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A B S T R A C T   

Near-scale environments, like work desks, restaurant place settings or lab benches, are the interface of our hand- 
based interactions with the world. How are our conceptual representations of these environments organized? 
What properties distinguish among reachspaces, and why? We obtained 1.25 million similarity judgments on 990 
reachspace images, and generated a 30-dimensional embedding which accurately predicts these judgments. 
Examination of the embedding dimensions revealed key properties underlying these judgments, such as reach
space layout, affordance, and visual appearance. Clustering performed over the embedding revealed four distinct 
interpretable classes of reachspaces, distinguishing among spaces related to food, electronics, analog activities, 
and storage or display. Finally, we found that reachspace similarity ratings were better predicted by the function 
of the spaces than their locations, suggesting that reachspaces are largely conceptualized in terms of the actions 
they support. Altogether, these results reveal the behaviorally-relevant principles that structure our internal 
representations of reach-relevant environments.   

1. Introduction 

While we may never know how a raven is like a writing desk (Carroll, 
2000),1 we can confidently articulate how a writing desk is like a library 
desk, and not like a spaceship control panel. What knowledge supports 
this judgment? Judgments of similarity emerge in part because the 
world is structured and predictable: entities can be divided into types, 
and entities of the same type will share a set of properties.(Mervis & 
Rosch, 1981; Shepard & Arabie, 1979) To date, extensive research has 
uncovered much of the organization of object and scene properties. 
(Caramazza & Shelton, 1998; Greene, Baldassano, Esteva, Beck, & Fei- 
Fei, 2016; Greene & Oliva, 2006; Greene & Oliva, 2009; Hebart, 
Zheng, Pereira, & Baker, 2020; Huth, Nishimoto, Vu, & Gallant, 2012; 
Konkle & Oliva, 2012; McRae, Cree, Seidenberg, & McNorgan, 2005; 
Murphy, 2004; Oliva & Torralba, 2006; Patterson, Xu, Su, & Hays, 2014; 
Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976) However, the 
representations underlying the rich, near-scale environments in which 
we perform hand-based actions have only recently begun to be explored. 
(Josephs & Konkle, 2019; Josephs & Konkle, 2020; Previc, 1998) 

Consider the desktop environment where you type an email, the 

tabletop where you enjoy a meal, or the kiosk where you check in for a 
flight. These reach-relevant spaces (hereafter “reachspaces”) are highly 
behaviorally-relevant environments, which support many of our hand- 
based tasks and activities and form the backdrop to many of our day- 
to-day behaviors (see Fig. 1 for examples). They differ from both 
singleton objects and navigable-scale scenes: they encompass spatial 
extent and multiple objects, but they require coordination of the hands 
among graspable objects, rather than transportation of the body through 
an enclosing space. Recently, evidence has emerged that reachspace 
images have distinct visual statistics from object or scene images 
(Josephs & Konkle, 2019; Torralba & Oliva, 2002) and elicit distinct 
topographies of activity in the brain, with particularly strong recruit
ment of parietal regions.(Bartolo et al., 2014; Josephs & Konkle, 2019) 
However, the factors that structure human knowledge of these reach- 
relevant environments have not been systematically mapped. 

Mapping the conceptual structure of a stimulus domain makes 
explicit what properties of the domain are relevant to human behavior. 
This mapping can reveal the dimensions, or stimulus attributes, that most 
distinguish among entities in the domain. Such dimensions have been 
proposed to form the mental axes along which foundational cognitive 
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1 In Alice's Adventures in Wonderland by Lewis Carroll(Carroll, 2000), the Mad Hatter poses a riddle: “Why is a raven like a writing desk?”. Famously, he never 
provides the answer, and generations of readers have been left to guess for themselves. 
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operations such as categorization and generalization operate.(Gold
stone, 1994; Landau, Smith, & Jones, 1988; Mervis & Rosch, 1981; 
Rosch et al., 1976; Tversky, 1989) It can also reveal the major classes that 
humans implicitly identify within the domain. These major joints in 
representations provide hypotheses for the aspects of a domain that 
organize cognitive and neural representations. To date, insights about 
reachable environments come from studies in applied areas, such as 
ergonomics, human factors engineering, and environmental psychology. 
These have suggested some properties which distinguish among reach
spaces but have generally explored this question within a very narrow 
scope. For example, some distinctions have been proposed based on the 
action demands of the space, including digital versus traditional media 
workspaces,(Morris, Brush, & Meyers, 2007) or workspaces which 
support precision work versus strength-based work.(Das & Sengupta, 
1996) Other distinctions have been proposed based on the people using 
the space (e.g. experts versus novices (Kirsh, 1995); individual versus 
collaborative work(Potvin, Swindells, Tory and Storey, 2012; Scott, 
Carpendale and Inkpen, 2004). However, these divisions have been 
explored piecemeal, by making a-priori distinctions within a prescribed 
kind of workspace, for example by testing for differences between per
sonal and collaborative spaces within the circumscribed category of 
digital office workstations. Thus, it remains an empirical question how 
our knowledge of the broader reachable world is structured, what 

dimensions this structure is based on and whether distinct classes can be 
identified in a data-driven manner from a large and comprehensive 
sample of everyday environments. 

One way to understand the structure of internal representations is to 
probe the similarity among many exemplars of a concept.(Edelman, 
1998; Shepard, 1987) In representational similarity analysis, the simi
larity (or dissimilarity) among items is conceptualized geometrically as 
the distance between them in a multi-dimensional feature space and is 
often expressed as a matrix of pairwise distances.(Dobs, Isik, Pantazis, & 
Kanwisher, 2019; Groen et al., 2018; Jozwik, Kriegeskorte, Storrs, & 
Mur, 2017; King, Groen, Steel, Kravitz, & Baker, 2019; Kriegeskorte, 
Mur, & Bandettini, 2008) These similarity measurements can be lever
aged to discover a low-dimensional embedding space for a set of con
cepts, revealing the dimensions along which concepts vary. Here, we use 
large-scale crowdsourcing and computational modeling to reveal the 
similarity structure underlying our knowledge of reachable environ
ments and derive key properties underlying this structure. 

In the present work, we collected 1.25 million behavioral similarity 
judgments on a set of 990 images of reach-relevant environments and 
used computational modeling to capture the representational structure 
of these judgments. Broadly, we find that a 30-dimensional space can 
account for the similarity structure in the judgments and that this space 
can be divided into four distinct classes. Additionally, we find that 

Fig. 1. Stimuli and Methods. A) Examples of reachspaces: reach-relevant environments that support task-oriented behavior using the hands. Below each image, we 
include the associated labels from the Reachspace Database, which annotate the location of the reachspace at three levels (setting, room, interaction locus), and the 
action it supports. B) Steps of the modeling procedure: 990 images were selected from the Reachspace Database (ReachDB), with 3 exemplars from each of 330 
categories. Odd-one-out judgments were collections on 1.25 million triplets, and modeled using the Sparse Positive Similarity Embedding approach (Hebart et al., 
2020), to derive a low-dimensional embedding that predicted human similarity judgments. C) Detailed illustration of the SPoSE modeling approach (reproduced and 
modified with permission from Hebart et al., 2020) 
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similarity judgments among pairs of reachspaces are predicted more 
strongly by their respective functions than their locations. Altogether, 
this work reveals the structure of internal representations of reach- 
relevant spaces and highlights the broader importance of function for 
organizing knowledge about the world. 

2. Methods 

2.1. Participants 

A total of 4269 Amazon Mechanical Turk (MTurk) workers were 
recruited for this work (mean age was 37.78, 45.2% female, 0.3% non- 
binary). All workers were based in the US and had MTurk performance 
approval ratings over 90%, with a minimum of 500 HITs (i.e. “Human 
Intelligence Task”, the term MTurk uses for a task assignment) 
completed. Workers gave informed consent and were compensated for 
their participation. These participants were divided among several 
separate tasks: 3075 Workers provided odd-one-out judgments for the 
main task, 322 Workers provided odd-one-out judgments for a 45-image 
validation task, and 376 Workers provided odd-one-out judgments for 
the reliability sample. An additional 447 Workers participated in the 
image rating task, and 49 Workers provided labels for dimensions in a 
naming task. All procedures were approved by the Harvard University 
Human Subjects Institutional Review Board. 

2.2. Stimuli 

The stimulus set consisted of 990 images of reach-relevant environ
ments, selected from a beta version of the Reachspace Database. 
(Josephs, Zhao, & Konkle, 2021) There were 330 reachspace categories, 
with 3 images per category, chosen to be as different from each other as 
possible while remaining good examples of the category. All images 
depicted near-scale views (between 2 and 4 ft in distance, i.e. the dis
tance one typically sits from a desk) of environments that afford hand- 
based actions, captured from the point of view of an agent performing 
a task in the space (See Fig. 1A for examples). The depicted reachspaces 
generally consisted of extended surfaces, oriented horizontally or 
vertically, populated with objects, buttons or other elements that afford 
interaction. Category labels in the Reachspace Database are composed of 
four taxonomic levels, which index the following: the setting it belongs 
to (e.g. hotel, home, office building, the outdoors), the room or site it 
occupies (e.g. dining room, conference room, campsite), the primary 
structure supporting the interaction with the environment (“interaction 
locus”, e.g. surfaces such as tables and shelves, or large interactable 
objects like control panels and digital kiosks), and the specific action it 
affords (e.g. cake decorating, titrating). A given category in the database 
corresponds to a specific combination of these levels. Category labels 
were determined manually by the creators of the database based on the 
search terms used to discover the images and validated by an additional 
lab member without personal stake in the project. Image display size 
could vary according to individual Worker computer parameters, but 
images always maintained an aspect ratio of 4:3, and the maximum 
display size was 400 × 300 pixels for the triplet odd-one-out task, and 
200 × 150 in the other tasks. 

2.3. Behavioral tasks 

Triplet odd-one-out task: Similarity judgments among reachspaces was 
measured in an “odd-one-out” task. In a given trial, participants were 
shown three images side by side and asked to indicate with a click which 
image was the odd one out. Images remained on the screen until the 
participants made their response, and trials were untimed. At the 
beginning of the task, participants were told to “imagine yourself in the 
environments: where are you standing, what are you holding, what are 
you doing?”, but given no additional guidance. 

A single triplet judgment yields information about three pairs of 

objects: it indicates that the selected image has low similarity with each 
of the two non-selected images, and the non-selected images are similar 
to each other. In this approach, the third image acts as a minimal context 
within which to evaluate the similarity of the other two images. Across 
many trials, a given pair of images is thus evaluated across different 
contexts, allowing us to measure the probability that two images will be 
considered similar, across a range of different contexts. Images triplets 
were randomly assembled from the stimulus set, with the constraint that 
every possible pair of images was sampled at least once (median = 10, 
range = [1, 28]). 

This task was conducted in sets of 20 trials, and Workers could 
perform as many sets as they wanted up to 250 sets (mean = 19.9, range 
= [1, 250]). Image triplets were randomly assigned to trial sets. These 
judgments were used as the basis of a reachspace embedding (see 
Modeling section). 

Image rating task: To assign labels to clusters discovered in the 
reachspace embedding, we collected correspondence ratings for all im
ages on experimenter-generated labels. For the rating task, participants 
were given a description, such as “For this task, please indicate which 
images are related to electronic equipment: that is, images that are 
related to electronics, computers, and other digital equipment”, and 
indicated which images corresponded to the label (see Supplement all 
instruction wordings used in this task). Participants received only one 
label per task and rated all images against the same label. Each trial 
consisted of a five by five array of images, and participants clicked to 
select images fitting the label. Selected images were highlighted with a 
red border, and could be unselected by clicking again. To prevent the 
task from being too long, the image set was divided across three separate 
task sets, and participants could perform as many sets as they wanted. 
Each image was seen only once per set, with the exception of 20 
duplicate images which were used for quality assurance (subjects with 
<75% agreement on these duplicate images were excluded from 
analysis). 

Dimension naming: Common-sense labels were obtained for each of 
the 30 dimensions comprising the embedding in a simple naming task. 
Participants saw a 4-by-3 array of reachspace images and were asked to 
name the property displayed in the images. Each array consisted of 
images selected from the top of one dimension from the embedding. 
Arrays were created by randomly selecting 12 of the top 20 images for 
that dimension. To ensure that dimension labels were not influenced by 
the exact images included, 5 such arrays were created per dimension, 
yielding 5 different random samples of 12. A given participant saw only 
one array for a given dimension. Participants were asked to type up to 5 
possible labels that described the images in the array, keeping them to 
1–2 words in length. Dimensions were presented in random order to 
minimize order effects. There were 32 trials, one for each dimension, 
and a compliance-assessment trial consisting of a 4-by-3 array of beach 
scenes. 

2.4. SPoSE computational modeling 

Data from the odd-one-out task were trimmed to enforce quality. 
Simulations on 100,000 trials showed that stricter data trimming criteria 
led to more dimensions, higher accuracy, and lower final loss (i.e. 
cleaner data was better than more data), so data were cleaned with the 
following strict criteria before modeling and analysis: 1) all individuals 
with 60 trials or more who used the same key for >40% of HITs were 
removed, 2) all HITs where participants responded with more than three 
consecutive sequences (e.g. position 1 then 2 then 3, repeated 3 times) 
were removed. To set these criteria, we performed simulations of what 
positions the odd-one-out would occupy in the triplet displays given that 
image positions were randomly selected, in the hypothetical case where 
the odd-one-out is known. We found that the odds of the odd-one-out 
falling in the same position in >40% of the trials, were <10%, and the 
probability of more than three consecutive sequences were <5%. 
Finally, all trials with reaction times >3 standard deviations from the 
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mean were removed (reactions times were log transformed prior to 
trimming to account for the right-skew of reaction time distributions). In 
total, 1,251,823 trials passed quality assurance and were used in the 
modeling (out of 1,716,697 collected). 

An embedding for the images was derived from these data using the 
Sparse Positive Simiarity Embedding approach.(Hebart et al., 2020) The 
embedding is expressed as a matrix with images in the rows, and di
mensions in the columns, where the value of each cell expresses how 
strongly a given dimension is present in a given image. Details of the 
modeling procedure are given in Hebart et al. 2020, but briefly, an 
embedding is initialized with random weights (range 0,1) on 90 latent 
dimensions for each of the images, yielding a 990-by-90 matrix. The 
embedding is then tuned using stochastic gradient descent trained on the 
human odd-one-out responses. The objective function being minimized 
consists of a cross-entropy loss between the predicted triplet choice 
probabilities for all three choice options and the actual choices, added to 
an L1-norm on the weights to enforce sparsity. The trade-off between 
these two terms is estimated using the regularization parameter lambda 
(λ = 0.007), which we tuned in a pre-analysis hyperparameter-tuning 
step performed on approximately 80% of the data and which we opt
mized to yield the lowest final loss (the same procedure was used to tune 
the learning rate, lr = 0.0005). Prior to training, the dataset is parti
tioned into a training set and testing set (90/10 split), then training 
proceeds by making odd-one-out predictions based on the embedding, 
and evaluating performance on the withheld testing set after every 
epoch (max 500 epochs), until the model converges (model convergence 
criterion: no change in training accuracy over the last 50 epochs, at a 
threshold of p > 0.1 using linear regression.). Finally, only the most 
informative subset of the 90 discovered dimensions were selected for 
analysis: dimensions with all weights below 0.1 were removed, yielding 
the final embedding. 

This model procedure is stochastic, so different initializations will 
yield embeddings with slightly different numbers of dimensions, 
covering slightly different attributes. To select the most generalizable 
embedding, we ran 50 random initializations of the model and selected 
the embedding with the highest average correlation to all other em
beddings. For a given pair of embeddings, their correlation to each other 
was determined using a split-half cross-validated analysis. Since di
mensions are not labeled, the first step is to establish which dimensions 
in the two embeddings correspond to each other. Using half the data (i.e. 
weights on all dimensions for half the images), each dimension in one 
embedding was correlated with each dimension in the other embedding. 
The pair of dimensions with the highest correlations were interpreted as 
corresponding to each other across embeddings. Next, the remaining 
data was used to assess the magnitude of the correspondence, as the 
average correlation among all pairs of corresponding dimensions. This 
procedure was performed for every possible pair of embeddings, and the 
embedding with the highest average correlation to all other embeddings 
was selected for further analysis. 

2.5. Analysis of the embedding 

Embedding replicability The replicability of a given dimension was 
expressed as its replicability score, calculated as its average correlation 
across the 50 SPoSE iterations. For each dimension in the final embed
ding, the closest match was identified in each of the embeddings from 
the remaining 49 iterations using Pearson correlation. The average value 
of this correlation across all embeddings was taken as the replicability of 
the dimension. Names for each of the dimensions were derived in 2 
ways. First, we provide concise labels corresponding to the concept we 
felt was most clearly illustrated in each dimension. For increased ob
jectivity, we additionally solicited dimensions names using the behav
ioral procedure described above. Dimension names were collected from 
50 participants, then aggregated. All labels appearing >3 times were 
retained and displayed using word clouds. 

Noise Ceiling An additional behavioral dataset was collected to 

estimate the noise ceiling for the behavioral responses. The noise ceiling 
was operationalized as the average participant agreement on a given 
answer for a given triplet. One thousand random triplets were selected, 
and an average of 29 ratings were collected per triplet (range: 18 to 36). 
Auxiliary analyses confirmed that 1000 triplets were sufficient to obtain 
stable noise ceiling estimates. The consistency of responses for each 
triplet was estimated as the proportion of the time that the most popular 
response was chosen (100% = consistent agreement about the odd-one- 
out, 33% = chance). This value was averaged across all triplets. The 
noise ceiling was calculated as the mean consistency across all 1000 
triplets. The percent of explained variance was computed as follows: 
(model performance – chance)/(human agreement - chance). In total, 
28,177 odd-one-out trials were included for noise ceiling estimation. 

Embedding Validation The ability of the embedding to predict human 
representational similarity was validated by randomly selecting 45 im
ages from the stimulus set and obtaining a separate behavioral sample of 
odd-one-out judgments on all possible triplets for these images (26,588 
total trials). A behavioral representational similarity matrix (RSM) was 
derived by scoring the three possible pairs of images in each triplet: pairs 
involving the odd-one-out were given a “0” (“considered different”), and 
the remaining pair was given a “1” (“considered similar”). These scores 
were aggregated across trials, and divided by the total number of trials 
per cell to yield a matrix of the proportion of times each pair was treated 
as similar. A model representational similarity matrix for the 45 images 
was derived in a similar way: we first used the embedding to predict trial 
outcomes for every possible triplet combination, then computed an RSM 
from these results using the same approach as for the behavioral RSM. 
The correspondence between these matrices was assessed by taking the 
Pearson correlation between them. 

Clustering analysis: Divisions were identified among the images using 
k-means clustering over the embedding. We tested cluster numbers 
ranging from 2 to 8. For each clustering solution, the average correlation 
among all cluster centers was obtained. The optimal number of clusters 
was determined to be that at which this value starts to plateau (Sup
plemental Fig. 2). This method of cluster number selection yields the 
highest number of clusters where cluster centers show more than min
imal distinctions from each other. Possible labels for each cluster were 
derived by looking at the images in the cluster and naming the concepts 
that they appeared to correspond to. The validity of these labels was 
assessed using the image rating task described above. Worker responses 
were turned into binary scores: all images selected for a given label 
>50% of the time was considered to match the labels, all remaining 
images were not. Finally, the match between each concept and the k- 
means clusters was assessed by taking the Adjusted Rand Index (ARI) 
between the vector of cluster assignments and the vector of label as
signments for a given concept. The ARI measures the agreement be
tween two clustering solutions, by finding the proportion of item pairs 
that are in the same cluster in both solutions plus the proportion that are 
in different clusters in both solutions. This value ranges from 0 (chance) 
to 1 (the clustering solutions are identical). 

Assessing the roles of function vs location in predicting similarity: We 
tested whether similarity judgments on reachspaces reflected shared 
setting, room, interaction locus or action. The setting, room, locus and 
action for each reachspace was drawn from the category name given to 
each image in the Reachspace Database. Prior to the analysis, author EJ 
confirmed that the labels matched the images. The contribution of each 
of these factors was assessed with a similarity prediction score: for each 
of 10,000 draws, a randomly selected reference image was compared to 
two other images: one sharing a label with the reference (according to 
the given factor) and the other having a different label. Apart from the 
constraint imposed by the labels, comparison images were randomly 
selected. The similarity between the reference and each comparison was 
assessed using the Euclidean distance between the images' embedding 
weights, and the similarity prediction score was calculated as the pro
portion of times that the image which shared a label with the reference 
had the higher similarity. 
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RSA regression analysis: A matrix of pairwise dissimilarities was ob
tained for the images by measuring their Euclidean distance in embed
ding space. Matrices representing the pairwise overlap in labels between 
images were generated for each taxonomic level separately, by coding a 
match in the labels as 1, and a non-match as 0. The matrices were 
reduced to their upper diagonals and vectorized, then entered into an 
Ordinary Least Squares linear regression with the binary matrices for 
Action, Setting, Room and Locus as predictors, and the matrix of 
Euclidean distances as the prediction target. 

3. Results 

To identify attributes that shape our internal representations of the 
reachable world, we modeled the similarity space of a broad sample of 
reachspace images, based on human similarity judgments. A set of 990 
reachspace images, spanning a diverse collection of 330 different cate
gories, were selected from the Reachspace Database.(Josephs et al., 
2021) All images depicted near-scale views of spaces that afford hand- 
based actions, captured from the point of view of an agent performing 
a task in the space (See Fig. 1A for examples). The depicted reachspaces 
generally consisted of extended surfaces, oriented horizontally or 
vertically, populated with objects or other elements that afford inter
action, such as tabletops, countertops, or digital kiosks. Image categories 
were selected to widely sample the reachable world, including places 
where we work, play, study, eat, shop, create, perform music, store 
things, and more. These categories are highly granular, dividing up 
reachspace types according to a combination of the settings they are 
found in (e.g. home, hotel), the rooms they belong to (e.g. office, dining 
room), the locus of interaction in the space (e.g. desk, counter), and 
specific actions associated with the depicted reachspace (e.g. working, 
eating, cake decorating). 

A similarity space was derived from these judgments using the Sparse 
Positive Similarity Embeddings approach, or SPoSE,(Hebart et al., 2020) 
which begins by randomly initializing each image as a point in a high- 
dimensional feature space, and then tuning image weights along these 
dimensions to derive an embedding which predicts behavioral judg
ments from the triplet task. Notably, this approach yields a dimensional 
model of the similarity space, inferring a set of axes which underlie the 
variation among images and assigning each image a score on each of 
these dimensions. This model makes two theoretical assumptions: first, 
it assumes that the dimensions of this embedding space are sparse — 
that is, that each reachspace only has weights on some dimensions, but 
not all (e.g. a labbench would have low weights on dimensions relating 
to food or leisure). Second, it assumes that the dimensions are positive, 
such that they can only add up but not cancel out (e.g. a food-related 
property and a seating-related property should not cancel each other 
out). This also means that the weight of an image on a dimension can be 
interpreted as the amount of the corresponding property present in the 
image. These twin assumptions regarding the dimensions are in contrast 
to other common dimensionality reduction methods such as principal 
component analysis (PCA), which assume dense dimensions spanning 
the entire range of real numbers. Additionally, SPoSE allows dimensions 
to be cross-correlated, while PCA assumes uncorrelated dimensions. As a 
result, larger numbers of dimensions tend to be discovered with SPoSE 
than with PCA, and they tend to correspond to finer-grained details (e.g 
object parts or properties,(Hoyer, 2002; Hoyer, 2004)) and the tend to 
be more interpretable than PCA dimensions. With SPoSE, the weight of 
an image on a dimension can be interpreted as the amount of the cor
responding property present in the image. 

3.1. Model validation 

First, we established that the modeling approach yielded a stable, 
accurate, and replicable model of human similarity judgments. As the 
SPoSE modeling approach is stochastic, we ran 50 iterations, yielding 50 
embeddings. Solutions were largely stable: after dropping dimensions 

with low weights (any dim with max weight < 0.01, see Methods) the 
number of discovered dimensions ranged from 27 to 32, and model 
accuracy on the test set had very low variance across the 50 iterations 
(mean: 60.55%, stdev: 0.04%). 

We next selected one embedding on which to perform our analyses. 
We identified the embedding that was most representative of all 50 
SPoSE iterations, operationalized as the embedding with the highest 
average correlation with the 49 other embeddings (see Methods). This 
model contained 30 dimensions. Finally, we confirmed that the di
mensions in the selected embedding were replicable, that is, that they 
consistently appear in different iterations of the model. A replicability 
score was calculated for each dimension by correlating it with the cor
responding dimension in all other embeddings (see Methods). All di
mensions had replicability scores greater than r = 0.70 (maximum 
possible value: 1), with the exception of one dimension corresponding to 
outdoor arrays of objects, whose score was r = 0.40. In total, 20/30 
dimensions had replicability scores >0.90, and 26/30 had >0.80. This 
suggests that the results we report are not specific to the individual 
model iteration we examine, but instead are stable properties of the 
embedding space for these images. 

Next, we examined whether the model successfully learned to predict 
human odd-one-out judgments. After training, the model achieved 
60.6% accuracy on a held-out set of triplet judgments (Fig. 2, chance =
33.3%). To contextualize this performance, we estimated the noise 
ceiling of the behavioral data: in a separate behavioral sample, odd-one- 
out judgments were collected for 1000 triplets, randomly sampled from 
the image set. The average consistency in judgments across participants 
was 66.3%. Thus, the SPoSE model could predict human behavior up to 
82.1% of the noise ceiling (see Methods). 

The SPOSE approach infers an image embedding from a fraction of 
the total possible triplet judgments, which reduces data collection to 
tractable levels (1.25 million trials represents about 1% of the total 
number of triplets possible with 900 images). Does the embedding 
yielded by the model accurately reflect the embedding we should expect 
if it were derived purely from behavioral judgments in the hypothetical 
case where we could fully-sample all triplets? We estimated this by 
collecting all possible triplet judgments for a subset of 45 images, 
deriving an embedding for these images purely from the behavioral 
data, then comparing it to the embedding yielded by the model (see 
Methods). Overall, behavioral and model RSMs were highly correlated 
(r = 0.95, Fig. 2C), validating that the embedding we analyze closely 
reflects the similarity space underlying human behavioral judgments. 

Overall, the SPOSE approach yielded a stable and replicable model 
that was highly successful both at predicting triplet similarity judgments 
and at reconstructing the representational space underlying these 
judgments. This suggests that human judgments of reach-relevant en
vironments are principled and structured. In the following sections, we 
examine this embedding to reveal key principles that underlie these 
judgments. 

3.2. The embedding dimensions are interpretable and informative 

A significant benefit of the SPoSE modeling approach is that it yields 
an embedding with accessible and interpretable dimensions. We first 
examined these dimensions, to gain insights about the properties that 
are salient to observers when making similarity judgments on reachable 
environments. 

Each dimension was visualized by ordering the images according to 
their weights on the dimension (Figs. 3, 4, and Supplemental Fig. 1 show 
the top 6 images per dimension, with word clouds depicting participant- 
generated labels for the dimension). While the dimensions emerge 
independently in the model, here we discuss them in pairs or groups, to 
better highlight some of the concepts they capture. First, some of the 
dimensions pertain to global properties of the space: for example, 
separate dimensions emerge for cluttered versus clear spaces (Fig. 3A). 
Additionally, many of the dimensions capture complex combinations of 
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semantic category and physical affordance information about a space. 
For example, two dimensions emerge for musical instruments, dis
tinguishing between keyed instruments and non-keyed instruments 
(Fig. 3B). Likewise, two dimensions emerge for outdoor spaces, dis
tinguishing those containing multiple small objects from single large 
objects (Fig. 3C), and separate dimensions emerge for workshop-related 
spaces where the primary surfaces was oriented vertically vs horizon
tally (Fig. 3D). Third, some dimensions also captured information about 
the intended user of the space: separate dimensions emerge for chil
dren's games versus adults' games (i.e. gambling, Fig. 4A) and for elec
tronic spaces used by everyday consumers versus those requiring 
expertise (Fig. 4B). Fourth, some dimensions capture information about 
the physical properties of the space: craft-related spaces have separate 
dimensions for arts which use wood vs other media (Fig. 4C) and other 
dimensions emerge for spaces with ceramic, paper, or stainless steel 
components (Supplemental Fig. 1). Additionally, multiple dimensions 
emerge relating to the storage of items, with distinctions between stor
age at home, in retail, with portability constraints, and for travel (Sup
plemental Fig. 1; see panels 3E and 4D for additional dimensions not 
discussed here). 

Note that any given dimension captures a complex combination of 
attributes, and thus can be characterized in multiple ways. Here we 
discuss just one interpretation per dimension to highlight the kinds of 
concepts they measure. Overall, dimensions discovered by the model 
were interpretable and revealed fine-grained distinctions within this 
large set of reachable environments. 

3.3. Evidence for conceptually distinct reachspace classes 

We next characterized the global structure of reachspace similarity in 
this 30-dimensional space. Similar work on objects,(Hebart et al., 2020) 
showed global organization into well-known classes (animate/inani
mate, natural/human-made). The current study drew from 330 different 
reachspace categories, but it is possible that these are conceptually 
clustered into a smaller number of classes. How many classes were 
participants sensitive to in these images, and what concepts do they 
correspond to? 

Taking a data-driven approach, we applied k-means clustering to 
group the images according to their similarity in the embedding space 
(see Methods). Fig. 5A shows a 2D projection of the representational 

space for the 990 images, with cluster assignment indicated by color (the 
projection was obtained using MDS-initialized t-SNE, to capture both 
global and local structure). Visual inspection of the images in each 
cluster (Fig. 5B) suggests that they relate to 1) food and eating, 2) 
computers and electronics, 3) spaces for storage, retail and display 
(excluding food), and 4) entertainment, hobbies, and handicrafts. The 
fifth cluster is less interpretable and contains a mix of spaces related to 
drinks, miscellaneous liquids, and household chores. Thus, human 
similarity judgments suggest the existence of about 4–5 broad types of 
reachspaces within our sample. 

To validate these possible cluster identities, we collected behavioral 
ratings for the images on Mturk and assessed the correspondence be
tween ratings and cluster assignments (see Methods). For each possible 
cluster identity described above, participants were presented with a 
brief description (see Supplemental Table 1 for task wording) and asked 
to indicate for each image whether it matched the concept or not. Cor
respondence between these conceptual labels and the k-means clusters 
was assessed using the Adjusted Rand Index (ARI), which calculates the 
proportion of times both solutions agreed about whether a pair of im
ages was in the same cluster or not (ARI = 0 indicates chance, ARI = 1 
indicates perfect agreement between the solutions). Results are shown in 
Fig. 5C and D. A correspondence matrix between cluster identity (cluster 
1–5) and conceptual label confirmed that each of the hypothesized 
cluster identities accounte for different clusters (Fig. 5C). The clearest 
clusters corresponde to food-related and electronics-related reach
spaces, with near perfect alignment between images with those attri
butes and clusters 1 and 2 (ARI = 0.80 and 0.76, respectively). Cluster 3 
alignes moderately-well with retail spaces (ARI = 0.67) and with the 
broader concept of spaces designed for storage and display (ARI = 0.44). 
Cluster 4 correspondes moderately-well with spaces for games, hobbies, 
art and handicrafts (ARI = 0.36). The final cluster is less interpretable 
and shows low but above-chance correspondence to drinks- and liquids- 
related reachspaces (ARI = 0.22) as well as spaces related to household 
chores (ARI = 0.22). These correspondences between clusters and labels 
can also be visually assessed by comparing the clustering in Fig. 5A with 
the visualization of image labels in Fig. 5D. Overall, this analysis shows 
that the 900 reachspaces in our sample can be divided into a relatively 
small number of broadly distinct classes. These classes may point to 
important global division in the space of reachspaces, similar to 
animate/inanimate and indoor/outdoor distinctions that divide objects 

Fig. 2. Validation of the model embedding derived from similarity judgments over 990 reachspace images. A) Model performance on odd-one-out prediction for 
held-out test set. The noise ceiling of the behavioral data was estimated from a separate behavioral sample, and represents the average inter-rater reliability over 
1000 triplets. B) Representational similarity matrices for a 45-image subset of the stimulus set, created by fully sampling all possible triplets in a validation behavioral 
experiment (top) and by estimating similarity based on the model embedding (bottom). Here, the similarity between two images is operationalized as the proportion 
of times they are judged to be similar, across all trials. C) Correlation between actual and predicted similarity between all image pairs in (B). 
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Fig. 3. With Fig. 4 and Supplementary Fig. 1, this figure shows some of the dimensions forming the embedding. Each dimension is illustrated with the top 5 images 
on the dimension, and along with a word cloud which shows responses from 50 participants asked to judge what is captured by the dimension (bigger text = more 
common label). Here, we have divided the dimensions into groups for the purpose of illustrating some of subtle distinctions they are sensitive to, however note that 
this is just one way of considering them. 
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Fig. 4. With Fig. 3 and Supplementary Fig. 1, this figure shows some of the dimensions forming the embedding. Each dimension is illustrated with the top 5 images 
on the dimension, and along with a word cloud which shows responses from 50 participants asked to judge what is captured by the dimension (bigger text = more 
common label). Here, we have divided the dimensions into groups for the purpose of illustrating some of subtle distinctions they are sensitive to, however note that 
this is just one way of considering them. 
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and scenes, respectively. 

3.4. Reachspace similarity judgments reflects shared function more than 
shared location 

Recent studies of navigable-scale environments found that the 
function of a place plays a large role in determining what other places it 
will be considered similar to (Greene et al., 2016). Are reach-relevant 
environments likewise grouped by function? On the one hand, reach
spaces are designed to support specific activities, so they may show 
strong conceptual organization by function. However, reachspaces are 
related to the broader environment in lawful ways and tend to belong to 
particular locations (e.g. a kitchen counter is in a kitchen, a bedside 
table is in a bedroom). Thus, they may be better grouped according to 
the locations they occupy. We next tested which of these principles – 
function or location – best accounted for similarity judgments among 
reach-relevant environments. 

Function and location labels for each image were obtained from the 

labels provided in the Reachspace Database (Josephs et al., 2021)(see 
Methods). The function of a reachspace was operationalized as the ac
tion it affords (similar to Greene et al., 2016), for example “shopping”, 
“chopping vegetables”, “cake decorating” and “embroidering”. These 
actions are defined at a high level of specificity (e.g. “chopping vege
tables” and “rolling dough” rather than the more general “cooking”), as 
this is a better reflection of the precise activity, object array, and motor 
plans associated with a given reachspace. The location of each reach
space was operationalized in three different ways. From the broadest to 
the most specific level, location was operationalized as the setting the 
reachspace is located in (e.g. office building, home, hotel, hospital), the 
room containing the reachspace (e.g. kitchen, office, bedroom), and the 
interaction locus (hereafter locus) of the space, i.e. the type of object or 
surface that forms the primary support structure (e.g. desk, table, 
pegboard, counter, control panel). Note that while these three labeling 
schemes describe context at different scales of spatial inclusion, they are 
not nested hierarchically (a table can be found in many different rooms, 
and rooms such as offices can be found across many different settings) 

Fig. 5. Data driven discovery of large-scale divisions in the representational space of reachspaces. A) 2-D projection of the representational space using MDS- 
initialized tSNE. Dots correspond to images, and are colored according to their clustering assignment in k-means clustering (k = 5). B) Four example images 
from each cluster. C) Adjusted Rand Index measuring the image-wise correspondence between cluster assignment and labels derived from behavioral ratings (0 = no 
better than chance, 1 = perfect correspondence). D) Visualization of the embedding space with each behaviorally-derived label shown. Red dots indicate the images 
that were judged to fit the given labels in a behavioral tasks. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

E.L. Josephs et al.                                                                                                                                                                                                                               



Cognition 234 (2023) 105368

10

and should instead be thought of as different, partially independent 
ways of slicing across the images (for an illustration of this, see the labels 
in Fig. 1A). 

Overall, reachspaces were divided into 38 Settings, 122 Rooms, 151 
Loci, and 131 Actions. These labeling schemes were highly independent 
from each other (average Adjusted Rand Index among the different la
beling schemes was 0.14, see Supplemental Analysis 1). We quantified 
whether sharing a label under each of these schemes predicted greater 
similarity than having different labels. Over 10,000 iterations, we 
randomly selected one reference image and 2 comparison images, with 
the constraint that one comparison image shared a label with the 
reference and the other did not. We then measured the proportion of 
times the reference-comparison pair which shared a label was more 
similar (i.e. lower Euclidean distance) than the pair that did not. Results 
are shown in Fig. 6. 

Sharing an Action label predictes relative similarity among images 
75.1% of the time, significantly more than sharing a label at the Room 
level (67.8%, z score of comparison = 12.7, p < 0.001, one-sided Two 
Proportion Z-test), Locus level (65.1%, z = 16.6, p < 0.0.001) or Setting 
level (62.3%, z = 20.16, p < 0.0.001). However, all four labelling 
schemes predict greater similarity at above chance levels (Action: z =
62.6, p < 0.001; Room z = 40.7, p«0.001; Locus z = 33.5, p < 0.001; 
Setting z = 28.0, p < 0.001; one-sided single sample Proportion Z-test). 

To evaluate the concurrent relative role of these different labelling 
schemes in predicting image similarity, we conducted Representation 
Similarity analysis (RSA) in the form of RSA regression. For each la
beling scheme, we generated a binary matrix capturing whether each 
pair of images shared a label. These matrices were entered into the 
regression as predictors, and the pairwise Euclidean distance among 
images in the SPoSE embedding was the prediction target (see Methods). 
We found that each of the labelling schemes independently account for 
some of the variance in image dissimilarity, confirming the above results 
(p < 0.001 for each of the regression coefficients). Additionally, by 
examining the regression coefficients, we found that Action accounts for 
the most variance (− 0.37, note that coefficients are negative because 
sharing a label predicts smaller Euclidean distances), followed by Room 
and Locus (which were roughly equivalent at − 0.224 and − 0.222 
respectively), and finally the Setting level (− 0.11). 

Thus, both the location and the afforded action account for some of 
the structure in the representational space of reachspaces, but action is a 
better predictor of representational similarity. Overall, this suggests that 
human judgments of similarity among reachspaces relate more to the 
function they serve than the places they occupy. 

4. Discussion 

Here, we used 1.25 million human similarity judgments to derive an 

embedding for 990 images of reach-relevant environments, and exam
ined this embedding to characterize key factors that organize our con
ceptual representations of the reachable world. We found that human 
similarity judgments can be predicted with a 30-dimensional represen
tational space and that the embedding dimensions capture information 
relating to the content, layout, purpose, and even typical user of the 
space (e.g. adult vs child). We described the global structure of this 
similarity space, finding evidence for a small number of broad reach
space classes, and we found that function is a better determinant of 
conceptual similarity than location. Altogether, this work reveals the 
conceptual structure of reach-relevant environments, in a large-scale, 
data-driven manner. 

4.1. Dimensions of reachspace similarity space 

What kind of information is captured by the dimensions? In general, 
dimensions discovered by the model appeared to capture multiple at
tributes (e.g. “vertically oriented storage in a workshop” in Fig. 4D). This 
reflects the consistent finding that attributes in the world are “clumped” 
and covary with each other, rather than being uniformly distributed. 
(Rosch et al., 1976) Additionally, the discovered dimensions capture 
both low-level visual information and high-level semantic information 
(e.g. the dimension for child-related spaces also featured bright colors 
and mid to high levels of clutter). For interpretability, we have discussed 
the dimensions using relatively high-level labels, but it is possible that 
similarity judgments rely equally on the covarying lower-level, 
perceptual features. Indeed, scene perception research suggests that 
the low- and mid-level visual appearance of an environment is diag
nostic of, and to some extent inseparable from, its higher-level identity 
and function.(Groen, Silson, & Baker, 2017) Future work is needed to 
establish the content of the individual dimensions discovered here and 
understand their relation to the locations, functions, material properties, 
visual appearance (and more) of the reachspaces they describe. 

It is important to note that the precise content of the dimensions is 
shaped by methodological and stimulus choices. Our aim was to capture 
a general, intuitive similarity space, so we used a triplet task with 
minimal instructions. Different similarity spaces would emerge if par
ticipants were asked to judge similarity on specific bases. It is also an 
open question how embedding spaces derived from image-computable 
features would compare to the behaviorally-grounded embedding we 
describe here. It is possible that triplet networks(Hoffer & Ailon, 2015) 
trained on the same images, without a human's knowledge of semantics 
or affordances, would yield embeddings with different focus. Likewise, it 
is possible that a model which tries to account for both visual and se
mantic similarity (for example through the addition of a loss function 
predicated on image similarity prediction) would yield finer-grained 
clusters. Additionally, we note that the number of dimensions 

Fig. 6. Evaluating the relative influence of location 
and function on reachspace similarity judgments. A. 
Method: over 10,000 iterations, we randomly selected 
one reference image and 2 comparison images, with 
the constraint that one comparison image shared a 
label with the reference and the other did not. We 
then measured the proportion of times the reference- 
comparison pair which shared a label was more 
similar than the pair that did not. Four sets of labels 
were used, indexing the Setting, Room, or Locus the 
reachspace belongs to and the Action it supports. B. 
Results: Bars indicate the percent of time that the 
reference image had higher similarity to the com
parison image which shared a label. The dotted line 
indicates chance (50%).   
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discovered depends in part on the stimulus set. If some areas of the 
stimulus space were oversampled, this could lead to an inflated number 
of dimensions spanning this part of the space, and conversely the model 
could not learn dimensions for areas of the stimulus space that are 
undersampled. One constraint of the SPOSE method is that it cannot at 
present be used to make predictions about images and classes that were 
not included in the training set. However, in spite of this, several design 
choices increase the chance that the results will generalize to other 
samples: the sparsity constraints on the model encourages it to discard 
spurious dimensions, and the set of reachspaces was carefully sampled 
to constitute a comprehensive set, both within and across categories. 

How do the dimensions underlying reachspace similarity judgments 
compare to those for objects? The SPoSE approach was initially applied 
to object images,(Hebart et al., 2020) so we can compare the embed
dings from the two studies. Comparing the dimensions from our 
Figs. 3,4, and Supplemental Fig. 1 to the dimensions in Extended Data 
Fig. 2 from Hebart et al. (2020), we find that some of the dimensions 
found here have some correspondence with dimensions for objects, most 
notably those for electronics and food. However, there are some major 
differences. First, object dimensions in Hebart et al. (2020) showed more 
reliance on simple features like color (e.g. black, red) or shape (e.g. 
round, disc-like, long and thin). In contrast, dimensions for reachspaces 
show evidence of integrating over more complex feature combinations, 
as discussed above. Second, some dimensions that appeared for objects 
are enriched with contextual information for reachspaces. For example: 
objects have one dimensions for “clothes”, but reachspace dimensions 
distinguish whether the clothes are in an environment relating to retail, 
storage, or travel (Fig. 5). Overall, while there is some overlap in the 
relevant concepts, the representational space of reachspaces cannot be 
reduced to that of individual objects. 

It is more difficult to assess the generalization to scenes, as the SPoSE 
approach has not yet been applied to scenes. Previous work extracting 
scene attributes from text descriptions (Patterson et al., 2014) found that 
scenes properties relate to their functions (e.g. sports), prominent ma
terials (e.g sand, foliage), material properties (e.g. rusty, glossy), and 
spatial envelope (e.g. open, enclosed). However, no dimensionality 
reduction was applied to those results, so the attribute list is large (102 
attributes) and does not capture the correlation structure among them. 
Going forward, it will be important to test objects, reachspaces, and 
scenes in the same paradigms to discover the attributes that are common 
across them and those that are specific to different scales of experience. 

4.2. Major classes of reachspaces 

A clustering analysis discovered four identifiable classes of reach
spaces, corresponding to food-related spaces, electronics related spaces, 
hobby/craft/entertainment-related spaces, and storage/retail/display 
spaces. While these labels provide a description of the reachspace cat
egories in each cluster, we suggest the following broader interpretation 
of the classes: 1) food-related spaces, 2) digital spaces, 3) active analog 
spaces intended for functional engagement with objects, and 4) passive 
analog spaces intended for the storage or display of objects. There was 
an additional cluster which was ambiguous, showing weak correspon
dence to both household chores or drinks/liquids, but due to its ambi
guity, we do not provide a broader interpretation for it. 

Why might our internal representations of reachspaces show global 
divisions between food-related, electronic, active analog and passive 
analog spaces? One possibility is that human agents interact with each of 
these spaces in generally different manners. Acting in analog spaces 
usually requires manipulating physical objects in the performance of a 
task, and requires reasoning about the location and relations of objects 
across time. Active vs passive analog spaces require different amounts of 
interaction and monitoring over time, and food-related spaces involve 
additional reasoning about physiological states like hunger or appetite. 
In contrast, in electronic spaces, events are largely invisible and 
instantaneous, without physical grounding, and agents must act on 

simple symbols (e.g. cursors, buttons), whose function are given by 
learned input-output mappings. Some differences also exist in the 
components of environments from the different classes. Analog spaces 
have objects that can be moved or manipulated independently, while 
electronic spaces often feature components that are attached to a main 
structure, such as buttons, keys and switches. Thus, these four classes 
may reflect differences in the representations required to behave in 
different environments. There are many possible differences between 
food-related, electronic, active analog and passive analog spaces (e.g. 
their affordances, the amount of training and expertise they require, 
how common they are in daily life, the materials they are made of, their 
visual appearance, etc), and future experiments will be needed to 
establish which properties are most predictive of class boundaries. 

4.3. Function as a major determiner of intuitive similarity 

One major implication of this work is that function is a salient factor 
organizing our knowledge of reach-relevant environments. This is 
reminiscent of the “design stance” which human adopt toward artifacts, 
in which objects are understood in terms of what they were designed to 
do (Kelemen & Carey, 2007). According to this theory of conceptual 
formation, the underlying nature of an artifact is related to its intended 
function, which will constrain its form and materials, and provide the 
best explanatory variable for its appearance and construction. The pre
sent results suggest that this stance can explain reasoning about envi
ronments as well as artifacts. Indeed, function has also been found to act 
as an organizing principle for navigable-scale scenes,(Greene et al., 
2016; Groen et al., 2018) suggesting that this is a general feature of our 
conceptual representation of things and spaces in the world. Altogether 
these results points to the possibility that the function of a space places 
strong constraints on its content and appearance, and to the general 
importance of goals for organizing our understanding of the world. 

These results arise from human judgments obtained with relatively 
broad instructions. One open question is whether this global organiza
tion by function would appear even if participants received instructions 
to base their judgment on more specific, non-action factors. For 
example, would an embedding based specifically on judgments of 
location similarity, material property similarity, or visual similarity still 
retrieve function as a major organizing principle? It is possible that 
function organize high-level intuitive judgments, but other factors 
emerge for judgments based on lower-level factors, however, future 
work will be required to test this possibility. 

5. Conclusion 

Altogether, these findings point to distinct classes within the domain 
of reach-relevant environments. It is still an open question whether these 
distinctions are reflected in other aspects of reachspace perception. 
Future work is needed to establish whether these distinctions show ad
ditions dissociations in behavior, in their emergence across develop
ment, in their susceptibility to disruption following neurological events 
or cognitive decline, or in the large-scale neural activity they elicit. 
These results also have implications for the continuing study of reach
spaces: as we develop theories of how reach-relevant environments are 
perceived and represented, it will be important to consider these dis
tinctions and account for how they shape representations. 
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