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Abstract
Extinct megafaunal mammals in the Americas are often linked to seed-dispersal mutualisms with large-fruiting tree spe-
cies, but large-fruiting species in Europe and Asia have received far less attention. Several species of arboreal Maloideae 
(apples and pears) and Prunoideae (plums and peaches) evolved large fruits starting around nine million years ago, primar-
ily in Eurasia. As evolutionary adaptations for seed dispersal by animals, the size, high sugar content, and bright colorful 
visual displays of ripeness suggest that mutualism with megafaunal mammals facilitated the evolutionary change. There has 
been little discussion as to which animals were likely candidate(s) on the late Miocene landscape of Eurasia. We argue that 
several possible dispersers could have consumed the large fruits, with endozoochoric dispersal usually relying on guilds of 
species. During the Pleistocene and Holocene, the dispersal guild likely included ursids, equids, and elephantids. During 
the late Miocene, large primates were likely also among the members of this guild, and the potential of a long-held mutual-
ism between the ape and apple clades merits further discussion. If primates were a driving factor in the evolution of this 
large-fruit seed-dispersal system, it would represent an example of seed-dispersal-based mutualism with hominids millions 
of years prior to crop domestication or the development of cultural practices, such as farming.
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Introduction

The history of the domesticated apple (Malus pumila (for-
merly M. domestica)) is closely intertwined with humans. 
There are 3,000 species in the Rosaceae family, many of 
which are economically important, such as apples, peaches 
(Prunus persica), plums (Prunus spp.), and pears (Pyrus 
spp.). Malus encompasses 55 species (Hancock et al. 2008), 
of which the apple is the most morphologically diverse, with 
over 10,000 landraces of apples recognized worldwide (Sau 
et al. 2018). Human-facilitated gene flow has caused major 
changes in population genetics within Malus over the past 
few centuries, leading to immense phenotypic change in 
fruit structure (Urrestarazu et al. 2016). Recent archaeobo-
tanical and genetic research suggests that the modern apple 
evolved through hybridization caused by human-induced 
movement of trees between isolated populations during the 
late Holocene (Harris et al. 2002; Gross et al. 2013; Cornille 
et al. 2015). The geographically restricted populations of 
some large-fruiting Malus trees, such as M. orientalis and 
M. sieversii, appear today to map over former glacial ref-
ugia (Fig. 1) (Spengler 2019). Humans started spreading 
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the seeds beyond these refugial pockets in association with 
the Neolithization of Europe and the development of trans-
continental exchange networks (Cornille et al. 2015; Duan 
et al. 2017; Spengler 2019). Although this period repre-
sented a significant evolutionary change for these plants 
as they responded to human dispersal and maintenance of 
the population, the appearance of large sugary fruits actu-
ally occurred roughly nine million years ago (Ma) and their 
interactions with hominid populations may also have a far 
greater time depth.

Megafruits (defined as any fruit too large for typical 
avian dispersal, > 25 mm) evolved in parallel at least twice 
(Prunoideae and Maloideae) across the Rosaceae clade in 
Eurasia starting in the late Miocene (Xiang et al. 2017). 
Prominent examples of Maloideae megafruits with highly 
restricted ranges in the wild include Cydonia spp., Pyrus 
spp., Malus spp., Mespilus germanica, Sorbus domestica, 
and Eriobotrya japonica. This leaves open the question as 
to which seed dispersers the trees originally evolved larger 

fruits to recruit. It is clear that the mutualistic relationship 
between humans and apples stretches much further back than 
the Neolithic. Heavy foraging of wild European apples by 
pre-farming peoples undoubtedly manipulated gene flow and 
population dynamics. Some scholars have suggested that 
these pre-agricultural foragers were directly maintaining 
apple trees (Clarke 1978). Intentional burning would have 
increased forest patchiness, facilitating Malus sp. growth and 
dispersal (Zvelebil 1994; Kaplan et al. 2016). In certain parts 
of Central Europe, wild apples were an important part of the 
Neolithic economy, and foragers may have been targeting 
remnants of refugial apple populations (Antolín et al. 2016). 
Wild apple foraging was practiced during the Pleistocene; 
Malus seeds have been recovered from the Staosnaig site 
on the Isle of Colonsay, Scotland (Carruthers 2000; Mithen 
et al. 2001), and large-fruiting Rosaceae seeds are recorded 
as foraged foods across Mesolithic Europe (Zvelebil 1994). 
In addition, seeds of wild pears (Pyrus pyraster) were recov-
ered from the Epipaleolithic cave site of Öküzini in Anatolia, 

Fig. 1   Map showing locations of archaeobotanical finds of apple 
seeds during the mid-Holocene in black from Spengler (2019); red 
data points represent Pleistocene sites with apples and humans or 
artifacts found at the same site: (1) Staosnaig, Scotland, Mesolithic 
(Carruthers 2000; Mithen et al. 2001); (2) Öküzini, Turkey, Epipaleo-
lithic (Martinoli and Jacomet 2004); (3) Neumark Nord, Germany, 
Middle Pleistocene (Gregor and Vodickova 1983; Schweigert 1991); 
(4) Ehringsdorf, Germany, 243–200  ka (Vent 1974; Schwarcz et  al. 
1988; Mallick and Frank 2002); (5) Stuttgart-Untertürkheim, Ger-

many, Pleistocene (Mai 2010); (6) Burgtonna, Germany, 130–115 ka 
(Vent 1978); (7) Shamb outcropping, Armenia, 53 ka (Ollivier et al. 
2010); (8) Azokh 1 Cave, Armenia, 184–100  ka (Allué 2016); and 
(9) Molí del Salt, Spain, 11,000–12,500 (Allué 2016). Most of the 
data points fall in Pleistocene forest refugial zones, suggesting that 
these large-fruiting clades did not colonize new areas during the early 
Holocene, likely due to a lack of dispersers. Areas of loess deposits 
modified from Börker et al. (2018) and Bateman and Catt (2007)
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along with other wild arboreal fruit seeds (Fig. 1) (Martinoli 
and Jacomet 2004).

Hominin collection and use of these fruits appears 
to extend even beyond the appearance of our own spe-
cies in Eurasia, hinting at a much deeper time depth for 
human/Malus seed-dispersal mutualism. For example, fos-
sil apple impressions in travertine from the Ehringsdorf site 
(Fig. 2) of central Germany (Vent 1974) place large-fruiting 
apples in Central Europe between 243,000 and 200,000 years 
ago during Marine Isotope Stage 7 (Schwarcz et al. 1988; 
Mallick and Frank 2002). The fossils at Ehringsdorf include 
several hominin remains, characterized either as early Nean-
derthal, pre-Neanderthal (Vlcek 1993), or typical Neander-
thal with Mousterian stone tools (Hublin 2009). The site 
contains several occupations, including hearths, preserved 
in rapidly hardening travertine and provides some of the 
earliest linkages between Homo and apples (Behm-Blancke 
1960; Kot 2017). Apple fossils have also been recovered at 
the middle Pleistocene interglacial site of Neumark Nord 
(Geiseltal, Germany) (Mai 2010). Resembling the traver-
tine incrustations from Ehringsdorf (Fig. 2), numerous apple 
impressions were also preserved in travertine deposits at 
Stuttgart-Untertürkheim, which were presumed to be gath-
ered by hominins (Gregor and Vodickova 1983; Schweigert 
1991).

There are also further, more tentative, deep time links 
between hominins and Maloideae. Although the identifi-
cation of apples from leaves was also originally made at 
Burgtonna, in Eemian travertine of Germany (Vent 1978), 
this identification has been refuted as Lonicera arborea by 
Schweigert (Schweigert 1991). Other Pleistocene sites in 
refugial zones of Europe have provided evidence of large-
fruiting Rosaceae, including Mespilus germanica which was 
also reported at Burgtonna (Vent 1978). Travertine forma-
tions dating to both the late Pleistocene (53,000 BP) and 

early Holocene (12,000 BP) in the Shamb outcropping of 
southern Armenia, a former forest refugium, contain leaf 
impressions from Malus sp., Prunus sp., and Pyrus sp. 
(Ollivier et al. 2010). In the same Pleistocene forest refu-
gia, wood charcoal analyses from Azokh 1 Cave in Arme-
nia (184,000–100,000 years ago), illustrate that 80% of the 
wood that hominins (both Neanderthal and modern humans 
are present in varying layers) were burning was from Prunus 
sp.; among the remaining 20% of charcoal were fragments 
of Maloideae and other fruit trees, such as Paliurus/Ziziphus 
and Celtis/Zelkova (Allué 2016). Similarly, Maloideae wood 
was found with Prunus sp. wood fragments and a carbon-
ized seed of Prunus spinosa at the site of Molí del Salt in 
northeastern Iberia (Allué et al. 2010).

These publications suggest: (1) wild fruit forests were 
common in pre-Holocene Eurasia; (2) many of the mega-
fruits with restricted ranges during the mid-Holocene (e.g., 
Mespilus) may have had much wider ranges across refugial 
pockets during the Pleistocene; and (3) humans were likely 
utilizing these resources. In this article, we take this evi-
dence for hominin–Malus spp. interactions a stage further to 
argue that the evolution of large fruits in the Rosaceae line-
age may have been linked to seed-dispersal-based mutualism 
prior to the Pleistocene. We base our hypothesis on: (1) the 
fossil and genetic record for Malus spp.; (2) morphological 
traits of fruits in the clade; (3) the dominance of frugivorous 
or folivorous primates on the landscape during the develop-
ment of fleshy fruits in the Miocene; (4) the fossil and extant 
record for large primate frugivory; and (5) the prominence 
of seed dispersal in other primate clades.

Fig. 2   Images of fossil apple 
impressions from the ca. 
243,000–200,000-year-old 
travertine site of Ehringsdorf, 
Germany. This fossil represents 
one of the earliest direct link-
ages of hominins and large-
fruiting Malus sp.
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Seed‑Dispersal‑Based Mutualisms

Large rosaceous fruits evolved to recruit animals on a dif-
ferent landscape than that of modern Eurasia. Continual 
dispersal through the Pleistocene and Holocene was likely 
facilitated by ursids, equids, and elephantids. Bears have 
long been theorized as one of the dispersers of the Tian Shan 
wild apples, and we emphasize the likelihood that bears have 
been a key disperser for these fruits through the Holocene. 
Personal observations by the lead author attest to the ger-
mination of apple seeds after digestion by North American 
black bears. Many studies have emphasized the success of 
bears as seed dispersers, although, in these cases, largely for 
small-fruiting plants (García‑Rodríguez et al. 2021).

Ecologists tend to agree that plants with small fleshy 
fruits largely evolved for avian dispersal (Tiffney 2004; Suss-
man et al. 2013), but, with the influx of African frugivorous 
megafauna in the early Miocene, including large primates 
and certain groups of proboscideans and perissodactyls, 
some angiosperms found more effective dispersal mecha-
nisms (Van der Made and Mazo 2003; Begun et al. 2012). 
European megafaunal mammals prior to the early Miocene 
migrations were largely adapted for grazing (Steininger et al. 
1985; Van der Made 1999). The new megafaunal dispersers 
that migrated to Europe in the late Miocene, by contrast, 
would have been able to spread much larger seeds than their 
avian or small mammalian predecessors. The spread of Afri-
can frugivorous species into Europe was coupled with a cli-
matic shift or a series of climatic changes over millions of 
years (Van der Made and Mazo 2003). During the Miocene, 
in mid-latitudes, north of the Tropic of Cancer, climates fluc-
tuated wildly from much hotter and more humid than today 
to much drier. The late Miocene saw an encroachment of 
drier, more open deciduous forests and advances of grass-
land biomes, and was the key period for the evolution of 
large-fruiting rosaceous trees and shrubs (Mai 1995; Xiang 
et al. 2017). M. sieversii trees evolved for an open steppe or 
savanna landscape and only grow to two to ten meters tall; 
like most large-fruiting Rosaceae trees, they cannot survive 
under a forest canopy. This growth habit mandates a long-
distance seed-dispersal strategy to ensure directed coloniza-
tion to suitable gaps in the forest cover. Biotic dispersal often 
leads to directed dispersal, targeting prime colonization 
areas (Eriksson 2008). In the case of Rosaceae, recruitment 
of animals that frequently forage in forest clearings helps the 
plant to jump between colonization sites.

Large mammals, collectively, represent highly effective 
seed dispersers, due to their ability to disperse large seeds 
and high abundances of seeds (Tiffney and Mazer 1995; 
Escribano-Avila et al. 2014; Jara‐Guerrero et al. 2018). Seed 
dispersal mutualism usually relies on guilds of animals, what 
Tiffney (2004) refers to as diffuse coevolution (Janzen and 

Martin 1982; Wenny 2001). When the dispersers in a guild 
are lost, there can be direct evolutionary consequences on the 
plant communities that relied on them. To take one exam-
ple, a recent study by Onstein et al. (2018) demonstrated 
both a decrease in size and an increased rate of extinction in 
megafruits in the Arecaceae clade throughout the Holocene. 
Other studies have demonstrated that the loss of megafaunal 
dispersers results in a loss of seed dispersal and subsequently 
extinction or fragmentation of large-fruiting plant popula-
tions (Galetti et al. 2006, 2018; Eriksson 2008; Malhi et al. 
2016; Pires et al. 2018). Seed-dispersal studies consistently 
illustrate that perissodactyla (including rhinoceroses and 
tapirs) are far more likely to disperse large seeds and con-
sume sugary fruits than true ruminants, notably artiodactyla 
(including cattle, deer, and their relatives), and are more 
readily featured in zoochory studies (Nathan et al. 2008; 
O’Farrill et al. 2013; Jara‐Guerrero et al. 2018). Extensive 
research has also gone into the study of proboscidean seed 
dispersal rates (Kitamura et al. 2007; Campos-Arceiz et al. 
2008; Harich et al. 2016; McConkey et al. 2018).

Malus Radiation and Diversification

While Pleistocene and early Holocene hominins undoubt-
edly dispersed wild apples, large-fruiting apple populations 
are unevenly situated across Eurasia, with concentrations 
in Central Europe, in areas such as the Rhine Valley and 
around the Caucasus, and in northern Central Asia, in the 
Tian Shan and Pamir Mountains. Meanwhile, endemic large-
fruiting species such as M. tschonoskii and M. floribunda 
have restricted ranges in East Asia, as far east as Japan. 
These patches of mid-latitude distribution reflect the rem-
nants left by the late Pleistocene ice sheets and permafrost, 
suggesting that the large-fruiting species of Malus have 
seen limited mobility over the past 20,000 years (Spengler 
2019). Richards et al. (2009) noted that prior to the Last 
Glacial Maximum (ca. 20,000 years ago) there was likely a 
much larger ancestral population covering the range of all 
of these now-isolated populations. The main progenitor for 
the domesticated apple comes from a restricted population 
in a few river valleys in the western Tian Shan Mountains of 
southeastern Kazakhstan (Fig. 1) (Harris et al. 2002; Velasco 
et al. 2010; Cornille et al. 2014). Today heavy herd animal 
grazing has restricted the trees to steep slopes (between 800 
and 1500 m above sea level); with low rates of seed dispersal 
in the current population, their range has dwindled consider-
ably throughout the Holocene. The trees largely propagate 
today through root shoots and cloning, with most of their 
prolific generations failing to disperse and energetically 
costly fruits rotting below the parent trees (Omasheva et al. 
2015; Duan et al. 2017; Spengler 2019). The production of 
large sugary fruits that, on the modern Eurasian landscape, 
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fail to disperse would be highly maladaptive without human 
intervention today.

Genetic studies show that the pome-fruiting branch of the 
family diverged in the late Miocene, ca. nine million years 
ago (Töpel et al. 2012). Most of the morphological change 
in fruit structure seems to be tied to hybridization and poly-
ploidy (Xiang et al. 2017). A whole genome duplication 
appears to be shared by all Pyrus and Malus species (Wu 
et al. 2013) and the formation of the Maloideae subfamily 
likely resulted from the hybridization of ancestral members 
of the Spiraeoideae and Amygdaloideae subfamilies (Dick-
inson et al. 2007; Xiang et al. 2017). Fossils of Rosaceae-
type leaves and flowers have been recovered dating back to 
the early Eocene (Evans and Campbell 2002; Xiang et al. 
2017), and fossil and genetic evidence suggest large-fruiting 
forms evolved well before the Pleistocene, starting in the late 
Miocene (Jongmans 1915; Reid and Reid 1915; Mai 1995; 
Gümbel and Mai 2004; DeVore and Pigg 2007). Some fossil 
studies specifically claim to identify large-fruiting Pyrus in 
late Miocene and Pliocene deposits from Northern Europe 
(Mädler 1939; Szafer 1947). Kvaček et al. (2020) note leaves 
from several different Maloideae species, including Malus 
remains from Pliocene deposits in central Germany.

The wild progenitor of the peach is regarded as once 
being widely distributed through northern China but is now 
extinct (Fedorov etal. 1971; Lu and Bartholomew 2003). 
Similarly, several large-fruiting species of Prunus exist 
across Eurasia, predominantly in East Asia. In general, the 
larger the fruit, the more restricted the modern range, and 
many species reproduce largely asexually—a few, such as 
P. mira, have lifespans of up to a millennium. Like large-
fruiting Maloideae in Europe, Prunus in Asia have lost their 
ability to colonize new territory and have constrained gene 
flow (Spengler 2019). All these population features, shared 
across large-fruiting Maloideae and Prunoideae, suggest that 
they lost their ability to disperse seeds before the Holocene. 
Evolutionary genomics of the peach and almond suggest 
that the two lineages split around eight million years ago, 
likely in response to geological uplift of the Himalaya and 
climate change (Velasco et al. 2016). Assuming both line-
ages shared a large-seeded fleshy fruiting ancestor, then it 
would push large fruits in the Prunus clade back to the late 
Miocene as well. Yu et al. (2018) argue for a more recent 
origin of large-fruiting varieties of wild peaches, suggesting 
that they diverged from a shared ancestral relative with the 
almonds only 4.99 Ma. They argue for a shared ancestor 
that did not have a thick fleshy endocarp, and therefore sug-
gest that fleshy fruiting forms evolved in southwest China 
during the terminal Miocene or early Pliocene. They also 
support Su et al.’s (2015) hypothesis of large primate dis-
persers (notably Gigantopithecus) driving evolution of large 
fruits. Velasco et al. (2016) point out a deep time depth for 
fruit divergence. The ancient origins of large-fruiting Prunus 

trees are further supported by fossils of P. kunmingensis 
from Yunnan, China, dating to the Pliocene/Pleistocene 
boundary 2.6 million years ago (Su et al. 2015).

Hominids of Miocene Eurasia

About 19 million years ago, the “Gomphotherium land 
bridge” formed between Europe and Africa (Fortelius 2015). 
Catarrhine primates were among the taxa that dispersed into 
Eurasia at this time. The oldest fossil hominids in Eurasia, 
the griphopiths, descend from an African dispersal, had 
thick dental enamel, and were likely frugivorous “hard-
object” feeders (Heizmann and Begun 2001; King 2001). 
Roughly contemporaneously, another clade of frugivorous 
primates, the Pliopithecoidea, make their first appearance 
in Eurasia. Pliopithecoids diversified into three recognized 
clades (pliopithecids, dionysopithecids, and crouzelids) with 
distinctive dental morphologies; almost all are considered 
to have been largely frugivorous (Ungar and Kay 1995; Kay 
and Ungar 1997; Deane et al. 2013). By about 12.5 Ma the 
thickly enameled hominids of Europe are replaced by the 
dryopithecins, a diverse group mainly comprised of more 
thinly enameled apes (Begun et al. 2012). By about 9.5 Ma 
most dryopithecins in Europe are extinct, but another group, 
best represented by the large, thickly enameled frugivorous 
ape Ouranopithecus, appears in northern Greece. Other 
thickly enameled apes persist in the Balkans and Anato-
lia until about 7.2 Ma. Finally, an ape with unique denti-
tion, strongly suggestive of a folivorous diet, Oreopithecus, 
appears at about 8.3 Ma in Italy (Ungar and Kay 1995; Ham-
mond et al. 2020). Most of the fossil apes from Europe and 
Western Asia are associated with forested ecological set-
tings, the exceptions being the Balkan/Anatolian apes, which 
are associated with more open settings.

During the middle to late Miocene, these primates flour-
ished from the area of modern Barcelona to Georgia (Begun 
et al. 2012) and were associated with the expansion of sub-
tropical forests under increased atmospheric CO2 and high 
temperatures (Hamon et al. 2012; Bouchal et al. 2018). 
The period after the mid-Miocene Climatic Optimum (ca. 
14 million years ago) was characterized by a significant 
global cooling (Herbert et al. 2016) associated with increas-
ing aridity and seasonality and resulting in a vegetation shift 
across Europe, as forests changed from humid subtropical 
and evergreen to temperate, deciduous, and seasonal (Mai 
1995; Agustı 2007; Denk et al. 2018). The thinly enameled 
dryopithecins, ranging from about 12.5 to 10 Ma, lived dur-
ing the early stages of this global cooling and are associated 
with persistent humid forest conditions. By 9.5 Ma the cool-
ing had progressed significantly, especially in the Balkans 
and Anatolia, where Ouranopithecus and Graecopithecus 
were found. These large, thickly enameled apes are found 



	 R. N. Spengler III et al.

1 3

in drier, more open woodlands and probably consumed ter-
restrial as well as arboreal resources (de Bonis and Koufos 
1994; Bonis and Koufos 2014; Güleç et al. 2007; Böhme 
et al. 2017; Koufos and de Bonis 2017).

Both the thinly enameled dryopithecins and thickly enam-
eled Ouranopithecus preserve abundant morphological evi-
dence of frugivorous diets. Dryopithecins possessed molar 
occlusal morphology most similar to Pan, large, robust 
upper incisors and relatively gracile masticatory appara-
tus, all suggestive of a diet primarily involving soft-fruit 
frugivory (Begun and Kordos 1997; Begun et al. 2012). 
This is consistent with the results of microwear, shearing 
quotient, and incisor curvature analysis (Ungar and Kay 
1995; Kay and Ungar 1997; King 2001; Deane et al. 2013). 
Rudapithecus is also klinorynchous (ventrally deflected 
face), and has an anteroposteriorly elongated temporoman-
dibular joint, both of which have been associated with an 
enlarging jaw gape—a possible adaptation for processing 
large food items with the anterior dentition (de Bonis and 
Koufos 1993; Terhune 2013; Gunz et al. 2020). In addition 
to thick enamel, Ouranopithecus and Graecopithecus share 
attributes of gnathic morphology with australopithecines, 
indicative of powerful mastication typically associated with 
a hard-object frugivorous diet (de Bonis and Koufos 1994; 
Begun and Kordos 1997; Begun et al. 2012; Böhme et al. 
2017; Fuss et al. 2017).

The mid-Vallesian Crisis (ca. 9.5 Ma; a period marked 
by the extinction of several mammalian clades) may have 
caused large-scale species extinction, and both floral and 
faunal communities were dramatically changed (Agustı 
et al. 2003; Agustı 2007). Forest-dwelling fauna experienced 
higher extinction rates, presumably due to forest fragmenta-
tion and an increasingly mosaic landscape structure. The 
increased prevalence of large-bodied herbivores further 
illustrates a shift towards grassland and patchy decidu-
ous forest ecology. The transition from Pan-like soft-fruit 
frugivory to hard/tough-object frugivory is probably a 
direct consequence of the Vallesian Crisis. However, Oreo-
pithecus evolved highly derived dentitions with distinctive 
high-crested molars, tall cusps separated by narrow, deep 
basins, and a powerfully developed masticatory apparatus 
with robust mandibles and prominent muscle attachments, 
including a sagittal crest. In these attributes Oreopithecus 
resembles colobine monkeys, the most folivorous of the 
Old World monkeys. Oreopithecus is easily distinguished 
from colobines in many details of morphology and each 
have clearly converged on a superficially similar folivorous 
functional complex.

Asian Miocene apes, such as Sivapithecus, Indopithecus, 
Khoratpithecus, and Lufengpithecus, were also adapted to 
a range of habitats from humid forests to patchy woodland/
grassland mosaics. They exhibit a range of morphological 
similarities seen in European Miocene apes, suggestive 

of frugivory ranging from soft fleshy fruits to hard/tough 
ones (Teaford and Walker 1984; Wu et al. 2002; Merceron 
et al. 2006; Nelson 2007). In addition to the evidence from 
gnathic morphology and microwear, additional evidence of 
frugivory in middle and late Miocene apes includes caries, 
big brains, and circumstantial evidence from genetics. Fuss 
et al. ( 2018) describe crown caries in the Austrian late mid-
dle Miocene (12.5 Ma) ape Dryopithecus carinthiacus. They 
relate this to the frequent exploitation of sugar-rich fruits. 
Crown caries also occur in the Hungarian late Miocene ape 
Rudapithecus. Caries are relatively rare in extant primates, 
suggesting that Miocene apes were even more committed 
to sugar-rich fruits than apes are today (Fuss et al. 2018). 
Paleobotanical evidence of food resources with cariogenic 
sugars at St. Stefan, Austria, where D. carinthiacus is found, 
includes plants in the Prunus, Vitis, and Morus clades (Fuss 
et al. 2018).

The pathways involved in fructose metabolism vary 
among primates. In hominids several genetic events have led 
to a unique pattern of fructose metabolism. Efficient metabo-
lism of fructose into stored fat requires the presence of high 
levels of serum uric acid. In most mammals the enzyme 
uricase metabolizes uric acid, resulting in low serum levels 
and less efficient conversion into fat. In hominids, a series 
of mutations has suppressed the production of uricase, lead-
ing to higher levels of serum uric acid. Uncontrolled levels 
of uric acid in the blood stream can have negative conse-
quences, the best known of which is gout. An overproduc-
tion of fat has many more well-known negative health con-
sequences (Johnson et al. 2020). A second set of mutations, 
involving the production of the URAT 1 enzyme, enhances 
the regulation of serum uric acid levels and normally main-
tains a balance between serum uric acid, fat production, and 
their health consequences (Tan et al. 2016). There are many 
advantages to efficiently converting fructose to fat and to 
maintaining high serum uric acid. Metabolism of fat into 
energy (glycolysis) requires less oxygen than mitochondrial 
(ATP) energy production. Glycolysis also makes metabolic 
water available during periods of resource scarcity. In addi-
tion to buffering during stressful periods, fructose metabo-
lism favors an increase in glucose levels to fuel the brain 
and has positive effects on immunity and blood pressure 
(Johnson et al. 2020). The efficient storage and metabolism 
of fat is crucial for organisms with high energy demands, 
particularly related to brain size, that are subjected to peri-
odic (seasonal) shortages of food. There is clear evidence 
of seasonal ecological and dietary stress in European fossil 
great apes. Kelley (2008) and Skinner et al. (1995) describe 
patterns of dental enamel hypoplasia that are consistent with 
seasonal stress.

Brain function is heavily dependent on fructose-glucose 
metabolism. Enhanced ability to process fructose to produce 
glucose for brain metabolism is thought to be related to the 
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development of enlarged brains in hominids (Johnson et al. 
2020). Only three Miocene ape specimens provide anatomi-
cal evidence of adult brain size. Ekembo nyanzae, an early 
Miocene ape from Kenya, had a relative brain size similar to 
hylobatids and baboons; the latter is the most encephalized 
Old World monkey (Falk 1983; Begun and Kordos 2004). 
In contrast, Rudapithecus hungaricus had a relative brain 
size in the range of great apes (Begun and Kordos 2004; 
Gunz et al. 2020). The brain size of Oreopithecus has been 
estimated indirectly from the size of the foramen magnum 
as well as its relatively small braincase (Harrison 1989; 
Alba et al. 2001; Begun and Kordos 2004). It falls among 
smaller brained cercopithecoids. This is consistent with 
the pattern of frugivory and fructose metabolism outlined 
above. Ekembo lived after the URAT 1 mutation regulat-
ing uric acid metabolism but before the suppression of the 
uricase gene. This resulted in some enhancement of fructose 
metabolism. By the time Rudapithecus evolved, additional 
mutations had cleared the way for further enhancement of 
fructose metabolism that made it possible to energize a sig-
nificantly enlarged brain. This larger brain in turn enhanced 
the ability of fossil great apes to exploit resources under 
challenging conditions, and the feedback loop was set in 
place that would lead to the immensely enlarged brains of 
modern humans (Begun and Kordos 2004). Estimates of the 
timing of the two critical mutations in hominid evolution 
(uricase suppression and URAT 1 metabolism) vary. The 
enhanced role of URAT 1 to regulate uric acid serum levels 
results from a series of mutations, the last of which occurred 
about 27 Ma (Tan et al. 2016). The mutation leading to the 
suppression of uricase is timed at about 17 Ma.

To summarize, researchers agree that Eurasian Miocene 
fossil primates inhabited a wide range of environments from 
swampy forests to patchy woodland/grassland mosaics. All, 
except Oreopithecus, were primarily frugivorous. Frugivory 
encompasses a broad range of dietary strategies and there 
has been little discussion of the types of fruits exploited 
by different Miocene apes, other than a characterization of 
their mechanical properties. The humid forests of Europe 
before about 9.5 Ma included resources such as Ficus, Pru-
nus, and Malus. The open deciduous forests in the Balkans 
after 9.5 Ma, contained shrubby trees that produced nuts or 
non-fleshy fruits (Mai 1995; Denk et al. 2018). However, 
there is little evidence for the actual floral composition of 
Balkan hominid localities, in particular, the presence of 
fleshy fruits. Several members of the Rosaceae clade evolved 
during this period and their radiation further illustrates the 
shift towards open forb and grassland ecology. Many woody 
species evolved typical shrubby tree habits, characteristic of 
open savanna or patchy forest landscapes. Likewise, fleshy 
fruit production allowed for more successful directed seed 
dispersal and the colonization of open patches.

Megafaunal Primate Seed Dispersal

Modern ecological studies show how effective primates are 
at dispersing seeds, an observation that can be extrapolated 
back to their frugivorous ancestors. Extensive studies across 
the tropics and beyond have illustrated the prevalence of 
seed dispersal by primates (Leighton and Leighton 1982; 
Lambert and Garber 1998; Cowlishaw and Dunbar 2000; 
Worman and Chapman 2006; Fourrier 2013; McConkey 
et al. 2015; Fuzessy et al. 2017). Lambert and Graber (1998) 
state that it “is apparent that many primate lineages exhibit 
dental, digestive, and/or sensory adaptations that aid in the 
exploitation of particular food types and that many lineages 
of flowering plants have evolved characteristics of fruits 
and seeds that facilitate seed dispersal.” Primates express 
more frugivorous behavior and evolutionary adaptation to 
frugivory than any other mammalian clade (Fleming and 
Kress 2011; Russo and Chapman 2011). Many primates, 
apes in particular, gain the majority of their caloric intake 
through fruit consumption (Ban et al. 2016). Primatolo-
gists estimate that 95% of tree species in tropical forests 
are dispersed via endozoochory (Terborgh et al. 2002). 
Observational studies have correlated high densities of 
primates, especially large-bodied species, and rich for-
est foraging patches, notably tree species with large fleshy 
fruits (Lambert and Garber 1998; Lambert 2001; Stevenson 
2001). Fossil studies of Pleistocene and Holocene primates 
also illustrate the effective mutualism for large-fruit seed 
dispersal. Evidence for giant subfossil lemurs driving fruit 
evolution in Madagascar comes from the loss of range in 
all large-fruiting arboreal species following their extinction. 
The gradual loss of fruiting trees after the loss of the great 
lemurs indicates that these trees originally evolved larger 
fruits to attract the lemurs. Likewise, Gigantopithecus has 
been implicated in the dispersal of large-fruiting Prunus spe-
cies in South Asia (see the following section for more details 
on these case studies).

Large‑Bodied Primates and Seed Dispersal

Extant Primates

Ecologists recognize the importance of primates to tree 
species’ richness and abundance; in many tropical forests, 
fruit trees are largely limited to primate dispersers, as other 
large mammalian dispersers are functionally extinct (Clark 
et al. 2001; Koné et al. 2008). Often germination rates are 
extremely low without primate fruit consumption, due to 
heavy seed predation and fungal attack (Lambert 2001). 
Additionally, studies have consistently demonstrated that 
the loss of primate dispersal services in a forest can lead to 
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reductions in vegetation richness and an inability for forests 
to regenerate (Beckman and Muller-Landau 2007; Nuñez‐
Iturri and Howe 2007; Stoner et al. 2007; Wright et al. 2007; 
Stevenson and Aldana 2008). While some other mammalian 
clades, such as equids or proboscideans, opportunistically 
consume fruit as part of a browsing habit, primates are the 
only group of mammals where strict frugivory is a com-
mon practice (Turner 2001). Many studies have shown that 
seed dispersal is the most important ecological service pro-
vided by primates and that they increase overall biodiversity 
(Cowlishaw and Dunbar 2000; Russo and Chapman 2011). 
Primates not only consume large-seeded fruits, they also 
carry fruits with the seeds in them, and in some tropical for-
ests they are one of the primary drivers of forest vegetation 
communities (Lambert and Garber 1998). The early fossil 
record suggests that primates may have diverged from other 
mammalian lineages as a response to obligate frugivory, 
notably targeting colorful avian-dispersed fruits (Sussman 
1991; Reagan et al. 2001).

Large-bodied frugivorous mammals disperse a greater 
abundance and more diverse variety of seeds than other 
tropical mammals; they also spread seeds of larger sizes 
with more offspring provisioning (Peres 2002; Wotton & 
Kelly 2011). Fossil evidence illustrates that there is a cor-
relation between bigger seeds and zoochoric dispersal 
(Tiffney 2004; Eriksson 2008). Larger animals have longer 
gut passages and, therefore, can disperse seeds to far-flung 
colonization locations (Ruxton and Schaefer 2012; Wotton 
and Kelly 2012). Several studies have demonstrated high 
post-digestion germination rates and extensive dispersal 
distances in orangutans (Pongo abelii and P. pygmaeus), 
chimpanzees (Pan troglodytes; Idani 1986; Wrangham et al. 
1994; Gross-Camp and Kaplin 2005), bonobos (Pan panis-
cus), and gorillas (Gorilla gorilla). The seeds dispersed by 
chimpanzees and gorillas ranged in size from 0.1 to 2.7 cm, 
and seeds larger than 2.0 cm were readily dispersed over 
great distances (Wrangham et al. 1994). Some studies show 
that hundreds of seeds can be dispersed over great distances 
daily (Lambert 1999).

Some primate studies go so far as to imply social deci-
sion-making and reasoning in relation to access to feeding 
patches (Leighton and Leighton 1982), accounting for com-
plex weather and temperature variables when choosing fruit 
foraging routes (Janmaat et al. 2006), and access to higher 
quality fruits as a preference to fruit abundance (Ban et al. 
2014, 2016). Nonhuman great apes have proven to be par-
ticularly effective seed dispersers and actively select fruits 
based on high sugar concentration (Fuzessy et al. 2016, 
2017). Many large mammals have coevolved seed-disper-
sal-based mutualism with large-fruiting trees, but primates 
are particularly successful at driving the evolution of larger 
fruits (Sussman et al. 2013). Primates essentially create 
orchards of primate-dispersed fruit trees, by consuming and 

carrying seeds to ideal growing sites (Lambert and Garber 
1998; McConkey and Brockelman 2011; McConkey et al. 
2014, 2015). Rindos (2013, p. 132) refers to these monkey 
hot spot forests as “monkey gardens,” noting that Canar-
ium trees in the tropics tend to be central points for primate 
activity. Many other studies of primate-planted fruit forests 
show similar results (Hladik and Hladik 1967; Gartlan 1968; 
Glander 1975; Van der Pijl 1982).

It is difficult to ascertain what the diet of European late 
Miocene primates might have looked like, given that there 
are few extant primates that experience significant seasonal-
ity and because we lack detailed data on food sources avail-
able to them. The Japanese macaque (Macaca fuscata) may 
serve as a rough case study for at least some of the ecologies 
that European apes lived in, given their existence in decidu-
ous forests that are snow-covered for a portion of the year. 
This level of seasonality is probably more extreme than what 
most European late Miocene apes dealt with; nonetheless, 
seasonal fruit availability would have been key to their sur-
vival. Extensive observational studies of semi-captive (in 
confined preserves) macaques illustrate the seasonal impor-
tance of fruits in their diet and the year-round importance of 
plants (Jaman et al. 2010). Similar observations were made 
of macaques in the Yakushima Forest (Maruhashi 1980; Hill 
1997), and in a larger study spanning the range of the spe-
cies, which also found variable diets based on ecological 
constraints (Tsuji et al. 2015). While large-fruiting Rosaceae 
were not among the arboreal species observed in any of 
these primate preserves, the macaques were important seed 
dispersers of fruits between 4 and 16 mm in diameter, but 
they also consumed smaller fruits (Noma and Yumoto 1997). 
Seasonally intense consumption of fruits is common in other 
large primate clades as well, including chimpanzees that 
occupy mixed ecological settings that include more open 
savanna landscapes. Observational studies of Bornean oran-
gutans (Pongo pygmaeus ssp. morio) of the Danum Valley, 
Sabah, Malaysia, show that they will intensively consume 
fruits of Dipterocarpus during masting periods and regularly 
consume moderate amounts of continually fruiting Ficus and 
Spatholobus during periods between (Kanamori et al. 2010).

Extinct Megafaunal Primates

Beyond a review of the hominids of Miocene Europe, 
another way to probe the likelihood that Miocene apes were 
major fruit seed dispersers is to explore what happened to 
fruit distributions in other cases where megafaunal primates 
went extinct. As an example, in South and Southeast Asia, 
large-bodied primates may have been a disperser of large 
fruits in the Prunus spp. clade, notably the extinct Prunus 
kunmingensis (Su et al. 2015); Indopithecus, at 6.5 million 
years ago, may or may not be related to Gigantopithecus, the 
latter mostly known from fossils between about 1 million 
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and 300,000 years ago. Gigantopithecus, mostly known from 
China, may have also been present in Vietnam, Thailand, 
and Indonesia (Bocherens et al. 2017). The onset of the 
Pleistocene and expansion of savannas further south, elimi-
nating the arboreal food sources, may have contributed to the 
eventual extinction of the clade. Reconstructions of the eco-
logical habitat of this massive ape suggest that it occupied 
warm-temperate to subtropical climates, in mixed deciduous 
and evergreen broad-leaved forests (Jin et al. 2008; Li et al. 
2014). Paleontological studies suggest that these apes shared 
the forested landscape with a range of other seed-dispers-
ing primates, including Macaca (several species), Rhino-
pithecus, Pygathrix, Trachypithecus, Nomascus, and Pongo 
(Takai et al. 2014). Studies of their dental morphology and 
phytoliths in dental calculus suggest a largely plant-based 
diet, with fruits, nuts, roots, and possibly bamboo shoots 
(McKee et al. 2015). Stable isotope analysis of enamel in 
Gigantopithecus indicates that it was a forest dweller with 
a diet most like that of Pongo (Zhao et al. 2011; Qu et al. 
2014). Gigantopithecus also has a relatively high frequency 
of carious lesions, both crown and marginal, ranging from 
9.8 to 19.5% of teeth in three different samples (Han and 
Zhao 2002; Wang 2009). This is significantly higher than in 
any other sample of extant or extinct hominoids and suggests 
a diet that included sugary carbohydrates, notably fruits, 
consistent with other lines of evidence (Ciochon et al. 1990; 
Zhao et al. 2011; Nelson 2014; Qu et al. 2014; Bocherens 
et al. 2017; Zhang & Harrison 2017). Other late Pleistocene 
megafaunal opportunistic fruit-eating seed dispersers of Asia 
included the straight-tusked elephant (Palaeoloxodon spp.), 
boar (Sus spp.), and bears (e.g., Ursus tibethanus, Helarctos 
malayanus, and Melursus ursinus)—collectively suggesting 
that forests were rich in fruiting trees.

Another informative case of extinct megafaunal primates 
serving as the primary seed dispersers for trees with meg-
afruits comes from the giant lemurs of Madagascar (e.g., 
Megaladapis edwardsi). Paleoprimatologists estimate that as 
many as ten species of lemur went extinct as recently as two 
millennia ago; this recent extinction allows scholars to study 
the effects of the loss of seed-dispersal services (Burney 
et al. 2004; Crowley et al. 2011). While two of these extinct 
species have specifically been identified as seed dispersers, 
Archaeolemur majori and Pachylemur insignis (Godfrey 
et al. 2008), several others have been identified as large-bod-
ied fruit eaters (Crowley et al. 2011). At least eleven genera 
of trees with large fleshy fruits exist in southern Madagascar; 
all of which were likely reliant upon the giant lemurs. How-
ever, seed dispersal in some of these species does continue 
on a limited scale through extant smaller-bodied lemurs 
(Crowley et al. 2011). Genetic studies illustrate that many of 
these tree populations, without their giant carriers, are now 
fragmenting and becoming genetically isolated (Voigt et al. 

2009), a similar pattern to what we see around the world in 
other megafruit trees during the Holocene.

Several paleontologists have noted that a general diver-
sification of angiosperms, and specifically the development 
of larger fruits, occurred globally during the late Paleocene 
and early Eocene (Tiffney 2004; Sussman et al. 2013). The 
role of primates in driving the evolution of angiosperms, 
especially fruiting trees, was clearly laid out by Sussman 
(Sussman 1991), in his angiosperm/primate coevolution the-
ory. His interest rested on the Eocene evolution of arboreal 
traits, color vision, and other features specifically derived in 
primates largely for the acquisition of fruits (Velasco et al. 
2016; Yu et al. 2018). In this theoretical framework, the 
mutualistic link drove angiosperms to develop larger and 
sweeter fruits as an evolutionary adaptation for recruiting 
primate dispersers. Hence, the evolution of larger fruits in 
Europe during the late Miocene may represent a continua-
tion of the trajectory towards diversification and radiation 
of angiosperms starting in the Eocene. However, like most 
seed dispersal, the bonds of mutualism appear to have been 
tied into a guild of species and mammals, including the fruit-
focused lineages of primates and bats, and birds both radi-
ate around this period (Tiffney 2004; Meredith et al. 2011). 
Valenta et al. ( 2018) have recently readdressed the question 
of whether primates were responsible for a suite of dispersal 
traits shared among arboreal tropical species.

Color Vision and Visual Ripeness Displays 
in Fruits

Scholars have debated the likelihood that primates were a 
driving factor in the evolution of angiosperm fruit features 
(Sussman et al. 2013; Valenta et al. 2018). Some scholars 
refer to this as the “frugivory hypothesis” (Nevo et al. 2018; 
Onstein et al. 2020), and Sussman et al. (2013) emphasized 
the role of Eocene primates in their angiosperm/primate 
coevolution theory. Supporting this theory, increasing evi-
dence seems to point to a suite of traits that have evolved in 
parallel among tropical trees in order to recruit primate (and 
similarly avian and chiropteran) dispersers (Janson 1983; 
Stevens et al. 2009; Valenta et al. 2013, 2015; Melin et al. 
2014; Valenta 2014; Nevo et al. 2018). Discussions con-
tinue regarding which fruit characteristics are closely asso-
ciated with primates as opposed to other seed-dispersing 
animals, and studies illustrate that primates have preferences 
towards fruits with certain colors (Valenta et al. 2016, 2018; 
Valenta and Chapman 2018). Many of the traits associated 
with primate-dispersed fruits would have attracted a larger 
guild of species, including many now-extinct megafaunal 
mammals, making tight coevolutionary linkages unlikely. 
Nonetheless, as the only mammals with trichromatic color 
vision, the visual displays of ripeness that most catarrhine 
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primate-dispersed fruits utilize for signaling are a strong 
contender for a clade-specific recruitment feature. This 
view is further supported by the fact that fruits that are more 
closely tied with non-primate megafaunal dispersers tend to 
remain green, yellow, or brown at ripeness. Additionally, a 
recent study that mapped the distribution of bright-fruiting 
Arecaceae and primates with color vision noted a strongly 
linked relationship (Onstein et al. 2020). The authors of that 
study suggest that the availability of palm fruits resulted in 
a coevolutionary relationship between the species leading to 
the dynamics of primate color vision systems and palm fruit 
colors. They argue that the rapid radiation of primates with 
color vision and brightly colored palm species in Africa ten 
million years ago are correlated.

Avian-dispersed plants, such as the rose, have fruits that 
turn red when fully ripe to signal birds. Birds are attracted to 
bright colors, notably red, which is why so many avian-dis-
persed berries are red, for example, Rubus, Sorbus, Vaccin-
ium, Viburnum, and Rosa. It is reasonable to assume that the 
red color of a ripe apple is a plesiomorphic trait given that 
Rosaceae fruits of the early Miocene were likely avian dis-
persed. However, its persistence as a trait or possible derived 
presence in Malus could be linked to disperser recruitment. 
Red fruits, as in wild Malus spp., are rare among large fruits. 
Most plants that relied on now-extinct megafauna that were 
color blind and utilized an olfactory foraging system have 
fruits with high sugar or oil content, and are green, yellow, 
or brown when ripe. “Contrary to fruit assemblages from 
different communities, the range of fruit colors of megafau-
nal species is very restricted” (Guimarães et al. 2008).

Most mammals have dichromatic vision; scholars have 
theorized that this basal trait is a relic of a mammalian 
bottleneck during the K-Pg extinction event at the Creta-
ceous–Paleogene boundary around 65 million years ago 
(Wu et al. 2017). If small subterranean and nocturnal mam-
mals were the only clades to survive the mass extinction, 
then all resulting lineages would have dichromatic vision, 
which is advantageous under low-light conditions. Trichro-
matic vision evolved independently in several primate line-
ages; notably the great apes and howler monkeys as well as 
females of certain species of New World monkeys (Rowe 
2018). These primate lineages likely coevolved with fruit-
ing tree species that used bright colors to signal ripeness of 
fruits in order to attract frugivorous birds. Having the ability 
to identify red ripe fruits from a distance gave a selective 
advantage to both the tree and the primate, supporting the 
idea of a coevolutionary linkage between angiosperms and 
primates.

Olfactory foraging is the basal state for most mammals; 
however, in Old World primates, especially the apes, olfac-
tory abilities have been de-emphasized as trichromatic color 
vision and better depth perception developed (Fobes 1982; 
Osorio and Vorobyev 1996). Primates are the only eutherian 

mammals with full trichromatic vision (Nevo and Heymann 
2015). The unique quality of color vision in Old World 
primates and howler monkeys is linked to several types of 
cone photopigments in the eye and special neural proces-
sors (Leonhardt et al. 2009; Nevo and Heymann 2015). 
The loss of scent perception in favor of visual abilities is 
usually thought to be a major component in the evolution 
of the hominin lineage (Smith 1927). Studies of primates 
have illustrated the importance of visual cues in foraging 
and food acquisition, specifically demonstrating that in many 
primate lines olfactory-guided long-distance food acquisi-
tion is challenging (Leonhardt et al. 2009; Rushmore et al. 
2012; Nevo and Heymann 2015). Interestingly, nocturnal 
primates tend to rely more on scent tracking, and howler 
monkeys (Alouatta spp.), the only New World primates 
(platyrrhines) with color vision, have reduced olfactory per-
ception as well (Leonhardt et al. 2009; Nevo and Heymann 
2015). Genetic studies of apes, Old World monkeys, and 
howler monkeys have shown that they possess a significantly 
higher proportion of olfactory pseudogenes than other New 
World monkeys (Gilad et al. 2004). Geneticists have linked 
the pseudogenes to a degradation of the olfactory receptors 
and an increased reliance on visual cues (Dominy and Lucas 
2001). Studies suggest that Old World monkeys developed 
color vision 23 million years ago (Yokoyama and Yokoy-
ama 1989), which would support the model that they devel-
oped this trait in order to obtain angiosperm fruits that were 
intended for birds. There is also reason to believe that the 
loss of olfactory reception is tied in to the loss of pheromone 
signaling in primates (Gilad et al. 2004).

Megafaunal Monkeys and Megafloral Roses

Many of the megafaunal-dispersed fruits that survived into 
the first half of the Holocene have become important com-
ponents in the human diet and benefit from anthropogenic 
seed-dispersal services (Levis et al. 2017, 2018; van Zonn-
eveld et al. 2018). Tropical “megafruits” have maintained 
their gene flow regimes, due to the continual presence of 
at least some megafauna, including humans and bears, cer-
tain large clasping birds such as parrots, and bats. However, 
in temperate zones, most members of the former disperser 
guilds are now extinct and much of the extant megafauna is 
composed of grazing animals. The lack of Gomphotheridae, 
Xenarthra, and lower densities of Mammutidae in Europe 
during the Pleistocene as opposed to the Americas further 
complicates the question of what species served as seed dis-
persers. Ruminant grazers and animals with multichambered 
stomachs tend to avoid sugary fruits, which ferment in the 
gut and cause high rates of methane production; addition-
ally, their restricted caecum blocks the rapid processing of 
large seeds (Fig. 3). While medium-sized omnivores, notably 



Bearing Fruit: Miocene Apes and Rosaceous Fruit Evolution﻿	

1 3

boars, bears, and humans, opportunistically disperse these 
species, most megafruiting trees in temperate zones and in 
many tropical regions are currently endangered. While the 
paleo-distribution ranges in these species require further 
study, they appear to have slowly lost range throughout the 
Holocene (Galetti et al. 2018; Pires et al. 2018; Spengler 
2019; Onstein et al. 2020).

The rose hip is small and red, in most cases small enough 
for birds, which do not masticate their food. The apple is 
clustered with other mega-rosaceous fruits, including the 
pear (Pyrus) and quince (Cydonia). These mega-fruits 
evolved to attract a seed disperser much larger than a bird; 
therefore, we can think of an apple tree as a mega-floral rose 
bush. Looking at the temperate forests of Eurasia, there are 
fewer potential seed dispersers than in the tropical belt. Like-
wise, many animals that may seem like candidates for a dis-
persal guild either ignore or only selectively consume sugary 
fruits, such as ruminants (see Fig. 3, illustrating feral apples 

rotting in a cow pasture). Additionally, many small mam-
mals serve as seed predators and birds fail to disperse the 
seeds (Fig. 3). Hominids were the only megafaunal dispers-
ers in late Miocene Eurasia with trichromatic vision, allow-
ing them to observe, and select for, the evolved red color of 
ripe Malus spp. fruits. They were also the only large arboreal 
animals. Ripe apples often remain on the tree even after the 
leaves fall due to a lack of function in pedicle abscission 
zones, a typical adaptation for megafaunal-dispersed fruits 
that helps them avoid rodent seed predation.

Comprehensive studies of the fossil record of Miocene 
Eurasia suggest that fleshy-fruit-based endozoochory was 
rare overall on a landscape dominated by grazers and open 
woodlands (Fortelius et al. 2006). However, simultaneously, 
fleshy-fruiting members of the Rosaceae clade radiated and 
diversified. At least two independent lineages, Maloideae 
and Prunoideae, developed larger fruits in parallel, simulta-
neously evolving higher sugar concentrations. Seed dispersal 

Fig. 3   Modern observations of 
apple consumption and seed 
dispersal suggest that birds and 
rodents either avoid the seeds 
or destroy them through seed 
predation. Likewise, ungulate 
grazers largely avoid or only 
selectively consume the fruits. 
Counterclockwise from bottom 
left: (A) a squirrel gnawing 
through an apple in order to 
consume the seeds; (B) two 
images of partially consumed 
fruit—birds ate the fruit but 
failed to disperse the seeds; and 
(C) apples lying in a cattle field 
and avoided by the grazers

Table 1   Supporting evidence for late Miocene Apes and Rosaceous tree mutualism

Red displays of ripeness in fruits tend to attract either birds or primates, both of which possess color vision
The fruits are too large for an avian disperser, and most small or medium-bodied mammals serve as seed predators
Ruminant digesters often avoid (or consume in limited quantities) fleshy fruits with high sugar content, due to the double digestion process and 

grazing habit
Modern primates are some of the most effective seed dispersers in tropical forests, setting a precedent for a broader trend in the clade
The only major case study for a temperate zone primate in a seasonal forest, the Japanese macaques, are prominent seed dispersers.
Gnathic morphology suggests that many fossil apes in Europe were frugivorous, and few non-rosaceous fruiting trees would have been present 

on the landscape
Dentil carries and use wear on fossil primate teeth from Eurasia suggest a high fruit-based diet, specifically of high-sugar fruits
Other extinct mega-primates, such as Gigantopithecus and giant subfossil lemurs, appear to have been seed dispersers
While there were other frugivores or opportunistic browsers on the late Miocene landscape, a significant portion of the herbivores were grazers
Malus spp. maintain smaller seeds, possibly suggesting a disperser that had a restrictive digestive system
Hominids of the Pleistocene onward maintained a close mutualistic relationship with large-fruiting Rosaceae, and it is likely that this trend 

stretches back in time
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is important in maintaining diversity and genetic connec-
tivity within and across populations (Nathan and Muller-
Landau 2000; Jara-Guerrero et al. 2018). Seed dispersal is 
also essential for colonization, especially in arboreal spe-
cies (Escribano‐Avila et al. 2014). Therefore, identifying 
the members of a dispersal guild can inform scholars about 
the evolutionary processes at play on the largely savanna or 
patchy forest landscape of Eurasia during the late Miocene. 
While this landscape would have contained high densities 
of animal species, many of them, such as small mammals 
and birds, would have failed to disperse seeds, either due 
to seed predation or seed avoiding (Fig. 3). Additionally, 
grazing animals mostly avoid fleshy fruits, and in the case 
of ruminant digesters would have destroyed seeds of large 
Maloideae species. Although primates are not the only 
potential species that may have dispersed rosaceous seeds in 
Eurasia during the late Micocene, they were likely a promi-
nent disperser in the guild (Table 1).

Conclusion

Most examples of endozoochoric megafruits have muted 
colors, often yellow, green, or brown. Asimina triloba of 
North America or related Annona fruits of Central and South 
America are good examples, with large hard seeds, soft 
sweet flesh, and remaining green when ripe. Additionally, 
many, such as the cucurbits and Maclura pomifera, do not 
possess high sugar concentrations. Wild apples contain red 
morphotypes, have high sugar levels, and they contain small 
easily crushed seeds. Fruits that were likely dispersed by ele-
phantine or xenarthran species often contain large seeds or 
pits, easily mashed fruit coats, muted colors, and oily or low-
sugar fruits. Smaller fruiting members of Rosaceae attract 
avian dispersers; however, the fruits of many Maloideae and 
Prunoideae are too large for frugivorous birds to swallow. It 
is probable that red fruits of M. sylvestris and M. sieversii, 
which are too large for avian dispersal, evolved to attract a 
megafaunal disperser that possessed trichromaticism, likely 
one that cannot swallow large pits. Additionally, there were 
fewer frugivores on the pre-Holocene landscape of Europe 
than in the Americas, where gomphotheres and other pro-
boscideans, and xenarthrans likely drove the evolution of 
larger fruits. Ruminant dispersers and other grazing animals 
avoid sweet fleshy fruits and tend to be destructive of larger 
seeds.

A fleshy fruit dispersal guild in late Miocene Europe 
likely included bear, rhinoceros, proboscideans, equids, and 
suids, all of which would have selected for larger fruiting 
hybrid examples of Malus trees. Large primates were promi-
nent on the European landscape during the Miocene. Fossil 
evidence seems to suggest that these primates evolved new 
traits to adapt to ecological changes during the late Miocene, 

including dental features that suggest specialized frugivory. 
The limited availability of other large-fruiting trees in late 
Miocene Europe points to a strong focus on Rosaceae. Simi-
larly, studies of fruit consumption among both extant and 
extinct apes further supports the present hypothesis. Identi-
fying the exact drivers of evolution is always difficult, and 
organisms often evolve in a complex milieu of selective 
forces, many of which are complementary. Likewise, seed 
dispersal often relies on guilds rather than a specific species; 
however, humans appear to have been the main dispersers for 
M. sylvestris in Europe since at least the Mesolithic and of 
M. sieversii and M. orientalis during the past few millennia. 
Given the close relationship between people and the apple 
over the past few hundred thousand years, as evidenced in 
the archaeobotanical record, it is reasonable to assume a 
deeper time depth for this mutualism. Further paleontologi-
cal research, especially targeting rare fleshy fruit fossils, may 
validate or refute the theories that we present here, but in 
either case, it is clear that collaborations between domesti-
cation scholars and evolutionary ecologists can prove to be 
fruitful. Ultimately, this study demonstrates that the coevo-
lutionary process of human-driven evolution that we collo-
quially call “domestication” has deeper roots in our hominin 
lineage.
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