA
ω . By the invariant theory of reflection

groups, the family {τowe(λ)}w is free over C[V ] and forms a basis for EndZ (Polλ). In view
of Lemma 37 (ii), the matrix of transition between the families {τowe(λ)}w and {τωwe(λ)}w is
diagonal with non-zero entries; therefore the latter is also free over C[V ].

Define the filtration F≤nA
−∞ = (F≤nA

−o)⊗Z FracZ ⊂ A
−∞.

Corollary 41. For each n, we have

F≤nA
ω = F≤nA

−∞ ∩A
ω.

Proof. Let F ′
≤nA

ω = F≤nA
−∞ ∩ A

ω . We have F≤nA
ω ⊂ F ′

≤nA
ω. Fix λ, λ′ ∈ WSλ0 and

denote A = e(λ′)Aω
e(λ). Put N = # {w ∈WS ; wλ = λ′}, then we have F≤nA = A = F≤nA

′

for n ≥ N by Theorem 40. We prove by induction on k ∈ [0, N ] that F≤N−kA = F ′
≤N−kA. It

is already clear for k = 0. Suppose k ≥ 1. Then we have the obvious diagram:

0 F≤N−kA F≤N−k+1A grFN−k+1A 0

0 F ′
≤N−kA F ′

≤N−k+1A grF
′

N−k+1A 0.

ϕ ψ η

The morphism ψ is an isomorphism by the induction hypothesis and ϕ is injective. By the
snake lemma, we have ker η ∼= cokerϕ. Theorem 40 implies that grFN−k+1A is C[V ]-torsion-free
whereas cokerϕ is a C[V ]-torsion module. Therefore cokerϕ = 0 and ϕ is an isomorphism.
Summing over λ, λ′ ∈ WSλ0, we obtain F≤nA

ω = F ′
≤nA

ω for all n ∈ N.

Remark 42. In view of (the proof of) Lemma 39, one can define a “Bruhat filtration” {FI}I
indexed by the order ideals I of the affine Weyl group WS with respect to the Bruhat order,
so that FIA

ω is spanned by C[V ]τωwe(λ) for λ ∈ WSλ0 and w ∈ I. Our filtration by length
{F≤nA

ω}n∈N can be viewed as part of the Bruhat filtration because we have FnA
ω = FIn

A
ω

for In = {w ∈WS ; ℓ(w) ≤ n}.

6.6 The associated graded gr
F
A

ω

We describe in greater detail the structure of the associated graded grFAω. We establish
in Proposition 48 a triangular decomposition for grFAω, which will be used in the proof
of Proposition 69. The proof of Lemma 44 is technical. The reader is advised to skip this
subsection in the first reading.

Recall the extended affine Weyl group W̃S = P∨ ⋊WR defined in §1.3. For µ ∈ P∨, let
wµ ∈WR be such that Xµwµ is the minimal element of the coset XµWR. Define the following
map of minimal representatives:

θ : P∨ −→ W̃S , θ(µ) = Xµwµ.

In particular, θ(Q∨) ⊂ WS coincide with the set of minimal representatives for the quotient
WS/WR.

Lemma 43. For each µ ∈ P∨, the element wµ is characterised by the following property: every
positive root α ∈ R+ satisfies wµα ∈ R− if and only if 〈α, µ〉 > 0.

Proof. See [7, Proof of 1.4]

We consider the nil-Hecke algebra C[W̃S ]
nil for W̃S : it is the C-vector space span by the

basis
{
[w]nil

}
w∈W̃S

equipped with the following multiplication law

[w]nil · [y]nil =

{
[wy]nil if ℓ(wy) = ℓ(w) + ℓ(y)

0 otherwise.

Let C[WS ]
nil and C[WR]

nil be the subspace of C[W̃S ]
nil spanned by

{
[w]nil

}
w∈WS

and
{
[w]nil

}
w∈WR

respectively. These are the nil-Hecke algebras for WS and WR.
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Let C0 ⊂ V ∗ denote the fundamental Weyl chamber and C0 its closure in V ∗. Let
P∨
+ = P∨∩C0 (resp. Q∨

+ = Q∨∩C0) be the submonoid of P∨ consisting of dominant coweights
(resp. dominant coroots). Let CP∨

+ (resp. CQ∨
+) denote the monoid algebra of P∨

+ (resp. Q∨
+).

For µ ∈ P∨
+ , let Xµ ∈ CP∨

+ denote the corresponding element.
We define a map

ζ : CP∨
+ −→ C[W̃S ]

nil, ζ(Xµ) =
∑

µ′∈WRµ

[Xµ′

]nil.

Lemma 44. The following statements hold:

(i) The map ζ is a ring homomorphism and yield a left CP∨
+ -module structure on C[W̃S ]

nil by

left multiplication; moreover, C[W̃S ]
nil is a free (CP∨

+ ,C[WR]
nil)-bimodule of rank #W

and a basis of which is given by
{
[θ(bw)]

nil
}
w∈WR

with

bw =
∑

α∈∆0
sαw<w

w−1w0ω
∨
α ∈ P

∨.

(ii) The ring CQ∨
+ is Cohen–Macaulay and the CP∨

+ -module structure on C[W̃S ]
nil restricts

to a CQ∨
+-module structure on C[WS ]

nil; moreover, there is a decomposition

C[WS ]
nil = E ⊗C[WR]

nil,

where E ⊂ C[WS ]
nil is a CQ∨

+-direct factor and is a Cohen-Macaulay CQ∨
+-module of

maximal dimension.

Proof. In view of the length formula Proposition 1 for W̃S , the condition ℓ(Xµ+ν) = ℓ(Xµ) +
ℓ(Xν) is equivalent to that µ′ and ν lie in the closure of the same Weyl chamber. Therefore
the map ζ is a ring homomorphism. Define a decreasing filtration G•W̃S by

GkW̃S =
⋃

y∈WR

ℓ(y)≥k

{
v ∈ W̃S ; ℓ(vy−1) = ℓ(v)− ℓ(y)

}
.

Since C[W̃S ]
nil has a canonical basis

{
[w]nil

}
w∈W̃S

, the filtration G•W̃S induces a filtration on

C[W̃S ]
nil, denoted by G•

C[W̃S ]
nil.

Step 1. We prove that the map

P∨
+ ×

{
(w, y) ∈ (WR)

2 ; ℓ(y) = k
} ∼
−→ GkW̃S \G

k−1W̃S , (µ,w, y) 7→ Xbw+w−1w0µwy

is a bijection.

For µ ∈ P∨, let wµ ∈ WR be the element from Lemma 43. We may partition P∨ into
sub-semigroups :

P∨ =
⊔

w∈WR

P∨
w , P∨

w = {µ ∈ P∨ ; wµ = w} .

For w ∈ WR, we have bw ∈ P∨
w and there is a bijection

P∨
+

∼
−→ P∨

w , µ 7→ bw + w−1w0µ;

we can thus express the set GkW̃S \G
k−1W̃S as

GkW̃S \G
k−1W̃S =

⊔

w,y∈WR

ℓ(y)=k

{Xµwy ; µ ∈ P∨
w} =

⊔

w,y∈WR

ℓ(y)=k

{
Xbw+w−1w0µwy ; µ ∈ P∨

+

}
.

Step 2. We prove that for each µ ∈ P∨ and w, y ∈WR, we have ζ(Xµ)[Xbwwy]nil ∈ Gℓ(y)C[W̃S ]
nil

and

ζ(Xµ)[Xbwwy]nil ≡ [Xbw+w−1w0µwy]nil mod Gℓ(y)+1
C[W̃S ]

nil. (45)

22



Indeed, the defining relations of the nil-Hecke algebra C[W̃S ]
nil yield

ζ(Xµ)[Xbwwy]nil =
∑

µ′∈WRµ

ℓ(Xbw+µ′
wy)=ℓ(Xbwwy)+ℓ(Xµ′

)

[Xbw+µ′

wy]nil

in C[W̃S ]
nil. Since

ℓ(Xbw+µ′

wy) ≤ ℓ(Xbw+µ′

w) + ℓ(y) ≤ ℓ(Xbww) + ℓ(Xµ′

) + ℓ(y) = ℓ(Xbwwy) + ℓ(Xµ′

)

(the last equality due to Lemma 43), the condition

ℓ(Xbw+µ′

wy) = ℓ(Xbwwy) + ℓ(Xµ′

) (46)

implies that ℓ(Xbw+µ′

wy) = ℓ(Xbw+µ′

w) + ℓ(y) and hence Xbw+µ′

wy ∈ Gℓ(y)W̃S . It fol-
lows that [Xbw+µ′

wy]nil ∈ Gℓ(y)C[W̃S ]
nil for µ′ ∈WRµ satisfying (46) and [Xbw+µ′

wy]nil ∈
Gℓ(w)+1

C[W̃S ]
nil unless wbw+µ′ = w; the latter case happens for the unique element

µ′ = w−1w0µ in the orbit WRµ; therefore (45) holds.

Step 3. By Step 1 and Step 2, we see that GkC[W̃S ] is a CP∨
+ -submodules and the successive

quotient GkC[W̃S ]
nil/Gk+1

C[W̃S ]
nil is a free CP∨

+ -module with a basis formed by the
congruence classes of

{
[Xbwwy]nil

}
y,w∈WR, ℓ(y)=k

. It follows that
{
[Xbwwy]nil

}
y,w∈WR

forms a CP∨
+ -basis for C[W̃S ]

nil. Since Xbww is minimal in the coset XbwWR, we have

[Xbwwy]nil = [Xbww]nil · [y]nil, for y ∈ WR;

thus
{
[Xbww]nil

}
w∈WR

forms a (CP∨
+ ,C[WR]

nil)-bimodule basis for C[W̃S ]
nil, whence (i).

Step 4. Let E ′ ⊂ C[W̃S ]
nil be the (free) CP∨

+ -submodule generated by
{
[θ(bw)]

nil
}
w∈WR

so that,

by (i), there is a decomposition C[W̃S ]
nil ∼= E ′ ⊗ C[WR]

nil. Let Ω = P/Q. Define a
C-linear action of Ω on C[W̃S ]

nil by

Ω×C[W̃S ]
nil −→ C[W̃S ]

nil

(β, [Xµw]nil) 7→ e2πi〈β,µ〉[Xµw]nil, β ∈ Ω, µ ∈ P∨, w ∈WR.

This action preserves the subspace E ′ ⊂ C[W̃S ]
nil and fixes C[WR]

nil pointwise; hence
there is a decomposition of the Ω-fixed subspace

C[WS ]
nil = (C[W̃S ]

nil)Ω ∼= E ⊗C[WR]
nil, where E = (E ′)Ω.

It remains to show that E is a Cohen–Macaulay CQ∨
+-module of maximal dimension.

Since CQ∨
+ is integrally closed and CP∨

+ is regular and an integral ring extension of it,
by [2, X.2.6,coro 2], CP∨

+ is a Cohen–Macaulay CQ∨
+-module. Thus E ′, being a free

CP∨
+ -module, is Cohen–Macaulay of maximal dimension over CQ∨

+. Since E is a direct
factor of E ′, so is it Cohen–Macaulay of maximal dimension over CQ∨

+, whence (ii).

Below, we will work with grF A
ω and view the elements τωa e(λ) as in grF A

ω for the sake
of notational simplicity. View A

ω as (Aω)op-module via the right regular representation. The
ring End(grF Aω)op(gr

F
A
ω) can be viewed as a unital completion of Aω. Define a C-linear map

Θ : C[WS ]
nil −→ End(grF Aω)op(gr

F
A
ω) =

∏

λ∈WSλ0

grF A
ω
e(λ) (47)

Θ([w]nil) = τωw =
∑

λ∈WSλ0

τωwe(λ), w ∈WS

Proposition 48. There is a triangular decomposition

grFAω ∼= E ⊗C

( ⊕

w∈WR

Cτωw

)
⊗C

( ⊕

λ∈WSλ0

C[V ]e(λ)

)
,

where E ⊂ C[WS ]
nil is the CQ∨

+-submodule from Lemma 44 (ii).
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Proof. From Theorem 40, we see that the C[WS ]
nil-action on grF A

ω via Θ yields a decompos-
ition

C[WS ]
nil ⊗

( ⊕

λ∈WSλ0

C[V ]e(λ)

)
∼
−→ grF A

ω, f ⊗ b 7→ Θ(f)(b).

By Lemma 44 (ii), we can further decompose C[WS ]
nil = E ⊗ C[WR]

nil. Finally, we have
Θ(C[WR]

nil) =
⊕

w∈WR
Cτωw .

7 Module categories of Aω

We keep the notation of §6. We put a Z-grading on A
ω as follows: the generators are

homogeneous: degα e(λ) = 2 for α ∈ V ∗ and deg τωa e(λ) = ωλ(a) + ωsaλ(a). If M =
⊕

nMn

is a graded vector space, denote by M〈m〉 the grading shift given by M〈m〉n = Mm+n. For
two graded vector spaces M and N , we denote by Hom(M,N) the space of C-linear maps of
degree 0 and gHom(M,N) =

⊕
k∈Z

Hom(M,N〈k〉).
Below, by “modules” we mean left modules. All statements can be turned into those for

right modules by means of the anti-involution A
ω ∼= (Aω)

op
defined by τωa e(λ) 7→ τωa e(saλ).

7.1 Graded A
ω-modules

An A
ω-module M is called a weight module if there is a decomposition

M =
⊕

λ∈WSλ0

e(λ)M.

Let Aω -gMod denote the category of graded weight modules of Aω . Let Aω -gmod ⊂ A
ω -gMod

be the subcategory of compact objects (i.e. M ∈ A
ω -gmod if HomAω -gMod(M,−) commutes

with filtered colimits) and let A
ω -gmod0 ⊂ A

ω -gmod be the subcategory of mZ-nilpotent
objects. The following lemma is obvious.

Lemma 49. For every object M ∈ A
ω -gMod there exists an index set J and two families of

integers {aj}j∈J and {λj}j∈J such that there exists an epimorphism in A
ω -gMod

r⊕

j=1

A
ω
e(λj)〈aj〉։M.

We define a homomorphism of graded rings

Z −→ gEnd (idAω -gMod) (50)

as follows: For every f ∈ C[V ]Wλ0 and w ∈ WS , let f acts on e(wλ0)M by multiplication with
(∂w)(f) ∈ C[V ]Wwλ0 .

7.2 Intertwiners

For each λ ∈WSλ0 and a ∈ ∆, introduce the following element in A
ω:

ϕae(λ) =

{
((∂a)τωa + 1)e(λ) ωλ(a) = −1

τωa e(λ) ωλ(a) ≥ 0
.

It satisfies the following relations:

ϕ2
ae(λ) =

{
e(λ) ωλ(a) = −1

±(∂a)nλ,ae(λ) ωλ(a) ≥ 0

ϕafe(λ) = sa(f)ϕae(λ) f ∈ C[V ],

where nλ,a = max(ωλ(a)+ωsaλ(−a), 0). These elements satisfy the usual braid relations. Thus,
we may write ϕwe(λ) = ϕal · · ·ϕa1e(λ) by choosing any reduced expression w = sal · · · sa1 .
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Lemma 51. Let w ∈ WS and a ∈ ∆. Then the right multiplication by the intertwiner ϕa
induces an isomorphism of Aω-modules

A
ω
e(λ) ∼= A

ω
e(saλ)

if ωλ(a) + ωsaλ(−a) ≤ 0.

Proof. The right multiplication by the element ϕae(saλ) = e(λ)ϕae(saλ) yields A
ω
e(λ)

∼
−→

A
ωϕae(saλ)

∼
−→ A

ωϕ2
ae(saλ). Hence if ϕ2

ae(λ) = fe(λ) ∈ C[V ]e(λ) for f ∈ C[V ] invertible,
then ϕ2

ae(λ) is an isomorphism. The condition that f be invertible is exactly as stated. Clearly,
if ϕ2

ae(λ) and ϕ2
ae(saλ) are isomorphisms, then so are ϕae(λ) and ϕae(saλ). The statement

follows.

7.3 Clan decomposition

As in §6.5, we extend ωλ0 to a WS-invariant function ω̃λ0 : S −→ Z≥−1 and we suppose that
the extension ω̃λ0 has finite support. Consider the following sub-family of hyperplanes

Dω = {Ha ⊂ E ; a ∈ S, ω̃λ0(a) ≥ 1} .

The connected components of the following space

Eω◦ = E \
⋃

H∈Dω

H

are called clans. Since ω̃λ0 is supposed to be finitely supported, the family Dω is finite, the set
of connected components π0 (E

ω
◦ ) is finite and there are only a finite number of clans.

Let C ⊂ Eω◦ be a clan. Since Eω◦ is the complement of a finite hyperplane arrangement, C is
a convex polytope. The salient cone of C is defined to be the convex polyhedral cone κ ⊂ V
whose dual cone κ∨ is the cone of linear functions which are bounded from below on C:

κ∨ =

{
v ∈ V ∗ ; inf

x∈C

〈v, x〉 > −∞

}
, κ = κ∨∨ = {x ∈ V ; 〈v, x〉 ≥ 0, ∀v ∈ κ∨} .

Then κ is a convex polyhedral generated by a finite subset of P∨. We say that clan C ⊂ Eω◦ is
generic if its salient cone is of maximal dimension.

Denote by ν0 ∈ E the fundamental alcove associated with the basis ∆.

Lemma 52. Let w ∈ WS and a ∈ ∆. Then w−1ν0 and w−1saν0 are in the same clan if and
only if the intertwiner ϕa induces an isomorphism of Aω-modules

A
ω
e(wλ0) ∼= A

ω
e(sawλ0).

Proof. Using Lemma 51, we have

ϕ2
ae(wλ0) = e(wλ0)⇔ ωwλ0(a) + ωsawλ0(−a) ≤ 0

⇔ ω̃λ0(w
−1a) + ω̃λ0(−w

−1a) ≤ 0⇔ Hwa /∈ Dω

The last condition is equivalent to that w−1ν0 and w−1saν0 belong to the same clan.

The following proposition follows immediately from the above lemma.

Proposition 53. If w,w′ ∈ WS are such that w−1ν0 and w′−1ν0 lie in the same clan, then right
multiplication by the intertwiner ϕw′w−1e(wλ) yields an isomorphism A

ω
e(w′λ) −→ A

ω
e(wλ).

Corollary 54. Let M ∈ A
ω -gmod. If w,w′ ∈ WS are such that wν−1

0 and w′ν−1
0 lie in

the same clan, then multiplication by the intertwiner ϕw′w−1e(wλ) yields an isomorphism of
graded Z-modules e(wλ0)M ∼= e(w′λ0)M . In particular, in this case there is an equality of
graded dimensions

gdim e(wλ0)M = gdim e(w′λ0)M.
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Proof. Indeed, we have

e(wλ0)M ∼= HomAω (Aω
e(wλ0),M)

−◦ϕ
w′w−1

−−−−−−−→ HomAω (Aω
e(w′λ0),M) ∼= e(wλ0)M.

Example 55. In the setting of Example 33 (iii), the alcoves in E are of the form ]n, n+ 1/2[
for n ∈ (1/2)Z and the fundamental alcove is ν0 = ]0, 1/2[. We have Dω = {Ha0 , Ha1}, with
{a0 = 1− 2ǫ, a1 = 2ǫ} = ∆. The clan decomposition is depicted as follows:

C−

Ha1

0 C0

Ha0

1/2 C+

The clans C− = ]−∞, 0[ and C+ = ]1/2,+∞[ are generic whereas the clan C0 = ]0, 1/2[ = ν0 is
not generic. To each alcove ν = w−1ν0 with w ∈ WS, we attach the element λν = wλ0 ∈ E

5/4

−1/2

−1/4

0

1/4

1/2

−3/4

3/2

5/4 λν
ǫ

In particular, the alcoves ν = ]1/2, 3/2[ and ν′ = ]3/2, 5/2[ lie in the same clan C+ with
λν = −3/4 and λν′ = s0λν = 5/4. In this case Proposition 53 amount to the fact that the
intertwiners ϕa0e(λν′ ) : Aω

e(λν) −→ A
ω
e(λν′) and ϕa0e(λν) : Aω

e(λν′) −→ A
ω
e(λν) are

isomorphisms and inverse to each other.
The projective A

ω-modules A
ω
e(λν) are indecomposable and they are non-isomorphic for

alcoves ν in the three different clans C−,C0 and C+. Choose any alcoves ν+ ⊂ C+, ν− ⊂ C−

and denote λ+ = λν+ , λ− = λν− , P+ = A
ω
e(λ+),P0 = A

ω
e(λ0) and P− = A

ω
e(λ−). Their

simple quotients, denoted by L+, L0 and L−, form a complete collection of simple objects of
A
ω -gmod up to grading shifts. The graded dimension is given by

gdime(λν)L∗ =

{
1 ν ⊆ C∗

0 ν 6⊆ C∗

, ∗ ∈ {+, 0,−}.

In particular, L+ and L− are infinite-dimensional and L0 is finite-dimensional. The cosocle
filtrations of P+, P0 and P− are described as follows:

P+ =




L+
L0〈−1〉

L+〈−2〉 L−〈−2〉
L0〈−3〉

L+〈−4〉 L−〈−4〉

...


, P0 =




L0
L+〈−1〉 L−〈−1〉

L0〈−2〉
L+〈−3〉 L−〈−3〉

L0〈−2〉

...


, P− =




L−

L0〈−1〉
L+〈−2〉 L−〈−2〉

L0〈−3〉
L+〈−4〉 L−〈−4〉

...


.

7.4 Basic properties of graded modules of Aω

We choose a finite subset Σ ⊂ WS such that for every clan C ⊂ Eω◦ , there exists w ∈ Σ with
w−1ν0 ⊂ C. Set eΣ =

∑
w∈Σ e(wλ0) and PΣ = A

ω
eΣ.

Lemma 56. The module PΣ is a graded compact projective generator of Aω -gMod.

Proof. For any y ∈ WS , we can find w ∈ Σ such that y−1ν0 and w−1ν0 are in the same clan.
By Proposition 53, there exists an isomorphism

A
ω
e(wλ0) ∼= A

ω
e(yλ0)

Since the former is a direct factor of PΣ, the above isomorphism yields a surjection PΣ ։

A
ω
e(yλ0). Combining this with Lemma 49, we see that PΣ is a graded generator, which is

clearly compact projective.

Put AΣ = (gEndAω -gModPΣ)
op = eΣA

ω
eΣ. It follows from Lemma 56 and the Morita

theory that there is a graded equivalence

gHom
Aω -gMod(PΣ,−) : A

ω -gMod
∼
−→ AΣ -gMod, (57)

which restricts to an equivalence on the subcategories of compact objects A
ω -gmod

∼
−→

AΣ -gmod.
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Proposition 58. The following statements hold:

(i) The category A
ω -gmod is noetherian and the subcategory A

ω -gmod0 consists of objects
of finite length.

(ii) For each M ∈ A
ω -gmod and each λ ∈ WSλ0, the graded dimension gdime(λ)M is in

N((v)). Moreover, M ∈ A
ω -gmod0 if and only if gdim e(λ)M ∈ N[v±1] for all λ ∈WSλ0.

(iii) Every object of Aω -gmod admits a projective cover in the same category.

(iv) We have Irr(Aω -gmod0)
∼= Irr(Aω -gmod).

(v) The map (50) is an isomorphism Z ∼= gEnd (idAω -gmod).

Proof. By the graded Morita equivalence (57), it suffices to show the corresponding statements
for AΣ -gmod.

Since AΣ is of finite rank over the graded polynomial ring C[V ]Wλ0 , it is laurentian (i.e.
its graded dimension is in N((v))) and thus graded semi-perfect. The statements (i)–(iv) result
from the laurentian property.

We prove (v). Consider the A
ω-module PolWSλ0 ∈ A

ω -gmod. Since each factor Polλ =
C[V ] is a free Z-module of finite rank, the sum PolWSλ0 is a free Z-module of infinite rank.
Taking base-change to the rational function field FracZ, we get a homomorphism

ρ : A−∞ −→
⊕

λ,λ′∈WSλ0

HomFracZ (Ratλ,Ratλ′) ,

We claim that ρ is an isomorphism. It is injective since PolWSλ0 is a faithful Aω-module by
definition and it remains faithful after localisation. It is easy to see from the definition of Aω

that for λ ∈ WSλ0 and a ∈ ∆, the operator sae(λ) : Ratλ −→ Ratsaλ is in the image of ρ. For
any λ, λ′ ∈WSλ0, let Wλ,λ′ = {w ∈WS ; wλ = λ′}. The family {e(λ′)we(λ)}w∈Wλ,λ′ is in the
image of ρ. The rational function field Ratλ is a Galois extension of FracZ with Galois group
Wλ. It follows from the Galois theory that

EndFracZ(Ratλ) ∼= Ratλ⋊CWλ.

We have already seen that {w e(λ)}w∈Wλ
is in im ρ the and Ratλ is also in the image of ρ.

It follows that EndFracZ(Ratλ) ⊂ im ρ. Let λ, λ′ ∈ WSλ0 and choose w ∈ Wλ,λ′ . Then
w e(λ) ∈ im ρ is an isomorphism w e(λ) : Ratλ ∼= Ratλ′ and the pre-composition yields

− ◦we(λ) : EndFracZ(Ratλ) ∼= HomFracZ (Ratλ,Ratλ′) .

Thus HomFracZ (Ratλ,Ratλ′) ⊂ im ρ. We see that ρ is surjective and the claim is proven.
There is an isomorphism

AΣ ⊗Z FracZ = eΣA
−∞

eΣ
∼= EndFracZ

(⊕

w∈Σ

Ratwλ0

)

induced by ρ. Since the right-hand side is a matrix algebra over a field FracZ, its centre is
FracZ. It follows that Z(AΣ) = FracZ. Hence

gEnd (idAω -gmod) ∼= gEnd (idAΣ -gmod) = Z (AΣ) = Z (AΣ ⊗Z FracZ) ∩ AΣ

= FracZ ∩ AΣ = Z,

where the last equation follows from the basis theorem Theorem 40.

7.5 Basic properties of ungraded A
ω-modules

Let U : A
ω -gmod0 −→ A

ω -mod0 be the grading-forgetting functor. We extend it to U :
A
ω -gmod −→ Pro(Aω -mod0) by requiring U to preserve filtered inverse limits. The extended

functor is exact. Define the subcategory A
ω -mod∧ ⊂ Pro(Aω -mod0) to be the essential image

of this functor. Let Z∧ = lim
←−N→∞

Z/mNZ .

Proposition 59. Then the following properties are satisfied:
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(i) The functor forgetting the grading U : Aω -gmod −→ A
ω -mod is exact and it induces

Irr(Aω -gmod)/〈Z〉 ∼= Irr(Aω -mod∧). Moreover, for all M,N ∈ A
ω -gmod and n ∈ N we

have

∏

k∈Z

Extn(M,N〈k〉) ∼= Extn(UM,UN).

(ii) The category A
ω -mod∧ is noetherian and the subcategory A

ω -mod0 consists of objects of
finite length.

(iii) Every object of Aω -mod∧ admits a projective cover in the same category.

(iv) We have Irr(Aω -mod0) ∼= Irr(Aω -mod∧).

(v) The ungraded analogue of the map (50) induces an isomorphism Z∧ ∼= End (idAω -mod∧).

These statements follow from Proposition 58.

7.6 Induction and restriction

Let A
ω
R ⊂ A

ω be the subalgebra generated by fe(λ) and τωa e(λ) for λ ∈ WSλ0, f ∈ C[V ] and
a ∈ ∆0. For λ1 ∈ WSλ0, denote eR,λ1 =

∑
λ∈WRλ1

e(λ) and define A
ω
R,λ1

= eR,λ1A
ω
ReR,λ1 to

be the idempotent subalgebra. In other words, Aω
R,λ1

is the subalgebra of A
ω generated by

fe(λ) and τωa e(λ) for λ ∈WRλ1, f ∈ C[V ] and a ∈ ∆0.
For each λ1 ∈WSλ0, we define the induction, restriction and co-induction functors

indSR,λ1
: Aω

R,λ1
-gmod −→ A

ω -gmod, N 7→ A
ω
eR,λ1 ⊗Aω

R,λ1
N

resSR,λ1
: Aω -gmod −→ A

ω
R,λ1

-gmod, M 7→ eR,λ1M
∼= gHomAω (Aω

eR,λ1 ,M)

coindSR,λ1
: Aω

R,λ1
-gmod −→ A

ω -gmod, N 7→
⊕

λ∈WSλ0

gHomAω
R,λ1

(eR,λ1A
ω
e(λ), N) .

They form a triplet of adjoint functors
(
indSR,λ1

, resSR,λ1
, coindSR,λ1

)

Proposition 60. The functors indSR,λ1
, resSR,λ1

and coindSR,λ1
are exact.

Proof. The functor resSR,λ1
is clearly exact. By Theorem 40, we have a decomposition of right

A
ω
R,λ1

-module

A
ω
eR,λ1

∼=
⊕

w∈WR

τωwA
ω
R,λ1

(61)

where WR ⊂ WS is the set of shortest representatives of the elements in WS/WR and τωw =⊕
λ∈WRλ1

τωal · · · τ
ω
a1e (λ) for any reduced expression w = sal · · · sa1 . Therefore A

ω
eR,λ1 is a

free right A
ω
R,λ1

-module, so indSR,λ1
is exact. Similarly, coindSR,λ1

is also exact.

8 Filtered A
ω-modules

We consider A
ω-modules equipped with filtrations which are compatible with the filtration by

length F on A
ω. Most results in this section are non-unital version of the classical theory of

filtered rings and filtered modules which one can find in [18]. The goal of this section is to
introduce (§8.3) the support and the Gelfand–Kirillov dimension of an object M ∈ A

ω -gmod0
and show (Proposition 69) that “induced modules” have the full support.

8.1 Good filtrations on A
ω-modules

Let M ∈ A
ω -gmod.

Definition 62. A good filtration F on M is a sequence {F≤nM}n∈Z of graded C[V ]-submodules
of M satisfying the following properties:

(i) F≤n−1 ⊆ F≤n for all n ∈ Z;

28



(ii) for each n ∈ Z, there exists a finite subset Σn ⊂WSλ0 such that§

F≤nM =
⊕

λ∈Σn

e(λ)F≤nM ;

(iii) FnM = 0 for n≪ 0;

(iv)
⋃
n∈Z

FnM =M ;

(v)

(F≤nA
ω) (F≤mM) ⊆ F≤n+mM, ∀n,m ∈ N;

(vi) there exists m0 ≫ 0 satisfying

(F≤nA
ω) (F≤mM) = F≤n+mM, ∀n ≥ 0, ∀m ≥ m0.

The following result is standard, see [18, D.1.3]

Proposition 63. Good filtrations exist for the objects of Aω -gmod. If F and F ′ are two good
filtrations on M ∈ A

ω -gmod, then there exists i0 ≫ 0 such that

F ′
≤n−i0M ≤ F≤nM ≤ F

′
≤n+i0M, ∀n ∈ Z.

The following lemma is a direct consequence of Proposition 63.

Corollary 64. If F and F ′ are good filtrations on M , then there exist

(i) a finite filtration of grF A
ω-submodules F ′ on grF M ,

(ii) a finite filtration of grF A
ω-submodules F on grF

′

M and

(iii) an isomorphism of grF A
ω-modules grF

′

grF M ∼= grF grF
′

M .

Proof. By Proposition 63, there exists i0 ≫ 0 such that F≤n−i0M ≤ F ′
≤nM ≤ F≤n+i0M for

all n ∈ Z. For m ∈ [−i0, i0], define F ′
≤n,≤mM =

(
F ′
≤nM ∩ F≤n+mM

)
+ F ′

≤n−1M . Then the

quotient grF
′

M acquires a filtration

F≤m grF
′

n M = F ′
≤n,mM/F ′

≤n−1M ⊆ F
′
≤nM/F ′

≤n−1M = grF
′

n M,

which satisfies
(
grFl A

ω
) (
F≤m grF

′

n M
)
⊆ F≤m grF

′

n+lM . Hence for each m ∈ [−i0, i0], the

quotient grFmgrF
′

M = F≤mgrF
′

M/F≤m−1gr
F ′

M is itself a grAω-module. Similarly, we put
F≤m,≤nM =

(
F≤mM ∩ F ′

≤m+nM
)
+ F≤m−1M so that grF M acquires a filtration by grF A

ω-

modules. Zassenhaus lemma yields grFm−n gr
F ′

n M ∼= grF
′

n−m grFmM . Therefore,

i0⊕

n=−i0

grF
′

n grF M ∼=

i0⊕

m=−i0

grFm grF
′

M.

8.2 Associated graded of good filtrations

Recall the monoid algebra CQ∨
+ from §6.6. Given a good filtration F on an object M ∈

A
ω -gmod, the associated graded grFM =

⊕
k∈Z

F≤kM/F≤k−1M is a grFAω-module. The
grF A

ω-action on grF M extends to an action of the unital completion introduced in §6.6 via
the natural inclusion

grF A
ω →֒ End(grF Aω)op(gr

F
A
ω) ∼=

∏

λ∈WSλ0

grF A
ω
e(λ).

We obtain a CQ∨
+-module structure on grFM via the map (47).

Proposition 65. Let M ∈ A
ω -gmod and F a good filtration on M . Then grFM is a coherent

CQ∨
+ ⊗C[V ]-module. Moreover, if M ∈ A

ω -gmod0, then grFM is a coherent CQ∨
+-module.

§We require this condition because we work with a non-unital associative algebra.
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Proof. We observe that the coherence for grF M is independent of the choice of the good
filtration F . Indeed, if F ′ is another good filtration on M , then by Corollary 64,

grF M coherent⇔
i0⊕

n=−i0

grF
′

n grF M ∼=

i0⊕

m=−i0

grFm grF
′

M coherent⇔ grF
′

M coherent.

We prove the first assertion. By Lemma 49 and the compactness of M , there is a surjection
of the form

p :

r⊕

j=1

A
ω
e(λj)〈aj〉։M.

Equip the source of p with the length filtration and the target of p with the induced filtration,
denoted by F , so that p induces a surjection on the associated graded grF A

ω-module. The
coherence on the source of grF p implies that of grF M . Thus we may suppose that M is of
the form M = A

ω
e(λj) and equipped with the length filtration. It follows from Proposition 48

that

grFAω
e(λj) ∼= E ⊗C

( ⊕

w∈WR

τωwC[V ]

)
e(λj).

Since E is coherent over CQ∨
+ by Lemma 44 (ii) and

⊕
w∈WR

C[V ]τωw is free of finite rank over

Z, it follows that grFAω
e(λj) is coherent over CQ∨

+ ⊗Z.
Suppose now M ∈ A

ω -gmod0 so that Z acts via the quotient Z/mnZ for some n ∈ N. Since
Z/mnZ is finite-dimensional, M must be coherent over CQ∨

+.

8.3 Support of Aω-modules of finite length

Let M ∈ A
ω -gmod0. In view of Proposition 65, we can make the following definition:

Definition 66. The support of M , denoted by SuppM , is defined to be the support of grFM
as coherent CQ∨

+-module, for any choice of good filtration F on M .

By Corollary 64, the definition of SuppM is independent of the choice of a good filtration.
We define the Gelfand–Kirillov dimension of a weight module M of Aω to be the following

number: upon choosing a good filtration F on M ,

dimGKM = lim sup
n−→∞

log dimF≤nM

logn
.

By Proposition 63, this number does not depend on the choice of F .

Proposition 67. Let M ∈ A
ω -gmod0. Then the Gelfand–Kirillov dimension dimGKM

coincides with the Krull dimension of SuppM .

Proof. Taking the associated graded, we have

dimF≤nM = dim

n⊕

k=−∞

grFk M.

Notice that CQ∨
+ is finitely generated graded ring, where degXµ = ℓ(Xµ), and grF M is a

finitely generated graded module over it. Hence dimGKM is nothing but the degree of the
Hilbert polynomial of grF M , which is equal to the Krull dimension of SuppM .

8.4 Induction of filtered modules

Recall the subalgebra A
ω
R,λ1

⊂ A
ω from §7.6. Good filtrations on objects of Aω

R,λ1
-gmod are

defined in a similar manner.
Suppose N ∈ A

ω
R,λ1

-gmod is equipped with a good filtration F which satisfies F≤kN =(
F≤kA

ω
R,λ1

)
(F≤0N) for k ≥ 0 and F≤−1N = 0.

Let M = indSR,λ1
N . The adjunction unit yields an inclusion of Z-modules N →֒M . Define

a filtration F≤nM = (F≤nA
ω) (F≤0N).
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Lemma 68. The filtration F on M is good and satisfies

grFM ∼=
(
grFAω

eR,λ1

)
⊗grFAω

R,λ1

(
grFN

)
.

Proof. By the hypothesis on F≤nN , we have grFnN =
(
grFnA

ω
R,λ1

) (
grF0 N

)
and grFnM =

(
grFnA

ω
) (

grF0 N
)
. By the decomposition (61), we deduce

grFkA
ω
eR,λ1 =

k⊕

j=0

⊕

w∈WR

ℓ(w)=j

τωwgr
F
k−jA

ω
R,λ1

,

from which

((
grFAω

eR,λ1

)
⊗grFAω

R,λ1

(
grFN

))
n
=

n⊕

j=0

⊕

w∈WR

ℓ(w)=j

τωw
(
grFn−jA

ω
R,λ1

)
(grF0 N)

=
(
grFnA

ω
n

) (
grF0 N

)
= grFnM

Proposition 69. For any N ∈ A
ω -gmod0 and 0 6= M ′ ⊂ indSR,λ1

N , we have SuppM ′ =
SpecCQ∨

+.

Proof. Let F be a good filtration on N as above and denote M = indSR,λ1
N , so that grFM ∼=

grF (Aω
eR,λ1) ⊗grFAω

R,λ1

(
grFN

)
by Lemma 68. By Proposition 48, we have grFAω

eR,λ1
∼=

E ⊗C grF A
ω
R,λ1

; hence

grFM ∼= E ⊗C grFN.

By Lemma 44 (ii), E and thus grF M are a Cohen–Macaulay module of maximal dimension
over CQ∨

+, so it is torsion-free. For any 0 6= M ′ ⊂ M , the restriction to M ′ of F is a good
filtration and grFM ′ ⊂ grFM . Hence SuppM ′ = CQ∨

+.

Remark 70. Proposition 69 is an analogue of the following basic property for a double affine
Hecke algebra H: the induced module H ⊗H M is free over the polynomial part C[E] ⊂ H for
every module M over the graded affine Hecke algebra H ⊂ H. A similar property for rational
Cherednik algebras was used in [16] in the proof of the double centraliser property of the KZ
functor. Our proof of the double centraliser property Theorem 105 also relies on it.

9 Quiver Hecke algebras

We keep the notation of root systems (E, S,∆) and (V,R,∆0). In this section, we introduce an
algebra B

Ω, which can be viewed as a variant of quiver Hecke algebras. The relation between
the quiver Hecke algebras and B

Ω in the case where the root system (V,R) is of type A is
explained in Remark 73.

9.1 The algebra B
Ω

Define the torus T = Q∨ ⊗C
× so that the ring of regular functions C[T ] is isomorphic to the

group algebra CP . For any α ∈ P , we denote by Y α ∈ C[T ] the corresponding element.
Fix ℓ0 ∈ T . Define for each ℓ ∈ WRℓ0 a polynomial ring Polℓ = C[V ] and let PolWRℓ0 =⊕
ℓ∈WRℓ0

Polℓ. For each ℓ, define e(ℓ) : PolWRℓ0 −→ Polℓ to be the idempotent linear endo-

morphism of projection onto the factor Polℓ. Recall that Rred = R+ \2R and R+
red = Rred∩R+.

Choose any λ0 ∈ exp−1(ℓ0). Then the algebra Z from §6.2 acts on Polℓ: for any w ∈ WR,
the element f ∈ Z = C[V ]Wλ0 acts on Polwℓ0 by multiplication by w(f).

Let Ω = {Ωℓ}ℓ∈WRℓ0
be a family of functions Ωℓ : R

+
red −→ Z≥−1 satisfying the properties:

(i) If 2α /∈ R, then Ωℓ(α) = −1 implies Y α(ℓ) = 1.

(ii) If 2α ∈ R, then Ωℓ(α) = −1 implies Y α(ℓ) ∈ {1,−1}.
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(iii) For w ∈ WR and α ∈ R+
red ∩ w

−1R+
red we have Ωℓ(α) = Ωwℓ(wα).

For each α ∈ ∆0 and ℓ ∈ WRℓ0, we define an operator τΩ
αe(ℓ) : Polℓ −→ Polsαℓ by

τΩ

αe(ℓ) =

{
α−1(sα − 1) Ωℓ(α) = −1

αΩℓ(α)sα Ωℓ(α) ≥ 0
.

Here sα : C[V ] −→ C[V ] is the reflection with respect to α.

Definition 71. We define B
Ω = B(R, V,∆,WRℓ0,Ω) to be the subalgebra of EndZ (PolWRℓ0)

generated by C[V ]e(ℓ) and τΩ
αe(ℓ).

All the statements of Proposition 58 for A
ω hold equally for B

Ω. In particular, the centre
of BΩ is equal to Z.

Example 72.

(i) If ℓ0 = 1 ∈ T and Ω = {−1}ℓ=ℓ0 is the −1 constant function, then B
Ω is the affine

nil-Hecke algebra of type WR and is isomorphic to a matrix algebra over its centre.

(ii) If ℓ0 = 1 ∈ T and Ω = {0}ℓ=ℓ0 is the zero constant function, then B
Ω = C[V ]⋊WR is the

skew tensor product.

Remark 73. In the case where the finite root system (V,R) is of type An−1, the algebra B
Ω

recovers the notion of quiver Hecke algebras.
For any quiver Γ = (I,H) with I ⊂ C

× and a dimension vector β ∈ NI with |β| = n, the
quiver Hecke algebra, denoted by Rβ(Γ) according to [31], is generated by three sets: idempotents

{e(ℓ)}ℓ∈Iβ , Hecke operators {τi}
n−1
i=1 , polynomial part {xi}

n
i=1. By translating suitably the set

I ⊂ C
×, we may assume that

∏
r∈I r

βr = 1, so that each sequence ν = (ν1, · · · , νn) ∈ Iβ ⊂
(C×)n lies in the maximal torus T ⊂ (C×)n of SLn(C). We put Ων(αi,j) = #{(h : i −→ j) ∈
H} − δνi=νj . Then there is a surjective homomorphism

Rβ(Γ) −→ B
Ω

e(ν) 7→ e(ν)

τi 7→ ταi
, i ∈ {1, . . . , n− 1}

xk 7→
1

n


−

∑

1≤j<k

jαj +
∑

k≤j<n

(n− j)αj


 eR, k ∈ {1, . . . , n}

whose kernel the ideal generated by x1 + · · ·+ xn. .

9.2 Basis theorem

Theorem 74. For any w ∈ WR, choose a reduced expression w = sa1 · · · sal and put τΩ
w =

τΩ
αl
· · · τΩ

α1
. Then there is a decomposition

B
Ω =

⊕

ℓ∈WRℓ0

⊕

w∈WR

ℓ(w)=n

C[V ]τΩ

we(ℓ).

Proof. To prove it, we shall apply the results Theorem 94 and Theorem 82 whose proofs do
not rely on this theorem. By Lemma 75 below, we can choose ω = {ωλ}λ∈WSλ0

such that
∫ω = Ω. Then Theorem 82 implies that upon choosing a good γ ∈ Q∨, there is an isomorphism
B

Ω ∼= eγA
ω
eγ identifying τΩ

αe(ℓ) with σαe(
γℓ) and by Theorem 94, the idempotent subalgebra

eγA
ω
eγ has a decomposition in terms of σαe(

γℓ). Hence B
Ω also has a decomposition as in

the statement.

Lemma 75. Given any family of order functions Ω = {Ωℓ}ℓ∈WRℓ0
for B

Ω, there exists a family
of order functions ω = {ωλ}λ∈WSλ0

satisfying the conditions from §6.3 such that ∫ω = Ω, where
∫ω is defined in §10.2.

Proof. We choose a point λ0 ∈ exp−1(ℓ0) ⊂ V . Such a family ω = {ωλ}λ∈WSλ0
is determined by

a Wλ0 -invariant function ω̃λ0 : S −→ Z≥−1 and it suffices to construct it. However, one needs
to be careful about the condition (i) from §6.3. We first define a function Ω̃ℓ0 : R −→ Z≥−1 as
follows:
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(i) For any α ∈ R+
red such that 2α /∈ R, we set Ω̃ℓ0(α) = Ωℓ0(α) and Ω̃ℓ0(−α) = Ωw0ℓ0(−w0α).

(ii) For any α ∈ R+
red such that 2α ∈ R, if Y α(ℓ0) = −1, then we set Ω̃ℓ0(2α) = Ωℓ0(α),

Ω̃ℓ0(−2α) = Ωw0ℓ0(−w0α) and Ω̃ℓ0(α) = Ω̃ℓ0(−α) = 0; otherwise, we set Ω̃ℓ0(α) = Ωℓ0(α),
Ω̃ℓ0(−α) = Ωw0ℓ0(−w0α) and Ω̃ℓ0(2α) = Ω̃ℓ0(−2α) = 0.

The function Ω̃ℓ0 is Wℓ0 -invariant by the assumption (iii) from §9.1 and has image in Z≥−1. We
choose a section of the projection Wλ0\S −→ Wℓ0\R, denoted f : Wℓ0\R −→ Wλ0\S, in such
a way that for each α ∈ Rred, the condition f(α)(λ0) = 0 holds whenever α(ℓ0) = 0 . We set
ω̃λ0 = f∗Ω̃ℓ0 so that ω̃λ0 : S −→ Z≥−1 is a Wλ0 -invariant function of finite support. The family
{ωλ}λ∈WSλ0

is then defined by ωwλ0(a) = ω̃λ0(w
−1a) for all w ∈ WS and a ∈ S+.

9.3 Frobenius form on B
Ω

As observed in [4], the basis theorem Theorem 74 implies that the algebra B
Ω is Frobenius over

its centre Z.

Lemma 76. B
Ω is a Frobenius algebra over Z.

Proof. Consider the filtration by length

F≤nB
Ω =

∑

ℓ∈WRℓ0

n∑

k=0

∑

(α1,...,αk)∈∆k
0

C[V ]τΩ

α1
· · · τΩ

αk
e(ℓ).

We set N = #R+ = ℓ(w0) and let w0 = sαN
· · · sα1 be any reduced expression for the longest

element w0 ∈ WR and set τΩ
w0

e(ℓ) = τΩ
αN
· · · τΩ

α1
e(ℓ). By Theorem 74, we have F≤NB

Ω = B
Ω

and

grFNB
Ω ∼=

⊕

ℓ∈WRℓ0

C[V ]τΩ

w0
e(ℓ).

Let Rλ0 = {α ∈ R ; α(λ0) = 0} be the sub-root system associated with λ0 and let ∆λ0 ⊂ Rλ0

be any basis, which determines a set of positive roots R+
λ0
⊂ Rλ0 and a set of Coxeter generators

{sa}a∈∆λ0
⊂ Wλ0 . It is well known that C[V ] is a symmetric algebra over Z with the trace

map f 7→ ϑw0(Wλ0
)(f), where ϑw0(Wλ0

) is a composition of Demazure operators for the longest
element w0(Wλ0 ) of the Coxeter group (Wλ0 ,∆λ0). Let tr be the composition

B
Ω −→ grFNB

Ω =
⊕

ℓ

C[V ]τw0e(ℓ)
τw0e(ℓ) 7→1
−−−−−−−→

⊕

ℓ

C[V ]

ϑw0(Wℓ)−−−−−→
⊕

ℓ

C[V ]Wℓ ∼=
⊕

ℓ

Z

∑
ℓ∈WRℓ0−−−−−−→ Z.

Then tr is a Frobenius form.

10 Knizhnik–Zamolodchikov functor V

We resume to the assumptions of §6.
In this section, we introduce a functor V : Aω -gmod −→ B

Ω -gmod, which is a quotient
functor satisfying the double centraliser property. It can be viewed as a generalisation of the
monodromy functor of [34] for dDAHAs (which has been reviewed in §4) to the family of
algebras A

ω . It is thus expected to satisfy some properties of the monodromy functor. The
main results of this article Theorem 105 and Theorem 108 provide some evidence. We construct
V by choosing an idempotent element eγ ∈ A

ω and establish an isomorphism B
Ω ∼= eγA

ω
eγ

in Theorem 82.

10.1 The idempotent construction

Consider the following exponential map

E ∼= V = Q∨ ⊗R
exp
−−→ Q∨ ⊗C

× = T

µ⊗ r 7→ µ⊗ e2πir
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and put ℓ0 = exp(λ0) ∈ T . Choose an element γ ∈ Q∨ such that

〈γ, α〉 ≪ 0 for all α ∈ R+. (77)

We define a section of the projection ∂W :WS −→WS/Q
∨ =WR by

γ• :WR −→WS

w 7→ Xγ wX−γ = wXw−1γ−γ

and a section of the exponential map WSλ0
exp
−−→WRℓ0 by

γ• :WRℓ0 −→ WSλ0

wℓ0 7→ Xγ wλ0.

It is clear that γw γℓ =
γ
(wℓ). The choice of γ implies that

α(γℓ)≪ 0 for all α ∈ R+ and ℓ ∈WRℓ0. (78)

Given a family of order functions {ωλ : S+ −→ Z≥−1}λ∈WSλ0
satisfying the axioms of §6.3,

we can associate a family of order functions ∫ω =
{
∫ωℓ : R

+
red −→ Z≥−1

}
ℓ∈WRℓ0

, called the

integral of ω along ∂W , by setting for each ℓ ∈WRℓ0

∫ωℓ(α) =
∑

a∈S+

∂a∈{α,2α}

ωγℓ(a). (79)

The definition of ∫ω is independent of the choice of γ. Denote Ω =
∫
ω. This family of order

functions gives rise to an algebra B
Ω as defined in §9.1.

For any ℓ and α ∈ ∆0, we define an operator σαe(
γℓ) : Polγℓ −→ Polγ(sαℓ) by

σαe(
γℓ) =

{
α−1(sα − 1) ∫ωℓ(α) = −1

αΩℓ(α)sα ∫ωℓ(α) ≥ 0
. (80)

Define the idempotent

eγ =
∑

λ∈γ(WRℓ0)

e(λ) ∈ A
ω. (81)

The main result is the following, which will be proven in §10.5:

Theorem 82. Upon choosing γ ∈ Q∨ satisfying (77), there is an isomorphism of graded Z-
algebras

iγ : BΩ ∼= eγA
ω
eγ

fe(ℓ) 7→ fe(γℓ)

τΩ

αe(ℓ) 7→ σαe(
γℓ).

Moreover, for any other choice γ′, the intertwiner

ϕγ,γ′ :=
∑

w∈WR/Wℓ0

e(γ(wℓ0))τ
ω
Xw(γ−γ′)e(

γ′

(wℓ0)) ∈ eγA
ω
eγ′

yields a factorisation iγ(f) = ϕγ,γ′ · iγ′(f) · ϕγ′,γ for each f ∈ B
Ω.

Example 83. Resume to the setting of Example 33 (iii) and Example 55. The coroot lattice
is given by Q∨ = Z, which acts by translation on E = R. Recall that λ0 = 1/4 ∈ E. We
may take γ = s1s0 = −1 so that

γ
(WRℓ0) = {λ+, λ−}, where λ+ = s1s0λ0 = −3/4 and

λ− = s1s0s1λ0 = −5/4. It follows that λ− = s1s0s1s0s1λ+ and

e(λ−)A
ω
e(λ+) = C[ǫ]τωa1τ

ω
a0τ

ω
a1τ

ω
a0τ

ω
a1e(λ+), e(λ+)A

ω
e(λ−) = C[ǫ]τωa1τ

ω
a0τ

ω
a1τ

ω
a0τ

ω
a1e(λ−).
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Denote by s : C[ǫ] −→ C[ǫ] the automorphism ǫ 7→ −ǫ. Calculate the products:

τωa1τ
ω
a0τ

ω
a1τ

ω
a0τ

ω
a1e(λ+) = τωa1e(5/4)τ

ω
a0e(−1/4)τ

ω
a1e(1/4)τ

ω
a0e(3/4)τ

ω
a1e(−3/4),

= s · s · (ǫs) · s · s = ǫs

τωa1τ
ω
a0τ

ω
a1τ

ω
a0τ

ω
a1e(λ−) = τωa1e(3/4)τ

ω
a0e(1/4)τ

ω
a1e(−1/4)τ

ω
a0e(5/4)τ

ω
a1e(−5/4)

= s · (−ǫs) · s · s · s = ǫs.

Let α = ∂a1 ∈ ∆0 be the simple root for (V,R) = A1. Denote ℓ+ = exp(2πiλ+) = i and
ℓ− = exp(2πiλ−) = −i. The family of order functions Ω = ∫ω for B

Ω is given by

Ωℓ+(α) =
∑

k∈N

ωλ+(α+ k) = 1, Ωℓ−(α) =
∑

k∈N

ωλ−
(α+ k) = 1.

It follows that

σαe(λ+) = αΩℓ+
(α)s = τωa1τ

ω
a0τ

ω
a1τ

ω
a0τ

ω
a1e(λ+) σαe(λ−) = αΩℓ−

(α)s = τωa1τ
ω
a0τ

ω
a1τ

ω
a0τ

ω
a1e(λ−)

and therefore there is an isomorphism

B
Ω ∼
−→ eγA

ω
eγ

e(ℓ+) 7→ e(λ+)

e(ℓ−) 7→ e(λ−)

τΩ

α 7→ τωa1τ
ω
a0τ

ω
a1τ

ω
a0τ

ω
a1eγ .

Remark 84. As we will see in Lemma 90, the idempotent eγ corresponds to generic clans
(§7.3). The choice of eγ is inspired from the sheaf-theoretic study of extension algebras over
a cyclically graded simple Lie algebra g∗ in [24] and the sheaf-theoretic construction of the KZ
functor. In the language of op. cit. and [26], each eigenvalue λ ∈WSλ0 corresponds to the spiral
induction of a cuspidal local system C through one spiral of g∗. On the other hand, affine Hecke
algebras arise as extension algebra of parabolic inductions of C through parabolic subalgebras
of g∗, which appear also as spiral induction of C through “generic spirals”. Therefore, the
definition of the sheaf-theoretic KZ functor is nothing but picking idempotents of the extension
algebra corresponding to those “generic spirals”. In the algebraic and combinatorial language,
they corresponds to alcoves lying in the generic clans, as introduced in §7.3.

10.2 A formula for order functions

By the hypothesis of finite support for ω̃λ0 : S −→ Z≥−1, there exists M ≫ 0 such that
ω̃λ0(α + k) = 0 for all α ∈ R and |k| ≥ M . Let γ ∈ Q∨ be an element satisfying (77). More
specifically, we require that

〈α, γ〉 ≤ −M, ∀α ∈ R+. (85)

We prove a relation between the family ω = {ωλ}λ∈WSλ0
for Aω and its integral Ω = {Ωℓ}ℓ∈WRℓ0

for B
Ω defined in (79).

Lemma 86. For any ℓ ∈ WRℓ0 and w ∈WR, following formula holds in C(V ):

∏

b∈S+∩γw−1S−

(−∂b)ωλ(b) = ǫ ·
∏

β∈R+
red∩w

−1R−

red

(−β)Ωℓ(β),

where λ = γℓ and ǫ ∈ C
× is constant (which is a power of 2).

Proof. We divide the index set of the product on the left-hand side into two

S+∩γw−1S− = {b ∈ S+∩γw−1S− ; ∂b /∈ R+∩w−1R−}⊔{b ∈ S+∩γw−1S− ; ∂b ∈ R+∩w−1R−}

and treat the two sub-products separately.
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Step 1. We prove that ωλ(b) = 0 when b ∈ S+ ∩ γw−1S− and β := ∂b /∈ R+ ∩ w−1R−.

Write b = β + k for k ∈ Z. We deduce

ωλ(b) = ωλ(β + k) = ω̃λ0(yβ + k + 〈β, γ〉), where y ∈WR is such that yℓ = ℓ0.

Since γw = wXw−1γ−γ , the condition b ∈ S+∩ γw−1S− implies that 0 ≤ k < 〈wβ−β, γ〉.
There are two cases: β ∈ R− or β ∈ w−1R+. In the case where β ∈ w−1R+, since
k+ 〈β, γ〉 < 〈wβ, γ〉 ≤ −M , the hypothesis (85) implies that ωλ(b) = 0. In the case where
β ∈ R−, we have k + 〈β, γ〉 ≥ 〈β, γ〉 ≥M , whence ωλ(b) = 0 as well.

Step 2. We prove that

∏

b∈S+∩γw−1S−

∂b∈R+∩w−1R−

(−∂b)ωλ(b) = ǫ ·
∏

β∈R+
red∩w

−1R−

red

(−β)Ωℓ(β). (87)

for some ǫ ∈ C
× which is a power of 2. We rewrite the left-hand side according to ∂b:

∏

b∈S+∩γw−1S−

∂b∈R+∩w−1R−

(−∂b)ωλ(b) = ǫ ·
∏

β∈R+
red∩w

−1R−

red

∏

b∈S+∩γw−1S−

∂b∈{β,2β}

(−β)ωλ(b) (88)

Let β ∈ R+
red ∩ w

−1R−
red. Let N := 〈wβ − β, γ〉. It follows by the same arguments

as Step 1 that b = β + k ∈ S+ ∩ γw−1S− for 0 ≤ k ≤ N . For k ≥ N , we obtain
k + 〈β, γ〉 ≥ 〈wβ, γ〉 ≥M , thus ωλ(β + k) = ω̃λ0(yβ + k + 〈β, γ〉) = 0 and hence

∑

b∈S+∩γw−1S−

∂b=β

ωλ(b) =
N∑

k=0

ωλ(β + k) =
∑

k∈N

ωλ(β + k) =
∑

b∈S+

∂b=β

ωλ(b).

In the case where 2β ∈ R, we obtain similarly

∑

b∈S+∩γw−1S−

∂b=2β

ωλ(b) =
N−1∑

k=0

ωλ(2β + (2k + 1)) =
∑

k∈N

ωλ(2β + (2k + 1)) =
∑

b∈S+

∂b=2β

ωλ(b).

Hence

∑

b∈S+∩γw−1S−

∂b∈{β,2β}

ωλ(b) = Ωℓ(β). (89)

The equation (87) follows from (88) and (89).

Combining the two steps, we obtain the product formula.

10.3 Preparatory lemmas

Let γ ∈ Q∨ be an element satisfying (77). Recall the notion of clans and generic clans from §7.3
and the fundamental alcove ν0 ⊂ E.

Lemma 90. For w ∈ WR, the alcove w−1X−γν0 is in a generic clan and every generic
clan contains at least one such alcove. Moreover, for a different choice γ′ ∈ Q∨, the alcoves
w−1X−γν0 and w−1X−γ′

ν0 are in the same clan.

Proof. Since the clans are connected components of the complement Eω◦ of the hyperplanes
in Dω = {Ha ⊂ E ; a ∈ S, ω̃λ0(a) ≥ 1}, any two points x, y ∈ Eω◦ are in the same clan if
a(x)a(y) > 0 for all a ∈ S with Ha ∈ Dω. Let Cw ⊂ Eω◦ be the clan such that w−1X−γν0 ⊂ Cw.
Take any point x ∈ ν0. Set xw(t) = w−1(x − (1 + t)γ) for t ∈ R≥0 so that in particular
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xw(0) ∈ Cw. Let a ∈ S such that Ha ∈ Dω. Suppose that w∂a ∈ R+ (resp. w∂a ∈ R−); then
〈w∂a, γ〉 ≪ 0 (resp. 〈w∂a, γ〉 ≫ 0), so we have

a(xw(t)) = (wa)(x) − 〈w∂a, (1 + t)γ〉 ≫ 0, ∀t ∈ R≥0

(resp. a(xw(t))≪ 0). Hence xw(t) ∈ Cw for all t ≥ 0. Moreover, we see that the value a(xw(t))
is unbounded when t −→ +∞. Hence every affine root is unbounded on the Cw, from which
the genericity of Cw.

Conversely, let C be a generic clan, consider the salient cone κ defined in §7.3. The genericity
of C means that κ is of full dimension dimV . Let C0 ⊂ V be the fundamental Weyl chamber
and let w−1C0 ⊂ V be a Weyl chamber with w ∈ WR such that Int(κ) ∩ w−1C0 6= ∅. It is
obvious that w−1X−γν0 ⊂ C.

Recall the element σα from (80).

Lemma 91. We have σαe(
γℓ) ∈ A

ω.

Proof. Denote λ = γℓ. Let γsα = sal · · · sa1 be any reduced decomposition and denote
σ′
αe(λ) = τωal · · · τ

ω
a1e(λ). Applying Lemma 37(ii), we see that

σ′
αe(λ) ≡ sal · · · sa1


 ∏

c∈S+∩γsαS−

(−∂c)ωλ(c)


 e(λ) mod F≤l−1A

−∞ (92)

and Lemma 86 yields
∏

c∈S+∩γsαS−

(−∂c)ωλ(c) = ǫ · (−α)ωℓ(α), ǫ ∈ C
×.

Thus the right-hand side of (92) is congruent to ǫσαe(λ) modulo F≤l−1A
−∞. Notice that

σαe(λ) ∈ A
o by Proposition 30 (iii) and σ′

αe(λ) ∈ A
ω ⊂ A

o. Hence by the compatibility of
the filtrations by length Corollary 41, we have

(σ′
α − ǫσα)e(λ) ∈ e(γsαλ)

(
F≤l−1A

−∞ ∩A
o
)
e(λ) = e(γsαλ) (F≤l−1A

o) e(λ).

We show that in fact (σ′
α − ǫσα)e(λ) ∈ A

ω . For any different choice γ′ satisfying (77),
Lemma 90 implies that the intertwiner ϕγ,γ′ defined in Theorem 82 satisfies ϕγ,γ′ϕγ′,γ = eγ ,
ϕγ′,γϕγ,γ′ = eγ′ and

ϕγ,γ′σαe(
γ′

ℓ)ϕγ′,γ = σαe(
γℓ), ϕγ,γ′σ′

αe(
γ′

ℓ)ϕγ′,γ = σ′
αe(

γℓ);

thus the validity of the statement is independent of the choice of γ. We claim that if we choose
γ in such a way that |〈α, γ〉| ≪ |〈β, γ〉| for all β ∈ ∆0 \ {α}, then there is an inequality of
lengths

l = ℓ(γsα) ≤ ℓ(
γw), ∀w ∈WR \ {1}. (93)

We complete the proof provided (93). Note that the stabilisers satisfy γW ℓ = Wλ. There are
two cases to be discussed:

(i) If sαℓ 6= ℓ, then by (93) we have ℓ(w) ≥ l for all w ∈WS such that wλ = γsαλ. It follows
from Theorem 40 that e(γsαλ) (F≤l−1A

o) e(λ) = 0. Hence σαe(λ) = ǫσ′
αe(λ) ∈ A

ω.

(ii) If sαℓ = ℓ, then by (93) we have ℓ(w) ≥ l for all 1 6= w ∈ Wλ and thus by Theorem 40,
we see that e(λ) (F≤l−1A

o) e(λ) = C[V ]e(λ) = e(λ) (F≤l−1A
ω) e(λ). Thus (σα −

ǫ−1σ′
α)e (λ) ∈ A

ω and consequently σαe(λ) ∈ A
ω . Hence the proof is completed.

We prove (93). Indeed by Proposition 1,

l = ℓ(γsα) ≤ 1 + ℓ(X−〈α,γ〉α∨

) ≤ 1 + |〈2ρ, α∨〉〈α, γ〉| ≪ |〈β, γ〉|,

while for any w ∈WR \ {1, sα}, there exists β ∈ R+
red ∩ w

−1R−
red with β 6= α, so

ℓ(γw) ≥
∣∣〈β,w−1γ − γ〉

∣∣− ℓ(w) = |〈wβ − β, γ〉| − ℓ(w) ≥ |〈β, γ〉| − ℓ(w)≫ l;

here, the second-to-last inequality is due to (77).
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10.4 Basis theorem for generic clans

Let γ ∈ Q∨ be an element satisfying (77). Recall the idempotent of generic clans eγ from (81)
and the elements σαe(

γℓ) from (80).

Theorem 94. The idempotent subalgebra eγA
ω
eγ is generated by C[V ]e(λ) and σαe(λ) for

α ∈ ∆0 and λ ∈ γ
(WRℓ0). Moreover, if for any w ∈ WR we set σw = σαn

· · ·σα1 by choosing
any reduced expression w = sαn

· · · sα1 , then there is a decomposition

eγA
ω
e(λ) =

⊕

λ∈γ(WRℓ0)

⊕

w∈WR

C[V ]σwe(λ).

Proof. Let ℓ ∈ WRℓ0 and w ∈ WR. Denote λ = γℓ. Choose any reduced expressions
w = sαn

· · · sα1 and γw = sal · · · sa1 for α1, · · · , αn ∈ ∆0 and a1, · · · , al ∈ ∆ and set

σ′
we(λ) = τωal · · · τ

ω
a1e(λ) ∈ A

ω , σwe(λ) = σαn
· · ·σα1e(λ).

By Lemma 91, we see that σwe(λ) ∈ A
ω. We claim that

σ′
we(λ) ≡ ǫσwe(λ) mod F≤l−1A

ω. (95)

for some ǫ ∈ C
×. Recall the rational function matrix algebra A

−∞ = FracZ ⊗Z A
o.

By Lemma 37 (ii) and Lemma 86, we have

σ′
we(λ) ≡ s∂al · · · s∂a1


 ∏

b∈S+∩γw−1S−

(−∂b)ωλ(b)


 e(λ) mod F≤l−1A

−∞

≡ ǫσwe(λ) mod F≤l−1A
−∞.

for some ǫ ∈ C
×. As n ≤ l, the above congruences yield (σ′

w − ǫσw)e(λ) ∈ A
ω ∩ F≤l−1A

−∞.
By Corollary 41, we have A

ω ∩ F≤l−1A
−∞ = F≤l−1A

ω , so the claim (95) is proven.
According to Theorem 40, the family {σ′

we(λ)}w∈WR
form a basis for eγA

ω
e(λ). The

decomposition of eγA
ω
e(λ) follows from the triangularity (95) of the transition matrix between

the basis {σ′
we(λ)}w∈WR

and the family {σwe(λ)}w∈WR
.

10.5 Proof of Theorem 82

Proof. We define an isomorphism of Z-modules PolWRℓ0
∼= eγ PolWSλ0 straightforwardly by

the identification:

Polℓ = C[V ] = Polγℓ, ℓ ∈ WRℓ0.

It yields a faithful representation of BΩ on eγ PolWSλ0 , which by definition of BΩ is described
by the formula

fe(ℓ) · g = fe(γℓ)g, τΩ

αe(ℓ) · g = σαe(
γℓ)g.

By Theorem 94, the image of BΩ in EndZ (eγ PolWSλ0) coincides with eγA
ω
eγ and the map

B
Ω −→ eγA

ω
eγ must be an isomorphism since both sides are free C[V ]-modules of same rank.

Notice that deg τΩ
αe(ℓ) = Ωℓ(α) = deg σαe(

γℓ). Hence the map iγ is an isomorphism of graded
Z-algebras.

For any other choice γ′, since by Lemma 90, w−1Xγ and w−1Xγ′

lie in the same generic clan
for each w ∈ WR, by Proposition 53, the intertwiner ϕγ′,γ yields isomorphisms of Aω-modules
A
ω
eγ′
∼= A

ω
eγ by right multiplication and hence isomorphisms of algebras

eγ′A
ω
eγ′
∼= EndAω (Aω

eγ′) ∼= EndAω (Aω
eγ) ∼= eγA

ω
eγ .

The factorisation iγ = ϕXγ′−γ ◦ iγ′ follows from the observation that ∂(Xγ′−γ) = 1 ∈ WR.
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10.6 The functor V

Choose a γ ∈ Q∨ satisfying (77) as in §10.2. With Theorem 82, we can make the following
definition:

Definition 96. The Knizhnik–Zamolodchikov (KZ) functor V is defined by

V : Aω -gmod −→ eγA
ω
eγ -gmod

i∗γ
GGGGGGA

∼=
B

Ω -gmod

M 7→ eγM.

By the second assertion of Theorem 82, the definition of V is independent of the choice of
γ up to canonical isomorphism (provided by the intertwiner ϕγ,γ′).

Since V is defined as an idempotent truncation, it admits left and right adjoint functors

V
⊤ : N 7→

⊕

λ∈WSλ0

gHomBΩ (eγA
ω
e(λ), N) and ⊤

V : N 7→ A
ω
eγ ⊗BΩ N

and V is a quotient functor in the sense that the adjoint counit V ◦ V⊤ −→ idBΩ is an
isomorphism.

10.7 Support characterisation of V

For M ∈ A
ω -gmod, define the following subset of E:

SpecEM = {λ ∈WSλ0 ; e(λ)M 6= 0} .

For each alcove ν ⊂ E, there is a unique w ∈ WS such that ν = w−1ν0; we denote λν = wλ0.
Recall the Gelfand–Kirillov dimension dimGKM and the support SuppM from §8.3.

Theorem 97. Let M ∈ A
ω -gmod0. The following conditions are equivalent:

(i) VM = 0;

(ii) for every alcove ν lying in a generic clan, we have e(λν)M = 0;

(iii) the set SpecEM is contained in a finite union of (not-necessarily root) affine hyperplanes
of E;

(iv) dimGKM ≤ rkR− 1;

(v) SuppM 6= SpecCQ∨
+.

Proof. Since every object of the category A
ω -gmod is of finite length and all the conditions

(i)–(v) are stable under extensions, we may suppose that M is simple.
(i)⇔ (ii) follows from the definition VM = eγM and the invariance of dimension of e(λ)M

for λ’s in the same clan Corollary 54.
We prove (ii) ⇒ (iii). By the finiteness of the clan decomposition, it suffices to show that

for each non-generic clan C, the set {λν ; ν ⊆ C} lies in a finite union of affine hyperplanes of
E. By the non-genericity of C, there exists α ∈ R which is bounded on C. Let Λ = kerα ∩Q∨.
Notice that Q∨ is a free Z-module of rank rkR − 1. Let AC be the set of alcoves contained in
C. For ν, ν′ ∈ AC, we write ν ∼Λ ν

′ if there exists µ ∈ Λ such that ν + µ = ν′. For any ν ∈ AC,
since Xµλν = λν + µ, the set {λν′ ; ν′ ∼Λ ν} is contained in the hyperplane w (λ0 + ΛR) for
any w ∈ WS such that ν = w−1ν0. Since α is bounded on C, the quotient AC/ ∼Λ is a finite
set and thus the set

{λν ; ν ⊂ C} ⊂
⋃

ν∈AC/∼Λ

{λν′ ; ν′ ∼Λ ν}

is contained in a finite union of hyperplanes, whence (iii).
We prove (iii)⇒ (iv). Suppose that SpecEM is contained in a finite number of hyperplanes.

Choose any λ1 ∈ SpecEM . Let r = rkR = dimE. Via the identification E ∼= V induced by
∆0 ⊂ ∆, we view E as an euclidean vector space. Since

SpecEM ⊂
⋃

w∈WR

(wλ1 +Q∨)
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is contained in a finite union of the intersection of lattices and hyperplanes, we have

lim
n−→∞

# {λ ∈ SpecEM ; ‖λ‖ < n}

nr−1+ε
= 0, ∀ε > 0.

For every affine simple root a ∈ ∆, we have τωa e(λ)M ⊆ e(saλ)M . Moreover, we have
‖saλ‖ ≤ ‖λ‖ + δ for some constant δ which depends only on the affine root system (E, S). It
follows that if we define for t ∈ R≥0 the subspace

M≤t =
∑

λ∈SpecE M
‖λ‖≤t

e(λ)M,

then τωaM≤t ⊂ M≤t+δ, so F≤1A
ωM≤t ⊂ M≤t+δ. By induction on n ∈ N, we see that

(F≤nA
ω)M≤t ⊂M≤t+nδ. Since there is only a finite number of clans and since the dimension

of e(wλ0)Mλ for w−1ν0 in a fixed clan is constant by Corollary 54, the set {dim e(λ)M ; λ ∈
WSλ0} is bounded. Hence for any finite-dimensional subspaces L ⊂M , we have

lim
n−→∞

dim (F≤nA
ω · L)

nr−1+ε
= 0, ∀ε > 0. (98)

Indeed, let t0 ∈ R be such that L ⊂M≤t0 , then dim (F≤nA
ω · L) ≤ dimM≤t0+nδ = o

(
nr−1+ε

)
.

The estimate (98) implies (iv). The equivalence (iv) ⇔ (v) results from Proposition 67.
We prove ¬(ii) ⇒ ¬(iv). Suppose there exists a generic clan C and an alcove ν ⊂ C such

that e (λν)M 6= 0. Let κ ⊂ V be the salient cone of C (cf. §7.3). For any µ ∈ κ ∩Q∨, we have
Xµν ∈ C and by Proposition 53, e(X−µλν)M ∼= e(λν)M 6= 0. It follows that

dim (F≤nA
ω) (e(λν)M) ≥ dim

∑

µ∈κ∩Q∨

ℓ(Xµ)≤n

e(X−µλν)M = #{µ ∈ κ ∩Q∨ ; ℓ(Xµ) ≤ n} dim e(λν)M.

By the genericity of C, the salient cone κ contains an open subset of V , so its intersection with
a full-ranked lattice Q∨ satisfies

lim
n−→∞

#{µ ∈ κ ∩Q∨ ; ℓ(Xµ) ≤ n}

nr
= c, c > 0.

Hence

dimGKM ≥ lim
n−→∞

log dim(F≤nA
ω)e(λν)M

logn
≥ lim

n−→∞

log cnr

logn
= r,

whence (iv) is not satisfied.

10.8 Double centraliser property

Recall the parabolic subalgebra A
ω
R,λ1

from §7.6.

Lemma 99. Let λ1 ∈ WSλ0, N ∈ A
ω
R,λ1

-gmod and L ∈ A
ω -gmod. Suppose that VL = 0,

then gHom
(
L, indSR,λ1

N
)
= 0.

Proof. It follows from Theorem 97 (i)⇒(v) and Proposition 69.

Remark 100. We shall establish in Theorem 105 the double centraliser property for the functor
V. The strategy is close to the case of rational Cherednik algebras in [16, 5.3]: the first step
consists of showing that “induced modules” are torsion-free for the KZ functor. In the case of
the dDAHA H discussed in Part I, the parabolic subalgebra A

ω
R,λ1

plays the rôle of be graded
affine Hecke subalgebra H = CWR ⊗C[E] ⊂ H, whereas B

Ω plays the rôle of the affine Hecke
algebra K. In this sense, Lemma 99 is an analogue of the first step in the proof of loc. cit.

Let (Aω/mZ) -gmod be the full subcategory of Aω -gmod consisting of objects M such that
mZM = 0. The inclusion (Aω/mZ) -gmod →֒ A

ω -gmod has a left adjoint functor − ⊗ZC,
which is right exact. We denote by − ⊗L

ZC its derived functor. The next lemma is the method
of lifting faithfulness borrowed from [29, 4.42].
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Lemma 101. Let M ∈ A
ω -gmod be an object satisfying the following properties:

(i) M is free over the centre Z;

(ii) there exists λ1 ∈ WSλ0 and N ∈ A
ω
R,λ1

-gmod0 such that M/mZM ∼= indSR,λ1
N .

Then for any L ∈ A
ω -gmod such that VL = 0, we have gHom(L,M) = 0 and gExt1(L,M) = 0.

Proof. We suppose that M 6= 0. Let K = RgHom(L,M) be in the derived category
D+(Z -gMod). We suppose that K is a minimal projective resolution. Since

K ⊗Z C ∼= RgHom
(
L⊗L

Z C,M ⊗L
Z C

)
∼= RgHom

(
L⊗L

Z C,M/mZM
)

by the flatness of M over Z, we have K ⊗Z C ∈ D≥0 (C). By the second assumption
and Lemma 99, we have

H0(K ⊗Z C) = Hom(L⊗Z C,M/mZM) = 0.

Consequently H≤0(K) = 0 by Nakayama’s lemma.
Suppose that H1(K) 6= 0. Since the localisation FracZ ⊗Z M is a weight module over

A
−∞, which is semisimple, H1(K) must be a torsion module over Z so K0 6= 0. However,

the minimality of K would imply H0(K ⊗Z C) 6= 0, contradiction. Hence H≤1(K) = 0 and so
gHom(L,M) = 0 and gExt1(L,M) = 0 as asserted.

Lemma 102. Let M ∈ A
ω -gmod be an object satisfying Lemma 101. Then the adjoint unit

yields an isomorphism M ∼= (V⊤ ◦V)M .

Proof. Set X = Cone
(
M −→ (RV⊤ ◦V)M

)
∈ D+(Aω -gmod), so that there is a distinguished

triangle

M −→ (RV⊤ ◦V)M −→ X −→M [1]. (103)

By the adjunction and the exactness of V, we have VX ∼= Cone(VM −→ (V◦RV⊤◦V)M) = 0
and hence

VHk(X) ∼= Hk(VX) = 0, k ∈ Z.

Applying Lemma 101 with L = H0(X) and L = H−1(X), we deduce

gHom
(
H0(X),M

)
= 0, gHom

(
H0(X)[−1],M

)
= gExt1

(
H0(X),M

)
= 0

gHom
(
H−1(X),M

)
= 0,

whence

gHom(τ≤0X,M) = 0, gHom(τ≤0X,M [1]) = gHom(τ≤0X [−1],M) = 0. (104)

Applying RgHom (τ≤0X,−) to the distinguished triangle (103), we obtain the long exact
sequence

gHom(τ≤0X,M) −→ gHom
(
τ≤0X, (RV

⊤ ◦V)M
)
−→ gHom(τ≤0X,X) −→ gHom(τ≤0X,M [1]) .

By (104), the first and the last term of the sequence vanish. Hence,

gHom(τ≤0X,X) ∼= gHom
(
τ≤0X, (RV

⊤ ◦V)M
)
∼= gHom(τ≤0VX,VM) = 0,

which implies that τ≤0X = 0. Applying H0 to the distinguished triangle (103), we deduce that
the adjunction unit M −→ (V⊤ ◦V)M is an isomorphism.

Theorem 105 (Double centraliser property¶ ). The canonical map

A
ω −→

⊕

λ,λ′∈WSλ0

gHomBΩ (VAω
e (λ) ,VAω

e (λ′))

is an isomorphism.

¶Let A and B be unital associative rings. Usually, one says that an (A,B)-bimodule P satisfies the double

centraliser property if the structural maps A −→ EndBop (P ) and B −→ EndA(P )op are isomorphisms. The above

theorem provides a graded, non-unital version of this property for the (Aω,BΩ)-bimodule A
ω
eγ .
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Proof. Observe that for each λ ∈WSλ0, the module Aω
e(λ) ∈ A

ω -gmod satisfies the conditions
of Lemma 101. Indeed, Aω

e(λ) is flat over Z by Theorem 40. For the second condition, we have

A
ω
e(λ) ∼= indSR,λ1

A
ω
R,λe(λ), so A

ω
e(λ)/mZ

∼= indSR,λ1

(
A
ω
R,λe(λ)/mZ

)
. Applying Lemma 102,

we obtain

A
ω ∼=

⊕

λ,λ′∈WSλ0

gHom
Aω (Aω

e (λ) ,Aω
e (λ′))

∼=−→
⊕

λ,λ′∈WSλ0

gHom
Aω (VAω

e (λ) ,VAω
e (λ′)) .

10.9 Categorical characterisation of V

We shall exploit the Frobenius structure on B
Ω introduced in Lemma 76. Consider the anti-

involution A
ω ∼= (Aω)op which fixes pointwise C[V ]e(λ) for λ ∈ WS and sends τωa e(λ) 7→

τωa e(saλ). The duality

M 7→M∗ :=
⊕

λ∈WSλ0

HomC(e(λ)M,C) (106)

yields an equivalence

A
ω -gmod0

∼= ((Aω)op -gmod0)
op ∼= (Aω -gmod0)

op.

Similarly, the anti-involution B
Ω ∼= (BΩ)op given by τΩ

αe(ℓ) 7→ τΩ
αe(sαℓ) yields

B
Ω -gmod0

∼= (BΩ -gmod0)
op.

Denote A
ω
= A

ω/AωmZ and B
Ω

= B
Ω/BΩmZ . Notice that the pairing

eγA
ω
×A

ω
eγ

(a,b) 7→ab
−−−−−−→ eγA

ω
eγ = B

Ω

composed with the Frobenius form B
Ω tr
−→ Z/mZ = C yields an isomorphism (A

ω
eγ)

∗ ∼= A
ω
eγ .

Lemma 107. There are canonical isomorphisms ⊤
VB

Ω ∼= A
ω
eγ
∼= V

⊤
B

Ω

.

Proof. The first isomorphism is obvious: ⊤
VB

Ω

= A
ω
eγ ⊗BΩ B

Ω

= A
ω
eγ .

Observe that (A
ω
eγ)

∗ ∼= A
ω
eγ implies VM∗ ∼= (VM)∗ for M ∈ A

ω
-gmod0 and hence

V
⊤N∗ ∼= (⊤VN)∗ for N ∈ B

Ω

-gmod0. Therefore

V
⊤
B

Ω ∼= (⊤V(B
Ω

)∗)∗ ∼= (⊤VB
Ω

)∗ ∼= (A
ω
eγ)

∗ ∼= A
ω
eγ .

Theorem 108. Let L ∈ A
ω -gmod0 be a simple object. Then the following conditions are

equivalent:

(i) VL 6= 0;

(ii) the injective hull of L in the subcategory A
ω
-gmod is projective;

(iii) the projective cover of L in the subcategory A
ω
-gmod is injective.

Proof. Since V
⊤ preserves injective objects, we see that by Lemma 107, A

ω
eγ is injective-

projective in A
ω
-gmod.

We prove (i) ⇔ (ii). Let L ∈ A
ω -gmod0 be any simple object. If VL = 0, then

by Lemma 99, we have gHom(L,A
ω
) = 0; hence (ii) fails for L. If VL 6= 0, since V is a

quotient functor, VL ∈ B
Ω -gmod0 must be simple. We have mZVL = 0, so we may view L as

a B
Ω

-module. By the self-injectivity of B
Ω

, there exists a non-zero map ι : VL →֒ B
Ω

and the
adjunction yields an injective map L −→ V

⊤
B
ω ∼= A

ω
eγ , whence (ii) holds for L.

Finally, since the duality (106) exchanges the projective and injective objects in A
ω
-gmod

and preserves kerV, we deduce

(iii) for L⇔ (ii) for L∗ ⇔ (i) for L∗ ⇔ (i) for L.
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Example 109. Resume to the setting of examples Example 33 (iii), Example 55 and Example 83.
We have A

ω
eγ = P+ ⊕ P− so VL0 = 0, while VL+ 6= 0 and VL− 6= 0 are simple objects in

B
ω -gmod. In regard of Theorem 97, we have dimGK L+ = dimGK L− = 1 while dimGK L0 = 0.

The cosocle filtration of VP+, VP0 and VP− are described by the following:

VP+ =




VL+
VL+〈−2〉 VL−〈−2〉
VL+〈−4〉 VL−〈−4〉
VL+〈−6〉 VL−〈−6〉

...


, VP0 =



VL+〈−1〉 VL−〈−1〉
VL+〈−3〉 VL−〈−3〉
VL+〈−5〉 VL−〈−5〉

...


, VP− =




VL−

VL+〈−2〉 VL−〈−2〉
VL+〈−4〉 VL−〈−4〉
VL+〈−6〉 VL−〈−6〉

...


.

From this description it is obvious that the functor V is fully faithful on the projective objects,
so V satisfies the double centraliser property Theorem 105.

Consider the quotients

P+/mZ =




L+

L0〈−1〉
L−〈−2〉


, P0/mZ =

[
L0

L+〈−1〉 L−〈−1〉

]
, P−/mZ =




L−

L0〈−1〉
L+〈−2〉


.

It follows that P+/mZ (resp. P−/mZ) is the injective hull of L−〈−2〉 (resp. L+〈−2〉) in the
category (Aω/mZ) -gmod while P0/mZ is not injective. Hence L+ and L− satisfy the equivalent
conditions of Theorem 108.

A Category of pro-objects

A.1

Let A be an abelian category. We denote by Pro(A) and Ind(A) the category of pro-objects
and ind-objects. The basic reference for these is [19, 8.6]. All the results below are stated
for Pro(A) while they all have a dual version for Ind(A). An object of Pro(A) is a filtered
“projective limit” of objects of A. If

M (i) = “ lim←−”
j∈I(i)

M
(i)
j , M

(i)
j ∈ A, i ∈ {1, 2}

are two objects of Pro(A), where I(i)’s are filtrant diagram categories and M (i) : I(i)op −→ A’s
are functors, then the Hom-space between them is given by

HomPro(A)

(
M (1),M (2)

)
= lim
←−
j∈I(2)

lim
−→
i∈I(1)

HomA

(
M

(1)
i ,M

(2)
j

)
. (110)

A.2

For every M ∈ Pro(A), let AM denotes the category whose objects are pairs (M ′, a) where
M ′ ∈ A and a ∈ HomPro(A)(M,M ′), and whose morphisms are given by

HomAM ((M1, a1), (M2, a2)) = {b ∈ HomA(M1,M2) ; a2 = b ◦ a1} .

Every object M ∈ Pro(A) can be expressed as the following filtered limit:

M ∼= “ lim
←−

”
(M ′,a)∈AM

M ′. (111)

Let AMepi ⊂ A
M be the full subcategory whose objects are the pairs (M ′, q) with q being an

epimorphism.

Proposition 112. Let A be an artinian abelian category. Then the following statements hold:

(i) A is a Serre subcategory of Pro(A).

(ii) Every object M ∈ Pro(A) can be written as the following filtered projective limit

M ∼= “ lim
←−

”
(M ′,a)∈AM

epi

M ′.

(iii) A is the full subcategory of artinian objects in Pro(A).
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(iv) If ϕ : N −→M is a morphism in Pro(A) such that for every (M ′, q) in AMepi, the composite
q ◦ ϕ is an epimorphism, then ϕ is an epimorphism.

Proof. We first prove that A ⊂ Pro(A) is closed under taking sub-objects.
Let M ∈ Pro(A). Suppose that there exists M̃ ∈ A and a monomorphism ι : M ֌ M̃ .

We can consider the full subcategory AM1 ⊂ A
M of pairs (M ′, a) with a being monomorphism.

The subcategory AM1 is cofinal. Indeed, if (M ′, a) ∈ AM , then
(
M ′ × M̃, (a, ι)

)
∈ AM1 . Let

AM2 ⊂ A
M
1 be the full subcategory of objects which are minimal, in the sense that if there is

(M ′′, b) ∈ AM1 with a monomorphism ϕ ∈ HomA(M
′′,M ′) such that ϕ ◦ b = a, then ϕ is an

isomorphism. By the minimality of the objects of AM2 , it is easy to see that the Hom-space
HomAM

2
((M ′, a), (M ′′, b)) consists of exactly one element for every (M ′, a), (M ′′, b) ∈ AM2 . It

follows that any object (M ′, a) ∈ AM2 yields an isomorphism a : M ∼= M ′. As A is artinian,
AM2 cannot be empty, whence M ∈ A.

To prove (ii), in view of (111), it suffices to show thatAMepi is cofinal. The previous paragraph

shows that for (M ′, a) ∈ AM , the image im(a) is in A. Consider the factorisation M
πa−→

im(a)
ā
−→ M ′. Then (im(a), πa) ∈ AMepi and there is a morphism ā : (im(a), πa) −→ (M ′, a) in

AM . Thus AMepi is cofinal in AM .
We prove (iii). Let M ∈ A. Since A ⊂ Pro(A) is closed under taking sub-objects, every

descending chain of sub-objects of M is in the subcategory A, which by assumption must
stabilise. Thus M is artinian in Pro(A). Suppose that M ∈ Pro(A) is artinian. There must be
a minimal sub-object M ′ ⊂M such that M/M ′ lies in A, meaning that the category AMepi has

an initial object. By (ii), M being the projective limit over AMepi must lie in A, whence (iii).
The assertion (i) follows immediately from (iii).

We prove (iv). Let c : M −→ cokerϕ = C be the cokernel. Suppose that C 6= 0. Since
C ∈ Pro(A), there exists an epimorphism p : C −→ C′ with 0 6= C′ ∈ A. Since p◦ c :M −→ C′

is epimorphism, the composite p ◦ c ◦ ϕ is also an epimorphism by hypothesis. However, as
c ◦ ϕ = 0, we see that C′ = 0, contradiction. Thus C = 0 and ϕ is an epimorphism.

A.3

Let A and B be abelian categories and F : A −→ B an additive functor. We define the extension
of F :

F : Pro(A) −→ Pro(B), F (M) = “ lim
←−

”
(M ′,a)∈AM

F (M ′).

According to [19, 8.6.8], if F is exact, then the extended functor F : Pro(A) −→ Pro(B) is also
exact.

A.4

Suppose that A is noetherian-artinian. We define an endo-functor

hd : Pro(A) −→ Pro(A), hd(M) = “ lim
←−

”
(M ′,q)∈AM

epi

hd(M ′)

where hd(M ′) is the largest semisimple quotient of M ′ in A. For every M ∈ Pro(A), there is
a canonical map πM :M −→ hd(M).

Proposition 113 (Nakayama’s lemma). Let A be a noetherian-artinian abelian category. Let

ϕ : N −→ M be a morphism in Pro(A). Suppose that the composite N
ϕ
−→ M

πM−−→ hd(M) is
an epimorphism. Then ϕ is an epimorphism.

Proof. We first prove the statement in the case where M ∈ A. In this case, since cokerϕ
is a quotient of M , we have an epimorphism hd(M) ։ hd(cokerϕ). As the composite
N −→ hd(M) −→ hd(cokerϕ) is zero and is an epimorphism, it implies that hd(cokerϕ) = 0.
As A is noetherian, it follows that cokerϕ = 0, so ϕ is surjective.

In general, let M ∈ Pro(A). Let (M ′, q) be any object of AMepi. Then πM ′ ◦ q ◦ ϕ is an epi-
morphism. By the previous paragraph, q ◦ϕ is also an epimorphism. Then Proposition 112 (iv)
implies that ϕ is an epimorphism.
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A.5

Proposition 114. Suppose A is an essentially small noetherian-artinian abelian category. Let
M ∈ A be a simple object. Then there exists a projective cover PM ∈ Pro(A).

Proof. We construct an object P (n) ∈ Pro(A) for n ∈ N by induction. Let P (0) = M . For
n > 0, let

0 −→ “
∏

”
L∈Irr(A)/∼

γ∈Ext1A(P
(n−1),L)

L −→ P (n) −→ P (n−1) −→ 0

be the short exact sequence corresponding to the tautological class

∆ = (γ)L,γ ∈
∏

L∈Irr(A)/∼

γ∈Ext1A(P
(n−1),L)

Ext1A

(
P (n−1), L

)
.

Put P = “ lim
←−

”
n−→∞

P (n). Then P is a projective since we have

Ext1Pro(A)(P,L) = 0

by construction and since A is noetherian-artinian. Let p : P −→M be the obvious epimorph-
ism.

Now, let APM be the category whose objects are triples (π,Q, π′), where

• Q ∈ A

• π ∈ HomPro(A)(P,Q) is an epimorphism and

• π′ ∈ HomA(Q,M)

such that

• π′ ◦ π = p ∈ HomPro(A)(P,M) and

• π′ induces an isomorphism hd(Q) ∼=M .

The morphisms are defined by

HomAP
M
((π1, Q1, π

′
1), (π2, Q2, π

′
2)) = {ϕ ∈ HomA (Q1, Q2) ; ϕ ◦ π1 = π2} .

Put

PM = “ lim
←−

”
(π,Q,π′)∈AP

M

Q.

Then the obvious morphism PM −→M is a projective cover.
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P,Q, P∨, Q∨, 4
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S, 4
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PolWSλ0 , 16
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