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Abstract
Characteristics	of	food	availability	and	distribution	are	key	components	of	a	species'	
ecology.	Objective	ecological	 surveying	used	 in	animal	behavior	 research	does	not	
consider	aspects	of	selection	by	the	consumer	and	therefore	may	produce	imprecise	
measures	of	availability.	We	propose	a	method	to	integrate	ecological	sampling	of	an	
animal's	 environment	 into	 existing	behavioral	 data	 collection	 systems	by	using	 the	
consumer	 as	 the	 surveyor.	Here,	we	evaluate	 the	 consumer-	centric	method	 (CCM)	
of	assessing	resource	availability	for	its	ability	to	measure	food	resource	abundance,	
distribution,	and	dispersion.	This	method	catalogs	feeding	locations	observed	during	
behavioral	 observation	 and	 uses	 aggregated	 data	 to	 characterize	 these	 ecological	
metrics.	 We	 evaluated	 the	 CCM	 relative	 to	 traditional	 vegetation	 plot	 surveying	
using	accumulated	feeding	locations	across	3 years	visited	by	a	tropical	frugivore,	the	
bonobo	(Pan paniscus),	and	compared	it	with	data	derived	from	over	200	vegetation	
plots	across	their	50 km2+	home	ranges.	We	demonstrate	that	food	species	abundance	
estimates	derived	 from	the	CCM	are	comparable	 to	 those	derived	 from	traditional	
vegetation	plot	sampling	in	less	than	2 years	of	data	collection,	and	agreement	improved	
when	 accounting	 for	 aspects	 of	 consumer	 selectivity	 in	 objective	 vegetation	 plot	
sampling	(e.g.,	tree	size	minima).	Density	correlated	between	CCM	and	plot-	derived	
estimates	and	was	 relatively	 insensitive	 to	home	range	 inclusion	and	other	species	
characteristics,	however,	it	was	sensitive	to	sampling	frequency.	Agreement	between	
the	methods	in	relative	distribution	of	resources	performed	better	across	species	than	
expected	by	chance,	although	measures	of	dispersion	correlated	poorly.	Once	tested	
in	other	systems,	the	CCM	may	provide	a	robust	measure	of	food	availability	for	use	
in	relative	food	availability	indices	and	can	be	incorporated	into	existing	observational	
data	collection.	The	CCM	has	an	advantage	over	traditional	sampling	methods	as	it	
incorporates	sampling	biases	relevant	to	the	consumer,	thereby	serving	as	a	promising	
method	for	animal	behavioral	research.
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1  |  INTRODUC TION

The	 abundance,	 dispersion,	 and	 distribution	 of	 food	 resources	
not	 only	 determine	 species	 distribution	 but	 also	 have	 a	 strong	
impact	 on	 many	 aspects	 of	 an	 animal's	 life	 history,	 physiology,	
and	 sociality	 (Anholt	 &	 Werner,	 1995;	 Chapman	 et	 al.,	 2015; 
Davies	&	Deviche,	2014; Hutto, 1990;	Lambert	&	Rothman,	2015; 
Rogers, 1987;	van	Schaik	et	al.,	1993;	Vogel	&	Janson,	2007).	Due	
to	the	core	importance	of	food	to	an	organism,	the	quantification	of	
food	availability	and	distribution	are	key	considerations	across	stud-
ies	and	disciplines.	Methods	used	to	estimate	food	resource	abun-
dance,	distribution,	and	dispersion	are	just	as	varied	as	the	questions	
which	necessitate	these	quantifications	(Szigeti	et	al.,	2016).

Measurement	 of	 the	 amount	 of	 food	 resources	 present	 for	
a	 consumer,	 such	 as	 abundance or density	 (i.e.,	 estimation	 of	 the	
amount	of	a	resource	available	in	a	landscape),	depends	heavily	on	
the	 type	 of	 resource	 and	 scale	 of	 interest	 (Bowering	 et	 al.,	2018; 
Morrison, 2016).	Large-	scale	analyses	of	abundance	typically	rely	on	
remotely	derived	proxies	via	 satellite	 imagery	due	 to	 the	practical	
impossibility	to	directly	measure	large	areas	of	land.	In	such	analy-
ses,	the	abundance	of	resources	available	in	a	landscape	is	proxied	
from	the	estimation	of	land	cover	of	preferred	habitats	(e.g.,	habitat-	
based	 abundance)	 or	 includes	 methods	 like	 species	 distributional	
modeling	(SDM)	where	the	characteristics	of	locations	occupied	by	
a	particular	species	are	then	used	to	extrapolate	occupancy,	and	less	
frequently,	abundance,	over	much	larger	scales.

For	questions	related	more	immediately	to	the	consumer	(at	the	
individual	or	social	group	scale),	direct	measurement	of	exploitable	
resources	offers	more	accurate	insights	into	the	resources	available	
to	 a	 consumer	 (Foerster	 et	 al.,	 2016;	 Wessling	 et	 al.,	 2020).	 The	
abundance	of	mobile	food	resources	may	be	measured	via	consumer	
behavior	 using	 metrics	 such	 as	 dietary	 composition,	 attack	 rates,	
feeding	frequencies,	and	other	metrics,	under	the	assumption	that	
consumption	correlates	with	rates	of	resource	encounter.	Such	met-
rics	 frequently	 serve	only	 as	proxies	of	 food	abundances	 in	 cases	
where	measurements	 of	 true	 availability	 cannot	 be	 objectively	 or	
reliably	 inferred	 (Hutto,	 1990;	 Lovette	 &	 Holmes,	 1995;	Watts	 &	
Mitani, 2015).	However,	for	static	food	resources	like	plants,	abun-
dance	is	commonly	estimated	by	cataloging	the	number	of	individual	
resources	available	to	a	consumer	in	subsets	of	an	area	of	 interest	
and	 extrapolating	 quantities	 to	 a	 global	 scale	 (e.g.,	 plot,	 transect,	
or	 adaptive	 cluster	 sampling),	 or	 by	 sampling	 distances	 from	 pre-
determined	or	random	points	and	extrapolating	densities	based	on	
these	distances	 (e.g.,	 point-	centered	distance	 sampling).	 Plot	 sam-
pling	is	the	most	common	sampling	method	in	studies	of	frugivorous	
or	 folivorous	 animals,	 and	 involves	 the	 placement	 of	 randomly	 or	

systematically	placed	plots	of	fixed	size	across	the	area	of	interest,	
and all individuals contained within those plots are inventoried and 
frequently	measured	for	size	(e.g.,	trunk	size;	Baraloto	et	al.,	2013; 
Ståhl	et	al.,	2017;	Vogel	&	Janson,	2007).	A	number	of	considerations	
feed	 into	the	selection	of	plot	size,	shape,	placement,	and	number	
(Bonham,	2013),	 such	 as	 species	 form	 (e.g.,	 tree,	 liana,	 and	 herb),	
dispersion	(e.g.,	clumped	or	dispersed),	and	anticipated	rarity,	all	of	
which	necessitate	different	optimized	designs.

Plot	sampling	also	allows	the	calculation	of	other	metrics	com-
monly	of	 interest	 to	animal	behaviorists,	 such	as	 food	distribution	
and	dispersion.	To	estimate	distribution,	that	is,	a	calculation	of	rela-
tive	resource	density	across	space	within	a	landscape,	plot	sampling	
may	be	further	stratified	across	a	given	area	relevant	to	a	consumer	
at	various	scales	ranging	from	individuals	to	populations	(e.g.,	home	
range,	landscape,	or	region).	Distribution	provides	information	about	
where	and	how	many	individuals	are	located	within	a	space	rather	
than	simply	about	the	number	of	individuals	available	globally	within	
that	 system.	Measures	 of	dispersion	 (i.e.,	 patterns	 of	 clustering	 or	
patchiness),	 such	 as	Morisita's	 index	 (Morisita,	1962),	 are	 used	 to	
quantify	the	clustering	of	resources	over	space	within	a	 landscape	
(Krebs,	1999;	Stephens	&	Krebs,	1986).	Resource	clustering	is	often	
used	 in	 the	 contexts	 of	 understanding	 resource	 competition	 and	
socio-	ecological	behavior	(Vogel	&	Janson,	2011).	Quantifications	of	
food	 species	 dispersion	 are	 perhaps	 even	more	 varied	 in	 practice	
and	sensitive	 to	 the	scale	 relevant	 to	 the	consumer	 (Myers,	1978; 
Vogel	&	Janson,	2011).	Dispersion	metrics	may	also	require	distinct	
sampling	methods	tailored	to	specific	questions	(e.g.,	focal	tree	ob-
servation:	Vogel	&	Janson,	2007, 2011),	thus	potentially	require	sup-
plementary	surveying	efforts	to	plot	sampling.

Despite	 its	 centrality	 to	animal	 research,	ecological	 sampling	
design	 to	 evaluate	 abundance,	 distribution,	 or	 dispersion	 fre-
quently	 does	 not	 conform	 to	 recommended	 standards	 or	 is	 ad-
equately	 validated	 by	 animal	 ecologists	 (Mortelliti	 et	 al.,	 2010; 
Szigeti	et	al.,	2016).	For	example,	while	sampling	effort	can	sub-
stantially	 impact	 measures	 of	 resource	 abundance,	 it	 is	 rarely	
validated	 whether	 sampling	 efforts	 are	 sufficient	 to	 adequately	
measure	 the	 intended	metrics.	Furthermore,	ecological	data	col-
lection	often	 requires	 research	effort	 in	addition	 to	ongoing	be-
havioral	observations	and	is	time	intensive	and	thus	infrequently	
conducted.	 Snapshots	 of	 abundance	 (i.e.,	 measurements	 of	 a	
landscape	spanning	short	intervals	of	time)	derived	from	these	ef-
forts	may	therefore	be	used	up	to	decades	after	they	have	been	
measured	without	any	consideration	of	changes	that	may	have	oc-
curred	 since	 the	 last	 assessment.	For	example,	primate	 research	
sites	 commonly	 approximate	 intra-	annual	 changes	 in	 food	 avail-
ability	using	 species	densities	 calculated	 from	surveys	 that	have	

K E Y W O R D S
dispersion,	distribution,	food	availability,	resource	selection,	species	abundance,	vegetation	
plot
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    |  3 of 16WESSLING et al.

not	been	updated	since	the	establishment	of	ecological	monitor-
ing,	in	some	cases	representing	significant	time	lags	of	6	or	more	
years	(Klein	et	al.,	2021;	Potts	et	al.,	2016;	Wessling	et	al.,	2018).

The	problem	of	 insufficient	quantifications	of	 resource	avail-
ability	 also	 extends	 to	 sampling	 design.	 Traditional	 sampling	
methods	 in	 animal	 ecology,	 like	 plot	 sampling,	 are	 perceived	 as	
objective	 measures	 of	 the	 resources	 potentially	 accessible	 to	 a	
consumer.	However,	these	methods	are	by	design	blind	to	aspects	
of	resource	selection	by	the	consumer,	and	thus	likely	introduce	an	
unknown	measurement	 error.	 The	 distinction	 between	 resource	
accessibility	 and	availability	 is	 important,	 as	only	 the	 latter	 con-
siders	 that	not	all	 individual	 food	 items	are	equally	attractive	 to	
a	consumer.	As	such,	 if	researchers	are	 interested	in	an	accurate	
representation	of	the	resources	relevant	to	a	consumer,	then	as-
pects	 of	 resource	 selection	must	 be	 incorporated	 into	 resource	
availability	estimates.

Ecological	 sampling	 is	 time	 intensive	and	 the	need	 to	 incorpo-
rate	 resource	 selection	 into	 resource	 availability	 metrics	 adds	 an	
additional	burden	on	sampling	methods.	Given	the	inadequacies	of	
existing	methods	 for	 the	 estimation	 of	 an	 animal's	 food	 availabil-
ity,	 is	 there	 a	way	 to	 conduct	 ecological	 sampling	 that	 is	 time	 ef-
ficient	within	 existing	 behavioral	 data	 collection	 systems	 and	 also	
integrates	 resource	 selection	 criteria	 of	 the	 consumer?	Behavioral	
observation	has	been	used	extensively	as	a	measure	of	food	avail-
ability	 (Hutto,	 1990;	 Lovette	 &	 Holmes,	 1995),	 dispersion	 (Vogel	
&	 Janson,	 2011),	 and	 preference	 (Forester	 et	 al.,	 2009;	 Kent	 &	
Sherry,	2020),	however,	 these	methods	are	either	 limited	 in	appli-
cation	or	still	necessitate	ecological	data	collection	to	be	collected	
in	 parallel	 to	 behavioral	 observation.	 We	 therefore	 introduce	 a	
consumer-	centric	 method	 (CCM)	 for	 animal	 behavioral	 ecology	
studies	which	uses	the	consumer	as	the	survey	vehicle	to	quantify	
food	resources	in	a	landscape.	With	this	method,	researchers	cata-
log	discrete	food	resource	locations	(e.g.,	feeding	tree	locations)	as	
they	 are	 consumed	 during	 the	 process	 of	 behavioral	 observation.	
The	CCM	compiles	the	geographic	location	of	food	resources	visited	
by	a	consumer	over	a	given	time	period	to	allow	the	calculation	of	
ecological	indices	(e.g.,	proxies	of	density)	similar	to	those	collected	
in	traditional	ecological	sampling	(see	below).	The	method	uses	the	
consumer	as	a	surveyor	that,	over	time,	aggregates	the	locations	of	
all	species	 in	their	diet	within	a	given	area	of	 interest	to	that	con-
sumer	(e.g.,	home	range).

Data	reliant	upon	patterns	of	usage	by	a	consumer,	such	as	that	
proposed	 in	 the	 CCM,	would	 result	 in	 a	 form	 of	 a	 presence-	only	
dataset	 that	 mimics	 the	 logic	 employed	 in	 species	 distributional	
modeling	 (SDMs).	 In	other	words,	aggregations	of	data	on	species'	
presence	can	be	used	to	generate	broader-	scale	predictions	of	rel-
ative	 abundance	 (i.e.,	 distribution;	Gomes	et	 al.,	2018).	 The	prolif-
eration	of	presence-	based	datasets	for	uses	like	SDMs	is	indicative	
that	there	is	significant	utility	in	these	types	of	data	for	estimating	
species	 distribution,	 and	 presence-	only	 datasets	 have	 been	 fur-
ther	employed	to	estimate	species	abundances	with	mixed	success	
(Bradley,	2016;	Gomes	et	 al.,	2018;	Gutiérrez	et	 al.,	2013; Hwang 
&	He,	2011;	Jiménez-	Valverde	et	al.,	2021;	Royle	&	Nichols,	2003; 

Yackulic et al., 2013).	The	CCM	operates	similarly	to	these	applica-
tions,	in	that	behavioral	observation	would	contribute	data	on	feed-
ing	locations	that	subsequently	translate	into	presence-	based	data	
on	dietary	species	over	a	smaller	spatial	scale.

The	CCM	combines	aspects	of	presence-	based	abundance	mod-
eling	outlined	above	with	those	of	animal	consumption	rate	proxies	
(e.g.,	 prey	 attack	 rates),	 and	 consequently	 cannot	 be	 used	 univer-
sally	in	all	animal	consumer	applications.	First,	as	the	CCM	relies	on	
the	aggregation	of	data	over	time,	data	collected	on	resource	loca-
tions	must	be	representative	of	the	species'	same	distribution	over	
time,	 and	 therefore	 the	method	must	 only	 be	 applied	 to	 estimate	
resources	that	are	immobile,	discrete,	and	spatially	explicit	entities.	
Second,	 to	allow	 for	data	accumulation,	 the	CCM	can	only	be	ap-
plied	 to	 consumers	who	 reuse	 the	 same	 space	 over	 time,	 such	 as	
a	home	range,	and	assumes	 that	 they	have	equal	access	 to	all	 the	
areas	of	this	space	(Alldredge	et	al.,	1998).	The	data	afforded	by	the	
CCM	 represent	 the	 outcome	of	 both	 consumer-	independent	 food	
abundance	 as	 well	 as	 consumer	 resource	 selection,	 therefore	 we	
must	 also	 assume	 that	 potential	 resource	 presence	 and	 consumer	
preference	do	not	change	within	the	period	until	adequate	sampling	
has	occurred	(Manly	et	al.,	2007).	Subsequently,	the	CCM	will	like-
wise	not	be	applicable	 to	cases	where	objective	measurements	of	
resource	 abundance	 are	 necessary	 (as	 is	 the	 case	 with	 questions	
pertaining	to,	e.g.,	resource	preference).

Consequently,	because	 the	CCM	reflects	 the	outcome	of	both	
selection	 and	 environmental	 conditions,	 it	 conflates	 the	 two,	 and	
therefore	its	estimates	cannot	be	detached	from	either	input	(Kent	&	
Sherry,	2020).	Similar	 to	 the	use	of	consumption	rate	proxies,	 this	
format,	 therefore,	 is	 also	 limited	 in	 the	 types	 of	 questions	 such	 a	
methodology	can	be	applied	to,	specifically	in	cases	where	questions	
of	 selection	 are	 important.	 However,	 the	 CCM	 differs	 from	 con-
sumption	rate	methodologies,	in	that	like	presence-	only	models,	it	is	
location	based	and	does	not	conflate	encounter	rate	with	metrics	of	
abundance.	With	an	understanding	of	the	constraints	of	the	method,	
there	is	precedent	to	extrapolating	presence-	based	datasets	to	infer	
global	patterns	of	abundances	and	distribution.	Therefore,	we	ask,	
in	cases	where	researchers	do	not	need	to	understand	patterns	of	
selection	by	a	consumer	but	simply	its	outcome	(e.g.,	fruit	availability	
indices),	can	the	CCM	replace	plot-	based	data	collection?

To	answer	 this	question,	we	evaluate	 the	CCM	relative	 to	 tra-
ditional	 plot-	based	 ecological	 data	 collection	 using	 accumulated	
feeding	locations	from	two	social	groups	of	a	tropical	frugivore,	the	
bonobo	(Pan paniscus),	as	a	case	study.	Unlike	existing	metrics	of	food	
abundance	 derived	 from	 behavioral	 observation	 (e.g.,	 prey	 attack	
rates),	which	can	only	serve	as	proxies	of	difficult-	to-	measure	food	
abundance,	in	the	case	of	the	CCM,	we	can	evaluate	the	estimates	
provided	by	the	CCM	against	availability	estimates	provided	by	more	
traditional	plot	sampling.	Specifically,	we	investigated	whether	be-
havioral	data	on	feeding	locations	(trees	and	lianas)	provide	a	reliable	
dataset	allowing	inference	about	food	species'	(1)	densities,	(2)	dis-
tribution,	and	(3)	dispersion.	We	additionally	assess	(4)	the	minimum	
sampling	effort	 required	and	 (5)	 for	what	characteristics	of	a	 food	
species	this	method	can	be	considered	most	reliable.
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2  |  METHODS

2.1  |  Study species and behavioral observation

Data	were	 collected	at	 the	Kokolopori	Bonobo	Reserve	 (Figure 1)	
on	 two	 social	 groups	 of	 bonobos	 (Ekalakala:	 EKK,	 Kokoalongo:	
KKL)	 between	May	 2016	 and	 December	 2019.	 Like	 much	 of	 the	
bonobo	 range,	 the	 Kokolopori	 Bonobo	 Reserve	 is	 a	 mixture	 of	
monodominant	 and	 heterogenous	 continuous	 forest,	 interspersed	
with	areas	of	permanent	and	seasonally	inundated	swamp	(Surbeck	
et al., 2017).	It	is	floristically	rich,	however,	relatively	skewed	toward	
a	handful	of	dominant	arboreal	species,	most	of	which	are	consumed	
by	 bonobos	 (Section	 2.4	 in	 Supporting	 Information).	 Bonobos	 are	
predominantly	 frugivorous,	 focusing	 the	 majority	 of	 their	 diet	 on	
ripe	fruits	from	trees	and	lianas	within	their	home	range,	although	
they	 regularly	 consume	 a	 variety	 of	 other	 plant	 and	 animal	 food	
items	 including	 flowers,	 leaves,	 insects,	 honey,	 small	 mammals,	
underground	 truffles,	 and	 terrestrial	 herbaceous	 vegetation	
(Hohmann	&	Fruth,	2007;	 Lucchesi,	Cheng,	Wessling,	et	al.,	2021; 
Sakamaki	et	al.,	2016;	Samuni	et	al.,	2020).	Bonobos	live	in	a	fission–	
fusion	 social	 system	 in	 which	 group	 members	 divide	 and	 range	
into	 subgroups	 of	 varying	 sizes	 and	 compositions	 independently	
throughout	 the	 day	 (Kuroda,	 1979;	 Samuni	 et	 al.,	 2022).	 Average	
subgroup	sizes	accounted	for	approximately	63%	and	28%	of	each	

social	 group	 (Section	 2.1	 in	 Supporting	 Information).	 Subgroups	
were	followed	daily	for	behavioral	data	collection	over	the	course	of	
a	full	day	of	activity	(Section	2.1	in	Supporting	Information),	during	
which	we	collected	data	on	each	tree	or	liana	fed	upon	by	a	member	
of	 the	 observed	 bonobo	 group,	 including	 location	 of	 the	 trunk	 of	
the	 resource	 using	 a	 GPS	 (Garmin	 GPSMAP	 62)	 and	 diameter	
at	 breast	 height	 for	 all	 feeding	 trees	 ≥20 cm	 and	 lianas	 ≥5	 cm	
diameter	 in	 size	 (Sections	 2.1	 and	 2.2	 in	 Supporting	 Information).	
We	 ignored	all	 feeding	patches	smaller	 than	 this	minimum,	as	 this	
was	also	the	minimum	diameter	used	 in	vegetation	plot	surveying.	
All	 independent	 individuals	 of	 both	 groups	were	 present	 during	 a	
significant	proportion	of	the	data	collection	for	this	study,	therefore	
the	feeding	behavior	summarized	in	our	dataset	is	also	representative	
of	all	members	of	both	social	groups.

Due	 to	GPS	measurement	error	 (commonly	15–	20 m)	and	con-
sequently	an	inability	to	distinguish	individual	trees	on	a	small	scale,	
we	summarized	feeding	tree	locations	of	each	group	into	the	pres-
ence	or	 absence	of	 each	 species	 in	50 × 50 m	 “observational	 cells”	
(Figure	S1),	in	order	to	later	relate	these	cells	(in	which	species	were	
present)	to	cells	that	had	been	visited	by	the	bonobo	group	within	
the	dataset	but	no	individual	of	that	species	was	visited.	50 m × 50 m	
cell	 size	was	 chosen	because	 it	 accommodates	 average	GPS	error	
between	 two	 points	 (potentially	 40 m	 if	GPS	 error	 is	 20 m)	 and	 is	
comparable	 to	 the	 size	 of	 our	 vegetation	 plots.	 In	 practice,	 this	

F I G U R E  1 (a)	Location	of	the	study	site	relative	to	global	bonobo	distribution.	(b)	50 × 50 m	habitat	plots	(black	dots;	not	to	scale)	within	
1	km2	grid	cells	(black	square)	overlaid	upon	all	visited	50 × 50	cells	within	the	95%	home	range	kernels	for	Ekalakala	(red	squares;	to	scale)	
and	Kokoalongo	(blue	squares;	to	scale)	bonobo	groups.
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resulted	in	a	presence–	absence	database	of	observational	cells	for	
each	species	in	the	bonobo	home	ranges.	We	used	location	data	col-
lected	with	the	GPS	tracklog	function	to	calculate	the	home	range	of	
both	bonobo	groups	using	kernel	density	estimates	(see	Section	2.1	
in	 Supporting	 Information).	 These	 groups	 share	 overlapping	 areas	
of	 their	 home	 ranges,	 including	 63%	 of	 the	 home	 ranges	 of	 both	
groups.	We	evaluated	whether	feeding	location	datasets	were	suffi-
ciently	sampled	and	stable	by	considering	accumulation	patterns	of	
data	per	species	over	time	(Section	2.2	in	Supporting	Information).

2.2  |  Vegetation plots

We	conducted	vegetation	plot	sampling	by	overlaying	1 × 1	km	grid	
cells	over	the	whole	ranging	area	to	identify	relevant	sampling	scope	
and	 aimed	 to	 conduct	 plot	 sampling	 in	 every	 grid	 cell	 utilized	 by	
at	 least	one	of	 the	groups	 (Figure 1 and Figure S1; Section	1.2	 in	
Supporting	Information).	We	sampled	from	within	the	overlaid	1 km2 
cells	to	distribute	sampling	plots	evenly	throughout	the	home	ranges	
of	the	groups,	and	to	permit	the	compilation	of	different	sampling	
schemes	 between	 data	 collectors	 (see	 Supporting	 Information 
for	 details).	 Like	 the	 observational	 cells,	 all	 vegetation	 plots	were	
50 × 50 m	 in	 size,	 within	 which	 data	 were	 collected	 on	 all	 trees	
meeting	 the	 minima	 defined	 for	 individuals	 in	 the	 observational	
cells.	In	total,	we	sampled	236	plots	within	these	1 km2	grid	cells,	of	
which	214	plots	fell	within	the	95%	home	range	of	either	group,	with	
162	 and	 170	within	 the	 95%	 range	 of	 EKK	 and	KKL,	 respectively	
(Figure 1).	Plot	sampling	averaged	4.1 ± 1.6	(SD)	plots	per	km2	(range:	
1–	7)	and	was	determined	to	be	of	sufficient	sampling	depth	(Section	
1.3	in	Supporting	Information).

2.3  |  Comparison of datasets

2.3.1  |  Density

To	compare	estimated	species	densities	derived	from	each	dataset	
(CCM	 or	 vegetation	 plots),	 we	 derived	 three	 different	 indices	
(Section	3.1	Equations	1–	3	in	Supporting	Information).	(1)	We	used	
the	bonobo	observational	data	to	create	a	“presence	 index”	based	
on	bonobo	feeding	locations	for	each	food	species,	estimated	as	the	
number	of	50 × 50 m	cells	in	which	each	species	was	present,	divided	
by	 the	 total	number	of	cells	within	 the	95%	kernel	home	range	of	
each	group	(see	Figure	S6	for	an	example;	hereafter	“CCM	Index”).	(2)	
We	calculated	species	density	estimations	using	the	vegetation	plot	
data	as	the	total	number	of	individuals	observed	per	area	surveyed	
(num.	 individuals/km2,	hereafter	 “Plot	Density”).	 (3)	We	calculated	
the	number	of	50 × 50 m	vegetation	plots	in	which	each	species	was	
present	 per	 total	 number	 of	 vegetation	 plots	 sampled	 for	 a	more	
direct	comparison	with	the	CCM	(hereafter	“Plot	Presence”).

To	 evaluate	 method	 agreement,	 we	 created	 pair-	wise	 sets	 of	
comparisons	of	the	three	density	indices	by	means	of	Pearson's	cor-
relation	tests	and	used	the	correlation	coefficient	 (r)	as	a	measure	

of	 the	 strength	 of	 agreement	 between	 methods.	 We	 conducted	
the	 pair-	wise	 comparisons	 while	 assessing	 the	 influence	 of	 sam-
pling	effort	on	method	agreement	by	varying	levels	of	home	range	
usage	 (kernel	%	range	from	20%	to	95%	 in	 increments	of	1%)	and	
dietary	inclusion	(top	10	most	consumed	species	until	full	diet)	for	
each	group.	We	only	considered	comparisons	with	at	least	10	spe-
cies	in	at	least	10	vegetation	plots	as	a	means	of	imposing	minimum	
thresholds	necessary	to	avoid	distortion	of	comparison	metrics	due	
to	small	sample	sizes.	We	chose	10	species	as	a	minimum	threshold	
as	this	is	a	commonly	recommended	minimum	sample	size	for	basic	
regression	analyses	 (Gotelli	&	Ellison,	2004).	To	evaluate	potential	
biases	in	spatial	coverage	of	sampling	by	the	two	methods,	we	addi-
tionally	created	a	moving	window	over	the	kernel	home	range	from	
20%	to	95%	for	which	to	compare	methods	more	directly	according	
to	home	range	location.	This	window	accounts	for	variation	in	area	
coverage	by	adjusting	the	window	radius	 to	 impose	similarly	sized	
datasets	for	comparison	over	the	range	of	%	kernel	inclusion	(i.e.,	for	
agreement	 from	home	range	core	 to	 the	periphery;	Section	3.1	 in	
Supporting	Information).

Finally,	 to	 identify	 potential	 dataset	 minima	 required	 for	 reli-
able	and	stable	density	indices	derived	from	the	CCM	(i.e.,	temporal	
duration	of	dataset	aggregation),	we	evaluated	 the	pattern	of	cor-
relation	strength	between	indices	from	each	method	as	the	dataset	
grew	over	time	(i.e.,	day	of	data	collection),	and	set	the	minimum	as	
the	point	 from	which	the	correlation	coefficient	remains	relatively	
stable.	We	describe	p-	values	 for	 these	correlations	 in	our	summa-
ries	below;	however,	as	these	correlations	require	independent	data	
and	because	we	evaluated	thousands	of	correlation	coefficients	per	
group	(nEKK =	15,075	and	nKKL =	12,834),	we	do	not	draw	inference	
based	on	p-	values	but	instead	focus	only	on	correlation	coefficients.

2.3.2  |  Dispersion

To	evaluate	 agreement	 between	methods	 in	 characterizing	 food	
species	 dispersion,	 we	 used	 Morisita's	 index	 (Morisita,	 1962).	
Morisita's	 index	 is	 a	 statistical	 index	 that	 measures	 dispersion	
(i.e.,	 clustering)	 across	 a	 sample	 set,	 providing	 a	measure	 of	 the	
likelihood	of	samples	within	that	sample	set	to	be	of	similar	com-
position.	To	allow	for	standardized	and	directly	comparable	sam-
ple	units	from	which	to	calculate	this	index	for	both	methods,	we	
aggregated	 the	 number	 of	 individuals	 per	 species	 visited	 by	 the	
bonobos	 across	 three	different	 grid	 cell	 sizes	 (500 × 500 m	 cells,	
1000 × 1000 m	cells,	and	1500 × 1500 m	cells),	and	calculated	the	
average	number	of	 individuals	 for	 each	 species	 in	 each	of	 these	
grid	cells	using	the	vegetation	plot	dataset.	We	chose	this	 range	
of	cell	sizes	because	they	provide	a	compromise	between	allow-
ing	for	at	least	one	vegetation	plot	to	be	sampled	within	each	cell	
and	considering	 the	number	of	cells	 to	be	available	 for	compari-
son	between	methodologies,	while	remaining	reasonably	biologi-
cally	relevant	to	our	study	species	(e.g.,	8	km	travel	distance	per	
day	 [Lucchesi,	Cheng,	Deschner,	et	al.,	2021]	and	30 km2+	home	
range	[this	study,	Samuni	et	al.,	2020]).	For	both	datasets,	we	then	
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6 of 16  |     WESSLING et al.

calculated Morisita's index using the dispindmorisita	 function	 of	
the	package	 ‘vegan’	 (Oksanen	et	 al.,	2019)	 for	 each	 species.	We	
further	accounted	 for	an	unusual	distribution	of	Morisitia's	 indi-
ces	 deriving	 from	 the	 vegetation	 plot	 dataset	 that	 exaggerated	
the	scale	of	the	range	of	data	and	therefore	obscured	meaningful	
comparison	 between	 datasets,	 by	 ad	 hoc	 transforming	 the	 data	
to	allow	for	a	more	normal	distribution	(Section	3.2	in	Supporting	
Information).

2.3.3  |  Distribution

To	 evaluate	 the	 efficacy	 of	 the	 CCM	 to	 reliably	 quantify	 the	
distribution	of	food	species	in	a	 landscape,	we	aggregated	data	by	
grid	 cell	 as	 was	 similarly	 done	 in	 our	 dispersion	 comparison.	We	
compiled	the	data	for	both	the	observational	cell	and	vegetation	plot	
datasets	 in	two	ways:	by	either	 (i)	aggregating	 (CCM)	or	averaging	
(plot	dataset)	the	number	of	individuals	per	species	per	grid	cell	or	
(ii)	by	marking	the	presence/absence	of	a	given	species	per	grid	cell	
size.	We	chose	to	average	rather	than	aggregate	plot	data	because	
greater	plot	sampling	in	a	grid	cell	will	inherently	increase	estimates	
of	 species	 densities,	 whereas	 sampling	 biases	 in	 CCM	 could	 be	
accounted	for	by	controlling	for	location	within	each	group's	home	
range	(i.e.,	%	kernel	home	range).	We	then	fitted	model	sets	separately	
for	each	cell	size	and	group	(six	sets	of	up	to	70	species	each),	using	
each	food	species	as	a	dataset	and	each	cell	as	a	datapoint.	We	used	
the	estimated	bonobo	feeding	data	abundance	per	cell	 (a	measure	
of	distribution)	as	the	response	and	the	plot	abundance	as	the	test	
predictor	using	zero-	inflated	Poisson	models	(500 × 500 m	grid	size)	
or	 simple	 linear	 models	 for	 1000 × 1000	 and	 1500 × 1500 m	 grid	
sizes.	Within	these	models,	to	account	for	variation	in	home	range	
utilization	 by	 the	 bonobos,	 we	 controlled	 for	 the	 %	 kernel	 home	
range	of	each	cell	by	averaging	the	%	kernel	value	assigned	to	each	of	
the	vegetation	plots	used	to	estimate	the	species	abundance	within	
that	cell.	We	then	calculated	average	Nagelkerke's	R2	(500 × 500 m)	
or r2	(1000 × 1000 m	and	1500 × 1500 m)	for	each	model	set	across	
levels	of	dietary	inclusion	(see	Section	3.3	in	Supporting	Information 
for	detailed	descriptions	of	the	fitted	models	and	model	checks).

To	also	evaluate	agreement	between	methods	on	 simple	pres-
ence	of	a	species	in	a	cell,	we	fitted	a	generalized	linear	mixed	model	
with	binomial	error	structure	(Baayen,	2008)	for	each	grid	cell	size	
and	each	social	group.	The	response	in	this	model	was	the	presence	
or	absence	of	a	species	in	a	given	cell	as	predicted	by	the	bonobo	ob-
servational	data	(with	one	datapoint	per	species	per	cell),	and	pres-
ence	as	measured	by	vegetation	plot	and	%	kernel	as	test	predictors.	
In	these	(six	total)	binomial	models,	we	included	cell	ID	and	species	
as	 random	 effects	 and	 included	 random	 slopes	 for	 presence/ab-
sence	in	the	plots	and	their	correlation	within	the	random	effect	of	
species	(Section	3.3	in	Supporting	Information	for	details	and	model	
checks).	As	a	last	validation	of	distribution	agreement,	we	identified	
when	bonobos	missed	the	presence	of	a	species	 in	a	cell	 that	had	
been	identified	in	the	vegetation	plots	and	calculated	a	proportion	
of	missed	species	occurrences	out	of	all	cells	per	species,	as	well	as	

evaluated	potential	sources	of	biases	in	likelihood	to	miss	a	species	
in	a	cell	(see	Section	2.4).

2.4  |  Identifying sources of bias

If	 a	 consumer	 is	 selective	 in	 which	 resources	 it	 uses	 within	 a	
landscape,	 then	 measurements	 from	 vegetation	 plots	 may	 not	
accurately	 measure	 the	 relevant	 resources	 to	 that	 consumer.	 To	
evaluate	 these	 potential	 discrepancies,	 we	 compared	 food	 tree	
and	liana	sizes	(strongly	tied	to	variability	in	food	crop	production:	
Chapman	 et	 al.,	 1992; Section	 4	 in	 Supporting	 Information)	
between	CCM	and	vegetation	plot	data	as	an	example	of	a	potential	
selective	 characteristic.	We	 then	 quantified	 seven	 characteristics	
of	 each	 species	 to	 evaluate	 how	 they	 contribute	 to	 rates	 of	 data	
accumulation	 and	 agreement	 between	 our	 sampling	 methods.	
Specifically,	we	 considered	 the	 lifeform	 (tree	or	 liana),	 patterns	of	
dispersion,	 consumed	 food	 item	 (fruit	 or	 non-	fruit),	 seasonality	
of	 consumption,	 density	 in	 the	 landscape,	 DBH	 variability,	 and	
frequency	of	consumption	(Section	4.1	in	Supporting	Information)	as	
test	predictors	in	models	with	the	following	responses	(Section	4.2	
in	Supporting	Information):	(1)	the	speed	at	which	data	accumulate	in	
the	CCM	dataset,	(2)	a	measure	of	the	difference	between	estimates	
of	density	between	the	methods,	and	(3)	likelihood	for	bonobos	to	
miss	 the	presence	of	a	species	 in	a	cell	 (Section	4.2	 in	Supporting	
Information).

2.5  |  General analyses

All	 data	 analyses	 were	 conducted	 in	 R	 (version	 4.0.2;	 R	 Core	
Team,	2020),	and	models	were	fitted	using	functions	of	the	 ‘lme4’	
package	(1.1.23;	Bates	et	al.,	2015).	We	report	p-	values	between	.05	
and	.1	as	a	“trend”	for	all	models	to	ease	issues	of	dichotomization	of	
significance	(Stoehr,	1999).	To	avoid	issues	of	multiple	testing	when	
identical	models	were	run	across	responses	that	varied	only	in	their	
summary	method	 (e.g.,	grid	cell	size)	or	dataset	 (e.g.,	social	group),	
we	describe	only	patterns	that	are	stable	and	significant	or	trending	
across	at	 least	half	of	each	model	set;	full	results	for	all	models	as	
well	as	further	description	of	all	methods	and	model	checks	can	be	
found	in	the	Supporting	Information.	We	log-	transformed	predictor	
(e.g.,	species	density	and	consumption	frequency)	and	response	(all	
density	indices)	variables	with	significant	skew	to	prevent	issues	with	
model	fit	(e.g.,	overdispersion,	residual	distribution,	and	leverage).

3  |  RESULTS

3.1  |  Consumer- centric dataset

The	bonobo	groups	visited	(i.e.,	fed	in)	a	total	of	12,430	(EKK)	and	
13,827	 (KKL)	 50 × 50 m	 cells,	 amounting	 to	 an	 area	 “surveyed”	 of	
31.1	(EKK)	and	34.6 km2	(KKL).	This	amounts	to	58.6 km2 total area 
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    |  7 of 16WESSLING et al.

surveyed,	 as	 46.7%	 of	 this	 area	 occurred	 within	 the	 home	 range	
overlap	of	both	communities.	Bonobos	from	EKK	and	KKL	fed	on	a	
total	of	78	tree	and	liana	species	(88.6%	occurring	in	the	diets	of	both	
groups)	 from	 trees	 and	 lianas,	 of	which	 96%	of	 feeding	 occasions	
could	be	 identified	to	a	 local	name.	These	observations	amounted	
to	8818	 (EKK)	and	9140	 (KKL)	unique	 feeding	 tree/liana	 locations	
(50 × 50 m)	consisting	of	76	(EKK)	and	72	(KKL)	species,	of	which	58	
(EKK)	and	55	(KKL)	species	were	consumed	in	at	least	10	locations.	
The	diets	of	both	groups	were	strongly	skewed	toward	a	 few	fre-
quently	consumed	species	(Section	2.3	in	Supporting	Information).	
The	 groups	 visited	 a	 similar	 number	 of	 locations	 each	 day,	with	 a	
mean	 of	 10.0 ± 5.5	 (KKL)	 and	 8.9 ± 5.0	 (EKK)	 locations	 visited.	On	
average,	4.5 ± 2.0	(KKL)	and	4.3 ± 1.8	(EKK)	species	were	consumed	
per	day	by	the	bonobos.

Bonobos	 visited	 60%	 (EKK)	 and	 56%	 (KKL)	 of	 all	 visited	 cells	
within	the	first	year	of	data	collection,	with	gradual	declines	in	the	
accumulation	of	newly	visited	cells	over	the	3+	years	study	period	
in	both	groups	and	a	clear	approach	toward	an	asymptote	for	most	
of	the	top	30	species	(Figure	S3).	We	found	that	the	speed	at	which	
new	 feeding	 locations	 were	 added	 to	 the	 dataset	 also	 decreased	
across	 species	 (i.e.,	 longer	 accumulation	 times)	 with	 each	 passing	
year	for	both	groups,	and	that	much	of	the	observed	decrease	in	new	
locations	visited	over	time	was	likely	driven	by	significant	gains	early	
within	 the	 dataset	 (Figures	 S3	 and	 S4; Section	 2.2	 in	 Supporting	
Information).	Data	on	species	more	variable	in	size	(DBH)	accumu-
lated	slower	in	EKK	than	species	more	uniform	in	size	(but	no	such	
relationship	was	found	in	KKL),	and	accumulation	was	also	slower	in	
species	consumed	for	their	fruits	and	 in	more	abundant	species	 in	
the	landscape	in	both	groups	(Section	4.3	in	Supporting	Information, 
Tables	S2	and	S3).

3.2  |  Vegetation plot dataset

In	total,	14,855	trees	and	lianas	were	measured	across	214	habitat	
plots	 (Section	 1.1	 in	 Supporting	 Information),	 thus	 exceeding	
plot	 surveying	 minima	 (124	 plots	 for	 this	 dataset,	 Section	 1.3	 in	
Supporting	Information).	Plot	surveying	required	a	cumulative	total	
of	 146	 team	 days,	 averaging	 1.7 ± 0.6	 (SD)	 plots	 completed	 per	
team	day	(range:	1–	4).	Trees	comprised	the	majority	(66.9%)	of	the	
individuals	measured.	This	dataset	averaged	277.7	 individual	 trees	
and	 lianas/ha	 across	 the	 habitat	 of	 these	 two	 groups,	 with	 196.1	
indiv./ha	 for	 food	 species	 and	 168.2	 indiv./ha	 for	 potential	 food	
trees	that	met	bonobo	size	minima	(see	below)	for	the	EKK	and	KKL	
home	ranges	collectively.

Seventy-	five	of	 the	200	 taxa	 identified	 in	 the	plots	were	 con-
sumed	by	at	least	one	of	the	two	groups,	with	67	of	72	(EKK)	and	70	
(KKL)	of	75	species	in	the	Kokolopori	bonobo	diet	occurring	in	the	
plots.	Like	the	bonobo	diet,	the	forest	was	heavily	biased	toward	a	
few	species,	with	one	species	accounting	for	over	10%	of	the	dataset	
(“Bofili”,	local	name	for	Scorodophloeus zenkeri),	and	the	top	10	most	
common	tree	species	accounting	for	almost	40%	of	all	trees	and	li-
anas	 (n =	 6375,	39.2%).	Correspondingly,	only	16	 species	 account	TA
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for	over	50%	of	the	individuals	in	the	plots,	of	which	11	occur	in	the	
diet	of	both	groups.	Species	in	the	bonobo	diet	accounted	for	67%	
of	 the	 total	 number	of	 trees	 or	 lianas	observed	 in	 the	Kokolopori	
landscape.

3.3  |  Dataset comparison

3.3.1  |  Consumer	selectivity	of	tree	sizes

Trees	 visited	 by	 bonobos	were	 significantly	 larger	 in	 diameter	 on	
average	than	trees	measured	in	the	plots	(EKK:	t =	−17.71,	p < .001;	
KKL:	 t =	 −20.38,	 p < .001),	 but	 by	 only	 an	 average	 of	 <1	 cm	 in	
both	groups	 (Table	S1).	For	23.1%	of	consumed	species,	we	found	
more	 individuals	 in	 the	plots	 that	did	not	 reach	 the	minimum	size	
consumed	than	those	who	did	exceed	this	minimum	threshold.	We	
subsequently	restricted	all	analyses	to	trees/lianas	that	met	bonobo	
size	 thresholds,	 consequently	 reducing	 the	 number	 of	 individuals	
included	 in	 the	 plot	 dataset	 by	 approximately	 18%	 for	 the	 home	
ranges	of	both	groups	 (8891	 individuals	 in	EKK	and	8685	 in	KKL;	
Section	 4	 in	 Supporting	 Information).	 Reducing	 the	 dataset	 had	 a	
measurable	effect	on	the	correlation	strengths	between	estimates	
of	 density	 (see	 below),	 with	 an	 average	 improvement	 of	 .04	 for	
comparison	(r)	of	the	CCM	estimate	with	the	Plot	Presence	estimates	
and	.07	improvement	in	correlation	coefficient	in	the	comparison	of	
the	CCM	estimate	with	Plot	Density.

3.3.2  |  Density

We	 found	 that	 the	 density	 estimates	 from	 the	 CCM	 and	 vegeta-
tion	 plots	were	 comparable	 in	 both	 groups	 (Table 1 and Figure 2).	
Patterns	 of	 correlational	 strength	 between	 the	 methods	 stabilized	
and	smoothed	from	approximately	50%	kernel	home	range	inclusion	
and	 above,	 and	when	 approximately	 a	minimum	of	 15	 species	was	
included	in	the	dataset	of	both	groups.	Statistical	significance	of	the	
correlation	was	reached	in	both	groups	when	including	ca.	20	of	the	
top	species	or	more.	The	inclusion	of	less	frequently	used	areas	of	the	
home	range	in	the	comparison	did	not	appear	to	considerably	affect	
the	strength	of	agreement	between	methods	but	correlation	strength	
decreased	with	greater	number	of	species	included	in	the	comparison	
(Figure 2; Table 1).	While	we	did	observe	that	peripheral	areas	of	the	
home	 range	 generally	 resulted	 in	 lower	methodological	 agreement	
(Figure	S6),	bonobo	data	appeared	largely	insensitive	to	inclusion	of	
the	outer	reaches	of	the	home	range	in	both	groups	when	included	
alongside	more	intensively	surveyed	areas	(i.e.,	the	core	range).

Broadly,	 the	 CCM	 more	 closely	 matched	 estimates	 of	 Plot	
Density	relative	to	Plot	Presence.	However,	 for	both	comparisons,	
we	observed	a	decrease	in	the	correlation	coefficient	the	greater	the	
number	of	species	included	in	the	EKK	dataset	(Figure 2,	blue	lines	in	
bottom	left	panel).	For	both	groups,	we	found	highest	agreement	be-
tween	methods	when	restricting	the	comparison	to	the	top	36–	40	
species	(i.e.,	approximately	half	of	the	species	in	the	diet),	with	one	

exception	 that	 only	 slightly	 outcompeted	 the	 r	 of	 the	 same	 range	
(KKL	CCM	vs.	Plot	Density).	As	expected,	comparison	between	Plot	
Density	and	Plot	Presence	remained	consistently	high	regardless	of	
location	within	the	home	range	of	the	bonobo	groups,	although	cor-
relations	were	lower	when	fewer	species	were	included.

Once	our	moving	window	reached	 the	dataset	minimum	of	20	
plots	at	ca.	30%	kernel,	the	correlation	coefficient	of	the	CCM	with	
plot	estimates	 increased	until	 they	 reached	a	maximum	of	around	
60%	kernel	home	range	in	both	groups	(Figure	S6).	Peripheral	areas	
of	 the	 home	 range	were	 generally	 lower	 in	 agreement	 than	more	
central	 areas	 but	 did	 not	 show	persistent	 decreases	with	 increas-
ing	 peripheralization	 in	 a	manner	 that	would	 suggest	 consistently	
poorer	sampling	in	peripheral	areas.	Sampling	agreement	was	stron-
gest	within	our	moving	windows	for	the	most	frequently	consumed	
species	(e.g.,	15	or	30	species)	relative	to	more	comprehensive	sub-
sets	of	the	two	groups'	diets	(e.g.,	55	and	70	species).

The	 density	 of	 the	 species	 in	 the	 landscape	 and	 the	 variabil-
ity	 in	 size	significantly	 impacted	agreement	between	 the	methods	
(Table	S4);	specifically,	 lower	species	density	in	the	plots	(estimate	
average:	0.57 ± 0.11	[SE])	and	lower	size	variability	(−1.29 ± 0.62	[SE])	
improved	method	agreement.	Further,	in	KKL	only,	greater	seasonal-
ity,	non-	fruit	item	consumption,	and	greater	consumption	frequency	
decreased	agreement	between	methods.

Correlation	strength	between	the	two	methods	reached	signif-
icance	 and	 stabilized	 across	methods	 and	 groups	 once	 exceeding	
600 days	(i.e.,	ca.	5300	[KKL]	to	6000	[EKK]	total	visited	locations)	
and	continued	to	improve	as	data	were	collected	until	the	end	of	our	
data	period	(Figure 3;	EKKmax:	1222 days,	KKLmax:	1151 days).	Similar	
correlational	strengths	were	achieved	briefly	around	the	200th	day	
of	data	collection,	however,	 its	 instability	as	data	continued	to	ag-
gregate	suggests	this	brief	peak	in	performance	may	have	been	an	
artifact	of	sampling	rather	than	a	reliable	sampling	minimum.

3.3.3  |  Dispersion

Overall,	Morisita's	indices	from	the	CCM	correlated	weakly	and	non-	
significantly	 to	 vegetation	 plot	 indices,	 regardless	 of	 grid	 cell	 size	
used	or	bonobo	group	(Table 2a).

3.3.4  |  Distribution

Across	both	bonobo	groups	and	all	three	grid	cell	sizes,	we	found	that	
more	species	significantly	correlated	between	the	two	methods	for	
individual	abundances	across	cells	than	would	be	expected	by	chance,	
with	an	average	of	18%	of	species	significantly	correlated	between	
methods	 across	 the	 three	 cell	 sizes	 (Table 2b).	 The	 percentage	 of	
species	with	significant	correlations	across	methods	declined	as	grid	
cell	 sizes	 increased,	 as	 did	 the	number	of	 significant	 species	which	
remained	consistent	across	both	groups.	Generally,	proportion	vari-
ance	explained	(r	or	Nagelkerke's	R)	by	abundance	per	cell	based	on	
plots	averaged	0.25 ± 0.32	[SD]	across	species	in	all	grid	cell	sizes	and	
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    |  9 of 16WESSLING et al.

groups	 for	predicting	abundance	per	cell	based	on	CCM.	Average	 r 
did	not	vary	substantially	with	cell	size	or	between	groups	(Figure 4).

The	presence	of	a	species	in	a	cell	as	measured	by	plots	signifi-
cantly	predicted	the	presence	of	that	species	in	the	cell	as	identified	
with	 CCM	 (estimate:	 0.60 ± 0.20	 (SD),	 range:	 0.32–	0.81;	 Table	 S5).	
The	 location	 of	 a	 cell	 within	 the	 home	 range	 appeared	 to	 play	 a	

consistent	role,	with	food	species	less	likely	to	be	identified	by	CCM	
in	more	peripheral	cells	(average	estimate:	−0.05 ± 0.01	(SD),	range:	
−0.05	 to	−0.04;	Table	S5).	Bonobos	missed	 the	presence	of	a	 spe-
cies	 on	 average	 in	 17.5% ± 16.3%	 (SD;	 range:	 0.0%–	68.4%)	 of	 the	
500 × 500 m	cells	and	in	18.4% ± 16.5%	(SD;	range:	0%–	61.2%)	of	the	
1000 × 1000 m	cells.	Increases	in	overall	species	densities	correlated	

F I G U R E  2 Correlation	coefficients	of	density	estimates	between	sampling	methods	(i.e.,	CCM	and	vegetation	plots)	for	EKK	(left)	and	
KKL	(right),	according	to	home	range	percentage	(top)	and	dietary	inclusion	(bottom).	Color	groups	depict	the	three	comparisons	in	this	study	
(see	legend),	with	numbers	in	brackets	indicating	number	of	species	included	(top	legend)	or	percent	home	range	included	(bottom	legend).

F I G U R E  3 Pearson's	r	(left)	and	p-	value	
(right;	dashed	line	indicates	 .05	alpha	
level)	of	all	three	methods	comparisons	
(see	legend)	for	Ekalakala	(full	line)	and	
Kokoalongo	(dashed	lines)	over	the	
duration	of	the	dataset.
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10 of 16  |     WESSLING et al.

with	an	increase	in	the	likelihood	for	bonobos	to	miss	the	presence	of	
species	in	a	cell	irrespective	of	cell	size	or	group	but	species	were	less	
likely	to	be	missed	in	a	cell	if	they	were	more	frequently	consumed.	
We	additionally	found	some	support	for	species	consumed	for	their	
fruits	to	be	more	likely	to	be	missed	in	smaller	cell	sizes	(Table	S6).

4  |  DISCUSSION

Here,	 we	 demonstrate	 the	 applicability	 of	 the	 consumer-	centric	
method	(CCM)	for	measuring	resource	density	and	distribution	 in	an	
animal's	landscape.	We	demonstrate	that	food	species	availability	es-
timates	derived	 from	 the	CCM	method	are	modestly	 comparable	 to	
estimates	derived	from	traditional	vegetation	plot	sampling	following	
a	relatively	short	data	collection	timeframe,	including	before	data	have	

reached	 saturation.	 The	 method	 also	 shows	 promise	 for	 character-
izing	the	distribution	of	food	patches	within	a	landscape,	but	current	
analytical	power	was	likely	insufficient	to	adequately	evaluate	this	re-
lationship.	Furthermore,	we	argue	that	the	CCM	has	an	advantage	over	
traditional	sampling	methods	for	some	research	questions	as	it	incor-
porates	sampling	bias	important	to	the	consumer	into	the	quantifica-
tion	of	the	ecological	landscape.	We	discuss	the	consequences	of	this	
advantage	regarding	the	utility	of	the	CCM	in	studies	of	animal	ecology.

4.1  |  Robustness of the CCM

The	CCM	estimates	 of	 density	 showed	moderate	 similarity	 to	 es-
timates	 from	 traditional	ecological	 sampling.	Behavioral	 ecologists	
have	previously	used	consumption	rates	to	infer	about	the	abundance	

TA B L E  2 Average	(a)	correlation	coefficients	(r)	and	(b)	proportion	of	variance	explained	(r;	500 × 500 m)	or	Nagelkerke's	R	(1000 × 1000 m	
and	1500 × 1500 m)	between	the	CCM	and	plot	datasets	across	three	different	grid	cell	sizes	for	(a)	dispersion	and	(b)	distribution	estimates

(a) Dispersion

Ekalakala Kokoalongo

Cell size Mean + SD (range) Mean + SD (range)

500 0.08 + 0.17	(−0.54,	0.55) 0.00 + 0.16	(−0.35,	0.61)

1000 0.00 + 0.19	(−0.8,	0.25) −0.03 + 0.14	(−0.65,	0.13)

1500 −0.17 + 0.14	(−0.86,	0.07) −0.20 + 0.14	(−0.83,	−0.01)

(b) Distribution

Ekalakala Kokoalongo

Cell size Mean ± SD (range) Num species p < .05 
(% of total species)

Mean ± SD (range) Num species p < .05 
(% of total species)

Significant species 
in both groups

500 0.25 ± 0.05	(0.21,	0.38) 15	(29%) 0.23 ± 0.04	(0.20,	0.36) 13	(28%) 11

1000 0.23 ± 0.02	(0.20,	0.30) 13	(19%) 0.24 ± 0.02	(0.20,	0.31) 8	(11%) 7

1500 0.23 ± 0.03	(0.14,	0.27) 8	(12%) 0.24 ± 0.02	(0.21,	0.27) 6	(9%) 3

F I G U R E  4 Averaged	proportion	
variance explained r	or	Nagelkerne's	
R	(top)	and	p-	values	for	the	estimate	
(bottom;	dashed	line	indicates	.05	alpha	
level)	for	correlations	between	estimated	
abundances	per	cell	of	species	(i.e.,	
distribution	agreement)	as	derived	from	
CCM	and	vegetation	plots	for	EKK	(left)	
and	KKL	(right)	and	for	three	grid	cell	sizes	
(red:	500 × 500 m,	green:	1000 × 1000 m,	
and	blue:	1500 × 1500 m).
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    |  11 of 16WESSLING et al.

of	food	resources	(Hutto,	1990;	Lovette	&	Holmes,	1995;	Watts	&	
Mitani, 2015).	 These	methods	 are	 particularly	 susceptible	 to	 han-
dling	time,	consumer	motivation,	and/or	dependence	on	preference	
from	resource	availability	and	are	subsequently	difficult	to	validate	
against	objective	measures	of	abundance	(Lovette	&	Holmes,	1995).	
The	key	advantage	of	the	CCM	is	that	rather	than	quantifying	avail-
ability	from	occurrences	of	consumption	(frequency	dependent),	the	
method	 depends	 on	 independent	 locations	 (spatially	 dependent),	
thereby	allowing	validation	with	traditional	vegetation	plot	sampling.

Although	we	 found	 a	 significant	 but	minor	 periphery	 effect	 on	
agreement	between	methods	in	the	presence/absence	of	species,	the	
correlation	of	density	estimates	between	methods	was	unaltered	by	
the	percentage	of	home	range	inclusion.	The	lack	of	a	spatial	effect	on	
agreement	between	the	methods	is	in	some	part	likely	to	be	a	result	of	
home	range	selection	on	the	part	of	the	consumer	(e.g.,	second-	order	
selection	sensu	Johnson,	1980),	that	is,	bonobos	may	have	already	se-
lected	 their	home	 range	based	on	 resource	availability;	hence,	 they	
show	no	sampling	biases	there	within.	In	the	absence	of	home	range	
use	biases,	 the	CCM	therefore	 reliably	estimates	 resource	availabil-
ity	across	the	entirety	of	a	group's	space	use,	although	future	studies	
should	verify	an	absence	of	sampling	biases	on	agreement	between	
the	CCM	and	traditional	methods	in	their	own	study	species.

Further,	we	found	that	consumption	frequency	of	a	species	was	
correlated	with	the	likelihood	to	miss	species	presences,	that	is,	that	
infrequently	 consumed	 food	 species	 were	 also	 more	 likely	 to	 go	
unsampled	 in	 the	 dataset.	 Consequently,	 restricting	 estimation	 to	
only	the	top	half	of	the	consumed	species	(by	frequency)	appears	to	
offer	a	compromise	between	maintenance	of	dietary	relevance	while	
maximizing	fidelity	with	density	estimates	as	assessed	by	objective	
plot	measurements.	This	minimum	translated	to	species	consumed	in	
approximately	at	least	60	locations	over	our	3-	year	dataset.	A	general	
consequence	of	sampling	frequency	by	a	consumer	is	that	estimates	
improve	in	precision	as	data	accumulate	over	time.	While	species	in	
our	dataset	were	variable	in	“saturation	level,”	rates	of	new	locations	
sampled	by	the	bonobos	slowed	over	the	course	of	data	collection	
and	 inter-	method	 correlation	 of	 species	 densities	 stabilized	 after	
fewer	than	2 years	of	data	collection	(approximately	600 days).

Tree	stands	in	the	Kokolopori	forest	remained	relatively	stable,	
with	 the	 loss	 of	 monitored	 individuals	 averaging	 about	 2.0%	 per	
year	(range:	0.5%–	3.7%	between	2017	and	2021;	E.	Wessling	&	M.	
Surbeck,	unpublished	data).	For	locations	like	Kokolopori	where	tree	
stand	is	relatively	stable	from	year	to	year,	the	CCM	is	likely	to	be	
able	 to	 provide	 estimates	 of	 species	 abundances	within	 a	 reason-
able	margin	of	error.	 Intervals	between	vegetation	plot	 surveys	 in	
animal	studies	are	frequently	longer	than	the	CCM's	600-	day	mini-
mum,	therefore	the	CCM	may	be	better	suited	to	adapt	to	environ-
mental	changes	than	plot	sampling	because	users	can	restrict	their	
data	aggregation	to	a	specified	time	window	(as	long	as	this	window	
exceeds	 the	 minimum),	 thereby	 creating	 a	 dynamic	 measurement	
of	 availability	 that	 is	 continuously	 updated	 as	 new	 data	 accumu-
late.	Such	an	approach	would	allow	users	to	evade	the	duplication	
of	 surveying	efforts	 required	 to	 capture	 tree	 stand	 changes	using	
traditional	plot	sampling.	In	contrast,	the	CCM	may	not	be	suitable	
for	research	locations	where	tree	stand	is	frequently	disturbed	(e.g.,	

bushfires	 and	 anthropogenic	 disturbance),	 as	 the	 minimum	 nec-
essary	monitoring	 interval	 in	CCM	may	be	too	 long	to	account	for	
abrupt	or	short-	term	changes	to	the	environment.	In	these	environ-
ments,	 traditional	 plot	 sampling	methods	may	 be	 better	 suited	 as	
long	as	they	are	performed	at	commensurate	intervals	relative	to	in-
dividual	resource	turnover.	As	our	results	indicate	that	sampling	rate	
affects	 the	 stability	of	estimates	 (e.g.,	 frequency	of	 consumption),	
we	anticipate	 that	 this	general	minimum	will	be	 longer	 for	species	
with	 slower	 sampling	 frequency,	 that	 is,	 for	 less	 frequently	 con-
sumed,	masting,	or	aseasonally	consumed	species.	A	myriad	of	other	
factors	are	likely	to	contribute	to	the	speed	at	which	data	stabilize	in	
methods	like	the	CCM.	We	therefore	recommend	that	researchers	
studying	other	systems	evaluate	the	applicability	of	a	method	such	
as	the	CCM	against	resource	stability	and	the	traits	of	the	consumer,	
relative	to	the	suitability	of	more	traditional	methods	(see	Table 3).

Generally,	 species	 distribution	 (i.e.,	 spatially	 explicit	 relative	
abundance)	correlated	weakly	between	the	methods	across	species	
regardless	of	the	scale	of	comparison	(i.e.,	cell	size).	A	greater	pro-
portion	of	species	reached	significant	agreement	between	methods	
in	 smaller	 rather	 than	 larger	 cell	 sizes,	potentially	 as	 a	 function	of	
proximity	 between	 bonobo	 foraging	 behavior	 and	 sampled	 plots	
(i.e.,	the	larger	the	cell	size	used,	the	greater	the	potential	distance	
between	 bonobo	 feeding	 locations	 and	 comparatively	 small	 plot	
areas).	 Nevertheless,	 our	 finding	 that	 correlations	 of	 distribution	
within	species	were	significant	across	a	greater	proportion	of	food	
species	than	expected	by	chance	(i.e.,	5%)	and	that	the	rates	at	which	
bonobos	missed	the	presence	of	a	species	in	a	cell	are	likewise	better	
than	common	 rates	of	 species	misses	between	multiple	observers	
sampling	the	same	plot	(Milberg	et	al.,	2008)	provides	hope	that	reli-
able	estimates	of	sub-	landscape	abundances	and	presence	distribu-
tion	may	improve	with	greater	sampling	depth.

While	 detectability	 is	 rarely	 100%	 in	 either	 method	
(Morrison,	 2016),	 the	 miss-	rates	 by	 a	 consumer	 in	 the	 CCM	may	
rather	 carry	 additional	 information	 about	 the	 nature	 of	 resource	
selection	 (and	 the	 individuals	 that	 are	 subsequently	 ignored).	 This	
is	especially	likely	to	be	the	case	in	consumers	who	have	the	capac-
ity	to	keep	track	of	spatiotemporal	patterns	of	resource	availability.	
Bonobos	likely	have	a	concept	of	where	and	when	resources	become	
available,	and	therefore	are	also	capable	of	targeting	resources	that	
are	rare	(Janmaat	et	al.,	2013;	Normand	et	al.,	2009).	Consequently,	
the	 CCM	mimics	 ad	 hoc	 sampling	 (Foster	 et	 al.,	 1998;	 Gordon	 &	
Newton,	 2006; Hopkins, 2007),	 and	 our	 results	 indicate	 that	 the	
CCM	more	closely	matches	Plot	Density	estimates	at	capturing	rare	
species	relative	to	more	abundant	species.

Nonetheless,	 in	 the	 absence	 of	 full	 censusing,	we	 cannot	 dif-
ferentiate	 which	 sampling	 method	 produced	 a	 more	 precise	
representation	 of	 food	 species	 availability,	 dispersion,	 and	 distri-
bution	patterns.	 Ideally,	methodological	 sampling	biases	 could	be	
identified	 by	 simulating	 both	 sampling	 schemes	 from	a	 simulated	
“forest”.	 However,	 as	 we	 rarely	 understand	 the	 complexity	 of	
consumer	 movement	 and	 resource	 selection	 patterns	 (Buskirk	 &	
Millspaugh, 2006),	 subsequent	 conclusions	drawn	 from	simulated	
sampling	behavior	would	be	just	as	arbitrary	as	the	decisions	made	
to	simulate	them	(Johnson,	1980).
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4.2  |  Measuring different phenomena

We	argue	that	the	CCM,	with	adequate	evaluation,	may	be	a	more	
appropriate	 tool	 for	 some	 applications	 in	 behavioral	 ecology	 than	
traditional	inventory	methods	such	as	plot	sampling.	Traditional	plot	
sampling	quantifies	the	total	amount	of	potential	resources	includ-
ing	 inaccessible,	 unattractive,	 or	 otherwise	 unpalatable	 resources	

to	a	consumer.	Only	a	subset	of	these	resources	comprises	true	re-
source	 availability,	 that	 is,	 resources	with	potential	 to	be	 selected	
(Alldredge	et	al.,	1998;	Buskirk	&	Millspaugh,	2006;	Johnson,	1980),	
and	although	correlated,	each	represents	 inherently	separate	phe-
nomena	(Hutto,	1990).	Because	we	rarely	understand	the	processes	
of	food	selection	by	which	consumers	filter	objective	resource	abun-
dance	 into	availability,	 the	CCM	offers	 the	advantage	of	using	the	

TA B L E  3 Advantages	and	disadvantages	to	the	use	of	(a)	traditional	vegetation	plot	sampling	and	(b)	the	CCM	for	acquisition	of	
information	on	food	abundance	to	a	consumer

Advantage Disadvantage

(a)	Vegetation	plot	sampling

Provides	an	objective	estimate	of	abundance	of	all	potential	tree	
species in a landscape

Effort	may	be	wasted	quantifying	tree	species	that	are	irrelevant	(i.e.,	
ignored)	to	the	consumer

Allows	for	the	quantification	of	landscape-	level	characteristics	non-	
specific	to	the	consumer	such	as	overall	species	richness,	total	
tree	density,	and	total	basal	area

Choice	of	method	used	may	inhibit	ability	for	cross-	site	comparison	
when	different	methods	are	used	may	introduce	biases	or	errors	
toward	certain	characteristics	of	measured	species

Methodology	can	be	adjusted	and	tailored	to	different	end	goals	and	
to	accommodate	various	characteristics	in	the	environment	or	
survey	targets	(trees/lianas)

Survey	effort	may	need	to	be	intensive	depending	on	desired	outcomes	
(e.g.,	if	species	of	interest	are	rare,	landscape	is	large,	or	detailed	
sub-	landscape	comparison	is	needed)

Generally	comparable	across	landscapes	and	objective	(i.e.,	non-	
specific)	to	the	landscape	rather	than	particular	consumers	(e.g.,	
study	species)	or	social	units

Is	a	static	measurement	of	a	single	snapshot	in	time	—	survey	area	must	
be	resurveyed	if	changes	in	the	area	occur

No	“burn-	in”	time	required:	data	are	immediately	useable	once	
minimum	sampling	is	met

Can	only	approximate	the	distribution	of	individuals	at	a	scale	fixed	to	
the	methodology—	requires	a	priori	assumptions	of	relevant	scales	
of	distribution	to	a	consumer

Does	not	necessitate	direct	observation	of	the	consumers Can	measure	only	abundance	but	cannot	provide	information	on	
distribution	of	potential	feeding	locations	or	actual	availability	of	
resources	to	a	consumer

Is	independent	of	consumer	movement,	therefore	sampling	can	
target	areas	of	interest

Able	to	measure	dispersion	using	finite	and	spatially	explicit	samples

(b)	Consumer-	Centric	Method	(CCM)

For	frequently	consumed	species,	could	it	theoretically	be	capable	
of	providing	a	census	of	all	relevant	individuals	of	a	given	species	
once	data	are	fully	saturated

Data	are	not	generalizable	beyond	the	sampled	individuals	or	social	
group

Provides	temporally	dynamic	monitoring	of	distribution	of	visited	
(i.e.,	relevant)	feeding	locations;	can	reflect	changes	within	the	
area	of	interest	over	time

For	now,	only	appears	suitable	for	quantification	of	densities	and	some	
species'	distributions;	traditional	methods	may	still	be	required	if	
other	metrics	are	desired

Provides	dynamic	monitoring	of	availability	of	both	abundance	as	
well	as	consumer	behavior	changes	or	changes	in	selection

Information	gained	is	limited	only	to	consumed	species

Data	are	able	to	reflect	the	true	availability	of	resources	rather	than	
abundances	(which	are	blind	to	patterns	of	use	and	temporally	
varying	variability)

Quality	of	information	may	be	biased	toward	frequently	consumed	
species

Because	they	are	targeted	by	the	consumer,	the	CCM	may	allow	for	
better	capture	rates	of	species	otherwise	rare	in	the	landscape

Requires	a	“burn	in”	period	before	reliable	and	stable	estimates	can	be	
provided	and	data	are	of	sufficient	depth

Tailored	directly	to	social	unit	(e.g.,	individual	and	community)	and	
reflects	selection	biases	inherent	to	each	social	unit

Requires	direct	behavioral	observation	of	the	consumer

Data	are	collected	directly	at	the	scale	most	relevant	to	the	
consumer	and	are	therefore	not	aggregated	to	impose	ad	hoc	
scales	of	summarization

Currently	requires	cross-	validation	with	traditional	plot	sampling	before	
the	method	is	demonstrated	to	be	robust	across	contexts

Is	easily	integrated	into	existing	behavioral	observation	data	
collection	and	does	not	require	supplementary	data	collection

Is	not	a	valid	method	when	an	assessment	of	resource	preference	or	
selection	is	relevant	to	the	study	question

With	data	collection	teams	sufficiently	trained	in	botanical	
identification	of	all	food	items,	does	not	require	additional	
research	effort	from	botanists

Is	the	joint	outcome	of	resource	selection	and	true	abundance,	
therefore	cannot	disentangle	changes	in	either	input	from	the	other
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consumer	as	a	means	to	avoid	arbitrary	decisions	as	to	how	to	best	
sample	 the	 landscape	 (Johnson,	1980).	We	detail	examples	of	 this	
selectivity	and	the	resulting	advantages	of	the	CCM	below.

First,	we	observed	significant	differences	between	average	sizes	
of	trees/lianas	visited	by	bonobos	relative	to	what	was	available	in	
the	landscape	of	consumed	species	(as	measured	in	vegetation	plots).	
Reducing	our	plot	dataset	to	a	single	selection	criterion	(tree/liana	
sizes	selected	by	the	consumer)	increased	the	correlations	between	
CCM	and	 vegetation	plot	measures	 by	 an	 average	of	 4%–	7%	as	 a	
simple	 demonstration	 of	 the	 inadequacies	 of	 consumer-	objective	
plots	in	mirroring	consumer	behavior.	Second,	that	bonobos	missed	
or	ignored	certain	food	resources	in	cells	identified	to	contain	them	
underlines	further	how	researchers	are	likely	unaware	of	relevant	se-
lection	criteria	that	impact	the	measurement	of	true	resource	avail-
ability.	Because	apes	possess	mental	maps	of	their	environments	and	
are	known	to	adjust	travel	to	target	preferred	food	sources	(Janmaat	
et al., 2013;	 Lucchesi,	Cheng,	Wessling,	 et	 al.,	2021),	 they	are	un-
likely	to	consistently	miss	available	food	resources	within	their	home	
range	over	extended	periods	of	time.	In	a	future	study,	this	may	be	
confirmed	by	evaluating	 if	particular	 cells	within	 the	home	 ranges	
consistently	disagreed	between	methods	across	food	species.	Third,	
we	 found	that	CCM	estimates	of	density	and	distribution	differed	
between	bonobo	social	groups,	even	with	largely	overlapping	home	
ranges.	This	conforms	to	previous	findings	of	group-	specific	feeding	
selection	criteria	 in	bonobos	 (Samuni	et	al.,	2020),	 independent	of	
local	 abundance.	 If	 resource	 availability	 for	 a	 consumer	 in	 a	 given	
landscape	 is	dependent	on	group	 identity,	 then	only	methods	 like	
the	CCM	incorporating	these	criteria	allow	comparable	estimates	for	
comparative	studies	across	social	groups.

Altogether,	by	accounting	for	consumer	selection,	the	accumu-
lation	of	data	on	food	patch	 location	 is	 inherently	 less	subjective	
than	datasets	dependent	on	arbitrary	decisions	by	the	investigator	
(Johnson,	1980)	because	it	does	not	involve	decisions	by	the	inves-
tigator	about	selection	criteria.	However,	such	a	method	precludes	
its	ability	to	be	used	for	assessing	the	components	involved	in	se-
lection	by	a	consumer	and	preference	if	conducted	in	the	absence	
of	 objective	 abundance	 sampling	 (e.g.,	 plots).	 Conversely,	 when	
conducted	 in	 parallel	 to	 plot	 sampling,	 the	 CCM	 can	 provide	 in-
sight	into	which	resources	are	regularly	ignored,	and	consequently,	
the	components	leading	to	biases	in	consumption	(i.e.,	availability	
relative	to	abundance).	It	should	be	noted,	that	biases	in	resource	
measurement	 in	consumer-	objective	sampling	also	occur	via	mul-
tiple	 channels	 including	 selection	 of	 sampling	 method,	 metric,	
and	effort,	 as	well	 as	 through	unavoidable	 systematic	or	 random	
measurement	 errors	 (Baraloto	 et	 al.,	 2013;	 Milberg	 et	 al.,	 2008; 
Morrison, 2016;	Ståhl	et	al.,	2017;	Wessling	et	al.,	2020).	The	CCM,	
however,	accounts	for	several	of	these	issues	because	consumers	
are	 knowledgeable	 and	motivated	 surveyors	who	 actively	 target	
resources,	with	apparently	negligible	impact	of	scale	variation	(e.g.,	
cell	size)	or	abundance	on	fidelity	of	CCM	estimates	to	plot-	derived	
estimates.	Therefore,	estimates	derived	from	the	CCM	could	the-
oretically	provide	accurate	measures	of	availability	once	data	have	
reached	a	sufficient	depth.

Difficulties	with	GPS	signal	 in	Kokolopori	 forced	us	to	coarsen	
data	 precision	 to	 50 × 50 m	 quadrats,	 and	 consequently,	 a	 loss	 of	
fine-	tuned	 information	 on	 actual	 abundance	 of	 resources	 visited.	
Subsequently,	 our	 results	 mimic	 the	 same	 difficulties	 identified	
by	 Jiménez-	Valverde	et	 al.	 (2021)	 in	 the	 fidelity	of	presence-	only-	
derived	abundance	estimates	to	true	abundance.	Future	studies	that	
are	able	to	track	visits	to	specific	resource	patches	will	likely	allow	
for	more	honest	sampling	of	the	abundance	of	resources	visited	and	
may	permit	CCM	datasets	to	avoid	suffering	the	same	shortcoming.	
Nonetheless,	the	CCM	was	able	to	correlate	with	density	estimates	
provided	by	traditional	plot	sampling	at	a	rate	of	up	to	69%,	suggest-
ing	moderate	but	imperfect	comparison	between	the	two	methods.	
That	the	two	methods	correlate	only	moderately	well	may	suggest	
that	 they	 likely	 measure	 similar	 but	 different	 resource	 groupings	
(potential	vs.	used).	Although	in	this	study	we	cannot	confirm	that	
the	CCM	measures	true	availability	with	greater	precision	than	plot	
sampling,	it	anyways	remains	to	be	validated	that	plot	sampling	can	
provide	estimates	reflective	of	measures	of	true	availability	either.

Our	spatially	explicit	CCM	further	allows	for	data	accumulation	
and	consequential	 improvement	 in	 the	accuracy	of	estimates	over	
time	until	 otherwise	 removed	due	 to	 irrelevance	 (e.g.,	 patch	 loss).	
Nevertheless,	if	rapid	density	assessment	is	preferable	for	a	project,	
traditional	ecological	sampling	may	remain	a	preferred	method	due	
to	a	600	person-	day	burn-	in	time	required	(this	study)	by	the	CCM	
before	 estimates	 become	 reliably	 stable	 per	 social	 group	 relative	
to	150	person-	days	of	plots	 for	both	groups.	However,	 these	150	
person-	days	are	supplementary	to	observational	data,	insomuch	as	
person-	days	necessary	to	collect	both	sets	of	data	must	be	consid-
ered	additive	 to	observational	data	collection.	Yet,	 if	databases	of	
feeding	locations	are	already	available,	adapting	these	data	to	CCM	
estimation	of	resource	density	or	distribution	saves	researchers	from	
needing	to	collect	additional	data	to	quantify	resource	abundance.

While	this	method	is	best	applied	to	estimate	the	availability	of	
discrete,	 immobile,	 and	 spatially	 explicit	 resources,	 these	 advan-
tages	 transcend	 application	 beyond	 bonobos	 and	 allow	 research-
ers	to	evaluate	the	strengths	of	the	method	for	their	investigations	
across	all	potential	consumers	who	meet	these	criteria	(further	dis-
cussed in Table 3).	Functionally,	assumptions	of	the	CCM	are	simi-
lar	to	studies	investigating	resource	preference,	a	method	that	also	
combines	objective	habitat	measures	with	subjective	animal-	centric	
data	(Manly	et	al.,	2007),	and	requires	space	re-	use	for	data	to	ag-
gregate.	Researchers	must	 verify	whether	 their	 existing	or	poten-
tial	datasets	to	be	used	for	CCM	sampling	are	of	sufficient	sampling	
depth	and	absent	of	biases	(e.g.,	sampling	biases	or	characteristics	of	
food	items)	for	their	consumers	before	the	CCM	can	be	applied	as	a	
means	of	replacing	objective	resource	measurement	with	the	CCM	
for	resource	availability.

Here,	we	offer	a	context-	specific	evaluation	in	two	social	groups	
of	a	tropical	frugivore	of	the	CCM,	a	data	collection	method	allowing	
researchers	to	quantify	resource	availability	to	a	consumer.	It	serves	
as	a	potential	new	tool	for	animal	behavior	studies,	and	our	results	
offer	a	roadmap	for	when	and	how	such	a	methodology	may	be	use-
ful	in	other	contexts	and	models.	Many	factors	are	likely	to	affect	the	
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fidelity	of	the	CCM	to	true	resource	availability	in	a	landscape,	and	
the	characteristics	of	both	the	consumer	and	the	resource	will	 im-
pact	the	relative	advantages	of	applying	the	method	over	traditional	
plot	sampling	(Table 3).	For	now,	in	the	absence	of	robust	validation	
of	the	method	across	food	type,	landscapes,	and	study	species,	re-
searchers	interested	in	applying	the	CCM	to	their	research	contexts	
should	still	perform	traditional	vegetative	sampling	and	validate	their	
results	between	these	two	datasets	before	fully	committing	to	the	
use	of	the	CCM	only.	Once	this	initial	hurdle	is	surpassed,	the	CCM	
allows	continuous	and	comprehensive	sampling	of	relevant	resources	
within	a	consumer's	environment	that	barring	significant	changes	to	
the	 landscape	or	 consumer	preference	will	 provide	a	dynamic	 and	
updateable	estimate	with	little	additional	effort.	When	applied	cor-
rectly,	 the	CCM	will	enable	many	behavioral	ecologists	to	quantify	
aspects	 of	 food	 availability	 by	 using	 data	 already	 existing	 in	 their	
research	 repertoires.	 Furthermore,	 resource	 metrics	 derived	 from	
the	CCM	may	be	more	suitable	to	its	application	as	well	as	allow	for	
more	precise	comparison	in	ways	that	make	these	data	comparable	
across	social	groups,	subsequently	promising	new	 insights	 into	the	
interplay	between	an	animal	and	its	environment.	Further	validation	
will	illuminate	the	applicability	and	appropriateness	of	new	methods	
like	 the	 CCM	 in	 replacing	 pervasive	 but	 imperfect	 methodologies	
like	plot	sampling	as	wild	animal	research	seeks	more	accurate	and	
efficient	methodologies	in	capturing	animal	behavior	and	the	forces	
that	affect	it.
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