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Abstract

In this article, we define an algebraic version of the Knizhnik—Zamolodchikov functor for
the degenerate double affine Hecke algebras (a.k.a. trigonometric Cherednik algebras). We
compare it with the KZ monodromy functor constructed by Varagnolo—Vasserot. We prove the
double centraliser property for our functor and give a characterisation of its kernel. We establish
these results for a family of algebras, called quiver double Hecke algebras, which includes the
degenerate double affine Hecke algebras as special cases.

Introduction

Degenerate double affine Hecke algebras

The degenerate double affine Hecke algebras (IDAHA), also known as trigonometric Cherednik
algebras, were introduced by I. Cherednik in his study of integration of the trigonometric form
of the Knizhnik—Zamolodchikov equations (KZ) [g].

The degenerate double affine Hecke algebras, unlike their non-degenerate version and its
rational degeneration, are not “symmetric”: it contains a polynomial subalgebra and a Laurent
polynomial subalgebra. Due to this asymmetry, one can adopt two different points of view to
study the dDAHA: either viewing it

(i) as the algebra generated by regular functions on a torus T attached to a root system R,
the Weyl group of R acting the torus TV and the trigonometric Dunkl operators on it, or

(ii) as the algebra generated by Demazure-like difference operators on F, where F is an affine
space which carries an affine root system; this is the affine version of the graded affine
Hecke algebras of G. Lusztig [25].

The former approach allows one to apply various techniques of D-modules, symplectic geometry
and is closer to the theory of rational Cherednik algebras [14, 1]; the latter approach allows
one to apply cohomological, K-theoretic or sheaf-theoretic methods [10, 35], and is closer to the
(non-degenerate) double affine Hecke algebras.

In the present work, we will adopt the second approach most of the time. We show that with
this point of view, the dDAHAs can be easily generalised and are quite flexible in the choice of
parameters. We show also that some of the features from first approach can be recovered with
the second approach, namely the integration of the KZ equations.

Quiver Hecke algebras

The quiver Hecke algebras, also known as Khovanov-Lauda-Rouquier algebras, were introduced
in [21] and [30]. They were introduced in the purpose of categorifying the Drinfel’d—Jimbo
quantum groups for Kac-Moody algebras as well as their integrable representations.
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It was proven by Brundan—Kleshchev—McNamara [6] and Kato [20] that quiver Hecke
algebras for Dynkin quivers of finite ADE types have pretty nice homological properties.
Retrospectively speaking, they proved that the categories of graded modules over these algebras
carry an affine highest weight structure in the sense of [22]. As a consequence, these algebras
have finite global dimension. However, once one goes beyond the family of finite type, the quiver
Hecke algebras often have infinite global dimension. The simplest example would be the cyclic
quivers of length > 2. According to the result of Brundan—Kleshchev [5] and Rouquier [30],
the quiver Hecke algebras of cyclic quivers are equivalent to affine Hecke algebras for GL,, with
parameter at roots of unity. The representation theory of affine Hecke algebras at roots of unity
is known to share several features of the modular representation theory finite groups. Notably,
there are fewer simple modules in the modular case than there are in the ordinary case.

One approach to the modular representation theory is to resolve this lack of simple objects
by finding a larger, but better behaved category, of which the modular category is a quotient.
In the case of modular representation theory of symmetric groups, one uses the Schur algebras
as resolution via the Schur-Weyl duality. In the same spirit, for Hecke algebras of complex
reflection groups, the rational Cherednik algebras provide resolution, as it was first established
in [16]. For affine Hecke algebras, the resolution would be the degenerate double affine Hecke
algebras. This perspective appeared in [34], where degenerate DAHAs are viewed as replace-
ment for affine g-Schur algebras in relation with affine Hecke algebras cf. §2.2 and §4. We will
introduce a new family of algebras, called quiver double Hecke algebras, which we believe to
play the réle of “resolution” for quiver Hecke algebras.

Results of the present article

Let (V, R) be an irreducible finite root system and let (E, S) be its affinisation (the definition is
recalled in §1.1). In particular, E = V is a euclidean affine space. We fix a basis Ay C R, which
extends in a standard way to an affine basis A C S. The affine Weyl group Wy is generated
by affine simple reflections s, for a € A and the finite Weyl group Wi C Wy is the subgroup
generated by s, for a € Ag. The extended affine Weyl group Wy acts on S.

The degenerate double affine Hecke algebra attached to (E, S) is given by H = CWs® C[E]
as vector space. The multiplication of H depends on a function h : S — C, called parameters,
see §2 for the precise definition. For A € E, let O (H) denote the category of finitely generated
H-modules on which the subalgebra C[E] acts locally finitely with eigenvalues lying in the orbit
Ws-ACE.

The affine Hecke algebra attached to (V,R) given by K = Hg ® C[T], where Hp is the
Iwahori-Hecke algebra of type (Wg, Ag) and C[T] is the group algebra of the weight lattice of
the root system (V, R). See §3.1 for the precise definition. For ¢ € V', let Oy(K) denote the
category of finite-dimensional K-modules on which the subalgebra C[T] acts with eigenvalues
lying in the orbit Wr - £ C T.

There is an exponential map exp: E — T. Fix A\g € E and let £, = exp(A\g) € T. Denote
by V: Oy, (H) — Oy, (K) the monodromy functor for the Knizhnik-Zamolodchikov equations
introduced by Varagnolo—Vasserot in [34]. We show in Proposition 27 that M is a quotient
functor. The first main result is the following:

Theorem A (=Definition 96-+Proposition 29). There is a quotient functor V : Oy, (H) —
Oy, (K) defined in algebraic terms such that

kerV = kerV.

We expect that there exists an isomorphism V = V. In order to construct V, we in-
troduce in §2.5 and §3.4 two auxiliary algebras Hy, and K,, and show in Proposition 12
and Proposition 17 that Hy, and K, are Morita-equivalent respectively to Ox,(H) and
Oy, (K). By analysing the structure of the quiver-Hecke-like algebras H), and Ky, we show
in Theorem 82 that there exists an idempotent e, € H), such that the idempotent subalgebra
e, H) e, is isomorphic to Ky,. This allows us to define the functor V as the idempotent
truncation by e,.

The second main result concerns V:

Theorem B (=Theorem 105+Theorem 108). The following statements hold:

(i) The functor V satisfies the double centraliser property (i.e. fully faithful on projective
objects) after passing to a suitable completion of Ox,(H) and Oy, (K).



(i) The kernel ker'V is the Serre subcategory generated by simple objects L € Oy, (H) such
that the projective envelope of L in the completion of Oy, (H) is not relatively injective
with respect to the categorical centre Z(O),(H)).

Notice that by the comparison result Theorem A, the statements of Theorem B also hold
for V. The second statement of Theorem B implies in particular that the subcategory ker V
is an invariant of the category Oy, (H). In fact, we construct V and establish Theorem B for
a greater family of algebras, quiver double Hecke algebras, which are introduced in §6.3. This
family of algebras seems to be related to a localised Iwahori version of Coulomb branch algebras
of Braverman—Finkelberg—Nakajima [3] for semisimple groups.

Related works

As mentioned above, the algebra A“ that we introduce in Part II is expected to be related to
Iwahori version of the quantised Coulomb branch algebras. There exist in the literature some
works on the representation theory of such algebras with an approach similar to ours.

In [37], B. Webster studied a module category of the rational Cherednik algebra for the
complex reflection group G(¢,1,n) whose objects admit a weight decomposition for the action
of a polynomial subalgebra defined by Dunkl-Opdam [13]. He introduced an algebraic version
of the KZ functor and he classified the simple objects of that category. The results were later
generalised in [23], to the rational Cherednik algebra for G(¢,d, n).

Our construction of KZ functor V can be regarded as a variant of theirs. One can expect
that their functor also satisfies the properties listed in Theorem B.

Organisation

This paper is composed of two parts. The first part serves mainly as preliminary materials and
motivation for the second part. The proof of most of the statements in the first part can be
found in the literature [25, 9, 28, 34, 33].

We review briefly the affine root systems in §1.1, the dDAHAs in §2 and the affine Hecke
algebras (AHA) in §3.1. We introduce the idempotent form of these algebras, each controlling a
block of the category O of both algebras. The definition of idempotent forms is a straightforward
generalisation of the result of Brundan—Kleshchev [5] and Rouquier [30] on the equivalence
between affine Hecke algebras for GL,, and quiver Hecke algebras for linear and cyclic quivers.

We recall in §4 the monodromy functor V introduced in [34] as the trigonometric counterpart
of the KZ functor of [16]. We prove that it is a quotient functor in the sense of Gabriel.

We discuss in §5 the relations between the monodromy functor V and the functor V, which
will be defined in algebraic terms in §10.6.

In the second part we introduce quiver double Hecke algebras (QDHA). They can be viewed
as a generalisation of degenerate double affine Hecke algebras (IDAHA) or as an affinisation of
quiver Hecke algebras (QHA).

In §6, we introduce the quiver double Hecke algebras A“ attached to an affine root system
(E, S) with spectrum being a Wg-orbit in E and with parameter w. We define the filtration
by length on A“ in §6.4 and prove the basis theorem in §6.5 with this filtration. We study the
associated graded grf” A“ of the filtration by length in §6.6.

In §7, we study the categories of graded and ungraded A“-modules. We introduce in §7.6
a functor of induction from the quiver Hecke algebras attached to the finite root system (V, R)
underlying (E, S).

In §8, we study good filtrations on A“-modules and use it to define the Gelfand—Kirillov
dimension of an A“-module. We prove that “induced A“-modules” are of maximal Gelfand—
Kirillov dimension.

In §9, we introduce the quiver Hecke algebra B attached to a finite root system (V, R) and
with parameter w. We prove a basis theorem for B“ and we introduce a Frobenius form on
B«.

In §10, we prove that the algebra B*“ is isomorphic to an idempotent subalgebra of A“.
We use this isomorphism to define the Knizhnik—Zamolodchikov functor V, which is a quotient
functor. We give characterisations for the kernel of V in §10.7 and §10.9. The double centraliser
property for V is proven in §10.8.

In Appendix A, we collect some basic facts about the category of pro-objects of abelian
categories, which are used to construct completions of the categories Oy, (H) and Oy, (K).
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Part 1
Degenerate double affine Hecke algebras

1 Reminder on affine root systems

We review the notion of affine root systems. The reference is [27].

1.1 Affine reflections on euclidean spaces

Let E be an affine euclidean space of dimension n > 0 and let V be its vector space of
translations. In particular, V' is equipped with a positive definite scalar product (—,—) :
V x V — R. The dual space V* is identified with V' via the scalar product (—, —). Let
R[E]=! be the space of affine functions on E. We have a map of differential 9 : R[E]S! — V*
whose kernel is the set of constant functions. The space R[E]=! is equipped with a symmetric
bilinear form (f,g) = (0f,dg). For any non-constant function f € R[E|S!, let fV = 2f/|f|?
and define the reflection with respect to the zero hyperplane of f:

spBE—E, s¢g(x)=z— f'(z)0f
and
si: REIS' — RIEIS,  sp(g) =g (fY.9)[.

It extends to an automorphism of the ring of C-valued polynomial functions sy : C[E] — C[E].

1.2 Affine root systems

An affine root system on E is the pair (FE,S), where S C R[E]S! is a subset satisfying the
following conditions:
(i) S spans R[E]=! and the elements of S are non-constant functions on F;

(ii) sq(b) € S for all a,b € S;

(iii) (a¥,b) € Z for all a,b € S;

(iv) the group Wg of auto-isometries on E generated by {s, ; a € S} acts properly on E.
The group Wy is called the affine Weyl group (or simply the Weyl group of S). An affine root
system (E,S) is called irreducible if there is no partition S = S; U Sy with (—, =) |s;xs,= 0
and S; # 0 and Sy # 0; it is called reduced if a € S implies 2a ¢ S.

Let (E,S) be an affine root system. The set R = 9(S) C V* is a finite root system on V.
Let P = Pr C V denote the weight lattice, Qr = ZR the root lattice, P¥ = Py the coweight
lattice and QY = Q}, = ZR" the coroot lattice.

Conversely, let (V, R) be an irreducible finite root system, reduced or not. Define Ryeq =
R\ 2R to be the set of indivisible roots. Let P = Pr be the weight lattice and Q = Qg the
root lattice; we define the affinisation of (V, R) to be the affine root system (FE,S) with E =V
and

S={(a+n;n€Za€Rea)U{a+2m+1; meZac RN2R).

Given a basis Ag C R, we form A = AgU {ap}, where ag = 1 — 6 with 6 € R being the highest
root with respect to the basis Ag.



1.3 Affine Weyl group

Let (E,S) be the affinisation of (V, R), which is an irreducible reduced affine root system. A
basis of S is an R-linearly independent subset A C S such that the following conditions are
satisfied:

(i) SCNAU-NA;
(ii) the set (,ca {7 € E'; a(x) > 0} is non-empty.

The Wg-action on S induces a simple transitive Wg-action on the set of bases of S. Upon fixing
a basis A of S, let ST = SN NA and S~ = SN —NA denote the sets of positive and negative
roots.

The parabolic Coxeter subgroup Wr = (s, ; a € Ag) of Wg can be identified with the Weyl
group of the finite root system (V, R) and there is an isomorphism

Qp % Wr=Wg
(1, w) = XHw,
where the element X* acts on S by a — a — (9a, ). The extended affine Weyl group is
defined to be Wg = PV x Wg. It acts on S by extending the Ws-action by the same formula
X*ta =a— (Qa,u) for p € PV.
The length function is defined to be
:Ws — N, L(w)=4#(STnw'S7).

It extends the usual length function on the Coxeter group Wg with respect to the set of

generators {s,},cA- We will need the following formula for the length function.

Proposition 1. For y € PV and w € Wg, we have

(0 RS SR (7 ES TR SN T EU S 1l

a€RE Mw R, a€RY Nw-1R], a€RTN2R

[{o, )|

(xrwy = 3 e =1+ >0 e+ YD SRR
a€RS NwR a€Rf ,NwRY aERTN2R

These formulae can be obtained by counting the set ST N w~'S~ along the fibres of the
differential map 9 : S — R. O

1.4 Alcoves

For each affine root a € S, let H, = {\ € E'; a(\) = 0} be the vanishing locus of a. The affine
hyperplanes {H, }qcs yield a simplicial cellular decomposition of E. The open cells are called
alcoves. Thus the set of connected components

o (E\ U Ha>

a€sS

is the set of alcoves. The affine Weyl group Wy acts simply transitively on it. When a basis
A C S is given, the fundamental alcove is defined to be vy = (,ca {z € E'; a(z) > 0}.

2 Reminder on degenerate double affine Hecke algebra
Let (E, S, A) be an irreducible reduced affine root system with a basis. We define in this section

the degenerate double affine Hecke algebra H attached to (E,S,A) and its idempotent form
H),, which is a block algebra for the category O of H.



2.1 Degenerate double affine Hecke algebra H

Let h = {hq}aes be a Ws-invariant family of complex numbers. The degenerate double affine
Hecke algebra with parameters h attached to the affine root system S is the associative unital C-
algebra on the vector space H = CWg® C|[E] whose multiplication satisfies following properties:

e Each of the subspaces CWg and C[E] is given the usual ring structure, so that they are
subalgebras of H.

e w e CWg and f € C[E] multiply by juxtaposition: (w® 1)(1® f) =w® f.
e ¢ € A and f € C[E] satisfy the equation:

(Sa®1)(1®f)—(1®sa(f))(3a®1):1®haf%a(f)-

2.2 Global dimension of H
Put a filtration F' on H as follows:

Fc \H=0, F<oH=CWs, FaH=(F<H)C[E]S!, Fo,H=(FH)", n>2.

Namely, H is filtered by its polynomial part C[E]. The filtration F is compatible with the
multiplication and its associated graded ring is given by the skew tensor product grf H =2
CWg x (CQY ® C[V]). Since dim.gl H < dim.gl grf" H ([18, D.2.6]) and since dim.gl CWx x
(CQY ® C[V]) = 2r, where r =1k S = dim F, we have the following:

Proposition 2. The global dimension of H is at most 2r. O

2.3 Category O

For each A € Ec, let my C C[E] be the defining ideal of the closed point A € E. Given any
module M € H-Mod, for each A € Ec consider the generalised A-weight space in M:

My= ] {aeM;mia=0}.
N>0

For any \g € Ec, we define O, (H) to be the full subcategory of finitely generated left H-
modules H-mod consisting of those M such that

M= @ M.

AEWs Ao

In other words, the polynomial subalgebra C[E] acts locally finitely on M with eigenvalues in
the Wg-orbit of \g € E¢.
From the triangular decomposition H = CQV ® CWg ® C[E], we deduce the following:

Proposition 3. For every \g € E, every object of Oy, (H) is a coherent CQY-module. O

2.4 Block algebra Hy

In order to study the category Oy, (H), it is often useful to consider a certain completion of the
polynomial part C[E] at the orbit WgAo C E. The completion of H that we will consider is
similar to the one from [12] in the context of Gelfand—Zetlin algebras. A similar construction
has been employed in [33] for double affine Hecke algebras.

Fix once and for all Ay € Ec. Define for each A € Wgy a polynomial ring Poly = C[V]
and let Pol = @, cyy.», Polr. Define the completion

Pol, mPol,\/mO Poly, = C[V], Pol= @ Poly,
N AeEWs Ao

where mg C Poly, is the defining ideal of 0 € V. The completion ISSIA is equipped with the
mg-adic topology and Pol is equipped with the colimit topology.
For A € Wg)q, the translation A\, : Vg A—Jr> FE¢ yields an isomorphism

A*: C[E] 2 C[V] = Poly..



We define an action of H on Pol:

¥ = (hr)y : H — End“™*(Pol), 1y : H — Hom®"(Poly, Pol).

by setting, for f € C[E] and a € A,
OA(f) = A"S (4)

" ( 1) . *W(Saa — 1) S HOmcont(ﬁal,\,ﬁ(\)l)\) a()\) =0
M T 2l A (0The) o e Hom®™ (Poly, Poly + Poly,)  a(A) #0°

a (saX)*a

Lemma 6. The map ¢ defines a faithful continuous action of H on Pol. O

Let Hy C Endcont(lggl) be the closure of the image of 1. It has a set of topological
generators which reflects better than H the weight-space decomposition of objects of Oy, (H).
For A € Ws g, we define a function ordy : ST — Z>_; by

ordy(a) = ord,_,») (2 — ha)z ™. (7)
Lemma 8. The topological algebra Hﬁ\\o is topologically generated by the following elements:
(i) for each A € Wgg, the projector e(A) : Pol —» ISEIA C ﬁ(\)l,

(ii) the polynomial ring C[V], which acts diagonally on Pol by multiplication on each factor
PO])\ = C[[V]],

(iii) for each a € A an operator T, = ) 5 yyqy, Ta®(A) : Pol —» Pol, where

(9a)(s0a(f) — f) ordx(a) = ~1

ae(\) : Poly — Poly,x, 7uf = 9
Ta€(A) : Poly ols,n, Taf {(8@)0“1*(“)33,1(]‘) ordy(a) > 0 (9)
for f € Poly = C[V], where a € R is the differential of a € S and sp, : C[V] — C[V]

is the reflection with respect to the finite root Oa € R, see §1.1.

Proof. Let A C End®™ (1581) denote the closure of the subalgebra generated by the three set
of operators e(\), C[V] and 7,. We need to show that A = HY .
Consider the restriction 1 |c(g). It factorises as

cEl — [] lmClEl/m} = []Poly,
AeWsXo K A
where m) C CJE] is the defining ideal of the closed point A € E. The Chinese remainder
theorem implies that the map has dense image. In particular, e(\) € Poly C Pol lies in the
closure of image for each A € Ws)g. Therefore, HY contains the closure of ¢(C[E])e())
in Hom®"(Pol, Pol); the latter is equal to the algebra C[V]e(A\) which acts on Poly by

multiplication. Thus we have Pol C A and Pol C HY . It remains to show that {1)(sa)}aea lies
in A and {7, }aen lies in Hﬁ\\o.

For each a € A and A € Wg)g, by comparison of the formulae (4) and (9), we see that
the elements e(s,\)¥ (s, — 1)e(A\) and 7,e()\) generate the same cyclic left C[V]-submodule of
Homcont(lgah,lgalsa)\). In particular, 7,e()) lies in HY and conversely, e(sa\)1(sa — 1)e())
lies in A. For A € Wg)\g such that s,A = X\, we have (s, — 1)e(\) = e(N\)¥(s, — 1)e(N) € A.
For A € Wg g such that s, A # A, we have

P(se — 1)e(N) = e(N)(sq — 1)e(N) + e(sa M) (sq — 1)e(N),

~ A (ha —a) _ .
e(M\)Y(sa — 1)e(N) = g e(saM)Y(sqa — 1)e(N) = —W%m

since A*(hg — a)/N*a € C[V]e(N\) C A, it follows that ¥ (s, — 1)e(\) € A. Summing over the
idempotents, we obtain
P(sq — 1) = Z P(sqa —e(N) € A, 7, = Z Tee(A) € HY, .
AEWSs Ao AEWs Ao

The result follows. O

(Sa)‘)*(a — ha)



Let ]HIQU -mod®™ be the category of finitely generated HQo—modules M such that for each
element m € M, the annihilator anng, (m) is an open left ideal of HQO. Notice that these
0

conditions imply

M= P eMM and dime(\)M < oo, for M € H}, -mod™.
AEWs Ao

Lemma 10. The restriction ¥* yields an equivalence of categories

Hﬁ\\o -mod™ = 0, (H). O

2.5 Idempotent form H),

In view of Lemma 10 and Lemma 8, in order to study the block O,,(H), it is convenient to
consider the subalgebra generated by the generators given in Lemma 8.

Observe that the operators {€(A)},cyy.x,» CIV] and {7, }aea preserve the dense submodule
Pol C Pol. Let H Ao De the associative (non-unital) subalgebra of Endc(Pol) generated these
operators. Let Hy,-mody be the category of finitely generated H), -modo-modules M such
that M = D, <.z, ©A)M and such that the subspace V* C C[V] acts locally nilpotently on
M.

Lemma 11. There is a natural inclusion Hy, — HQO with dense tmage, which induces an
equivalence of categories by pulling back the module-structure:

HY, -mod*™ — H, -mody .

Proof. By the density of the submodule Pol C Pol and Lemma 8, there is a unique inclusion
H,, — H} with dense image which fixes the generators {e(\)},cyy.»,» CIV] and {7a}aen.
The assertion on the equivalence of category follows straightforward from the density. O

Combining the equivalences of Lemma 10 and Lemma 11, we obtain the following result:

Proposition 12. There is an equivalence of categories
O,\U (H) = HAo —modo . O

Remark 13. In §6, we will attach to each family of functions {w)\}/\est\o an algebra A“. We
will study them in a larger generality. The algebra Hy, is the special case where wy = ordy for
A e Wsh.

2.6 Central subalgebra Z"

For A\ € Wg g, let W) denote the stabiliser of A in Wg. The stabiliser W is a finite parabolic
subgroup of the Coxeter group Wg. The affine Weyl group Wg acts on the vector space Vg
via the finite quotient® 0% : Wg — Ws/QV = Wg. Let 2" = C[V]"o be the ring of Wj,-
invariant formal power series. Since W), acts by reflections on V, the ring Z" is a complete
regular local ring. Let mz C Z” be the maximal ideal.

For each A € Wg g, we define a homomcir\phism ZN — 1581)\: choosing a w € Wy such that
who = A, we let f — w(f) € C[V]W»» C Poly. This map is clearly independent of the choice
of w and it identify Z” with the invariant subspace C[V]"=*. The space Pol is regarded as a
Z"-module via the diagonal action. It is easy to observe that Z” lies in the centre of HY .

Remark 14. One can show that Z" coincides with the centre of HQO ; however, we do not need
this fact.

3 Reminder on affine Hecke algebra

We keep the notation (V, R, Ag), (E,S,A) and h = {ha},c g as above.

*The notation is chosen so that (8" w)(8a) = d(wa) for a € S and w € W as well as 8" sq = sy, for a € S.



3.1 Extended affine Hecke algebras
Put

exp(mihy) a € Ried
exp(mihot1) « € RN2R’

0= {tadac: %{

Recall that Wg/ = P x Wpg is the dual extended affine Weyl group (we identify Wg with Wrv
via the correspondence s, <> Sov). Define the extended affine braid group B¢ for the dual root
system (V*, RY) to be the group generated by T, for w € WY with the following relation for
each y,w € WY:

TyTw = Tyw, if b(yw) = L(y) + L(w).

The extended affine Hecke algebra in parameters v, denoted by K, is the quotient of the
group algebra C%Bg by the following relations for o € A, in the case where R is reduced:

(Ts., — Ui)(Tsev +1)=0, (Ts, — Ug)(TSO +1)=0

where sg € Wg/ is the reflection with respect to the affine simple root and § € R* is the highest
root. In the case where R is non-reduced, let 8 € Ag be the simple root such that 25 € R. Let
K be the quotient of CBg by the following relations for a € Ag \ {8}

(Ts, —v2)(Ts, +1) =0
(ng - U%ﬂ”@)(ng +1)=0
(T — B0 )(Tay +1) =0,

3.2 Bernstein—Lusztig presentation

Choose a square root vé/ % of vg. Define a group homomorphism v : Bg — C* by setting
v(8q) = Vo for a € Ay and v(sg) = wg in the case where R is reduced; v(sq) = va,

/2 in the case where R is non-reduced and B € Ay with

v(sg) = ’UB’U;/2 and v(sg) = vgu,
26 € Rand a € Ag\ {8}

There is a subalgebra CP C K given by p + v(u)T, for p € P C Wy dominant with
respect to the basis Ag. For 8 € P in general, we decompose it into 8 = ' — 8" with 8 and

B" dominant and set Y? = ngT[;,l. Then there is a decomposition
K=Hr® CP,

where Hp is the subalgebra generated by {75, }aca, and CP is the subalgebra generated by
{YB} sep with the following commutation relations: for each f € CP,

Ts. f — sa(f)Ts, :@3—1)%;@, a €Ay, 20¢ R (15)
Toyf — sp(f)Ts, = (Vv — 1) + (v5 — vg) Y—4) %, B € Ay, 28 € R. (16)

3.3 Finite dimensional modules

Let T be the torus defined by T'= QY ® C* so that QY = X, (T) is its group of cocharacters
and P = X*(T) is its group of characters. We view C[T] = CP as a subalgebra of K.

For each ¢ € T, let my C CP denote the defining ideal of the closed point ¢, which is
generated by Y? — Y#(¢) € CP for all € P. Given any module M € K-Mod, consider for
each ¢ € T the generalised /-weight space in M of the action of the subalgebra CP C K:

M, = U {aGM;méVa:O}.
N>0

For any ¢y € T, we define Oy, (K) to be the full subcategory of K-mod consisting of those
M € K-mod which admit a decomposition by weight:



3.4 Idempotent form K,

Fix ¢y € T. As in the case of H, we define an algebra which is more adapted to the study
of the block Oy, (K). Define for each ¢ € Wg{y a polynomial ring Pol, = C[V] and let
Pol = @y, Pole. For each ¢, define e(f) : Pol — Pol to be the idempotent linear

endomorphism of projection onto the factor Pol,. Let R;;d = R* \ 2R™ denote the set of
indivisible positive roots. In view of (15), for £ € Wgty, we define a function ordy : R;d — 7

ordy(1) ord,_ya (2 —v3)(z —1)7* 20 ¢ R
rde(a) =
‘ ord,_ya(z —v3)(z +vg)(2* —1)7' 2a€R.

For each a € Ag and ¢ € Wg{y, we define an operator 7,e(¢) : Pol, — Pol,_s by

s 1) o) =1
ae(f) = |
T e( ) {aorde(&)sa orde(Oé) >0

Here s, : C[V] — C[V] is the reflection with respect to a.

Let Ky, be the associative subalgebra of Endc(Pol) generated by fe(¢) and t,e({) for
f € C[V], «a € Ag and ¢ € Wgly. Let Ky -mody be the category of finitely generated
K, -modg-modules M such that the subspace V* C C[V] acts locally nilpotently on M. Same
arguments as Lemma 10 and Lemma 11 show that:

Proposition 17. There is an equivalence of categories
(940 (K) = Kgo -mody . O

Remark 18. In §9, we will attach to each family of functions {wl}éeWRéo an algebra B¥. The
algebra Ky, is the special case of BY with w, = ordy for £ € Wrty.

4 The monodromy functor V

In this section, we review the construction of the monodromy functor of [34], which is a
trigonometric analogue of the Knizhnik—Zamolodchikov functor introduced in [16] for rational
Cherednik algebras. We prove in Proposition 27 that this functor is a quotient functor.

Keep the notation (F,S,A) and ap € A as above. In addition, we fix A\g € E¢. Consider
the following exponential map

FEc2Ve=Q"2CZ5QVeC* =T (19)

2mir

URTr—=pue

Put £y = exp(Ag). For simplifying the notation, denote Cy = Oy, (H) and By = Oy, (K).

4.1 Dunkl operators

Consider the dual torus TV = P ® C*. The ring of regular functions C[T"V] is isomorphic to
the group algebra of the coroot lattice CQV:

cQY = Y
QY > pu— XH

For each & € V*, let 9. € T (T, Trv )Tv be the translation-invariant vector field on T such
that O¢ |.= € under the isomorphism Trv [= V. We view O¢ as a linear differential operator
on TV, so that 0¢(X*) = (&, u) X* for each p € QV.

The regular part of T is defined as T = (), cp+ {X‘J‘v # 1} C TV. Let D(TY) denote the
ring of algebraic differential operators on T..

For £ € V*, the trigonometric Dunkl operator D¢ : C[TV] — CI[T"V] is the C-linear
operator defined as follows:

Df(f) = 6§(f) - Z ha<€7av>%@ + <€ap>z/>fa p}z/ = % Z haav € Ve.
a€RT acAt

10



We consider D as an element of D(T,) x Whg.
According to [34, 4.1], the following homomorphism of C-algebras

CTV]|® CWr®C|V] =H — D(T.)) x Wg
XrFouwel— X*w
1®1®E&— Dy

extends to an isomorphism C[T)] @crv) H = D(T) x Wkg.

4.2 Monodromy functor V

Let [T /WEg] be the quotient stack. According to [17, 2.5], there is an isomorphism between the
orbifold fundamental group 7 ([TY /WEg]) and the extended affine braid group Bg from §3.1.
If M € Oy, (H), then

M, = C[Tov] Rc[rv] M

is a W-equivariant D(T.)-module, which is in fact an integrable connection with regular
singularities. Therefore the monodromy representation on the vector space of flat sections
of M on (the universal covering of) the orbifold [T /W] defines a B g-module, which is denoted
by V(M). Tt is shown in [34, 5.1] that the Bg-action on V(M) factorises through the surjective
algebra homomorphism C8g — K and yields an exact functor

V: Oy, (H) — Oy, (K).

4.3 Central actions of Z” intertwined by V

For convenience, we denote Cyp = Oy, (H) and By = O, (K). Recall the central subalgebra
ZN = C[V]"»o defined in §2.6. Let Z(Co) = End(id¢,) and Z(By) = End(idg,) denote the
categorical centres.

Let W), be the stabiliser of A\g € Ec in Wg and let Wy, be the stabiliser of ¢p € T in Wrg.
Let Ao be the image of \g in Ec/W), and let £y be the image of £ in T//Wy,. The exponential
map (19) induces an analytic map

exp? : Ec/Wy, — T/Wy,,

which is locally biholomorphic near \g. The push-forward along exp?® at )¢ yields an iso-
morphism of complete local rings

Ao . AN _ ~ A _
exp,’ : OEC/WA07A0 — OT/W[WZO.

N o~ AN
Note that Z2" = OEC/WA075\0

via the quotient map 9" from §2.6) induces

. For each w € Wy, the action of w on Ec and on T (the latter
. A ~ _ . AN ~ A
Wy = OE(_}/W)\O,X() — OEC/WUD\OVUJAU’ Wy OT/Wégaz() - OT/Wwégawz().

We define homomorphisms 2" — Z (Cp) and Z* — Z (By) as follows: for any M € Cy, we
decompose M = ®A6Ws no M and for each A = w, an element f € Z”" acts by wy f on M.
This depends only on the weight A but not on the choice of w. Similarly, for any N € By, we
decompose N = @y, 4, Ve For each £ = wlp, an element f € ZN acts by multiplication by
wy exp0 f on Ny.

Lemma 20. The functor V : Cg — By intertwines the Z”-actions on Cy and By.

Proof. Recall that the graded affine Hecke algebra is the subalgebra

H = CWg ® Sym V¢ C H.

11



For each weight A € Vi, let O)\(H) be the category of finite-dimensional H-modules on which
the action of the polynomial part Sym Vo has weights lying in the orbit WgA C V.
There is a functor of induction

Indg : H-mod — H-mod, IndgM =Heu M
and for each weight A € FE¢, it restricts to

Ind : Ox(H) — O (H)

Let Z C Cy denote the essential image of Indg. It is known that Z generates Cy — indeed, the
module P(\),, = H/H-m} lies in Z and the family {PM)ntnen, aewsa, generate Co. Therefore,
it suffices to show that the restriction V |z intertwines the actions of Z”. We shall apply the
deformation argument from [34, 5.1] to check this statement.

Let O = C[w] and let £ = C(w)). Let ¢ € V& be any regular coweight and put
X,o = +we e Vs Put Hy = H® O and Ko = K® O. For each Ao € Wsho,0 and
forn € ZZh let

Mo = (Bo — (Bo,Ao) ; B € Vo) CSymp Vg, mae =myo[w '],
Sxg = Symp V5 /my,, Sy =Sig o],
B()\O)n = MO ®Symo Vs S)\ga B()\K:)n = M}C[w_l]-
Note that all these objects are flat over O. Let P(Ap)Y be the space of flat sections of the
affine Knizhnik-Zamolodchikov equation (AKZ) on the constant vector bundle on T, of fibre

P(\o)n. The monodromy representation yields a Ko = K ® O action on P(Ap)Y .
Since the stabiliser of \p in Wy is trivial, there is an eigenspace decomposition

POk = P PA)n)wres POn)war = buSap.
weWRr

where each waA% is a free S,\;%—module of rank 1. Consider the boundary point of TV:

lim exp(nip) = (XO‘v = 0)aeR+ ,  where p = (1/2) Z .

n—-+oo
a€ERTt

Applying the Frobenius method around this point, we obtain a fundamental solution {bz }w
of the AKZ equation on T, which satisfies

eWr

by (exp(y)) = e *m Wit by, + G(y)
for u € V& such that Jm (u, ") > 0, Va € AT,

where G(p) is a P(Ak)n-valued analytic function in g with such that
G(p) — 0 when Jm {(a, ) — +o00,Va € AT,

The fundamental solution induces an Sy -linear isomorphism
PAc)n = P(A)Y, by by. (21)

Under this isomorphism, the monodromy operator on the right-hand side corresponding to
B € X is identified with e2™*? on the left-hand side. Put

A
Z5 = ((Sym V5)Wk°)xo n ZP = ZH[w™] = (Sym v,g)gw .
We define the action of Z/5 and Zg on H,-modules and H-modules in a similar way.

Since the action of Zg on P(Ax )y coincides with the action of the polynomial part Sym V& C
H up to twists by elements of Wg, the induced action of Zp on the Ki-module P(\g)y is
identified with the exponentiation of the action of Zg on the P(Ak),, under (21).

Since the O-lattices P(A\o)n C P(Ac)n and P(Ao)y C P(A\c)Y are stable under the action
of the subring Z5 C Z@, the functor M — MV also intertwines the two Zj-actions. Put
P()), = P(\o), ®0 C. Then P(\), — P(\)y = V(P(\),) also intertwines the two Z/-
actions. Finally, since the family of modules P()\),, for A € WsAg and n > 1 generates the
category O,, (H), the functor V restricted to Z intertwine the Z”-actions as asserted. O

12



4.4 Completion of categories

Since the affine Hecke algebra K is of finite rank over its centre, namely (CP)V, By = Oy, (K)
is equivalent to the category of modules of finite length over some semi-perfect algebra. It is
also the case for Cy = Oy, (H). In particular, they are both noetherian-artinian. Consider the
category of pro-objects’ Pro(Cy) and Pro(By). We have two central actions introduced in §4.3

zZN — End(idco) = End(idPro(Cg))
Z" — End (idlgo) = End(idPro(Bo))-

By Lemma 20, the functor V : Co — By intertwines these Z”"-actions. The extension V :
Pro(Cy) — Pro(By) still intertwines the Z”-actions.

Define C C Pro(Cp) to be the subcategory consisting of objects M € Pro(Cy) such that
M/m%iM € C for all k> 0. Similarly we define B C Pro(B) to be the subcategory consisting
of objects N € Pro(By) such that M/m%M € Cq for all k > 0.

Lemma 22. For each simple object L € Cy (resp. L € By), its projective cover P(L) € Pro(Co)
(resp. P(L) € Pro(By)) lies in C (resp. B).

Proof. Notice that by the general result Proposition 114, the objects of Cy (resp. Bp) admit
projective covers in Pro(Cy) (resp. Pro(Bp)). The statement holds obviously for By because K
is of finite rank over its centre. For Cy, by Proposition 12, there is an equivalence Cy = H, and
the algebra H, is Morita-equivalent to an algebra of finite rank over its centre, c¢f. §7.4. O

Lemma 23. The functor V : Pro(Cy) — Pro(By) restricts to V: C — B.
Proof. If M € C, then M/m% M € Cy and by Lemma 20, V(M)/mEV(M) =2 V(M /mk M) € By.
It follows that V(M) € B. O

4.5 Right adjoint of V
Recall that By = Oy, (K) and Cy = Ox, (H).
Lemma 24. The functor V : Co — By admits a right adjoint functor V' : By — Co.
Proof. We first define a functor V' : By — Ind(Cy) with natural isomorphisms
Homp, (V(M), N) = Hompa(c,) (M, VT (N)) (25)

for M € Cy and N € By. For any N € By, let

Fy:C® — C-Mod, Fy : M + Homg, (V(M),N)
and let

Fy(M)™™ =Fy(M)\ |J Fn(M/M).
0£AM'CM

Here, we regard Fy(M/M’) as a subspace of Fiy(M) by the right exactness of Fy. Let Zn
be the category whose objects are pairs (M, a), where M € Cy and a € Fy (M )™, and whose
morphisms are defined by

Homz, ((M’ a)a (M/aa/)) = {f € Homco(M’ MI) ) FN(f)(al) = a}'
We set

VI(N) = “lim” M € Ind(Co).

(M,a)EZN

According to [32, 3.5, Lemma 6], VT (V) represents the functor Fy, so V' satisfies the desired
adjoint property (25).

Now we show that in fact the object V' (N) in Ind(Cp) lies in the subcategory Co. Let
Pc € C be the sum of all projective indecomposable objects (up to isomorphism) of C so that

tThe basic properties of categories of pro-objects are reviewed in Appendix A.
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for any M € Cp, the dimension of Home(Pe, M) is equal to the length of M. Since V(P¢) € B
is a finitely generated K-module, the vector space Homp (V(P¢), N) is finite-dimensional. On
the other hand, there are isomorphisms

H_I)n Home (Pe, M) = h_r}n h_n)l Home, (Pe/Q, M) (26)
McVT(N) McV'T(N) QCPc
M€eCo Mec, Pc/Q€Co
= lim  Hompge,) (Pe/Q V' (N))
QCPc
Pc/Q€eCo
~ Ly Homg, (V(Pe/Q), N)
QCPc
Pc/Q€eCo

= Homp.o(5,) < “lim” V(PC/Q),N> = Homg (V(Pc), N).
QCPc
Pc/Q€eCo

The first and the fourth isomorphisms are due to (110) of Appendix A; the second one is
exchanging the order of the two colimits and it holds due to the definition of morphisms between
ind-objects; the third one is due to (25); the last one is due to Lemma 23.

Since N € By, there is some integer n such that m4 N = 0. Since V(P¢) € B, the quotient
V(Pc)/m%V(Pc) lies in By. Thus the Hom-space

HomB (V(Pc), N) = HOHllg0 (V(Pc)/m%V(Pc), N)

is finite-dimensional. The above isomorphisms (26) imply that the length of the subobjects
M C VT(N) such that M € C is bounded. It follows that VT (V) lies in Co by Proposition 112 (iii).
Thus VT : By — Cp is a right adjoint to V.

O

4.6 V is a quotient functor

Proposition 27. The monodromy functor V : Co — By is a quotient functor.

Proof. Recall that D(T,’) is the ring of algebraic linear differential operators on the regular
part 7. of the dual torus TV = P ® C*. By construction, the functor V factorises into the
following

H-Mod —°%5 D (TY) x Wg-Mod

] J

Co ——— connyy, (TY) —BE_, CBs-mo

(o)

t : T

Bo

dﬁnl

where connjj, (7)) is the subcategory of D (Ty) x Wx-mod consisting of Wg-equivariant
integrable connections on 7,/ which have regular singularities along the boundary. The arrow
in the first line is the localisation functor loc = C[T/ ]®C[Tv] —, whose right adjoint loc! is
the restriction of the action of Ho, = D (T,)) x Wg to H. The restriction of loc to Cy factorises
through the inclusion of subcategory

connyy, (T.) < D(T,) x Wgr-Mod

and gives the first arrow of the second line. The functor RH is the Riemann—Hilbert correspond-
ence (the Knizhnik—Zamolodchikov equations have regular singularities [28]), due to Deligne [11,
2.17+5.9], between algebraic connections with regular singularities and finite-dimensional rep-
resentations of the fundamental group m; ([T, /Wg]) & Bs.

We show that V admits a section functor in the sense of Gabriel [15]. We have shown
in Lemma 24 that V admits a right adjoint functor V. The functor V' can be described as
follows:

By — CBg-mod™ = connyy, (1Y) — Co,

14



where the last arrow is the functor which sends an object M € conny, (TY) to the biggest
H-submodule of M which lies in Cp, denoted by M |c,C M. We show that the adjunction
counit Vo VT — idg, is an isomorphism. We first show that it is a monomorphism: for any
M € connjy, (Ty), we have C[Ty] ®¢ipv) M = M; by the flatness of C[T}] over C[T"], the
inclusion M |¢,<— M gives rise to a monomorphism

CITY ] ®@crvi (M |¢,) — C[T] @crv) M = M;

composing it with the Riemann-Hilbert correspondence, we see that Vo V' — idg, is a
monomorphism.

Let N € By. By the exactness of V, to show that the adjunction counit VVTN < N is an
isomorphism, it suffices to find an H-submodule of RH™ () whose localisation to T is equal
to RH_l(N). There exists a surjection

i€
where 7 is an index set and P (4;), = K/K-m;*. By [34, 5.1 (i)], for each i € Z there is an
induced module P (;),, = H/H-m}’ € Cy such that exp();) = ¢; and V (P ()‘i>m) = P (4)
Hence the image of P();),, in RH™!(N) is an H-submodule which satisfies the requirement.

We conclude that Vo VT 22 idg,; therefore V' is a section functor for V.
By the criterion of Gabriel [15, 3.2, Prop 5], V is a quotient functor. O

n n;®

5 Comparison of V and V
5.1 The functors V and V

In Part II, we will study the idempotent forms H), and K, in a broader context, cf. Remark 13
and Remark 18. Specifically, in §10.6, we will introduce a quotient functor for graded modules
V : Hy,-gmod — Kj,-gmod. It has an ungraded version V : H),-mody — K, -modp.
On the other hand, by Proposition 12 and Proposition 17, we have equivalences of categories
0,,(H) =2 Hy, -mody and Oy, (K) = K, -modp. The situation can be depicted in a diagram:

OAO (H) L Ofo (K)
1= 1=

H,, -mody V. K, -modg

Conjecture 28. There is an isomorphism of functors V= V.

In the rest of this section, we use results from Part II to prove a weaker version of this
statement.

5.2 Comparison of the kernels

By Proposition 27 and §10.6, the functors V and V are already known to be quotient functors.
The following proposition generalises a result from [24], where the geometric construction of
the dDAHA was used.

Proposition 29. The kernels kerV and ker'V are identified via the equivalence Oy, (H) =
H/\o —mOdo.

Proof. Let F : Oy, (H) = H,,-mody denote the equivalence from Proposition 12. We show
that for every object M € O, (H), the condition Theorem 97 (iii) for FM implies VM = 0.
Let M = @, cyy,r, M be the decomposition into generalised weight spaces of C[E] and let

Mgt: @ My, fOI‘tERzo.
AEWs Ao
X<t
Note that under the equivalence F', the generalised weight space M) is identified with e(\)F/(M)).
Following the same arguments as in the proof (iii)=-(iv) of Theorem 97, we have s, My < M4
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for every t € R>g and a € A. Let U = C[E]=' + 3 ., C - s, C H so that U generates H
as C-algebra. Then, by the assumption (iii), we see that for each finite-dimensional subspace
L C M and each € > 0,

lim dim (U"L) /0"t =0, r=rkR.

n—ao0o

Hence we obtain dimgx m M < r—1, and in particular dimgk,cjrv) M < r—1 for the subalgebra
C[TV] = CQY C H. As the algebra C[T"V] is commutative and by Proposition 3, M is coherent
over C[TV], the Gelfand-Kirillov dimension of M coincides with the Krull dimension of the
subvariety Supppv M C TV. As the localisation of M on the regular part 7.” must be locally
free, we see that it must be zero since dim7. = r > dimSupp M. Hence VM = 0 by the
definition of V. We see that ker V. C F'(ker V).

Since V and V are both quotient functors on noetherian-artinian categories, by comparison
of the rank of the Grothendieck groups

rk Ko (ker V) = rk Ko (O, (H)) — rk Ko (Og, (K))
= rk K¢ (H), -modp) — rk K (K, -mody) = rk K (ker V) ,

we see that ker V = F(ker V). O

Part 11
Quiver Hecke algebras

6 Quiver double Hecke algebra

Fix an irreducible based finite root system (V, R, Ap) and let (E, S, A) be its affinisation. In
this section we will also abbreviate P = Pr, Q = Qr, P¥Y = Py and Q¥ = QY.

6.1 The polynomial matrix algebra A’

Fix once and for all A\ € E. Define for each A € Wg)g a polynomial ring Poly, = C[V] and
let Polwgxn, = @rewan, Pola- For each A, define e(A) : Polwga, — Poly C Polwg, to be the
projection onto the factor Poly.

For each a € A, define an operator 72 : Poly x, — Polwgx, by

ri= > mie(N), 7e()) : Poly, — Pl
AEWs o

I (CORICPER VRPN
2e() {Saa 2

Here Oa € R is the differential of @ € S, ¢f. §1.1.
Let A° = A°(E,S,A,)g) be the associative (non-unital) subalgebra of Endc(Polygy,)
generated by fe(\) and 72¢e(A) for f € C[V], a € A and X € Wg)\ .

6.2 Centre Z

For A € Wg)g, let W) be the stabiliser of A in Wg. The stabiliser W) is a finite parabolic
subgroup of the Coxeter group Wgs. The affine Weyl group Wg acts on the vector space V via
the finite quotient 0" : Wg — Ws/QV = Wg. Let Z = C[V]"2o be the ring of Wy, -invariant
polynomials, graded by the degree of monomials. Since W), acts by reflections on V, the ring
Z is a graded polynomial ring. Let mz C Z be the unique homogeneous maximal ideal.

For each A € Wg)\g, we define a homomorphism Z — Poly: choosing a w € Wg such that
who = A\, we let f — w(f) € C[V]"» C Poly. This map is clearly independent of the choice of
w and it identifies Z with the invariant subspace C[V]">. The infinite sum Polyy,, is regarded
as a Z-module via the diagonal action.

The following are standard results from the invariant theory for reflection groups:

Proposition 30. The following statements hold:
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(i) For each A € Wgg, the Z-module Poly is free of rank #Wy = #W,.

(ii)) For any w € Ws, choose a reduced expression w = Sq,--Sq, and put 7oe(\) =
1o -+ 7o €(N) for each X € WsXg. Then the element 73,e()) is independent of the choice

a
of the reduced expression for w and moreover, there is a decomposition

Homz (Poly, Polwa,) = €D 75C[V]e(\).
weWsg

(i) The A°-action on Polygy, commutes with Z and yields an isomorphism

A° :—) @ Homz (POl)\, POIWS/\U)
AeEWs Ao

6.3 Subalgebras A“ of A°

Let w = {wa}yewsn, Pe a family of functions wy : ST — Z>_, satisfying the following
properties:

(i) wx(a) = —1 implies a(A) = 0;
(ii) for w € Wy and b € ST Nw™ 5% we have wx (b) = wwa (wh).

One may extend wy to a function @y : S — Z>_; by choosing w € Wg such that wa € ST
and setting @y (a) = wyr(wa). We require w to satisfy the following property:

(iii) For some (thus every) A € Wglg, the extended function @y : S — Z>_; has finite
support.

We call the family {wx},cy,y, @ family of order functions. The order functions can be
characterised as follows:

Lemma 31. Every family of order functions {WA}AGWSAU 1s determined by the Wy, -invariant
finitely supported function wy, : S — Z>_1 satisfying

Wx(a)=—=1=a(N)=0 Vaes. O

Define an operator 74 = >\ ., 7o €(A) € Endz(Polwga,) with 75°e(A) : Poly — Pols,
by setting

-1 o _
o) = (0a) " (s0a — 1) wa(a) 1
(0a)> (@ 55, wx(a) >0
so that 7¥e()\) € A°.

Definition 32. The quiver double Hecke algebra* A = A(E, S, A, \g,w) is defined to be the
subalgebra of A° generated by C[V]e(\) and 7¥°e(\) for A € Wg and a € A.

We also introduce the rational function field and its matrix algebra:

Raty = FracPol), = Poly ®z Frac Z, Rat = @ Rat)
AEWs Ao

A = @ Hompyae z(Raty, Rat) = A° ®z Frac Z, 7, % = s,
AEWs Ao
where Frac means the field of fractions.

Example 33.

(i) Leto= {‘a — _6"(A):0}/\6Ws/\0
the matriz algebra A°.

denote the smallest family of order functions. We recover

*In this definition, the assumption that Ao € F plays no essential role. We could have asked \o to belong to some
set on which W acts transitively with finite parabolic stabiliser subgroups. However, the euclidean geometry of E
will facilitate some arguments.
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(i) Let w = {0} cyyon, be the zero constant function. Then A® = Polygx, xWs is the skew
tensor product. If Wy, = 1, then A = C[V]1 Wy is the wreath product.

(iii) Let E =R, let € be the coordinate function on R and let S = {+2¢} +Z, so that (E, S) is

the affine root system of type Agl). Choose the basis A = {a; = 2¢,a9 = 1—2¢}. The affine
Weyl group Wg is generated by sg and s1, where sy (resp. sg) is the orthogonal reflection
with respect to 0 € E (resp. 1/2 € E). Set Ao = 1/4 € E, so that Wgho = 1/4+ (1/2)Z
and Wy, = 1. It follows that Poly = Cle] for all A € WsAo and A° is the matriz algebra
over Cle] of rank Wgo.

Set

in, (@) 1 a€A
Wy, (a) =
Ao 0 aeS\A

and define the family of order functions w = {Wx}ycpor, DY Wwro(a) = Ox,(w™ta). It
follows that A® is equal to the idempotent form of the dDAHA Hy, introduced in §2.5
with parameter hg, = 1/2 for all a € S. We can depict the algebra A¥ with the following

diagram:
s s €s s
P01,3/4 T1 P013/4 70 P011/4 1 P01,1/4 70 P015/4 BN
—€s

where s : Cle] — Cle] is given by the substitution e — —e.

Remark 34. We may view A“ as an affinisation of the quiver Hecke algebra Rg(T") attached
to a certain quiver T' = (I, H) and a dimension vector B € NI, ¢f. Remark 73. The parameter
w is an analogue of the polynomials Q; j(u,v) in Rouquier’s definition of quiver Hecke algebras.

Remark 35. Following [70, §2.83], one can write down a complete list of relations between
the generators 7e(X\), C[V]e(\) for the algebra A¥ in the manner of Khovanov-Lauda—
Rouquier. The most sophisticated is the braid relation between pairs of generators from
{1¢e(N) }aca xewsr,- We will only prove a weaker version of it in Lemma 39, which is enough
for our needs.

6.4 Filtration by length
Definition 36. We define the filtration by length { F<,A“}n,en on A¥ by

Fou A= )" > N CVIrs - rhe(N).

AEWs Ao k=0 (a1,...,a) EAF

In general, it is hard to express the operators 7 --- 75 ; however, the leading term is easy
to describe.

Lemma 37. Let w =S4, -+ - Sq, be a reduced expression and let A € Wgho. Then

(i) For any f € C[V], and any family of order functions w there is a commutation relation:

Jro 1o e(d) = T " Ta wil(f)e(/\) mod F<;_1A%.

ap ail

(i1) For any pair of families of order functions w and w' such that w < W' (pointwise), there
is a congruence relation:

T e(\) =18 T ( 1T (8b)“’3(b>“*(b>> e(\) mod Fep 1 A”.
beStNnw—15—

Proof. We prove the statement (i) by induction on the length I = ¢(w). It is trivial for I = 0.
For [ =1:

(9a) " (s0a(f) = fe(N) wi(a) = -1

0 wx(a) >0 (38)

(f1a — 7 saa(f))e(N) = {
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It belongs to F<gA“e(\) = C[V]e()\) in both cases.
For [ > 1, by the induction hypothesis, we get
(fTerTay = Tar Ty w  (f))e(A)
= (f1a, — 7oy Sa ()7, -+ Tar€(N)
7 (S0, (N, T = T To wTH(f))e(N) € Fao1 A,

whence (i).
We prove (ii) by induction on [ = £(w). Put w’ = s4,_, -+~ 84, and X = w’X. Then

T;Jl' ---T;"l/e()\) = (aal)vd'y(az)—uw(az)q-gdlq-;dll1 ---T;"l/e()\)
_ ((aal)w;mal)fw(m)ﬁ _ T{:(faal)w;mm)fw(al)) 7 ()

+ 7y (—8&1)%’(“1)_“*’(“’)7?/
l

-1

T e(A).

By (38), the first term belongs to F<;_1A%; the second term, by the statement (i) for w' =
ai, , - a;,, satisfies

7‘:;)[ (—aal)w;\/ (al)iwk’ (al)»Tw/ e 7_0.) e(A) = 7_0.) TUJ e TUJ1, fu/il ((7811/[)“);‘/ (al)iwk’ (al)) e(>\)

ap—1 al a;‘aj—1 a
’ ’ / /=1 _ r—1
— e (o )N T A gy,

Here we have used the hypothesis that wy(w'~ta;) = wy (a;). Using the induction hypothesis,
we obtain

rlrele() = e ((—o( )R T e o )

= 7—;-; . 7—;’1 ( H (_8b)w;(b)—u»\(b)> e()\)_

beStNw—15—

The last equation is due to the relation ST Nw™'S~ = S* Nw' 'S~ U {w'"'a;}. This
proves (ii). O

6.5 Basis theorem
We aim to prove an analogue of Proposition 30 for the subalgebra A“ C A°.

Lemma 39 (braid relation). For any family of ordered functions {w,\})\ews)\o, the images of
the operators Te()\) in grf’ A¥ satisfies the braid relations: for a,b € A with a # b, let ma, be
the order of sqsp in Wg. If mgp # 00, then

TITTe e(N) =TTy e(N) mod F<p,, ,—1A%.
———— ——— -7
Ma,b Ma,b
Proof. The statement is empty for m,, = 0o, so we assume mqp 7 oo. Let W, C Wy be
the parabolic subgroup generated by s, and s, let wg € Wy, be the longest element and
let Sqp C S be the sub-root system spanned by a and b. Let AY¥, be the subalgebra of A“

generated by C[V]e(\), 7¥e(A) and 7i°e(\) for A € WgAg and let FSTIA:J; be the filtration by
length defined as in Definition 36. It suffices to show the following

TEoTETe (N =TT - e(N) mod Fep, , 1A%,
N———— N———— ’

Ma,b Ma,b

because there is an inclusion Fey, , 1Ay, C F<m, ,—1A“. An analogue of Lemma 37 is valid
for this subalgebra with the filtration FS,;A‘; b

We first prove the braid relation for the family w’ = {wh Faewsro, Where w) (¢) = max{wx(c),0}.
Since wj(c) > 0 for all ¢ € S:’b, the braid relation for 7" and 7" follows from the following
formula (with similar proof as Lemma 37 (ii)):

7 (N = 59a50b50b - - —9c)“x©e()\).
o 5 Ta (A) = soasopson - || (—0c) (A)

ot
M, b Ma,b €S,
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Let 9 =[] .cg+, (9c). By Lemma 37 (ii), we have

we(A)=—1
’ 7 7
o Ty e\ =10ty - 0e(N) mod Fem, ,—1AG
—_————
Ma,b Ma,b

Write X = (727078 - —107210 - )e(N), so that X -9 € e(wpl) (Fgma,b—lAZ),b) e(A).

Ma,b Ma,b

Moreover, by Lemma 37 (ii), we have

X =(orre - —mromg ) [ (02972 e(N) mod Fep, , 1A%,
Ma.p Mab CES;r,b

However, the elements 70e()) satisfy the braid relations in A¢, by Proposition 30 (ii). It
follows that X € F<p, ,—1A7, (notice that Ay, C Ag,b). We claim that for 0 <j <
Ma,p — 1, the quotient F<;A? je(N)/F<; Ay je()) is right d-torsion-free. This will imply that
X € Fe<m, ,—1Ay, and complete the proof.
We prove the claim by induction on j. For j = 0, this is obvious since F<oAg , = F<oAy ;.
Assume j € [1,mqp — 1]. The quotient grfAf;’be()\) is spanned over C[V] by 7217 - - - e(\)
%"_/

J
and 7' 721 - - - e(A) since any non-reduced word in a, b of length < j contains consecutive letters
%},—/
J
aa or bb and since (75)%, (77)? € F<1AY,. Similarly, gri’ A7 ,e()) is spanned over C[V] by

o Te -~ e(A) and 77575 - - - e()). Moreover, by Proposition 30, grf’ A¢ e()) is free of rank 2
N—— N—— ’

J J

over C[V]. Denote w = $45p84 -+ . Since w > o, by Lemma 37 (ii), we have
——
J
TOTETE = TITT H (—8c)“r(@=eale) mod Fej1AQ ;.
—_———
J j ceSt, nw-1s,,

The prime factors of d are dc for ¢ € S, such that wy(c) = —1. Therefore d and the product

a7

H (—Bc)“r(e)=oale)
cesafbmufls;b
are relatively prime. The same argument applies to the other product 7’727 - - -.

It follows that gr’ A% e(\) and gri Ag e()\) are both free over C[V] of rank 2, and the
matrix representing the C[V]-linear map ¢ : grfA‘;’ re(A) — grng »€(A) (which is induced
from the inclusion Ay e(\) C A7 ,e())) is diagonal with entries prime to 9. Hence coker ¢ is
0-torsion free. The snake lemma yields a short exact sequence

Fej1A7 e()) R F<jA7 e())
Fej1AY je(N) F<;AY ye(N)

— cokerp —» 0,

in which the first term is also d-torsion-free by induction hypothesis, and so is the middle term
0-torsion-free, whence the claim is proven. O

Theorem 40. For each w € Wg, choose a reduced expression w = Sq, - Sq, and put 72 =

Tw...Tw

pt o . Then there is a decomposition

A= P P cVirge.
AEWs Ao weWs
Proof. By dévissage, it suffices to show that for each n € N,

g A= P P ClVire(N).

AEWsAo wEWs
(w)=n
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It follows from the braid relations for 7% in grf’A“ proven in Lemma 39 and the fact that
(7)%e(\) € F<1A“, that these elements 7 span grf A“. By the invariant theory of reflection
groups, the family {r5e(A)}, is free over C[V] and forms a basis for Endz (Poly). In view
of Lemma 37 (ii), the matrix of transition between the families {72e()\)}, and {72e(A)},, is

diagonal with non-zero entries; therefore the latter is also free over C[V].

Define the filtration F<, A= = (F<,A7°) ®z FracZ C A=*.

Corollary 41. For each n, we have
Fep AY = Fp AT N A",

Proof. Let FL,AY = F<, A= N A¥. We have F<,A¥ C FL A“. Fix \,\ € Wg)o and
denote A = e(N)A%e(N). Put N = # {w € Ws ; wA = X}, then we have F<, A = A = F<, A’
for n > N by Theorem 40. We prove by induction on k € [0, N| that Fay_A = FL_, A It
is already clear for £k = 0. Suppose k£ > 1. Then we have the obvious diagram: B

0—— F§N—kA —_— F§N—k+1A —_— grf,_k_,rlA — 0

[ s L

0 —— Fly JA—— Fly ;A —— grﬁ’_kHA —— 0.

The morphism @ is an isomorphism by the induction hypothesis and ¢ is injective. By the
snake lemma, we have ker n = coker . Theorem 40 implies that gri_, | A is C[V]-torsion-free
whereas coker ¢ is a C[V]-torsion module. Therefore cokerp = 0 and ¢ is an isomorphism.
Summing over A, A’ € Wg)g, we obtain F<, A¥ = FL A for all n € N. O

Remark 42. In view of (the proof of) Lemma 39, one can define a “Bruhat filtration” {Fr}z
indexed by the order ideals T of the affine Weyl group Wg with respect to the Bruhat order,
so that FzAY is spanned by C[V]r4e(N) for A € Wshg and w € Z. Our filtration by length
{F<nA¥}nen can be viewed as part of the Bruhat filtration because we have F,A¥ = Fr A%
for I, ={w € Wg ; {(w) < n}.

6.6 The associated graded grf’ A“

We describe in greater detail the structure of the associated graded grf A“. We establish
in Proposition 48 a triangular decomposition for gr A%, which will be used in the proof
of Proposition 69. The proof of Lemma 44 is technical. The reader is advised to skip this
subsection in the first reading.

Recall the extended affine Weyl group Ws = PV x Wy defined in §1.3. For e PV, let
w,, € Wg be such that X*w, is the minimal element of the coset X*Wpg. Define the following
map of minimal representatives:

0:PY — Ws, 0(u)=X"w,.

In particular, 6(QY) C Wg coincide with the set of minimal representatives for the quotient
Ws/Whg.

Lemma 43. For each pu € PV, the element w,, is characterised by the following property: every
positive root a« € RY satisfies w,oo € R™ if and only if (o, p) > 0.

Proof. See [7, Proof of 1.4] O

We consider the nil-Hecke algebra C[WS]““ for Wg: it is the C-vector space span by the

basis {[w]““}w EWs equipped with the following multiplication law

wil oot ) [wy]™if wy) = E(w) + (y)
o] l[y] = {0 otherwise.

Let C[Ws]™! and C[Wg]™" be the subspace of C[Ws]™! spanned by {[w]““}wews and {[w]

nil
}wEWR
respectively. These are the nil-Hecke algebras for Wg and Wg.
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Let Co C V* denote the fundamental Weyl chamber and Cp its closure in V*. Let
PY = PYNCy (resp. QY = QY NCp) be the submonoid of PV consisting of dominant coweights
(resp. dominant coroots). Let CPY (resp. CQY) denote the monoid algebra of P} (resp. QY).
For € PY, let X* € CPY denote the corresponding element.

We define a map

¢:CPY — CWs]™, ¢(x*)= 3 X"
wWEWR
Lemma 44. The following statements hold:
i) The map ¢ is a ring homomorphism and yield a left CPY -module structure on C Wil by
Jr

left multiplication; moreover, C[Ws|™! is a free (CPY, C[Wg]"")-bimodule of rank #W
and a basis of which is given by {[O(bw)]“il}wewR with

by = g wwow) € PV.
aEAg
Sqw<w

(ii) The ring CQY is Cohen-Macaulay and the CPY -module structure on C[Wg]™! restricts
to a CQYr -module structure on C[Ws]““; moreover, there is a decomposition

C[Ws]™ = £ @ C[Wg]™,

where £ C C[Ws|™! is a CQY -direct factor and is a Cohen-Macaulay CQY-module of
maximal dimenston.

Proof. Tn view of the length formula Proposition 1 for W, the condition £/(X*¥) = ¢(X") +
£(X") is equivalent to that ' and v lie in the closure of the same Weyl chamber. Therefore
the map ( is a ring homomorphism. Define a decreasing filtration G*Wg by

¢ws= {v € Ws ; Lloy™) = L(v) — z(y)}.
yeWr
Ly)>k

Since C[Ws]™! has a canonical basis {[w] the filtration G*W induces a filtration on
C[Ws]"!, denoted by G*C[Wg] .

Step 1. We prove that the map

e

PY x {(w,y) € (Wr)?; £(y) =k} => G*Ws \ G* ' Ws, (1, w,y) s XVutw ™ woriqyy

is a bijection.
For o € PY, let w, € Wg be the element from Lemma 43. We may partition P¥ into
sub-semigroups :
PY= || PJ, Pl={peP’;w,=uw}.
weWRr

For w € Wg, we have b,, € P,/ and there is a bijection
PY S PY, e by +w  wops
we can thus express the set GFWg \ GF Wy as

GFWy \ GFwg = |_| {XHtwy; pe P’} = |_| {wa+w71w““wy TS P_‘Y} )
w,yeEWR w,yeEWgr
L(y)=k 2(y)=k

Step 2. We prove that for each p € PY and w,y € Wg, we have ((X#)[ X »wy]"! € G{®) C[Wg]™!
and

C(X,u)[wawy]nil = [waer’lwo,uwy]nil mod Gé(y)Jrlc[WS]nil. (45)
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Step 3.

Step 4.

Indeed, the defining relations of the nil-Hecke algebra C[Wg]™! yield

XX Py = 2 [0y
WEWRp
X ) =X wy)+4(X )
in C[Ws]"". Since
UX P wy) < OXP T w) + £(y) < X w) + X)) + 0y) = (X wy) + LX)
(the last equality due to Lemma 43), the condition
O wy) = (X wy) + 0(XH) (46)

implies that £(X™# wy) = £(XT# w) 4 £(y) and hence X T+ wy € G*WWg. It fol-
lows that [XPwtr'wy]nil € GEW) C[Wg|™! for 1/ € Wrp satisfying (46) and [X 0w tr iyl e
Ge(“’)HC[WS]“ﬂ unless wy,, +,» = w; the latter case happens for the unique element
u' = wtwop in the orbit Wgru; therefore (45) holds.

By Step 1 and Step 2, we see that G¥C[Ws] is a CPY-submodules and the successive
quotient GFC[Wg]"!l/GF1C[Ws]"! is a free CPY-module with a basis formed by the
congruence classes of {[wawy]ml}y’wewmZ(y):k. It follows that {[XbWwy]ml}yyweWR

forms a CPY-basis for C[Ws]™!. Since X’»w is minimal in the coset X*»Wg, we have
[Py = [XPrw]™ - [y, for y € W
thus {[Xbww]"} forms a (CPY, C[Wg]"!)-bimodule basis for C[Ws]"!, whence (i).

Let &' C C[Ws]™! be the (free) CPY-submodule generated by {[G(bw)]“il}wewR so that,

by (i), there is a decomposition C[Ws"! = & @ C[Wg]™. Let Q = P/Q. Define a
C-linear action of 2 on C[Ws]*! by

weWRr

Q x C[Ws™! — C[Wg"i
(8, [XPw]"l) s 2T B0 (X il B e, pe PV, we Wg.

This action preserves the subspace & C C[Wg]|"! and fixes C[Wg]™! pointwise; hence
there is a decomposition of the -fixed subspace

C[Ws]"! = (CWs]"He = £ @ C[Wx]™!,  where £ = (€)%

It remains to show that & is a Cohen-Macaulay CQY-module of maximal dimension.

Since CQY is integrally closed and CPY is regular and an integral ring extension of it,
by [2, X.2.6,coro 2|, CP} is a Cohen-Macaulay CQY-module. Thus &£’, being a free
CPY-module, is Cohen-Macaulay of maximal dimension over CQY. Since € is a direct
factor of £, so is it Cohen-Macaulay of maximal dimension over CQY, whence (ii).

O

Below, we will work with grf” A% and view the elements 7¢e()\) as in gr’” A“ for the sake
of notational simplicity. View A“ as (A“)°P-module via the right regular representation. The
ring End g, r aw)er (81" A“) can be viewed as a unital completion of A“. Define a C-linear map

O : C[Ws]"!' — End(grr awyor(gr” A®) = J] ar’ A%e()) (47)
AeWs Ao
O(w™) =715 = > roe(\), weWs
AEWs Ao

Proposition 48. There is a triangular decomposition

gr A¥ = £ ®¢ ( @ CT;,‘;) ®c < @ C[V]e(A)) )

weWRr AEWs Ao

where & C C[Ws]"! is the CQY -submodule from Lemma 44 (ii).
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Proof. From Theorem 40, we see that the C[IWs]"!-action on gr’” A“ via © yields a decompos-
ition
Clws" & ( . C[V]e(A)) S gt AY f @b O(£)(b).
AEWs Ao

By Lemma 44 (ii), we can further decompose C[WsMl = €& ® C[Wg]"L. Finally, we have
O(CWr]™) = Bpew, Cri- O

7 Module categories of A¥

We keep the notation of §6. We put a Z-grading on A“ as follows: the generators are
homogeneous: degae(\) = 2 for « € V* and deg7ve(\) = wi(a) +ws,a(a). I M =P, M,
is a graded vector space, denote by M (m) the grading shift given by M (m),, = M, 4,. For
two graded vector spaces M and N, we denote by Hom(M, N) the space of C-linear maps of
degree 0 and gHom(M, N) = @, Hom(M, N (k)).

Below, by “modules” we mean left modules. All statements can be turned into those for
right modules by means of the anti-involution A“ = (A“)°? defined by 7¢e(\) — 79e(s,\).

7.1 Graded A“-modules
An A“-module M is called a weight module if there is a decomposition
M= @ eNM.
AeWs Ao

Let A¥ -gMod denote the category of graded weight modules of A“. Let A“ -gmod C A“ -gMod
be the subcategory of compact objects (i.e. M € A¥-gmod if Homaw -gMod (M, —) commutes
with filtered colimits) and let A“-gmod, C A®“-gmod be the subcategory of mz-nilpotent
objects. The following lemma is obvious.

Lemma 49. For every object M € A“ -gMod there exists an index set J and two families of
integers {a;},c ; and {\;},_; such that there exists an epimorphism in A* -gMod

@ A“e(\;)(aj) - M. O

We define a homomorphism of graded rings
ZzZ — gEnd (idAw —gMod) (50)
as follows: For every f € C[V]"» and w € Wy, let f acts on e(wAg)M by multiplication with
(Ow)(f) € C[V]Wero.

7.2 Intertwiners

For each A € Wg)\g and a € A, introduce the following element in A¥:

Tve(\) wx(a) >0

a

Pae()) = {((3(1)7(‘;’ +1)e(\) wx(a) = -1 |

It satisfies the following relations:

e =4 wi(@) =1
+(0a)™=e(X) wx(a) >0

‘pafe()‘) = Sa(f)(pae()‘) Ie C[V]a

where ny , = max(wy(a)+ws,r(—a),0). These elements satisfy the usual braid relations. Thus,
we may write g,e(\) = @q, -+ - pa,€(A) by choosing any reduced expression w = 84, - - * Sa; -
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Lemma 51. Let w € Wg and a € A. Then the right multiplication by the intertwiner ¢,
induces an isomorphism of A“-modules

A¥e(N) =2 AYe(s, )
if wa(a) + ws, r(—a) <0.

Proof. The right multiplication by the element g,e(s,\) = e(\)p.e(s.A) yields A¥e()\) =
A¥pie(s ) = A¥p2e(s,\). Hence if p2e(N) = fe(N) € C[V]e()\) for f € C[V] invertible,
then 2e()) is an isomorphism. The condition that f be invertible is exactly as stated. Clearly,
if 2e()\) and p2e(s,\) are isomorphisms, then so are p,e()\) and p,e(s,\). The statement
follows. -

7.3 Clan decomposition

As in §6.5, we extend wy, to a Wg-invariant function @y, : S — Z>_; and we suppose that
the extension @y, has finite support. Consider the following sub-family of hyperplanes

DY ={H,CE;a€cs8, dla)>1}.

The connected components of the following space
EZ=E\ |J H
He®v

are called clans. Since @), is supposed to be finitely supported, the family ©¢ is finite, the set
of connected components 7y (EY) is finite and there are only a finite number of clans.

Let € C E¥ be a clan. Since E¥ is the complement of a finite hyperplane arrangement, € is
a convex polytope. The salient cone of € is defined to be the convex polyhedral cone k C V'
whose dual cone " is the cone of linear functions which are bounded from below on ¢:

KV{UGV*; infé(v,x>>oo}, k=r" ={xeV; (v,z) >0, Vver"}.
EaS

Then & is a convex polyhedral generated by a finite subset of PV. We say that clan € C EY is
generic if its salient cone is of maximal dimension.
Denote by vy € E the fundamental alcove associated with the basis A.

Lemma 52. Let w € Wg and a € A. Then w™ vy and w™'s,vg are in the same clan if and
only if the intertwiner @, induces an isomorphism of A“-modules

A“e(wAg) = A%e(s,wp).
Proof. Using Lemma 51, we have
v2e(who) = e(who) & W, (@) + W, wre (—a) <0
& @y (wa) + Oy (—wla) <0 & Hy ¢ O
The last condition is equivalent to that wlry and w™ s, belong to the same clan. O

The following proposition follows immediately from the above lemma.

Proposition 53. If w,w’ € Wy are such that w™ vy and w'~ vy lie in the same clan, then right
multiplication by the intertwiner v ,—1e(wA) yields an isomorphism A“e(w'\) — A%e(w).

O

Corollary 54. Let M € A“-gmod. If w,w' € Ws are such that wyy ' and w'vy " lie in
the same clan, then multiplication by the intertwiner @ ,—1e(wA) yields an isomorphism of
graded Z-modules e(whg)M = e(w'\o)M. In particular, in this case there is an equality of
graded dimensions

gdime(wAg)M = gdim e(w' o) M.
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Proof. Indeed, we have
e(wAo)M = Homaw (A¥e(wAo), M) — el Hompe (A¥e(w' o), M) = e(whg) M.
O

Example 55. In the setting of Example 33 (iii), the alcoves in E are of the form In,n + 1/2|
forn € (1/2)Z and the fundamental alcove is v = 0,1/2[. We have D% = {Hg,, Ha, }, with
{ap =1 —2¢,a1 = 2¢} = A. The clan decomposition is depicted as follows:

H,, H,,
¢ 0 @ 1/2 ¢,
The clans €_ =]—00,0[ and €4 = |1/2,+0o0| are generic whereas the clan €y =]0,1/2[ = vy is

not generic. To each alcove v = w™?

vy with w € Wg, we attach the element A, = whg € E
5/4 —1/4 1/4 —3/4 5/4 Ay

~1/2 0 1/2 3/2 €

In particular, the alcoves v = |1/2,3/2[ and v' = 13/2,5/2[ lie in the same clan €, with
A = —3/4 and A\, = soA, = 5/4. In this case Proposition 53 amount to the fact that the
intertwiners pg e(A) 1 A¥e(A,) — A%e(Ay) and pqe(N) 1 A¥e(N) — A¥e(N,) are
isomorphisms and inverse to each other.

The projective A¥-modules A¥e()\,) are indecomposable and they are non-isomorphic for
alcoves v in the three different clans €_,&y and €. Choose any alcoves vy C €, v_ C C_
and denote Ay = A\, A_ = A\,_, Py = A¥e(\y), Py = A¥e()\) and P = A%e(A_). Their
simple quotients, denoted by Ly, Lo and L_, form a complete collection of simple objects of
A“ -gmod up to grading shifts. The graded dimension is given by

1 vC&¢e,

’ * € +305_-
0 vZe, { }

gdime(\, )L, = {

In particular, Ly and L_ are infinite-dimensional and Lo is finite-dimensional. The cosocle
filtrations of Py, Py and P_ are described as follows:

L. Lo IL_
Lo(-1) Li(-1) L_(-1) Lo(—1)
Li(-2) L_(-2) Lo(—-2) Li(-2) L_(-2)
Py = Lo(-3) Py = Li(-3) . L_(-3) P = Lo(-3)

Li(—4) Lo(-a)|" 0(-2) ) Li(—4) Lo(-4)|

7.4 Basic properties of graded modules of A“

We choose a finite subset ¥ C Wg such that for every clan € C EY, there exists w € ¥ with
w™lyy C €. Set ey, = Y wes €(wo) and P = A%ex.

Lemma 56. The module Ps is a graded compact projective generator of A“ -gMod.

1

Proof. For any y € Wg, we can find w € 3 such that y~'vy and w™'vy are in the same clan.

By Proposition 53, there exists an isomorphism
A“e(wAg) = A%e(yo)

Since the former is a direct factor of Py, the above isomorphism yields a surjection Py, —
A“e(y)g). Combining this with Lemma 49, we see that Ps is a graded generator, which is
clearly compact projective. O

Put Ay = (gEndpw _g\oq ) = exsA“ex. It follows from Lemma 56 and the Morita
theory that there is a graded equivalence

gHom g _g\joq (P, —) : A% -gMod = Ay, -gMod, (57)

which restricts to an equivalence on the subcategories of compact objects A®-gmod —»
Ays -gmod.
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Proposition 58. The following statements hold:

1) The category A® -gmod is noetherian and the subcategory A“ -gmod, consists of objects
0
of finite length.

(i) For each M € A¥-gmod and each A € Wglg, the graded dimension gdime(A)M is in
N((v)). Moreover, M € A® -gmod, if and only if gdime(\)M € N[vT1] for all A € Wso.

(iii) Every object of A* -gmod admits a projective cover in the same category.
(iv) We have Irr(A¥ -gmod,) = Irr(A“ -gmod).
(v) The map (50) is an isomorphism Z = gEnd (ida« -gmod ) -

Proof. By the graded Morita equivalence (57), it suffices to show the corresponding statements
for Ay -gmod.

Since Ay, is of finite rank over the graded polynomial ring C[V]"*0, it is laurentian (i.e.
its graded dimension is in N((v))) and thus graded semi-perfect. The statements (i)—(iv) result
from the laurentian property.

We prove (v). Consider the A“-module Poly,y, € A¥-gmod. Since each factor Poly =
C[V] is a free Z-module of finite rank, the sum Poly, is a free Z-module of infinite rank.
Taking base-change to the rational function field Frac Z, we get a homomorphism

p: AT — @ HomFracZ (Rat)\, Rat,\/) s
AN EWs Ao

We claim that p is an isomorphism. It is injective since Polyy, is a faithful A“-module by
definition and it remains faithful after localisation. It is easy to see from the definition of A%
that for A € WgAg and a € A, the operator s,e()) : Raty — Ratg,  is in the image of p. For
any A\, X' € Wso, let Wi x = {w € Ws ; wA = X'}. The family {e(\)we(A)}wew, ,, is in the
image of p. The rational function field Rat) is a Galois extension of Frac Z with Galois group
Wy. It follows from the Galois theory that

EndFraCZ(Rat,\) =~ Raty xCW,.

We have already seen that {we(A)}, ey, is in imp the and Raty is also in the image of p.
It follows that Endpacz(Raty) C imp. Let A\,\ € WgAo and choose w € W) ». Then
we(\) € imp is an isomorphism w e(A) : Raty = Raty and the pre-composition yields

— owe(\) : Endprac z(Raty) = Hompy,e z (Raty, Raty/) .

Thus Hompyac z (Raty, Raty/) C im p. We see that p is surjective and the claim is proven.
There is an isomorphism

As @z Frac Z = ex A" ey, = Endyrac z (@ Rath)
weX

induced by p. Since the right-hand side is a matrix algebra over a field Frac Z, its centre is
Frac Z. It follows that Z(Ay) = Frac Z. Hence

gEnd (idAw —gmod) = gEnd (idAE —gmod) =7 (Az) =7 (AZ Rz Frac Z) N AZ
=FracZN Ay = Z,

where the last equation follows from the basis theorem Theorem 40. O

7.5 Basic properties of ungraded A“-modules

Let U : A¥-gmod, — A“-mody be the grading-forgetting functor. We extend it to U :
A% -gmod — Pro(A¥ -mody) by requiring U to preserve filtered inverse limits. The extended
functor is exact. Define the subcategory A% -mod” C Pro(A“-mody) to be the essential image
of this functor. Let Z" = Hm Z/mi.

o0

Proposition 59. Then the following properties are satisfied:
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(i) The functor forgetting the grading U : A¥-gmod — A%“-mod is exact and it induces
Irr(A% -gmod) /(Z) = Irr(A% -mod”"). Moreover, for all M, N € A¥ -gmod and n € N we
have

I Ext(M, N(k)) = Ext" (UM, UN).
keZ

(ii) The category A® -mod” is noetherian and the subcategory A“ -mody consists of objects of
finite length.

(iii) Bvery object of A¥ -mod” admits a projective cover in the same category.
(iv) We have Irr(A“ -modp) = Trr(A¥ -mod”).
(v) The ungraded analogue of the map (50) induces an isomorphism Z" = End (idaw -mod” )-

These statements follow from Proposition 58. O

7.6 Induction and restriction

Let A% C A¥ be the subalgebra generated by fe(\) and 7oe()A) for A € Wgh, f € C[V] and
a € Ag. For A\; € Wgho, denote eg,x, = > \cy,a, €(A) and define A% | = ey, A%er,, to
be the idempotent subalgebra. In other words, A% , is the subalgebra of A“ generated by
fe(X) and 7&e() for A € WrAy, f € C[V] and a € Ay.

For each \; € Wg)g, we define the induction, restriction and co-induction functors

ind® , : A%, -gmod — A¥-gmod, N A¥epy, ®ay, N
resISLAl : AY-gmod — A%y -gmod, M > eg, M = gHomy. (A¥epz,, M)

coind%)\1 : A%y, -gmod — A¥-gmod, N @ gHomATml (err, A%e(N),N).
AeWs Ao

They form a triplet of adjoint functors (ind%, AL resﬁy A coind% )\1)
Proposition 60. The functors imdlsw\l,1resls%,/\1 and coindISLAl are ezact.

Proof. The functor res}% A, is clearly exact. By Theorem 40, we have a decomposition of right
A% 5,-module

Avery = P A%, (61)
weWER

where W1 C Wg is the set of shortest representatives of the elements in Wg/Wgx and T =
Dircwpr, 7o, Ta e (A) for any reduced expression w = 84, -+ Sq,. Therefore A¥epy, is a

free right A% , -module, so ind%’ A, 18 exact. Similarly, coind% A, s also exact. O

8 Filtered A“-modules

We consider A“-modules equipped with filtrations which are compatible with the filtration by
length F' on A“. Most results in this section are non-unital version of the classical theory of
filtered rings and filtered modules which one can find in [18]. The goal of this section is to
introduce (§8.3) the support and the Gelfand—Kirillov dimension of an object M € A¥ -gmod,
and show (Proposition 69) that “induced modules” have the full support.

8.1 Good filtrations on A“-modules
Let M € A“ -gmod.

Definition 62. A good filtration F' on M is a sequence { F<n,M }nez of graded C[V]-submodules
of M satisfying the following properties:

(i) F<p—1 C F<,, for alln € Z;
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(ii) for each n € Z, there exists a finite subset 3, C WsAg such that®

FenM = P e(NF<nM;
AES,

(iii) FoM =0 forn < 0;

(i) Uyeq FuM = M;

(v)

(FSnAw) (FSmM) - F§n+mMa Vn,m € N;
(vi) there exists mg > 0 satisfying
(FSnAw) (FSmM) = F§n+mMa Vn > O,VTI’L > mg.

The following result is standard, see [18, D.1.3]

Proposition 63. Good filtrations exist for the objects of A¥ -gmod. If F and F' are two good
filtrations on M € A“ -gmod, then there exists ig > 0 such that

Fly oM< Fe,M <FL, ..M, YneZ O

The following lemma is a direct consequence of Proposition 63.
Corollary 64. If F' and F' are good filtrations on M, then there exist
(i) a finite filtration of gr’ A“-submodules F' on gr M,
(ii) a finite filtration of gr’ A¥-submodules F on ng, M and
(iii) an isomorphism of gr¥ A¥-modules gr™" grf M = grF grf’ M.
Proof. By Proposition 63, there exists ig > 0 such that F<,_;; M < FénM < FepyioM for
all n € Z. For m € [—io, io], define FL, ., M = (FL,M N F<pymM) + FL, M. Then the

quotient grf’ "M acquires a filtration

Fepgrtl M =FL,  M/FL,_ M CFL M/FL,_M=g! M,
which satisfies (gr[ A“) (Fgm art” M) C F<p grfﬁrl M. Hence for each m € [—ip, 1], the
quotient grﬁ;ng/M = Fgmng/M/Fgm_lng/M is itself a grA“-module. Similarly, we put
Fepm<nM = (F<,u M N FéernM) + F<m—1M so that gr’ M acquires a filtration by gr” A«-
modules. Zassenhaus lemma yields gr?_ grF" M = grf” orF M. Therefore,

ig iO
@ grglngM% @ gring/M.

n=-—ig m=—ig

8.2 Associated graded of good filtrations

Recall the monoid algebra CQY from §6.6. Given a good filtration F' on an object M €
A“ -gmod, the associated graded grf’ M = @, p F<xM/F<;_1M is a grf A“-module. The
grf” A¥-action on grf” M extends to an action of the unital completion introduced in §6.6 via
the natural inclusion

gr’ AY < Endgr acyor (gr” A¥) = [ or™ A¥e(N).
AeWs Ao
We obtain a CQY-module structure on grf’ M via the map (47).

Proposition 65. Let M € A* -gmod and F a good filtration on M. Then gr™ M is a coherent
CQY @ C[V]-module. Moreover, if M € A*-gmod,, then gr” M is a coherent CQY.-module.

$We require this condition because we work with a non-unital associative algebra.
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Proof. We observe that the coherence for grf M is independent of the choice of the good
filtration F. Indeed, if F’ is another good filtration on M, then by Corollary 64,

io 7:0
grf” M coherent < @ grl’ l grf” M = @ grl gt "M coherent < grf’ "M coherent.
’nzf’io mzfio

We prove the first assertion. By Lemma 49 and the compactness of M, there is a surjection
of the form

p: @D A%e()(a;) - M.

Equip the source of p with the length filtration and the target of p with the induced filtration,
denoted by F, so that p induces a surjection on the associated graded gr’ A“-module. The
coherence on the source of grf’ p implies that of grf M. Thus we may suppose that M is of
the form M = A%¥e();) and equipped with the length filtration. It follows from Proposition 48
that

grf A¥e(\;) = € ®c < @ TZ‘;C[V]) e())).

weWRr

C[V]7¥ is free of finite rank over

Since € is coherent over CQY by Lemma 44 (ii) and €D, ¢y,

Z, it follows that gr’” A¥e();) is coherent over CQY ® Z.
Suppose now M € A“ -gmod, so that Z acts via the quotient Z/m?% for some n € N. Since

Z /m’ is finite-dimensional, M must be coherent over CQY. O

8.3 Support of A“-modules of finite length
Let M € A® -gmod,. In view of Proposition 65, we can make the following definition:

Definition 66. The support of M, denoted by Supp M, is defined to be the support of gr™ M
as coherent CQi—module, for any choice of good filtration F' on M.

By Corollary 64, the definition of Supp M is independent of the choice of a good filtration.
We define the Gelfand—Kirillov dimension of a weight module M of A“ to be the following
number: upon choosing a good filtration F on M,

logdim F<,, M
dimgk M = limsup 08 Tn ¥
n—soo logn
By Proposition 63, this number does not depend on the choice of F'.

Proposition 67. Let M € AY-gmod,. Then the Gelfand-Kirillov dimension dimgx M
coincides with the Krull dimension of Supp M.

Proof. Taking the associated graded, we have

dim F<, M = dim € gr{ M.

k=—o0

Notice that CQY is finitely generated graded ring, where deg X* = ((X*), and grf M is a
finitely generated graded module over it. Hence dimgk M is nothing but the degree of the
Hilbert polynomial of grf” M, which is equal to the Krull dimension of Supp M. O

8.4 Induction of filtered modules

Recall the subalgebra A%\ C A® from §7.6. Good filtrations on objects of A% \ -gmod are
defined in a similar manner.
Suppose N € A%y -gmod is equipped with a good filtration F' which satisfies F<p N =

(FerA%,, ) (F<oN) for k> 0 and F< N =0,

Let M = ind}% A, IV. The adjunction unit yields an inclusion of Z-modules N < M. Define
a filtration FSnM = (FSnAw) (FSQN)
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Lemma 68. The filtration F' on M is good and satisfies

grf' M = (grf A¥ep y, ) RDegrag (ar" N) .

Proof. By the hypothesis on F<, N, we have grf N = (gr,};A‘fg’Al) (gr{ N) and grfM =
(grf’A“) (grf’ N). By the decomposition (61), we deduce

k
F A w . w . F w
gry A¥ep *@ @ Tw 8 k—j AR

J=0 wew*
£(w)=j

from which

((ngA“’eRyAl) ®ngAw gr N ) @ @ R, Al) (grgN)
w)=j

= (grSA%) (gro N) = ngM

Proposition 69. For any N € A“-gmod, and 0 # M’ C ind%Al N, we have Supp M’
Spec CQY.

Proof. Let F be a good filtration on N as above and denote M = indfw\l N, so that gr M
F(A%er.y,) ®gYFA“é,A1 (ngN) by Lemma 68. By Proposition 48, we have grf’A¥ep »,

R 1R

E®@cgr’ A%, ; hence
grf' M = £ @c gr'N.

By Lemma 44 (ii), £ and thus grf" M are a Cohen-Macaulay module of maximal dimension
over CQY, so it is torsion-free. For any 0 # M’ C M, the restriction to M’ of F is a good
filiration and grf" M’ C gr M. Hence Supp M’ = CQY. O

Remark 70. Proposition 69 is an analogue of the following basic property for a double affine
Hecke algebra H: the induced module H @y M is free over the polynomial part C[E] C H for
every module M over the graded affine Hecke algebra H C H. A similar property for rational
Cherednik algebras was used in [10] in the proof of the double centraliser property of the KZ
functor. Our proof of the double centraliser property Theorem 105 also relies on it.

9 Quiver Hecke algebras

We keep the notation of root systems (E, S, A) and (V, R, Ag). In this section, we introduce an
algebra B?, which can be viewed as a variant of quiver Hecke algebras. The relation between
the quiver Hecke algebras and B? in the case where the root system (V| R) is of type A is
explained in Remark 73.

9.1 The algebra B®

Define the torus T'= QY ® C* so that the ring of regular functions C[T] is isomorphic to the
group algebra CP. For any a € P, we denote by Y* € C[T] the corresponding element.

Fix £y € T. Define for each £ € Wg{; a polynomial ring Pol, = C[V] and let Poly,¢, =
Drewye, Pole. For each £, define e(f) : Polys, — Poly to be the idempotent linear endo-
morphism of projection onto the factor Poly. Recall that Ryeq = RT\ 2R and Rred ReeaNRT.

Choose any \g € exp~!(fp). Then the algebra Z from §6.2 acts on Poly: for any w € Wk,
the element f € Z = C[V]"0 acts on Polyy, by multiplication by w(f).

Let o = {Qg}eewﬂ0 be a family of functions g : R;’;d — Z>_; satisfying the properties:

(i) If 2« ¢ R, then y(a) = —1 implies Y*(¢) = 1.
(ii) If 2a € R, then o¢(a) = —1 implies Y*(¢) € {1, —1}.
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(iii) For w € Wx and @ € R, Nw™ 'R}, we have o/(a) = Que(wa).

For each oo € Ag and £ € Wrty, we define an operator 75e(f) : Pol; — Pol,_¢ by

(03

roe(e) = | e m D) ) =1
a2 @g, () >0
Here s, : C[V] — C[V] is the reflection with respect to c.

Definition 71. We define B® = B(R,V, A, Wg{y, Q) to be the subalgebra of Endz (Polw,¢,)
generated by C[V]e(l) and 15e(f).

All the statements of Proposition 58 for A“ hold equally for B®. In particular, the centre
of B? is equal to Z.

Example 72.
(i) If o = 1 € T and @ = {-1},_, is the —1 constant function, then B® is the affine
nil-Hecke algebra of type Wg and is isomorphic to a matriz algebra over its centre.
(i) Ifbo=1€ T and o = {0},_,, is the zero constant function, then B® = C[V] x Wk is the

skew tensor product.

Remark 73. In the case where the finite root system (V,R) is of type A,—1, the algebra B*
recovers the notion of quiver Hecke algebras.

For any quiver T' = (I, H) with I C C* and a dimension vector € NI with || = n, the
quiver Hecke algebra, denoted by Rg(T') according to [71], is generated by three sets: idempotents

{e(€)}ycrs, Hecke operators {Ti}?;ll, polynomial part {xz;},_,. By translating suitably the set
I C C*, we may assume that [],.c; rfr =1, so that each sequence v = (v1,--- ,v,) € IP C
(C*)™ lies in the mazimal torus T C (C*)™ of SL,(C). We put 9, (e, ;) = #{(h:i — j) €
H} —6y,=y;. Then there is a surjective homomorphism
Rg(T') — B®
e(v) — e(v)
Ti > Ta;, tE€{L,...,n—1}

1
s = Y -y kell,...
Tk - jog + (n—37)a; | er, e{l,...,n}

1<j<k k<j<n

whose kernel the ideal generated by x1 + -+ Tp. .

9.2 Basis theorem

Theorem 74. For any w € Wg, choose a reduced expression w = Sq, ** - Sq
§ ¢ . Then there is a decomposition

B'= § € ClVirge().

(e} aq '’
LeEWRLy weWR

(w)=n

, and put T, =

Proof. To prove it, we shall apply the results Theorem 94 and Theorem 82 whose proofs do
not rely on this theorem. By Lemma 75 below, we can choose w = {wx}y\cpqy, Such that
fw = @. Then Theorem 82 implies that upon choosing a good v € @V, there is an isomorphism
B? = e,A%e,, identifying 75 e({) with o,e(7¢) and by Theorem 94, the idempotent subalgebra
e,A“e, has a decomposition in terms of o,e(7¢). Hence B also has a decomposition as in
the statement. O

Lemma 75. Given any family of order functions @ = {W}EEWRZO for BY, there exists a family
of order functions w = {cu,\})\ews)\0 satisfying the conditions from §6.3 such that fw = @, where
fw is defined in §10.2.

Proof. We choose a point \g € exp~1(£y) C V. Such a family w = {wrtrewsn, 1s determined by
a Wy,-invariant function @y, : S — Z>_; and it suffices to construct it. However, one needs
to be careful about the condition (i) from §6.3. We first define a function ¢y, : R — Z>_; as
follows:
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(i) For any a € R, such that 2a ¢ R, we set G, () = Qg (@) and g, (—) = Qugr, (—woa).
(ii) For any @ € R such that 2a € R, if Y*({y) = —1, then we set O, (20) = Qq,(),
Qo (—20) = Qur, (—wor) and Qg (@) = Gy, (—a) = 0; otherwise, we set Qy, () = Q¢, (),
Qo (—) = Quge, (—wor) and Qy, (2a) = Gy, (—2a) = 0.

The function ¢y, is Wy,-invariant by the assumption (iii) from §9.1 and has image in Z>_;. We
choose a section of the projection Wy, \S — Wy, \ R, denoted f : Wy, \R — Wy,\5, in such
a way that for each o € Ryeq, the condition f(a)(Ag) = 0 holds whenever a(fy) = 0. We set
Wxg = [f«S¢, so that @y, : S — Z>_; is a W) -invariant function of finite support. The family

{wr}rewen, 18 then defined by wyy,(a) = @y, (w™'a) for all w € W and a € S¥.
(]

9.3 Frobenius form on B*®

As observed in [4], the basis theorem Theorem 74 implies that the algebra B is Frobenius over
its centre Z.

Lemma 76. B is a Frobenius algebra over Z.

Proof. Consider the filtration by length

Fe,B*= > %" > CVIrl, ---72.e(0).

LeWRrlo k=0 (ay,...,ar)€AL

We set N = #RT = £(wp) and let wo = sq, - Sq, be any reduced expression for the longest
element wo € Wg and set 7, e() = 75 --- 75, e(£). By Theorem 74, we have F<yB® = B®
and

gri B® = @ C[V]r,.el).
LeWRLy
Let Ry, = {a € R ; a(\g) = 0} be the sub-root system associated with A\g and let Ay, C Ry,
be any basis, which determines a set of positive roots R:\FO C Ry, and a set of Coxeter generators
{sa}acay, C Wi, It is well known that C[V] is a symmetric algebra over Z with the trace

map [ +— 19wO(WA0)(f), where ﬂwO(WM) is a composition of Demazure operators for the longest
element wq(Wy,) of the Coxeter group (W,,Ay,). Let tr be the composition

B® — grfiB” = P CVrue(t) 222 B alv]
£ £

D, (N Qe @) 7 e, 5
£ £

Then tr is a Frobenius form. O

10 Knizhnik—Zamolodchikov functor V

We resume to the assumptions of §6.

In this section, we introduce a functor V : A -gmod — B -gmod, which is a quotient
functor satisfying the double centraliser property. It can be viewed as a generalisation of the
monodromy functor of [34] for ADAHAs (which has been reviewed in §4) to the family of
algebras A“. It is thus expected to satisfy some properties of the monodromy functor. The
main results of this article Theorem 105 and Theorem 108 provide some evidence. We construct
V by choosing an idempotent element e, € A¥ and establish an isomorphism B = e, A“e,
in Theorem 82.

10.1 The idempotent construction

Consider the following exponential map
EF2V=Q"9RZ%BQVeC*=T

2mir

pLRr—=pRe
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and put £g = exp()g) € T. Choose an element v € QV such that
(v,a) <0 foralla € RT. (77)
We define a section of the projection 0% : Wg — Wg/QY = Wg by

’YO:WR—>WS

wie X wX ™ = wX® 7Y
and a section of the exponential map WgAg ZPs Wrt, by

Te ZVVRKO‘A*% M‘gAO
’LUKO — X7 ’u))\o.

It is clear that 7w ¢ = "(wl). The choice of v implies that
a("0) <0 foralla € RT and ¢ € Wgty. (78)

Given a family of order functions {wy : ST — szl}AewsAo satisfying the axioms of §6.3,
we can associate a family of order functions [fw = {fCUe : R:;d — ZZ*l}éeWRéo’ called the
integral of w along A%, by setting for each £ € Wgrty

Jwe(a) = Z we(a). (79)

acS™
dae{a,2a}

The definition of fw is independent of the choice of 7. Denote @ = [w. This family of order
functions gives rise to an algebra B¢ as defined in §9.1.
For any £ and « € Ag, we define an operator o,e(”f) : Polry — Polv(,_ ¢ by

rae(0) = {a—l(sa 1) Jwe(a) =-1 . (80)

(@, Jwe(a) >0

Define the idempotent

e, = Z e()) € A¥. (81)

AE’Y(WRZ())

The main result is the following, which will be proven in §10.5:

Theorem 82. Upon choosing v € QV satisfying (77), there is an isomorphism of graded Z-
algebras
iy : B? = e A%,
fe(t) > fe()

Tie(l) — one(7l).

Moreover, for any other choice ~', the intertwiner

Py = Z e("(wlo)) 75w —ne(’ (wh)) € e;A%ey
weEWR /Wy,
yields a factorisation i (f) = @y - iy (f) - @y 4 for each f € B,

Example 83. Resume to the setting of Example 33 (iii) and Example 55. The coroot lattice
is given by QV = Z, which acts by translation on E = R. Recall that \g = 1/4 € E. We
may take v = s180 = —1 so that "(Wgrly) = {1, A\_}, where Ay = s150\0 = —3/4 and
A = 518081 A0 = —5/4. Tt follows that A_ = $180818081 A+ and

e(A)A%e(\y) = Cle|1y T Ta Ta T €(Ay),  e(Ay)AYe(A) = Cle] 1y Tor T Tan T, €(A-).

ai ao ai  ao
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Denote by s : Cle] — Cle] the automorphism € — —e. Calculate the products:

T:;;T;)OT:;;T;)OT;IG(AJF) = Tf;le(5/4)7'l‘1*i)e(—1/4)7';*’1e(1/4)7'l‘1*i)e(3/4)7;"1e(—3/4),
=s-s-(es)-s-s=¢€s
To T Ta T T €(A_) = 7. e(3/4)7 e(1/4)1, e(—=1/4)7; e(5/4)7; e(—5/4)

=5-(—€s)-s5-5-5=c¢s.

Let o = Oay € Ag be the simple root for (V,R) = Ay. Denote {1 = exp(2miAy) = i and
0 =exp(2miA_) = —i. The family of order functions @ = [w for B® is given by

Q, (o) = Zw,\+(a+k):1, Q_(a) = Zw,\f(a—i—k:):l.

keN keN

It follows that

oae(Ay) = o+ (g = T T T ToTae(Ay) oae(A_) = ot (Vg = To To Tar Tan Ty €(A2)

and therefore there is an isomorphism

B? = e,A%e,
e(ly) — e(Ay)
e(l_) —e(A)

w W W W W

Q
Ta = TalTagTalTagTale’Y'

Remark 84. As we will see in Lemma 90, the idempotent e, corresponds to generic clans
(§7.3). The choice of e, is inspired from the sheaf-theoretic study of extension algebras over
a cyclically graded simple Lie algebra g. in [2/] and the sheaf-theoretic construction of the KZ
functor. In the language of op. cit. and [20], each eigenvalue A € WA corresponds to the spiral
induction of a cuspidal local system € through one spiral of g.. On the other hand, affine Hecke
algebras arise as extension algebra of parabolic inductions of € through parabolic subalgebras
of g«, which appear also as spiral induction of € through “generic spirals”. Therefore, the
definition of the sheaf-theoretic KZ functor is mothing but picking idempotents of the extension
algebra corresponding to those “generic spirals”. In the algebraic and combinatorial language,
they corresponds to alcoves lying in the generic clans, as introduced in §7.5.

10.2 A formula for order functions

By the hypothesis of finite support for wy, : S — Zx>_1, there exists M > 0 such that
Oxg(@+ k) =0for all @ € R and |k| > M. Let v € QV be an element satisfying (77). More
specifically, we require that

(a,7) < =M, VYa € RT. (85)

We prove a relation between the family w = {wx },cyy.», for A“ and its integral © = {0}y 0,
for B defined in (79).

Lemma 86. For any ¢ € Wrly and w € Wg, following formula holds in C(V):

H (—8())‘"*(”) —c- H (_mm(ﬂ)’

beStNnrw—-15— ﬂeR;dmw—lR;d
where A =70 and € € C* is constant (which is a power of 2).
Proof. We divide the index set of the product on the left-hand side into two
STMw S~ ={be STNMw 'S~ ; db¢ R nw 'R }{be STNw 'S~ ; d9bc RTnw 'R~}

and treat the two sub-products separately.
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Step 1. We prove that wy(b) =0 when b € ST N 7w 1S~ and f:=0b¢ RTNw 'R~.
Write b = 5 + k for k € Z. We deduce

wr(d) =wr(B+ k) =ax(yB+k+(B8,7)), wherey e Wg is such that yl = /.

Since Yw = wX® 7=7, the condition b € S* NYw~1S~ implies that 0 < k < (wB —B,7).
There are two cases: 3 € R~ or 8 € w™'RT. In the case where 3 € w™'R*, since
E+{(B,v) < (wB,7v) < —M, the hypothesis (85) implies that wy(b) = 0. In the case where
B € R™, we have k + (8,7) > (8,7) > M, whence wy(b) = 0 as well.

Step 2. We prove that

I[[ o»®@=c II (=B, (87)

beSTMN w™ 1S~ BERF Nnw—lR,,
dbERTNwTR™

for some € € C* which is a power of 2. We rewrite the left-hand side according to 0b:

I o»®=e 11 I p=® (88)

beSTN w™ 1S~ BERT ,nw—1R_ beSTN w 1S~
obeRTNw'R™ obe{B,26}

Let 8 € RE ,Nnw™'R_,. Let N := (wB — B3,7). It follows by the same arguments
as Step 1 that b = S+ k € ST NYw 1S~ for 0 < k < N. For k > N, we obtain
kE+(8,7) > (wB,v) > M , thus wx(8 + k) = ©x,(yB8 + k+ (8,7)) = 0 and hence

Yo wa® =D Bk =D wB+k) =D wb).
k=0

beSTN w= 1S~ keN best
ob=p 9b=p
In the case where 2 € R, we obtain similarly
N—1
Yo )= w28+ 2k+1) =D w28+ 2k +1) = Y wa(b).
beSTNYw= 1S~ k=0 keN best
ob=28 ob=28

Hence

Yo wab) = (). (89)
beSTNTw ™S~
obe{p,28}
The equation (87) follows from (88) and (89).

Combining the two steps, we obtain the product formula. O

10.3 Preparatory lemmas

Let v € QY be an element satisfying (77). Recall the notion of clans and generic clans from §7.3
and the fundamental alcove vy C E.

Lemma 90. For w € Wg, the alcove w™'X vy is in a generic clan and every generic

clan contains at least one such alcove. Moreover, for a different choice v/ € QV, the alcoves
’ .

w X "y and w X "7 vy are in the same clan.

Proof. Since the clans are connected components of the complement E¥ of the hyperplanes
in®¥ = {H, CFE; a€S, Oy(a)>1}, any two points x,y € EY are in the same clan if
a(x)a(y) > 0 for all @ € S with H, € D“. Let €,, C E¥ be the clan such that w=!X " 7yy C €,,.
Take any point x € vp. Set x,(t) = w™l(x — (1 + t)y) for t € R>p so that in particular
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24 (0) € €. Let a € S such that H, € ©“. Suppose that wda € RT (resp. wda € R™); then
(wda, ) < 0 (resp. (wda,v) > 0), so we have

a(xy(t)) = (wa)(z) — (wda, (1 +t)y) >0, Vte R>o

(resp. a(xy,(t)) < 0). Hence x4, (t) € €, for all ¢ > 0. Moreover, we see that the value a(z,,(t))
is unbounded when ¢ — +4oc0. Hence every affine root is unbounded on the €, from which
the genericity of €,,.

Conversely, let € be a generic clan, consider the salient cone x defined in §7.3. The genericity
of € means that x is of full dimension dim V. Let Cy C V be the fundamental Weyl chamber
and let w='Coy C V be a Weyl chamber with w € Wx such that Int(k) Nw=1Cqy # 0. It is
obvious that w™ X Yy, C €. O

Recall the element o, from (80).
Lemma 91. We have o,e("¢) € A“.

Proof. Denote A\ = 7¢. Let "s, = S84, ---8q; be any reduced decomposition and denote
one(A) =712 - 1% e(N). Applying Lemma 37(ii), we see that

ale(N) =sq, - Sa, H (=0c)*»©) | e(\) mod Fey 1A= (92)

cESTNTs, S™
and Lemma 86 yields
[T (00*@=c(—a)®, eccC”.
cESTNVsaS—

Thus the right-hand side of (92) is congruent to eo,e(A) modulo F<;_31A~°°. Notice that
oae(N) € A° by Proposition 30 (iii) and o/ e(A) € A“ C A°. Hence by the compatibility of
the filtrations by length Corollary 41, we have

(0, — coa)e(N) € e("sa) (Fai 1A NA%) e(A) = e(Ts,)) (F<i_1A°) e(N).

We show that in fact (0, — eoq)e(A) € A“. For any different choice ' satisfying (77),
Lemma 90 implies that the intertwiner ¢, .+ defined in Theorem 82 satisfies ¢, /¢y 4 = €5,

Py’ Py, = €y and
Py 0ae(? O)py = 0ae(7l), ‘P%v’oge('y Oy y = one(’l);

thus the validity of the statement is independent of the choice of 7. We claim that if we choose
v in such a way that [(a,v)| < [(B,7)| for all B € A \ {a}, then there is an inequality of
lengths

1=100sq) <l(w), YweWg\{l}. (93)

We complete the proof provided (93). Note that the stabilisers satisfy "W, = W). There are
two cases to be discussed:

(i) If sqf # ¢, then by (93) we have £(w) > [ for all w € Wg such that wA = 7s,A. It follows
from Theorem 40 that e(7sqoA) (F<;—1A°) e(A) = 0. Hence o,e()\) = eole(N) € A¥.

(ii) If sof = ¢, then by (93) we have £(w) > [ for all 1 # w € Wy and thus by Theorem 40,
we see that e(\) (F<i—1A%)e(N) = C[V]e(A) = e(\) (F<i—1A¥)e(A). Thus (00 —
e~ 1o!)e (\) € A¥ and consequently o,e()\) € A“. Hence the proof is completed.

We prove (93). Indeed by Proposition 1,

[ =0("s0) < 1+ 6X @) <14 (2p, 0" ), )] < [(B,7)],

while for any w € Wg \ {1, 84}, there exists 8 € R, Nw™ 'R, with 3 # a, so
(Cw) > [(B,w™ly = y)| = Lw) = [(wh = B,7)] — L(w) > [(B,7)] — L(w) > 1;

here, the second-to-last inequality is due to (77). O
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10.4 Basis theorem for generic clans

Let v € QY be an element satisfying (77). Recall the idempotent of generic clans e, from (81)
and the elements o,e(7¢) from (80).

Theorem 94. The idempotent subalgebra ey A“e, is generated by C[V]e(\) and gne(N) for
a € Ay and X € "(Wrly). Moreover, if for any w € Wg we set 0, = 04, -+ 0o, by choosing
any reduced expression W = Sq,, * - Sa,, then there is a decomposition

e,A%e(N) = P P ClViewe).

Y (Wrio) wEWR

Proof. Let £ € Wgly and w € Wg. Denote A = 7¢. Choose any reduced expressions
W= Sq, **Sa; a0d Tw = 54, - 84, for ay, -+ ,an € Ap and a1, ,a; € A and set

ope(N) =741 e(N) € AY, ope(N) =04, Oa e(N).

a

By Lemma 91, we see that o,e(\) € A¥. We claim that
o,e(A) = eope(N) mod Fop1AY. (95)

for some ¢ € C*. Recall the rational function matrix algebra A~ = FracZ ®z A°.
By Lemma 37 (ii) and Lemma 86, we have

o1,€(\) = Soq, *** S84 H (—9b)*® | e(\) mod Fe AT
beStNrw-15-
=eope(A) mod Fe_1 AT,

for some € € C*. As n <, the above congruences yield (o}, — eoy)e(N) € AY N Fg_1 A™>.
By Corollary 41, we have A¥ N F<;_1 A~ = F¢;_1 A¥, so the claim (95) is proven.
According to Theorem 40, the family {0}, e(\)}wew, form a basis for e, A“e()X). The
decomposition of e, A“e(\) follows from the triangularity (95) of the transition matrix between
the basis {0}, e(\) bwew, and the family {o,e(N) }wewy- O

10.5 Proof of Theorem 82

Proof. We define an isomorphism of Z-modules Poly ¢, = e, Polwy),, straightforwardly by
the identification:

Pol, = C[V] = Poly, l € Wgrty.

It yields a faithful representation of B on e, Poly»,, which by definition of B® is described
by the formula

fe(l)-g=fe("l)g, tiell) g=o.e("l)g.

By Theorem 94, the image of B® in Endz (e, Poly,»,) coincides with e,A“e, and the map
B? — e, A“e, must be an isomorphism since both sides are free C[V]-modules of same rank.
Notice that deg 7}e(¢) = o¢() = dego,e("¢). Hence the map i, is an isomorphism of graded
Z-algebras.

For any other choice 7/, since by Lemma 90, w™! X" and w™! X 7" lie in the same generic clan
for each w € Wg, by Proposition 53, the intertwiner ¢,/ ., yields isomorphisms of A“-modules
A%e, = A%¥e, by right multiplication and hence isomorphisms of algebras

e, A%e, 2 Endaw (A¥ey ) 2 Endae (A¥ey) = e,A%,.

The factorisation i, = @y 0 i follows from the observation that (X7 ~7) =1 € Wg.
O
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10.6 The functor V

Choose a v € QY satisfying (77) as in §10.2. With Theorem 82, we can make the following
definition:

Definition 96. The Knizhnik—Zamolodchikov (KZ) functor V is defined by

-k

i
¥
V:A¥-gmod — e, A%”e, -gmod ——B® -gmod

M — e M.

By the second assertion of Theorem 82, the definition of V is independent of the choice of
v up to canonical isomorphism (provided by the intertwiner ¢., ).
Since V is defined as an idempotent truncation, it admits left and right adjoint functors

VI:N— @ gHompo (e,A%e(\),N) and 'V :N— A%, @go N
AeWs Ao

and V is a quotient functor in the sense that the adjoint counit Vo VI — idge is an
isomorphism.

10.7 Support characterisation of V
For M € A% -gmod, define the following subset of E:

Specy M ={\ € WgAg; e(A)M #0}.

For each alcove v C E, there is a unique w € Wy such that v = w™'1y; we denote A\, = w).
Recall the Gelfand—Kirillov dimension dimgg M and the support Supp M from §8.3.

Theorem 97. Let M € A% -gmod,. The following conditions are equivalent:
(i) VM = 0;
(ii) for every alcove v lying in a generic clan, we have e(\,)M = 0;

(iii) the set Specy M is contained in a finite union of (not-necessarily root) affine hyperplanes
of E;

(iv) dimgg M <tk R—1;
(v) Supp M # Spec CQY.

Proof. Since every object of the category A% -gmod is of finite length and all the conditions
(i)—(v) are stable under extensions, we may suppose that M is simple.

(i) © (ii) follows from the definition VM = e, M and the invariance of dimension of e(A)M
for X’s in the same clan Corollary 54.

We prove (ii) = (iii). By the finiteness of the clan decomposition, it suffices to show that
for each non-generic clan €, the set {\, ; v C €} lies in a finite union of affine hyperplanes of
E. By the non-genericity of €, there exists o € R which is bounded on €. Let A = kera N QV.
Notice that QV is a free Z-module of rank rk R — 1. Let ¢ be the set of alcoves contained in
¢. For v,1/ € A¢, we write v ~, v/ if there exists p € A such that v+ p = /. For any v € e,
since X#\, = A, + pu, the set {\,/ ; v/ ~p v} is contained in the hyperplane w (Ao + Ar) for
any w € Wg such that v = w™lyg. Since « is bounded on €, the quotient 2/ ~4 is a finite
set and thus the set

hivedc | Dws v v
veERAe /~A

is contained in a finite union of hyperplanes, whence (iii).

We prove (iii) = (iv). Suppose that Specy M is contained in a finite number of hyperplanes.
Choose any A\; € Specp M. Let r = rk R = dim E. Via the identification £ = V induced by
Ag C A, we view E as an euclidean vector space. Since

Specy M C U (w1 +QY)
weWRr
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is contained in a finite union of the intersection of lattices and hyperplanes, we have

lim #{\ € Specp M ; ||\|| < n} _

n 00 nrflJrs

0, Ve>O0.

For every affine simple root @ € A, we have 7¥e(A)M C e(s,A\)M. Moreover, we have
[[saAll < ||A]] + d for some constant 6 which depends only on the affine root system (F,.S). It
follows that if we define for ¢ € R>¢ the subspace

Mgt = Z e()\)Ma
A€Specy M
lIAll<t

then 7°M<; C M<sts, so F<iA®M<; C M<iys. By induction on n € N, we see that
(F<nA¥) M<; C M<yins. Since there is only a finite number of clans and since the dimension
of e(wAo) M) for w1ty in a fixed clan is constant by Corollary 54, the set {dime(A\)M ; X €
WsAo} is bounded. Hence for any finite-dimensional subspaces L C M, we have

dim (F<, A“ - L
i AU ) _0, veso. (98)

n—>oo nT_1+5

Indeed, let to € R be such that L C M<y,, then dim (F<, A% - L) < dim M<y,1ns = o (n"71+¢).
The estimate (98) implies (iv). The equivalence (iv) < (v) results from Proposition 67.

We prove —(ii) = —(iv). Suppose there exists a generic clan € and an alcove v C € such
that e (A\,) M # 0. Let K C V be the salient cone of € (¢f. §7.3). For any p € kN QY, we have
X*"v € € and by Proposition 53, e(X #\, )M = e(\,)M # 0. It follows that

dim (F<, A%) (e(A,)M) > dim Y e(X#A\)M = #{ue kN Q" ; €(X*) < n}dime(\,)M.

By the genericity of €, the salient cone x contains an open subset of V| so its intersection with
a full-ranked lattice QV satisfies

i PRERNQY; (XM <nj

c, c¢>0.
n—s o0 n’
Hence
log dim(F<,A“)e(A, )M .1 r
dimgg M > lim og dim(F< Je(A) > lim ogen _ r,
n—y oo logn n—oc logn
whence (iv) is not satisfied. O

10.8 Double centraliser property
Recall the parabolic subalgebra A%,y from §7.6.

Lemma 99. Let Ay € Wgho, N € Aj \ -gmod and L € A*¥-gmod. Suppose that VL = 0,
then gHom (L, imdSR,/\1 N) =0.

Proof. Tt follows from Theorem 97 (i)=-(v) and Proposition 69. O

Remark 100. We shall establish in Theorem 105 the double centraliser property for the functor
V. The strategy is close to the case of rational Cherednik algebras in [10, 5.3]: the first step
consists of showing that “induced modules” are torsion-free for the KZ functor. In the case of
the dDAHA H discussed in Part I, the parabolic subalgebra A%\ plays the role of be graded
affine Hecke subalgebra H = CWgr ® C[E| C H, whereas B plays the role of the affine Hecke
algebra K. In this sense, Lemma 99 is an analogue of the first step in the proof of loc. cit.

Let (A¥/mz)-gmod be the full subcategory of A“ -gmod consisting of objects M such that
mzM = 0. The inclusion (A¥/mz)-gmod — A% -gmod has a left adjoint functor — ®2zC,
which is right exact. We denote by — ®%C its derived functor. The next lemma is the method
of lifting faithfulness borrowed from [29, 4.42].
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Lemma 101. Let M € A¥ -gmod be an object satisfying the following properties:
(i) M is free over the centre Z;
(i1) there exists \y € WgAg and N € A%\, -gmody such that M/mzM = imd%Al N.

Then for any L € A% -gmod such that VL = 0, we have gHom(L, M) = 0 and gExt' (L, M) = 0.

Proof. We suppose that M # 0. Let K = RgHom(L,M) be in the derived category
D+ (Z-gMod). We suppose that K is a minimal projective resolution. Since

K ®z C = RgHom (L ®% C, M ®% C) = RgHom (L ®% C,M/mzM)

by the flatness of M over Z, we have K @z C € D2°(C). By the second assumption
and Lemma 99, we have

H(K ®z C) = Hom (L ®z C,M/mzM) = 0.

Consequently HSY(K) = 0 by Nakayama’s lemma.

Suppose that H(K) # 0. Since the localisation Frac Z ®z M is a weight module over
A~°° which is semisimple, H!(K) must be a torsion module over Z so K° # 0. However,
the minimality of K would imply H’(K ®z C) # 0, contradiction. Hence HS!(K) = 0 and so
gHom(L, M) = 0 and gExt!(L, M) = 0 as asserted.

o

Lemma 102. Let M € A¥-gmod be an object satisfying Lemma 101. Then the adjoint unit
yields an isomorphism M = (VT o V) M.

Proof. Set X = Cone (M — (RVT o V)M) € DT(A¥ -gmod), so that there is a distinguished
triangle

M — RV o V)M — X — M]1]. (103)

By the adjunction and the exactness of V, we have VX = Cone(VM — (VoRVToV)M) =0
and hence

VHF(X)~HF(VX)=0, keZ.
Applying Lemma 101 with L = H°(X) and L = H!(X), we deduce

gHom (H°(X), M) =0, gHom (H°(X)[-1], M) = gBExt' (H*(X), M) =0
gHom (H™'(X), M) =0,

whence
gHom(7<o X, M) =0, gHom(r<oX, M[l]) = gHom(r<oX[-1], M) =0. (104)

Applying RgHom (7<¢X, —) to the distinguished triangle (103), we obtain the long exact
sequence

gHom (7<o X, M) — gHom (1< X, (RV ' 0 V)M) — gHom (7<oX, X) — gHom (<o X, M[1]).
By (104), the first and the last term of the sequence vanish. Hence,
gHom (<0 X, X) = gHom (<o X, (RV" 0 V)M) = gHom (7<c VX, VM) = 0,

which implies that 7<oX = 0. Applying H to the distinguished triangle (103), we deduce that
the adjunction unit M — (VT o V)M is an isomorphism. O

Theorem 105 (Double centraliser propertyY ). The canonical map

AY— P gHomge (VA¥e (), VA“e (X))
AN EWs Ao

is an isomorphism.

TLet A and B be unital associative rings. Usually, one says that an (A, B)-bimodule P satisfies the double
centraliser property if the structural maps A — Endpgor (P) and B — End4(P)°? are isomorphisms. The above
theorem provides a graded, non-unital version of this property for the (A, B?)-bimodule A¥e..
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Proof. Observe that for each A € Wg g, the module A“e(\) € A -gmod satisfies the conditions
of Lemma 101. Indeed, A¥e(]) is flat over Z by Theorem 40. For the second condition, we have

A%e(N) = ind}, ,, A% ye(A), s0 A%(N)/mz = ind3 (Ag e()) /mz). Applying Lemma 102,
we obtain

A°= (P gHomu. (A¥e(V), A% (V) = ) gHomy. (VA¥e (X)), VA¥e (X)).
AN EWs Ao AN EWs Ao

O

10.9 Categorical characterisation of V

We shall exploit the Frobenius structure on B introduced in Lemma 76. Consider the anti-
involution A% = (A“)°" which fixes pointwise C[V]e(\) for A € Wg and sends 7¥e()\) —
T7e(sqA). The duality

M~ M*:= @5 Homc(e(\)M,C) (106)
AeWs o

yields an equivalence
A® -gmod; = ((A“)°P -gmod,)°P = (A“ -gmod,)°P.
Similarly, the anti-involution B 2 (B?)°P given by 7ile({) — 72e(s4f) yields
B?-gmod,, = (B -gmod,)°".
Denote A” = A“/A%“mz and B” = B?/B®mz. Notice that the pairing

(a,b)—ab —w

—_w —_w =0
e A XA ey e,Ae, =B

composed with the Frobenius form B” 2 Z/mz = C yields an isomorphism (A%e,)* =A%,

Lemma 107. There are canonical isomorphisms | VB' = KweV ~VTB".

Proof. The first isomorphism is obvious: TVB" = A%e, ®po B = Kwe.y.
Observe that (A”e,)* = A”e, implies VM* = (VM)* for M € A”-gmod, and hence
VIN* = (TVN)* for N e B” -gmod,. Therefore

Q

ne T\ *\* ~v B* ~ (AW * v AW
VB = ("TVB") ) = ('VB)* = (A%,) = A",.

O

Theorem 108. Let L € A¥-gmod, be a simple object. Then the following conditions are
equivalent:

(i) VL #0;
(i) the injective hull of L in the subcategory A" -gmod is projective;

(i) the projective cover of L in the subcategory A” -gmod is injective.

Proof. Since VT preserves injective objects, we see that by Lemma 107, KweV is injective-
projective in A~ -gmod.

We prove (i) < (ii). Let L € A“-gmod, be any simple object. If VL = 0, then
by Lemma 99, we have gHom(L,Kw) = 0; hence (ii) fails for L. If VL # 0, since V is a
quotient functor, VL € B -gmod,, must be simple. We have mzVL = 0, so we may view L as
a B”-module. By the self-injectivity of EQ, there exists a non-zero map ¢ : VL — B” and the
adjunction yields an injective map L — VTB® ~ Kwev, whence (ii) holds for L.

Finally, since the duality (106) exchanges the projective and injective objects in A" -gmod
and preserves ker V, we deduce

(iii) for L < (i) for L* < (i) for L* < (i) for L.
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Example 109. Resume to the setting of examples Example 33 (iii), Example 55 and Example 83.
We have A¥e, = P @ P_ so VLo =0, while VL, # 0 and VL_ # 0 are simple objects in
B« -gmod. In regard of Theorem 97, we have dimgk L+ = dimgk L— = 1 while dimgk Lo = 0.
The cosocle filtration of VP, VFPy and VP_ are described by the following:

VL VL_
VL4 (22) VL_(—2 VL (-1 VL (-1 VL,(—2) VL_(-2
VI (-4} VL (-1 vE+ (=8 VL-{- VI (-4} VL (-1

—6) VL_(—6 5 VPQ = +<_ > 7< —6Y VL_(—6

VP, = |vL} =5, VP_ = |vL}

From this description it is obvious that the functor V is fully faithful on the projective objects,
so V satisfies the double centraliser property Theorem 105.
Consider the quotients

L, Lo L_
Prme = | - Bime = |5 s (o] Pme = | Y

It follows that Py /mz (resp. P_/mz) is the injective hull of L_(—2) (resp. Ly{(—2)) in the
category (A¥ /mz)-gmod while Py/mz is not injective. Hence Ly and L_ satisfy the equivalent
conditions of Theorem 108.

A Category of pro-objects

Al

Let A be an abelian category. We denote by Pro(A) and Ind(A) the category of pro-objects
and ind-objects. The basic reference for these is [19, 8.6]. All the results below are stated
for Pro(A) while they all have a dual version for Ind(A). An object of Pro(A) is a filtered
“projective limit” of objects of A. If

MO =Y MY, M e A ie {12}
JETW

are two objects of Pro(A), where Z()’s are filtrant diagram categories and M® : TP 5 A’s
are functors, then the Hom-space between them is given by

Homp,o(4) (M<1>,M<2>) = lim lig Hom, (Mi(l), J@)). (110)
jeT® iezd

A.2

For every M € Pro(A), let A denotes the category whose objects are pairs (M’,a) where
M’ € A and a € Homp,o(a)(M, M'), and whose morphisms are given by

HOInAM ((Ml,al), (Mg,ag)) = {b S HomA(Ml,Mg) ;ag =bo al}.

Every object M € Pro(A) can be expressed as the following filtered limit:

M= “im” M. (111)
(M’,a)e AM
Let Aé\gi C AM be the full subcategory whose objects are the pairs (M’, q) with ¢ being an
epimorphism.

Proposition 112. Let A be an artinian abelian category. Then the following statements hold:
(i) A is a Serre subcategory of Pro(.A).
(ii) Every object M € Pro(A) can be written as the following filtered projective limit

M o “]'gln M/.
(M",a)e AN

epi

(iii) A is the full subcategory of artinian objects in Pro(A).
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(v) If o : N — M is a morphism in Pro(A) such that for every (M, q) in Af}gi, the composite
q o @ is an epimorphism, then ¢ is an epimorphism.

Proof. We first prove that A C Pro(A) is closed under taking sub-objects. .
Let M € Pro(A). Suppose that there exists M € A and a monomorphism ¢ : M — M.
We can consider the full subcategory AM C AM of pairs (M’, a) with a being monomorphism.

The subcategory A} is cofinal. Indeed, if (M’,a) € AM, then (M’ x M, (a,a)) € AM. Let

AM < AM be the full subcategory of objects which are minimal, in the sense that if there is
(M",b) € AM with a monomorphism ¢ € Hom4(M", M’) such that ¢ ob = a, then ¢ is an
isomorphism. By the minimality of the objects of A3/, it is easy to see that the Hom-space
Hom 4ar ((M’,a), (M",b)) consists of exactly one element for every (M, a), (M",b) € AM . Tt
follows that any object (M’,a) € A} yields an isomorphism a : M = M’. As A is artinian,
AM cannot be empty, whence M € A.

To prove (ii), in view of (111), it suffices to show that Af};i is cofinal. The previous paragraph
shows that for (M’,a) € AM, the image im(a) is in A. Consider the factorisation M ~%
im(a) & M’. Then (im(a),7,) € A%i and there is a morphism a : (im(a), 7,) — (M’ a) in
AM. Thus AN, is cofinal in AM.

We prove (iii). Let M € A. Since A C Pro(A) is closed under taking sub-objects, every
descending chain of sub-objects of M is in the subcategory A, which by assumption must
stabilise. Thus M is artinian in Pro(A4). Suppose that M € Pro(.A) is artinian. There must be
a minimal sub-object M’ C M such that M /M’ lies in A, meaning that the category Aégi has
an initial object. By (ii), M being the projective limit over A%i must lie in A4, whence (iii).
The assertion (i) follows immediately from (iii).

We prove (iv). Let ¢ : M — cokerp = C be the cokernel. Suppose that C # 0. Since
C € Pro(A), there exists an epimorphism p : C' — C’ with 0 # C’ € A. Since poc: M — C’
is epimorphism, the composite p o c o ¢ is also an epimorphism by hypothesis. However, as
cop =0, we see that C' = 0, contradiction. Thus C' = 0 and ¢ is an epimorphism. O

A.3

Let A and B be abelian categories and F' : A — BB an additive functor. We define the extension
of F:

F :Pro(A) — Pro(B), F(M)= “lm” F(M’).
(M’,a)EAM

According to [19, 8.6.8], if F' is exact, then the extended functor F' : Pro(A) — Pro(B) is also
exact.

A4
Suppose that A is noetherian-artinian. We define an endo-functor
hd : Pro(A) — Pro(A), hd(M) = “]'gl” hd(M")
(M, q)e AL

where hd(M') is the largest semisimple quotient of M’ in A. For every M € Pro(.A), there is
a canonical map mp : M — hd(M).

Proposition 113 (Nakayama’s lemma). Let A be a noetherian-artinian abelian category. Let

@ : N — M be a morphism in Pro(A). Suppose that the composite N 2 M T2 hd(M) is
an epimorphism. Then ¢ is an epimorphism.

Proof. We first prove the statement in the case where M € A. In this case, since coker
is a quotient of M, we have an epimorphism hd(M) — hd(cokerp). As the composite
N — hd(M) — hd(coker ¢) is zero and is an epimorphism, it implies that hd(coker ¢) = 0.
As A is noetherian, it follows that coker ¢ = 0, so ¢ is surjective.

In general, let M € Pro(A). Let (M’,q) be any object of Aggi. Then 7y 0 g o ¢ is an epi-
morphism. By the previous paragraph, go ¢ is also an epimorphism. Then Proposition 112 (iv)
implies that ¢ is an epimorphism. O
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A5

Proposition 114. Suppose A is an essentially small noetherian-artinian abelian category. Let
M € A be a simple object. Then there exists a projective cover Py € Pro(A).

Proof. We construct an object P(™) € Pro(A) for n € N by induction. Let P(®) = M. For
n >0, let

0—> ‘1T L— P — pn=b) 4

LEIrr(.A)/N
vEExtY, (P"~1,L)

be the short exact sequence corresponding to the tautological class

A=), € I1 Exty (PO, L).

Lelrr(A)/~
y€Extl (P~ L)

3 7

Put P = “&1 P Then P is a projective since we have

Ethl:’ro(.A) (P7 L) =0

by construction and since A is noetherian-artinian. Let p : P — M be the obvious epimorph-
ism.

Now, let Af\} be the category whose objects are triples (w, Q,n’), where

e Qe A

e 1 € Homp,o(4)(P, Q) is an epimorphism and

o 7’ € Homu4(Q, M)
such that

o 7' om = p & Hompo(a) (P, M) and

e 7/ induces an isomorphism hd(Q) = M.

The morphisms are defined by

HomAif ((771)@1)77/1)7 (7T27Q277T£)) = {90 € HOI’IIA (QlaQQ) ; POoTm = 772} .

Put
P]\/] — Lcyilw Q
(m,Q,w")e AL,
Then the obvious morphism Py; — M is a projective cover. O

Index of notation

Part 1

exp, 10 P,Q,PV,QV, 4 v, 10
B, 13 H, 6 Poly, 6 V., 4
1%07 190 hH,\O, 8 R, 4 V, 11

S a 6 Rred 4
9 b W 5

c, 13 Ky, 10 R[E|<!, 4 WR’ X
Co, 10 {(w), 5 S, 4 o5
D(TY), 10 Xo, 6 S+,5.5 Ws, 5
A, Ag, 5 0y, (K), 9 Sa,Sa, 4 X*H, 5
E, 4 Oy, (H), 6 T,9 2N mz, 8
Part 11
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gHom, 24 Py, 22 T 32

A°, 16 -gmod, -gmod,, Polywg,, 16 T, 17

A“, 17 24 Poly, 16 V, 39

B2, 32 ind?, 28 Y, 22 Wi, 16

dimGK; 30 )\07 16 Rred7 31 ’Yw"Y)\7 34

E¥, 25 wy, 17 Raty, Rat, 17 Z.mz, 16

e()), 16 Qg, 31 Supp, 30

FenA®, 18 oy, 17 T, 31
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