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Modelling individual and cross-cultural 
variation in the mapping of emotions to 
speech prosody

Pol van Rijn    1   & Pauline Larrouy-Maestri    1,2

The existence of a mapping between emotions and speech prosody is 
commonly assumed. We propose a Bayesian modelling framework to 
analyse this mapping. Our models are fitted to a large collection of intended 
emotional prosody, yielding more than 3,000 minutes of recordings. Our 
descriptive study reveals that the mapping within corpora is relatively 
constant, whereas the mapping varies across corpora. To account for 
this heterogeneity, we fit a series of increasingly complex models. Model 
comparison reveals that models taking into account mapping differences 
across countries, languages, sexes and individuals outperform models 
that only assume a global mapping. Further analysis shows that differences 
across individuals, cultures and sexes contribute more to the model 
prediction than a shared global mapping. Our models, which can be 
explored in an online interactive visualization, offer a description of the 
mapping between acoustic features and emotions in prosody.

Early studies in emotion science focused on showing similarities of 
emotions across cultures1. More recently, renewed efforts have been 
made by estimating variability in emotional language2, facial expres-
sions3, physiological measurements4 and non-verbal vocalizations5 
across individuals and cultural groups. Here we build on this new wave 
of research by estimating and examining sources of variability in emo-
tional prosody at scale.

There are three influential families of emotion theories that pre-
dict different degrees of variability: affect program, psychological con-
structivist6 and appraisal theories7. Affect program theories, including 
the influential basic emotion theory8, assume the existence of neural 
signatures for specific emotions. While the framework accommodates 
variability (such as the in-group effect9 predicting that emotions are 
better understood by a member of the same community10), these 
theories seldom predict systematic sources of variability in emotion 
expression and recognition. Constructionist theories, in contrast, 
which deny the existence of any hard-wired links dedicated to specific 
emotions11, predict that emotion should vary widely across situations, 
individuals and cultural groups. Finally, variability is inherently pre-
dicted by appraisal theories7, which assume that each emotion is caused 

by its appraisal pattern12. Small changes in the appraisal pattern may 
lead to a different action tendency—a tendency to flee might become a 
tendency to fight. The exact appraisal pattern depends on the internal 
state of the listener and thus predicts variability.

In the present study, we describe the mapping between speech 
prosody and emotion by using Bayesian multilevel multinomial logis-
tic regression models (Fig. 1a). Speech prosody is characterized by 
variations in pitch, loudness, timing and voice quality (Supplementary 
Discussion 2). Here we use a common feature set13 that spans most pro-
sodic dimensions14–16. To obtain interpretable regression coefficients, 
we reduced the dimensionality to seven uncorrelated acoustic factors 
(Fig. 1b). Additional analyses described in Supplementary Methods 3 
show that the factor solution is relatively robust across the most com-
mon languages and countries.

We collected an array of emotional speech recordings by adopt-
ing standards17 to query, filter and annotate the possible datasets 
(Supplementary Methods 1). For a corpus to be included, emotion 
annotations must be present, and the corpus must contain record-
ings of sentences (that is, no syllables, non-verbal vocalizations or 
single-word sentences). In the analyses presented in this manuscript, 
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questions: how variable is the mapping within and across datasets, 
and what effect do moderators (such as speakers or cultures) have on 
the mapping?

When studying the relationship between acoustic features and 
intended emotions, one can study four aspects: reliability, specificity, 
generalizability and validity of the mapping22. High reliability means 
that the same emotion is expressed by a common set of features. Our 
first research question addresses the reliability of the mapping within 
and across corpora of speech prosody. Specificity means that a pattern 
of acoustic features refers to one and only one emotion. In other words, 
high specificity implies a good classification performance. By contrast-
ing models allowing for different sources of variability, we address a 
concept similar to specificity. Generalizability means that differences 
across different populations have sufficiently been accounted for. In 
our final analysis, we identified which levels of analysis—for example, 
cultural, individual or sex differences—have the largest contribution 
to the model prediction. High validity signals that the person express-
ing the utterance is actually in the expected emotional state. However, 
as we elaborate in Supplementary Discussion 3, estimating validity is 
not so straightforward. Consequently, in this Article, we evaluate the 
reliability, specificity and generalizability of the mapping from basic 
emotions to speech prosody in productions.

To provide answers to our research questions, we used Bayes-
ian multilevel multinomial logistic regression models. Internally, the 
model computes a linear predictor for each emotion. The emotion with 
the highest value is the emotion predicted by the model. Each predictor 

we include corpora that only contain healthy adult speakers, for which 
the intended expression is known and that we were granted access to 
(see Supplementary Discussion 1, Supplementary Table 1 and Sup-
plementary Methods 2 for more details). While some researchers 
explore extended sets of emotion categories18–20, the majority of emo-
tion research has centred on the limited set of basic emotions. We 
therefore focused on these emotions (Fig. 1c). The full list of corpora 
accompanies the release of this publication, and new corpora can be 
proposed via an online form and will be published upon review: emo-
tional.speechcorpora.com.

The mapping between acoustic features and intended emotional 
speech can be studied either by modelling the relationship between 
acoustic features and emotional expression21 (studying production), 
as we do, or by analysing human recognition rates (perception)17. The 
second approach mostly relies on meta-studies; however, this approach 
is fundamentally limited since it relies on effect sizes and standard 
errors, discarding relevant information about individual samples and 
differences within the tested population. We overcame this limitation 
by using Bayesian inference models to estimate the mapping at dif-
ferent levels—enabling the quantification of cultural, speaker and sex 
differences. We pursued this goal by studying a collection of intended 
emotional prosody productions, including 432 individuals from around 
the world, speaking 2,963 different sentences. Altogether, this repre-
sents 3,252 minutes of intended emotional speech. This collection of 
emotional prosody together with Bayesian inference models allows 
us to study the mapping at scale and provide answers to the following 
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Fig. 1 | Conceptualizing the relationship between acoustic features 
and emotional speech as a mapping problem. a, Emotion recognition is 
conceptualized as a mapping problem. The mapping describes how the source 
(acoustic features) can be related to the target (intended emotions). b, Factor 
analysis reveals seven acoustic dimensions that relate to perceptual qualities of 
speech prosody. To ease the visualization of the data, weak loadings (<0.45) are 
not shown in the loading plot. The full loading plot can be found in Supplementary 
Fig. 4. MFCC, mel-frequency cepstral coefficient; HNR, harmonics-to-noise ratio. 
c, The six basic emotions and ‘neutral’ are used as mapping targets. d, The model 
learns a multilevel mapping, consisting of a mapping that exists in all corpora 

as well as mapping deviations on the basis of certain grouping variables, such 
as culture or speaker. In this particular example, the mapping for ‘anger’ for a 
male Kenyan English speaker (speaker CK) is depicted. e, To obtain a prediction 
for a specific emotion, we take the mapping (d) and multiply it by the respective 
acoustic factor values of some input stimulus, sum the values and add the 
intercepts. f, Predictions for all six emotions (as in e). ‘Neutral’ always obtains 
the prediction 0, as it is the pivot category. The seven values are converted into 
probabilities (softmax), and the emotion category with the highest probability is 
the category prediction for some input stimulus. For an interactive version of d–f, 
see http://mapping-emotions.pol.works.
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consists of an intercept—accounting for possible imbalances in the base 
rate of emotion labels—and a series of coefficients for each of the seven 
acoustic features describing the mapping between speech prosody and 
emotions. In addition to this ‘global mapping’, we compute a deviation 
for different levels of analysis. One challenge in modelling this devia-
tion is that for some groups there are fewer data points (for example, 
there are more Indian than Dutch samples), which would make the 
estimates for the small groups less reliable. A solution to this problem 
is partial pooling, which adjusts estimates for groups with small sample 
sizes or with extreme values more towards the grand mean of the data. 
This mechanism—often referred to as shrinkage—makes the predictions 
more realistic and the model less likely to overfit23.

Here we are primarily interested in the acoustic coefficients, as 
they are estimates of the mapping. This yields a multilevel mapping of 
acoustic factors (Fig. 1d). To obtain a prediction for a specific emotion, 
we multiply the multilevel mapping by an input sample that we want 
to obtain a prediction for. The values of the multiplication are added 
together along with the intercepts (Fig. 1e). This is performed for all 
six emotions. ‘Neutral’ always obtains the prediction 0, because it is 
the pivot category. The predictions for the six emotions and ‘neutral’ 
are converted to probabilities, and the model selects the emotion 
with the largest probability (Fig. 1f). For all models reported in the 
paper, we provide an online, interactive version of the model similar to  
Fig. 1d–f, which enables the visualization of model predictions for 
existing samples or obtaining insights into what the model has learned. 
All interactive models can be found at http://mapping-emotions. 
pol.works.

Our model design overcomes several pitfalls of traditional 
meta-analysis. First, it estimates mapping differences at granular levels 
of analysis—for example, on a speaker level. It also avoids false confi-
dence based on removed variation by averaging, and it accounts for 
imbalances in sampling (such as different numbers of stimuli per cul-
ture). Finally, since all recordings are processed with the same pipeline, 
the extracted features are computed identically and are thus compara-
ble across corpora, which is not necessarily the case for meta-studies24.

Results
Overview
Guided by our modelling framework, our data analysis proceeded as 
follows. First, to describe the reliability of the mapping, we examined 
the variability in the mapping estimates within and across different cor-
pora. Then, to address the specificity of the mapping, we performed a 
contrastive model comparison exploring which model best fits the data, 
while punishing overly complex models. Finally, we uncovered which 
levels of analysis contribute the most to the prediction of the model 
and supported the findings with a correlation and variability analysis.

Verifying the Bayesian inference models
Prior to the main analysis, we showed that our Bayesian multinomial 
logistic regression models perform equally well in the classification 
task as do support vector machines (SVMs), which have been exten-
sively used in emotion classification from audio25 (see the Methods 
for the hyperparameters used). Emotion classification performance 
is often expressed as unweighted average recall (UAR)26, which is the 
average recall across all emotion categories while accounting for 
slight imbalances in the base rate of the categories. Using fourfold 
leave-speaker-out cross-validation, we showed that the SVM obtains 
a similarly high UAR score as the Bayesian regression model (25.5% 
and 22.7% UAR, respectively; Bayesian estimation of the mean paired 
difference, −4%; 89% credible interval, −12% to 4%), indicating that the 
Bayesian multinomial logistic regression performs comparably to a 
common baseline. Here we evaluated model prediction; however, in 
the main analysis we use the Bayesian logistic regressions as inferen-
tial models. Thus, the objective is not to optimize model prediction 
for unseen data but rather to explore what the models have learned.

High reliability within corpora and poor reliability across 
corpora
We next fit a model that estimates a coefficient for each of the seven 
acoustic factors across the six emotions (Fig. 2a). On top of this ‘global 
mapping’, we computed a corpus-specific deviation from this coeffi-
cient (Fig. 2b). In doing so, we measured the variability of the mapping 
within a corpus and across corpora. The estimates are depicted in Fig. 2c.  
The variability within a corpus is characterized by the spread of the 
distribution of estimates. Wide distributions indicate more variability 
for the given estimate in a corpus (smaller dots indicate greater vari-
ability in Fig. 2b,c). Variability across corpora can be described by the 
overlap in the estimated distributions across corpora. If there is a poor 
overlap of the distributions, then there is a great deal of variability 
across corpora.

While the estimated emotion coefficients across corpora mostly 
match with empirical predictions from two reviews on emotion-specific 
acoustic profiles16,27 (Fig. 2a), there are some disagreements—for exam-
ple, happiness is predicted to have a higher speech rate and sadness 
to have a lower pitch. Such differences are to be expected because the 
factor scores do not relate one-to-one to the raw acoustic features, and 
there is a large spread in the coefficients estimated for the different cor-
pora (Fig. 2c). This variability across corpora is even more striking, as 
shrinkage in multilevel models pulls observations from small corpora 
or extreme observations closer to the grand mean.

In Fig. 2d, we zoom in on a single factor (RC2, loudness, for anger) 
and can see that the estimates for the coefficients are rather tight 
(that is, the distribution of estimates is narrow). This implies that the 
mapping of a certain acoustic factor to an emotion label is consistent 
within a corpus. However, across corpora, we can observe that the 
credible intervals of the distributions are only partially overlapping, 
which means that the estimates from one corpus to another often dif-
fer. If the mapping between acoustic features and emotion labels were 
identical across corpora, we would expect a greater degree of overlap. 
Note that high variability does not imply low emotion recognition but 
is merely a justification to use moderators in the analysis. Given the 
observed variability in the estimates across corpora, the next step is 
to investigate the origin of the variability.

The objective here is to show the convergence of evidence (or 
the lack thereof) across studies. In meta-studies, each study is treated 
as an individual sample with its effect size and standard error. Some 
degree of variation across studies is expected due to minor sampling 
differences in the population, which should be smaller for larger sample 
sizes. Measuring the amount of heterogeneity among studies is key to 
the question of convergence, as large variability might indicate that 
studies measure distinct concepts, or moderators need to be included. 
We borrow the I2 metric from meta-analysis, which describes the pro-
portion of total variation in study estimates due to heterogeneity28 
(see the Methods for the details). Here we compute I2 separately for 
each factor and emotion and treat the estimates from single corpora 
as separate studies. The I2 values are shown on the right of each subplot 
in Fig. 2c. The analysis confirms that there is a great deal of variability 
in estimates across corpora and that this variance is larger than what 
would be expected on the basis of sampling variance alone.

Models only assuming a global mapping are outperformed
Given that estimates across corpora are heterogeneous, we ran a series 
of models accounting for different moderators. Every model estimates 
a separate intercept for each corpus to account for possible imbalances 
in the base rate of emotions across corpora. Models are compared to 
each other using the widely applicable information criterion (WAIC), 
which provides an approximation of the out-of-sample deviance while 
penalizing overly complex models, which tend to overfit the data (Sup-
plementary Methods 4). Thus, the relative WAIC difference between 
contrasting models is of importance, where lower WAIC values indicate 
a better model fit.
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Fig. 2 | Variability across datasets as shown by model coefficients for each 
acoustic factor across all corpora (population-level effect) and deviations per 
corpus (group-level effect). a, The model estimates a coefficient for each of the 
seven acoustic factors (RCs) and a group-level deviation per corpus. The black line 
is the average coefficient across corpora, and the grey area around the line is an 
89% credible interval. To put our model estimates in some context, we include the 
empirical findings from two reviews on acoustic profiles of emotions16,27. Juslin and 
Laukka16 only distinguish between positive and negative; Scherer27 distinguishes 
between a little and very negative or positive. b, The model internally combines the 
population- and group-level effects. In this particular example, the estimates for 
‘anger’ in the corpus ‘SAV’ for RC1–7 are depicted. The black line is the combined 

mapping, which is plotted in the following subplots. The larger the size of the 
dots, the smaller the credible interval. c, Each coloured dot represents a combined 
estimate for a specific corpus (average across corpora + corpus-specific estimate) 
of an acoustic factor (RC1–7) for all emotions. Large dots indicate small credible 
intervals (that is, narrow distributions). The black line is the average coefficient, 
and the area around the line is an 89% credible interval. The vertical grey line 
indicates 0. The percentage on the right of each subplot is the I2 value. d, Zoomed-
in version of factor RC2, ‘loudness’. The combined estimates per corpus (n = 4,000) 
rarely overlap. The black line below the distribution indicates an 89% credible 
interval. The vertical black line is the average coefficient (population-level effect), 
and the grey line is positioned at the origin.
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As a lower boundary, we fit an intercept-only model estimating an 
intercept for each emotion and corpus. The ‘base’ model additionally 
estimates a coefficient for each acoustic factor. As shown in Fig. 3a, the 
base model is much better than the intercept-only model.

We then fit a series of models inspired by the emotion dialect 
theory10, on the basis of the ‘in-group’ effect. One way to model this 
membership is to add a group-level effect for languages and countries. 
As shown in Fig. 3b, the language model and the country model perform 
similarly well (the country model is slightly better). However, this initial 
approach was limited in that we treated languages and countries as 
discrete categories and ignored the proximity of different languages 
and countries to one another—for example, Dutch being linguistically 
closer to English than to Hindi. To model this proximity, we computed 
the Euclidean distances among languages and countries. Language 
distance is modelled as lexical distance29, and differences across coun-
tries are captured on the Hofstede cultural dimensions30. As depicted 
in Fig. 3c,d, the language and country trees reconstructed from the 

distances31 contain meaningful associations. For example, in the lan-
guage tree, Brazilian Portuguese is closer to European Portuguese 
than it is to Spanish, and Romance languages are grouped together; 
for the country model, the Anglo-Saxon countries (the United States, 
Canada, Australia and New Zealand) are grouped together. However, 
models incorporating this complex hierarchical relationship did not 
converge. As a pragmatic solution, we therefore modelled ‘culture’ 
as the combination of the categories ‘language’ and ‘country’, as this 
enables useful distinctions (such as between American and Canadian 
English). As depicted in Fig. 3b, this model is better than the language 
or country model.

As shown in Fig. 3a, the culture model is outperformed by the cor-
pus model from the reliability analysis (see the lower, non-overlapping 
WAIC value for the corpus model), as the grouping variable ‘corpus’ 
contains the same grouping information as in ‘culture’—each corpus 
is usually assigned to one country and one language—and addition-
ally consists of more specific information potentially relevant for the 
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Fig. 3 | Model comparison and sensitivity. a, Model comparison using the 
WAIC. The models are arranged by their WAIC score, where lower WAIC values 
indicate a better model fit. The following models are shown, from right to left: 
the null model containing only intercepts; the base model estimating the global 
mapping; the in-group model estimating the interaction between country and 
language (we call this interaction ‘culture’); the corpus model from Fig. 2b; and 
the big model, which is the in-group model additionally modelling speaker and 
sex differences. The error bars are standard errors of the WAIC. b, Zoomed-in 
version of the black box in a, showing the WAIC of the in-group models modelling 
the group-level effect of countries, languages or the interaction of both. The 

icons are introduced in detail in Supplementary Methods 2. c, UPGMA-generated 
language tree from Beaufils and Tomin29. d, UPGMA-generated culture tree 
from Euclidian distances among the Hofstede30 dimensions. e, Confusion 
matrices predicting the dataset for the base, in-group and big models. Overall 
performance is expressed in UAR. Each cell contains a recall value. The recall 
values for each row are normalized and sum to 1. SUR, surprise; SAD, sadness; 
HAP, happiness; FER, fear; DIS, disgust; ANG, anger; NEU, neutral. All models 
in a,b can be explored using an interactive visualization; see http://mapping-
emotions.pol.works.
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communication of emotion. For example, speakers are often recruited 
from the same area or institution (for example, the same city or univer-
sity), targeting a more specific social group9. However, the grouping 
variable ‘corpus’ is—in contrast to ‘language’ or ‘country’—an artificial 
construct that is transcended by a series of more realistic constructs, 
such as cultural proximity and social belonging. We therefore extend 
the culture in-group model (and not the corpus model) by adding sex 
and individual speaker differences. As shown in Fig. 3a, this ‘big’ model 
outperforms all other models.

The confusion matrices in Fig. 3e reveal that with increasing model 
complexity, the misclassifications by the model are reduced (darker 
diagonals), and hence the overall UAR per model increases (40.8% for 
base, 48.6% for the best in-group model and 69.8% for the final model). 

For example, in the base model, ‘happiness’ is often misclassified as 
‘anger’ and ‘neutral’ as ‘sad’. In contrast to the WAIC, confusion matrices 
do not penalize overfitting models. And one would expect that with 
increasing model complexity, models will better fit (or even overfit) 
the data. However, group-level effects can have a regularizing effect 
due to shrinkage and hence reduce the risk of overfitting. The confu-
sion matrices show that the models capture the trend in the data and 
are better at it with increasing model complexity.

Relevance of culture, sex and individual differences
To examine how individual levels of the mapping contribute to the 
prediction of the model, we computed the contribution of each level 
of analysis to the prediction of the model. We first obtained the model 
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Fig. 4 | Differences in the mapping across cultures, sexes and individuals. a, 
Contributions of different levels of analysis to the model prediction. Each panel 
shows the mean contributions of different levels of analysis in all cases in which 
the emotion was predicted. The error bars are standard deviations across single 
posterior draws (n = 4,000). The colour of each bar indicates the level of analysis. 
The darker section of each bar represents the contribution of the intercept. The 
lighter section represents the contribution of the acoustic coefficients. The pie 
chart in the upper right of each panel is the contribution of the global mapping 
to the full prediction. b, Variability in the coefficients for different levels of 

analysis. For each group level, emotion and acoustic factor, a standard deviation 
was computed on all coefficients. In both panels, the average standard deviation 
is plotted by the acoustic factor (left, n = 6) and the intended emotion (right, 
n = 7). The error bars are in standard deviations. The subplots collapse over the 
different levels of analysis. c, Correlation across mappings. The upper left panel 
shows the mappings of all emotions correlated with each other. The diagonals 
are always 1. The remaining three panels show correlations between the global 
mapping and sex, cultural or speaker difference. The fill colour is the average 
correlation (Pearson).
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prediction on the data that the model was fitted on (as in Fig. 3e), and 
we then measured how much each group level contributes to the value 
for the predicted emotion (Fig. 4a). In all emotions (except ‘surprise’), 
individual differences have the greatest impact on the model predic-
tion. The second most important level of analysis is culture for most 
emotions, followed by the global mapping or sex differences. Remark-
ably, only 20–25% of the model prediction originates from the global 
mapping, as depicted by the pie charts in the upper right corner of 
each panel in Fig. 4a.

As depicted in Fig. 4a, the intercepts (marked by the darker col-
ours) play a subordinate role in the prediction of the emotion. In addi-
tion, the intercept of the corpus has the smallest contribution to the 
final prediction in all emotions except for ‘disgust’.

Variability in coefficients is the largest for speakers and cultures
While in the previous analysis the contributions of different levels of 
analysis were estimated in the original data, the current variability 
analysis was performed on the model estimates regardless of the data. 
We extracted the posterior estimates for each acoustic factor, each 
emotion and each group level and computed the average standard 
deviation as a metric of the variability of the estimates. As depicted in 
Fig. 4b, most variability can be found in the ‘speaker’ and ‘culture’ esti-
mates. Overall, the first three acoustic factors (voice quality, loudness, 
and pitch and formants) show the most variability (see the subplot in 
the left panel of Fig. 4b). The remaining factors (except RC7, MFCC 3) 
have decreased variability corresponding to their component num-
bers. The variability results per emotion also show that the estimates 
for ‘speaker’ and ‘culture’ are the most variable. All estimates for the 
emotions are variable, although ‘surprise’, ‘anger’ and ‘sadness’ appear 
to be slightly more variable than the other three emotions (see the 
subplot in the right panel of Fig. 4b).

Confusion between the production of emotions across 
cultures, sexes and individuals
In the next correlation analysis, we again used the coefficient estimates. 
We started by correlating the global mapping across emotions. As 
depicted in the upper left panel of Fig. 4c, ‘sadness’ is the only emotion 
with a distinct profile, as it has only a strong correlation with itself and 
low correlations with all other emotions. Interestingly, the profiles of 
the other emotions correlate more strongly with each other, especially 
the correlations among the profiles for ‘fear’, ‘happiness’ and ‘surprise’.

In three further analyses, we described the relationship between 
emotions across sexes, cultures and individuals. A first analysis showed 
that the mapping for a specific emotion correlates the most strongly 
with the mapping for the same emotion of the other sex (right panel of 
Fig. 4c). For instance, female anger is, on average, closer to male anger 
than to any other emotion. When compared with the global mapping, 
adding sex further increases the correlation among the profiles of ‘fear’, 
‘happiness’ and ‘surprise’.

The addition of ‘culture’ or ‘speaker’ to the global mapping leads to 
a strong decrease in the overall correlations across emotions, indicating 
that the mapping for individual cultures and speakers is relatively dis-
tinct. The overall drop in correlation is greater for speakers than for cul-
tures, confirming the pattern of results in the previous analyses (Fig. 4a).  
Nonetheless, the diagonals are mildly preserved, indicating that the 
mapping for a given emotion is more similar across speakers and cul-
tures than to another emotion.

Discussion
Studies have shown that there is substantial variability in the mapping 
of emotions to facial expressions3, physiological measurements4 and 
non-verbal vocalizations5,32 indicating that expressions of emotions 
vary widely between contexts and cultures. In the present study, we 
investigated the relationship between speech prosody and emotions 
by modelling the relation as a mapping problem.

Using a Bayesian modelling framework, we examined the map-
ping between acoustic features and emotions in speech recordings at 
multiple levels of analysis. Our focus was to describe the mapping by 
investigating three requirements to assume the existence of a mapping: 
reliability, specificity and generalizability.

Guided by this conceptual framework, we collected a set of 
intended emotional speech samples. To encourage future research 
to use larger and more diverse emotional speech corpora, we made 
available a continuously updated list of corpora of emotional prosody, 
including access information and rich annotations, which simplifies 
the process of preprocessing and obtaining access to the corpora.

Concerning the reliability of the mapping, we showed that the 
mapping within a corpus is relatively reliable, whereas the mapping 
across corpora is highly variable. The large variability across corpora 
implies that findings from single corpora do not necessarily transfer to 
other corpora of emotional prosody and thus that results from single 
corpora need to be taken with caution. The low reliability across cor-
pora fits well with the large amount of disagreement in the reported 
acoustic profiles for a single emotion. For example, ‘sadness’ has been 
associated with a low33, moderate34 and increased standard deviation 
of fundamental frequency14.

Here we showed that models computing a multilevel mapping 
based on the corpus instead of the culture yield better results. We 
argue that the grouping variable ‘corpus’ is unlikely to be a concept 
relevant for the communication of emotion but instead is transcended 
by a series of more plausible concepts, such as cultural proximity and 
social belonging.

We also examined the specificity of the mapping. As indicated by 
the initial verification analysis, the Bayesian regression models obtain 
22.7% UAR (fourfold cross-validation), which is above the 14.3% chance 
level and shows that at least a part of the mapping is shared. This is also 
supported by the analysis shown in Fig. 4a indicating that the global 
mapping contributes ~20–25% to the final prediction of the model. 
However, with a series of increasingly complex models, we showed 
that models accounting for individual, cultural and sex differences 
outperform models assuming only a global mapping, indicating that 
there are many cultural and individual differences in the mapping.

Lastly, we examined the generalization of the mapping between 
emotions and speech prosody. We showed that the model predic-
tions are mainly driven by individual and cultural differences, which 
fits our finding that most variability is found in estimates for cultures 
and speakers, and correlations for the mappings between individual 
cultures and speakers are generally low.

It is important to note that the pattern of results observed in this 
investigation was potentially influenced by the fact that we studied 
recordings in which the intended emotion was known. These kinds of 
recordings often include acted databases. A body of research indicates 
that there are differences between acted and spontaneous utterances 
of emotional prosody35–37. One key concern when working with acted 
material is that the produced emotional stimuli are stereotypical and 
thus are not necessarily expressions of emotion used in daily life4,22. 
Given this consideration, one might hypothesize that there should 
be a large overlap in the mapping across corpora, as stereotypes may 
be culturally shared. However, our results show that global mapping 
contributed roughly a quarter of the model prediction. Furthermore, 
the boundary between spontaneous and acted corpora might not be 
so clear, as both types of corpora heavily rely on actors, as we argue in 
Supplementary Discussion 1.

We note that the selection of seven acoustic factors is not entirely 
justifiable—a larger number of factors could also be plausible. Ide-
ally, one would like to contrast models that rely on different acoustic 
representations; but when another feature is added to the model, the 
number of parameters that the model would need to estimate substan-
tially increases. We therefore used a reduced set of factors that load on 
perceptually meaningful dimensions7,14 (Fig. 1b), which makes it easier 
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to interpret model predictions and learned parameters. Furthermore, 
the models developed in this paper are only rough approximations of 
the mapping between intended emotions and speech prosody pro-
ductions. Preferably, one would use more group-level effects and 
moderators of a higher quality. However, by adding extra group lev-
els—especially if there are many levels (for example, 2,963 different 
sentences)—one easily hits the limits of computational tractability. In 
addition, more precise moderators are often not available and are not 
reconstructable a posteriori. For example, the country the corpus was 
recorded in does not necessarily reflect the country the speaker was 
born in and is likely to be less informative than the country of birth or 
even finer cultural subgroups, but such information is often not avail-
able. Given these considerations, we constructed the models with the 
best moderators available, which are theoretically motivated and of 
sufficient quality. Granting these limitations and caveats, the meth-
ods developed here could be fruitfully applied to any other mapping 
problem, such as the mapping of emotions to non-verbal vocalizations. 
Moreover, a reparameterization of the model (for example, replacing 
the multinomial logistic regression with a plain logistic regression) can 
drastically bring down the model complexity.

In the present investigation, we have shown that there is con-
siderable variability in the mapping between emotions and speech 
prosody and that the global mapping contributes roughly a quarter 
to the model predictions. The observed variability is compatible with 
all three theories of emotion. Constructivist theories predict that 
emotions are perceptually variable instances interpreted by a per-
ceiver that are grouped together by their function or purpose rather 
than by similar features38. Appraisal theories predict that the same 
stimulus might lead to different appraisal patterns. Affect program 
theories have historically been interested in finding similarities in 
how emotions are produced across cultures; however, the notion of 
emotion families8 is an in-theory explanation for large variability. 
Emotion families imply that occurrences of the same emotion might 
refer to different granularities of the same emotion (for example, ‘hot 
anger’ as a subtype of ‘anger’). This problem becomes apparent when 
meta-studies summarize over emotion labels. For example, Juslin and 
Laukka16 count the emotions ‘afraid’, ‘anxiety’, ‘frightened’, ‘scared’, 
‘panic’, ‘terror’ and ‘worry’ all to ‘fear’, but it is disputable whether 
these all refer to the same concept. This problem is further amplified 
once emotional concepts are translated. Unfortunately, this issue is 
often neglected. For instance, Cowen et al.39 merely rely on the trans-
lation of the emotion categories by a single co-author. Recent studies 
comparing word meanings across many languages found emotional 
terms to be highly culture-dependent compared with object terms 
such as ‘mountain’2,40. This might have contributed to the overall low 
correlation found across cultures. This poses a problem of construct 
validity when doing cross-cultural research41. In the present study, we 
considered the emotion to be identical only if the English translation 
given by the author of the corpus is identical—for example, we consid-
ered ‘fear’ and ‘anxiety’ to be different emotions. While this pragmatic 
approach clearly has its limitations, the correlation analysis presented 
in Fig. 4c shows that the correlation between mappings across cultures 
is the highest for the same emotion compared with other emotions. 
This indicates that the emotion labels in the corpora refer to closely 
related or identical concepts. Our findings are thus compatible with 
all three families of emotion theories.

Emotion theories are often discussed in light of findings of high 
variability and low specificity3,4,22. However, the differences in predicted 
outcomes between the three theories are at most those of emphasis 
rather than of opposition. This makes it hard to specify how much 
evidence of variation or of specificity would be needed to support 
each view. Meta-analytic investigations cannot directly tackle these 
questions. This discussion also highlights another core problem in 
emotion science42: emotion theories often make vague predictions, and 
the line of argumentation is frequently indirect. For example, given the 

previously introduced concept of ‘refinement’, it is unclear how much 
variability one would predict to measure distinct acoustic patterns 
across languages attributed to differences caused by the translation. 
A more efficient method to address these key questions would be to 
experimentally address them43. This has been made possible by the 
development of modern algorithms that allow sampling from human 
prototypes44 and rapid improvements in speech synthesis45.

In this manuscript, we explored the mapping between acoustic 
features and emotions in a large sample of intended emotional speech 
recordings. Not only are our findings of individual, cultural and sex 
differences compatible with results from other modalities3,4,22, but we 
also quantify them in the domain of speech prosody.

Methods
Corpora
For a comprehensive overview of available corpora of emotional pros-
ody, we used three search strategies querying literature databases and 
data repositories as well as scanning existing review papers. The corpus 
candidates were hand-filtered using a predefined annotation scheme. 
We requested access to 200 corpora but obtained access to only 42. In 
total, 24 corpora passed our requirements and were included in the analy-
sis18,19,34,46–66. See Supplementary Table 2 for more information. The full 
list of corpora has been released in conjunction with this publication and 
will be continuously updated as new corpora are published: emotional.
speechcorpora.com. For each of the remaining 24 corpora, we made 
sure that the following annotations are present: speaker, sex, country, 
language, emotion intensity, emotion induction procedure, recording 
modality, normal or pseudo-speech, number of repetitions, speaker 
type, corpus, whether the corpus was fully crossed, the year the corpus 
was published in, and whether the corpus was validated or not. See 
Supplementary Materials 2 for a description of each of the annotations.

Preprocessing
To identically process all the corpora, we ran the following preprocess-
ing steps. First, we made sure that there were no sounds other than 
speech that could disturb the acoustic feature extraction, such as 
background music. For one corpus63, we had to segment the speech 
from longer fragments into sentences. This was done with an adaptive 
algorithm changing a loudness threshold and a minimal silence dura-
tion in Praat67 using Parselmouth68. If there were only video recordings 
of the spoken sentence, audio was extracted from the video signal. 
Finally, all recordings were converted to mono and downsampled 
to 16,000 Hz. For each file, we encoded the following information 
into the filename: corpus, intended emotion, sentence code, speaker, 
repetition and emotional intensity (if this was explicitly requested by 
the experimenter).

Acoustic analysis
Here we use the eGeMAPS standard feature set13, as it has been exten-
sively used for the classification of emotion. While other performative 
handcrafted69 or learned70 feature representations are available, they 
are less applicable to factor analysis due to their dimensionality. A 
description of the features contained in eGeMAPS can be found in 
Supplementary Table 2.

Factor analysis
Of the 88 features, 74 are correlated at least 0.3 with at least one other 
feature, suggesting reasonable factorability. The Kaiser–Meyer–Olkin 
measure of sampling adequacy is 0.87, and Bartlett’s test of sphericity 
is significant (χ2(3,828) = 9,429,598, P < 0.01). Principal components 
analysis with Varimax (orthogonal) rotation was conducted using 
the R package psych71 because the primary purpose was to reduce the 
dimensionality of the features while reducing their correlation.

We selected a seven-factor solution (see Supplementary Methods 
3 for a justification). The factors explain 12%, 11%, 10%, 10%, 6%, 4% and 
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4% of the variance (57% in total). Factor 1, ‘voice quality’, mainly loads 
on alpha ratio, Hammarberg index, and MFCC 1, 2 and 4 (see Supple-
mentary Fig. 4d for the loading plot). Factor 2, ‘loudness’, loads mainly 
on loudness and spectral flux. Factor 3, ‘pitch and formants’, loads on 
fundamental frequency, on the formants (F1–3) and mildly on HNR. Fac-
tor 4, ‘rhythm and tempo’, mainly loads on durational features. Factor 
5, ‘shimmer’, loads on shimmer and mildly on HNR. Factor 6, ‘pitch 
variation’, loads on pitch variation and jitter. Factor 7, ‘MFCC 3’, loads 
on MFCC 3. In Supplementary Methods 3, we show the robustness of 
the factor solution across the largest countries and languages.

Multilevel models
All multilevel models were fitted using the R package brms72, which is a 
high-level interface to Stan73. The models use the categorical response 
distribution and logit link function. Where possible, standard normal 
priors are used (that is, a normal distribution with a mean of 0 and a 
standard deviation of 1). The target distribution is explored using 
Hamiltonian Monte Carlo. The target acceptance rate is set to 99% 
to avoid divergent transitions after warmup. To avoid exceeding the 
maximum tree depth, we set the hyperparameter to 12. For reproduc-
ibility, all models use the same seed. To speed up sampling, we used 
cmdstan as a backend. All models use eight chains, and we collected 
4,000 posterior samples. The models reported in the paper were 
defined as follows:

•	 Corpus model: emotion ~ 1 + RC1 + RC2 + RC3 + RC4 + RC5 +  
RC6 + RC7 + (1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6 + RC7 ∣ corpus)

•	 Null model: emotion ~ 1 + (1 ∣ corpus)
•	 Base model: emotion ~ 1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6 +  

RC7 + (1 ∣ corpus)
•	 Country model: emotion ~ 1 + RC1 + RC2 + RC3 + RC4 + RC5 +  

RC6 + RC7 + (1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6 + RC7 ∣  
country) + (1 ∣ corpus)

•	 Language model: emotion ~ 1 + RC1 + RC2 + RC3 + RC4 +  
RC5 + RC6 + RC7 + (1 + RC1 + RC2 + RC3 + RC4 + RC5 +  
RC6 + RC7 ∣ language) + (1 ∣ corpus)

•	 Culture model: emotion ~ 1 + RC1 + RC2 + RC3 + RC4 + RC5  
+ RC6 + RC7 + (1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6 +  
RC7 ∣ country:language) + (1 ∣ corpus)

•	 Big model: emotion ~ 1 + RC1 + RC2 + RC3 + RC4 + RC5 +  
RC6 + RC7 + (1 + RC1 + RC2 + RC3 + RC4 + RC5 + RC6 +  
RC7 ∣ sex + country:language + speaker) + (1 ∣ corpus)

SVMs
All SVM analyses reported in this paper were performed in Python 
and used the implementation from scikit-learn74. Following an INTER-
SPEECH challenge convention75, all SVMs use a linear kernel with the 
following complexities: 1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 1 × 10−1 and 1.

Heterogeneity index
To compute the I2 metric, we treated the model estimates for all corpora 
for the same emotion and acoustic factor as separate studies. First, we 
computed Conchran’s Q statistic, which is defined as:

Q = ∑wi(yi − μ̄)2

where i is the index of the current corpus, wi is the inverse variance of 
estimates of the current corpus, yi is the mean estimate of the global 
mapping on top of the mapping of the current corpus and μ̄ is the 
weighted average over all corpora, defined as:

∑wi ̂yi
∑wi

where ̂yi is the average estimate for the corpus alone.

Higgins and Thompson’s I2 is the percentage of variability in the 
effect sizes that is not caused by sampling error and is computed by:

max (0, (Q/k − 1) − 1
Q/k − 1

)

where k is the number of corpora included in the analysis.

Generalization analysis
To obtain the contributions of different levels of analysis to the pre-
diction of the model, we first obtained the model prediction. For the 
predicted emotion, we summed all absolute values that go into the 
prediction for the emotion and divided each of the absolute values 
by this sum. This returns a contribution of single model parameters 
to the model prediction, which are each uniquely associated with one 
level of the analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The corpora used in this study are listed here: emotional.speechcor-
pora.com. The corpora of Adigwe et al.66, Burkhardt et al.52, Cao et al.49, 
Gournay et al.48, Haq and Jackson62, Livingstone and Russo61, Martin 
et al.56, and Pichora-Fuller and Dupuis65 can be downloaded directly. 
For the other corpora, we indicate how to contact the authors of the 
corpus on the website.

Code availability
The code is stored on https://github.com/polvanrijn/mapping-nhb.
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