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BOUNDEDNESS OF SEMISTABLE SHEAVES

HAOYANG GUO, SANAL SHIVAPRASAD, DYLAN SPENCE, AND YUEQIAO WU

Abstract. In this expository article, we follow Langer’s work in [Lan04b] to prove the boundedness

of the moduli space of semistable torsion-free sheaves over a projective variety, in any characteristic.
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1. Introduction

The study of moduli is one of the oldest branches of algebraic geometry and forms one of the

central pillars of our modern understanding. Historically, such questions date back to Riemann,

who, in his pursuit to understand what we now call Riemann surfaces, determined that a complex

projective curve of genus 6 depends on exactly 36 − 3 parameters (which he referred to as "moduli"

- hence the name). The central question of moduli theory has not evolved much; we are interested

in whether or not various algebraic objects can be "parametrized" (in some sense) by some other

algebraic object. For example, one might be interested in forming a moduli space of algebraic curves

with some fixed genus, or in our case, a moduli space of torsion-free sheaves with fixed Hilbert

polynomial on a fixed variety - .

To construct the moduli space of torsion-free sheaves {�U} with fixed Hilbert polynomial % over

a given variety - , one of the first and the most fundamental problems is the boundedness of the

collection {�U}. This property is equivalent to the moduli space, if exists, being a finite type scheme

over the base field, and thus a reasonable geometric object that one can work with. However it

was quickly discovered that even with fixing the Hilbert polynomial, certain pathological examples

prevent such a moduli space from being well-behaved. Mumford, in the case of curves, introduced

the notion of semistability for a torsion-free sheaf as a solution for this problem, and to demonstrate

its efficacy, he showed that the collection of semistable vector bundles of a fixed rank and degree on

a fixed curve is bounded. As the notion of semistability can be generalized to torsion-free sheaves

over general projective varieties, it is natural to ask about the boundedness for semistable sheaves

on higher dimensional varieties. Following Langer’s work in [Lan04b], the goal of our article is to

give a positive answer to the boundedness problem. Precisely, we prove the following:

Theorem 1. Let M% (-) be the moduli space of semistable torsion-free sheaves with fixed Hilbert
polynomial %. Then it is of finite-type.
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Let us now discuss the idea of the proof. Given any (semistable) torsion-free sheaf � in our

collection, we write � |� for the restriction of � to a general hypersurface �, and `max(� |� ) for the

maximal slope in the Harder-Narasimhan polygon of � |� .

Our most important tool in the proof is Kleiman’s criterion (Theorem 14) and an accompanying

inequality (Lemma 15), which, when combined, say that to prove the boundedness of the family of

torsion-free sheaves M% (-), it suffices to give a uniform bound of `max (� |� ). Because of this fact,

most of the work in proving boundedness is producing such a uniform bound, which we obtain in

Corollary 44 and Theorem 45. Explicitly, it can be understood as follows:

Theorem 2. Let � be a torsion-free sheaf over - , with Hilbert polynomial %, and denote the maximal
slope of its Harder-Narasimhan polygon be `0. Then we have

`max(� |� ) ≤ �1(%) + �2(%)`0,

where � is a general hypersurface of - , and �8 (%) are constants determined only by % and - .

The key is that this result allows us to bound the slopes `max (� |� ) of the restrictions � |� by

the slopes of the original � , plus extra terms and coefficients that are controlled only by the Hilbert

polynomial of � .

The major contents of our article are then devoted to obtaining the inequality above, following

[Lan04b, Section 3]. The strategy can be understood as a double induction on two different results.

The first one, Theorem Res(A), is a special case of Theorem 2 above, considering the invariants before

and after the restriction of � to a hypersurface, where � is torsion-free of rank ≤ A (c.f. [Lan04b,

Theorem 3.1]). It relates the slopes of the Harder-Narasimhan filtration of the restriction � |� to the

discriminant and Harder-Narasimhan filtration of � itself. The second result is a collection of several

various numerical inequalities, which we refer to as Bogomolov’s inequalities (Theorem BI(A), c.f.

[Lan04b, Theorem 3.2-3.4, and )5(A)]), due to their similarity with the well-known inequality in

characteristic zero of the same name.

Up to an extra term, it says that the discriminant Δ(�) of � is non-negative when the torsion-free

sheaf � is (strongly) semistable, where � is of rank ≤ A. Using the notations above, Langer’s

induction schema can be summarized as the following two implications (c.f. Section 4):

(1.1)

{
�� (A) ⇒ '4B(A);
'4B(A) + �� (A) ⇒ �� (A + 1).

We note that both results are true automatically for rank A = 1. In this way, the two technical

results are proved together, thus so is the inequality in Theorem 2 and the boundedness in Theorem

1.

We also mention that in the positive characteristic case, a Frobenius pullback of a semistable sheaf

may no longer be semistable. So we define semistable sheaves whose Frobenius pullbacks are all

semistable as being strongly semistable. A priori, for a given sheaf, the Harder-Narasimhan filtrations

of its Frobenius pullbacks could be unrelated to each other. One of Langer’s key observations is that

their differences are controllable: the Harder-Narasimhan filtrations eventually stabilize with respect

to the Frobenius (Theorem 29, [Lan04b, Theorem 2.7]). This allows us to pass between semistable

and strongly semistable sheaves in the proof.

Lastly, we briefly mention the history preceding Langer’s result; a more detailed introduction

can be found in [Lan04b]. Theorem 1 was known in characteristic zero, proven by Barth, Spindler,

Maruyama, Forster, Hirschowitz and Schneider. In positive characteristic however, only the cases

for curves and surfaces were known. At that time, it was known that understanding the numerical

quantities associated to � before and after restricting � to a hypersurface (often called Grauet–Mülich
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type results) should allow one to prove boundedness for a given family, but prior to [Lan04b] only a

coarser result by Mehta and Ramanathan was available. On the other hand, Bogomolov showed the

non-negativity of the discriminant of � whenever � is semistable, assuming - is in characteristic

zero. It was unknown as well whether the result is completely true in positive characteristic, but it

was clear that some version would be needed. Thus Langer’s key contributions were in developing

positive characteristic versions of the above, and also in combining them in a fruitful way.

Leitfaden of the article. We start with Section 2 on necessary preliminaries. The section contains

three subsections, including basics on the stability of coherent sheaves and additional results in

positive characteristic. Moreover, as the proof of main theorems requires working with polarizations

consisting of nef divisors, we also include a subsection on how to approximate the nef polarizations by

ample polarizations. In Section 3 we introduce several forms of Bogomolov’s inequalities in positive

characteristic, and show that they are equivalent in Theorem BI(A). For the reader’s convenience, this

section corresponds to the implications )5(A) ⇒ )3(A) ⇒ )4(A) ⇒ )2(A) ⇒ )5(A) in [Lan04b,

§3.6 - §3.8]. In Section 4, we prove Theorem 41, and complete the major technical part of the article

by proving the induction schema as in (1). This corresponds to [Lan04b, §3.5, §3.9] and [Lan04a].

At last, in Section 5, we combine the main technical results above to show the boundedness of the

moduli space M% (-), thus finishing the proof of Theorem 1.

Acknowledgements. We would like to express our gratitude to the organizers of the Stacks Project

Workshop for organizing the event online during the pandemic. We thank Alex Perry for kindly

guiding us through the paper during the week and beyond. We also thank Faidon Andriopoulos for
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At last, we thank the referee for reading the draft carefully and proposing various comments to help

improve the article.

Haoyang Guo was partially funded by the FRG grant no. DMS-1952399 during the writing of the

project.

2. Preliminaries

In this section, we provide the preliminaries for the article.

Stability of Coherent Sheaves. In this section we recall some useful facts on the (semi)stability of

coherent sheaves. We refer to [HL10] for details and proofs. Let - be a smooth projective variety

of dimension = over an algebraically closed field. Fix = − 1 ample divisors �1, . . . , �=−1 on - . Let

� be a coherent sheaf on - . Recall that a sheaf � is said to be pure (of dimension 3 ≤ dim -) if for

all nontrivial subsheaves 5 ⊂ � , dim(�) := dim supp(�) = 3.

Definition 3. The slope of � , with respect to the polarization (�1, . . . , �=−1), is defined by

`(�) :=
deg(�)
rk(�) :=

21 (�) · �1 · · ·�=−1

rk(�)
where rk(�) is the rank of � at the generic point. If rk(�) = 0, then the `(�) := ∞.

As indicated, the slope of a coherent sheaf does depend on the choice of ample (or nef) divisors

defining a polarization. For the purpose of clarity, we will not reference this choice of polarization

when discussing slope unless there is a serious risk of confusion.

Definition 4. We say that � is (semi)stable if � is pure and for any nonzero proper subsheaf � ⊂ � ,

`(�) < `(�) (resp. `(�) ≤ `(�)).
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This notion of (semi)stability is more generally known as slope-(semi)stability or `-(semi)stability.

An equivalent formulation of the definition can also be stated in terms of quotient sheaves.

Lemma 5. [HL10, Proposition 1.2.6] Let � be a coherent sheaf. Then � is semistable if and only
if for all the quotient sheaves � → �, `(�) ≤ `(�).
This formulation of the definition gives a quick proof of the following very useful fact.

Lemma 6. [HL10, Proposition 1.2.7] Let �1 and �2 be semistable sheaves with slopes `1 and `2

such that `1 > `2. Then, Hom(�1, �2) = 0.

The definition of semistability also behaves well with regards to exact sequences, as the following

two lemmas indicate.

Lemma 7. Let � ′ → � → � ′′ be a short exact sequence of torsion-free coherent sheaves, and let
`′, `, `′′ and A ′, A, A ′′ be the slopes and the ranks of � ′, �, � ′′ respectively. Then, A` = A ′`′+ A ′′`′′.
In particular if the slopes of two of � ′, �, � ′′ are the same, then so is the case for the third.

Lemma 8. If � ′ → � → � ′′ is a short exact sequence and let `′, `, `′′ denote the slopes of
� ′, �, � ′′ respectively, then

• If � is semistable and either `′ = ` or `′′ = `, then � ′ and � ′′ are also semistable.
• If � ′ and � ′′ are semistable and `′ = `′′, then � is semistable with ` = `′ = `′′.

One of the more important technical tools is the Harder-Narasimhan filtration, which is defined

below.

Definition 9. A Harder-Narasimhan filtration for � is an increasing filtration

0 = �0 ⊂ �1 ⊂ · · · ⊂ �3 = �

such that the factors �8 := �8/�8−1, 8 = 1, · · · , 3 are semistable sheaves with slopes `8 satisfying

`max(�) := `1 > `2 > · · · > `3 =: `min(�).
Proposition 10. [HL10, Theorem 1.3.4] Every torsion-free sheaf � has a unique Harder-Narasimhan
filtration.

Remark 11. Just like the slope, the Harder-Narasimhan filtration is also dependent on the choice of

the polarization (�1, . . . , �=−1), and could be different with respect to polarizations.

Remark 12. We should also remark here that in the construction of the Harder-Narasimhan filtration

for a torsion-free sheaf, an important step is establishing the existence and uniqueness of a maximal
destabilizing subsheaf. We use this notion a few times, so we give its definition here. Given

a torsion-free sheaf � , then the maximal destabilizing subsheaf � ⊂ � is a semistable coherent

subsheaf such that `(�) ≥ `(�) for all other subsheaves � ⊂ � , and moreover if `(�) = `(�),
then � ⊃ �.

Next, we wish to introduce the key tools of the paper, Kleiman’s criterion and a related inequality.

For the conclusion of Kleiman’s criterion to make sense however, we should remind the reader of

the technical property of boundedness.

Definition 13. Let " be a set of coherent sheaves on - . Then " is said to be bounded if there is a

scheme � of finite-type and a coherent sheaf � on - × � with " ⊂ {�1 | 1 ∈ � closed }. Here �1
is the pullback of � along - × {1} → - × �.

Kleiman’s criterion provides a very convenient way of determining whether or not a given family is

bounded.
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Theorem 14 (Kleiman’s criterion). [HL10, Theorem 1.7.8] Let {�U} be a family of coherent sheaves
over - with the same Hilbert polynomial %. Then the family is bounded if and only if there are
constants �8, for 8 = 0, . . . , deg(%), such that for every �U there exists an �U-regular sequence of
hyperplanes �1, . . . , �deg(%) , satisfying

ℎ0 (�U |∩ 9≤8� 9
) ≤ �8,∀8.

Here we recall that a hyperplane B ∈ �0(-,O- (1)) is said to be �-regular if the map

� (−1) ·B→ �

is injective. A sequence {B1, ..., B;} ⊂ �0 (-,O- (1)) is �-regular if B8 is �/(B1, .., B8−1)� (−8)-
regular for all 1 ≤ 8 ≤ ;.
Lemma 15. [HL10, Lemma 3.3.2] Let � be a torsion-free sheaf of rank A. Then for any �-regular
sequence of hyperplane sections �1, · · · , �=, the following inequality holds for 8 = 1, · · · , =:

ℎ0 (-8, �8)
A deg(-) ≤ 1

8!

[
`max(�1)
deg(-) + 8

] 8

+
,

where -8 ∈ |�1 | ∩ · · · ∩ |�=−8 |, �8 = � |-8
, and [G]+ = max{0, G} for any real number G.

Combining the previous two results, provided we can get a uniform bound on `max, will prove the

boundedness for semistable sheaves with a fixed Hilbert polynomial. To get such estimates, we will

often use the following lemma.

Lemma 16. If 0 → � → � → � → 0 is an exact sequence of torsion-free sheaves, then
`max(�) ≤ max{`max (�), `max(�)}.

At the end of the subsection, we introduce the following definition that helps visualize the Harder-

Narasimhan filtration.

Definition 17 (Harder-Narasimhan polygon). Consider a torsion-free sheaf � on - with its Harder-

Narasimhan filtration 0 = �0 ⊂ · · · ⊂ �< = �. Let ?(�8) = (rk(�8), deg(�8)). We define

the Harder-Narasimhan polygon of � , denoted as HNP(�), to be the convex hull of the points

?(�0), . . . , ?(�<) in R2. See Figure 1.

?(�0) = (0, 0)

sl
op

e
=
`(�

1
/� 0

)
?(�1)

slope = `
(�2/�1)

?(�2)

?(�<)

slope = `(�)

Figure 1. An illustration of the Harder Narasimhan Polygon

In fact, the Harder-Narasimhan polygon is a convex polygon with vertices ?(�0), . . . , ?(�<), and

the slope of the line segment ?(�8)?(�8+1) is `(�8/�8+1).



6 HAOYANG GUO, SANAL SHIVAPRASAD, DYLAN SPENCE, AND YUEQIAO WU

Remark 18. If � ⊂ � is a torsion-free subsheaf � inside of a semistable sheaf � , then the point

?(�) = (rk(�), deg(�)) lies below the polygon HNP(�) i.e. for any G ∈ [0, rk(�)], we have

sup{H | (G, H) ∈ HNP(�)} ≤ sup{H | (G, H) ∈ HNP(�)}.
Approximation of nef polarizations. In this subsection, we approximate the Harder-Narasimhan

filtration for a polarization consisting of nef divisors, that will be used later. As this is a nonstandard

setup and does not appear in most of the literature, we provide the full details of the proof. We

assume the existence and uniqueness of the (absolute) Harder-Narasimhan filtration with respect to

an ample polarization as in last subsection.

Our first main result this subsection is the following approximation result.

Theorem 19. Let (�1, . . . , �=−1) be a set of nef divisors, and � an ample divisor. Assume � is a
torsion-free coherent sheaf over - . Then there exists a positive number n , and a (unique) filtration
of saturated subsheaves

0 = �0 ⊂ �1 ⊂ · · · �; = �,

such that for any C ∈ (0, n), the above is the Harder-Narasimhan filtration for the ample polarization
(�1 + C�, . . . , �=−1 + C�).
Proof. Denote �8 (C) to be the R-divisor �8 + C�, which is ample [Laz17, Corollary 1.4.10]. For a

torsion-free sheaf �, we denote degC (�) and `C (�) to be the degree and slope of � with respect to the

polarization (�1(C), . . . , �=−1 (C)). Note that when C = 0, we get exactly the degree and slope with

respect to the polarization (�1, · · · , �=−1), which we write in short as deg(�) and `(�) separately.

We first notice that it suffices to show the following: there exists n > 0 and a saturated subsheaf

�1 ⊂ � , such that �1 is the maximal destabilizing subsheaf of � for (�1(C), . . . , �=−1 (C)) and any

C ∈ (0, n). The uniqueness of �1 follows from the uniqueness of the Harder-Narasimhan filtration

for the ample polarization (�1(C), · · ·�=−1 (C)) as in Proposition 10.

To find such �1, let C denote the set of torsion-free subsheaves of � and consider the following

map of sets

`C (−) : C −→ {Degree = − 1 polynomials in C};

� ′ ↦−→ `C (� ′) = 21 (� ′)�1(C) · · ·�=−1 (C)
rk(� ′) .

For each � ′ ⊂ � , the image `C (� ′) is the polynomial 00 + 01C + · · · + 0=−1C
=−1, where we have

00 (� ′) = `(� ′);

01 (� ′) =
∑

1≤8≤=−1

` (�,�1 ,...,�̂8 ,...,�=−1) (�
′).

For general 9 ≤ =, the coefficient 0 9 is the sum of slopes of � ′ with respect to all possible choice

of polarizations (�, . . . , �, �81 , . . . , �8=−1− 9
), such that each of the first 9 entries of the polarization

are all equal to �. Moreover, each polynomial `C (� ′) has coefficients in 1
A !
Z, whose coefficients

are finite linear combinations of slopes of � ′ for a fixed, finite number of choices of polarization. In

particular, for each 0 ≤ 8 ≤ =, the collection of coefficients {08 (� ′) | � ′ ⊂ �} is bounded above. 1

Here we denote the subset of polynomials consisting of the image of the map `C (−) by D.

1To see this, we first note that since 08 (� ′) is a finite positive linear combination of `� 8 ,� 91
,...,� 9=−1−8

(� ′), it suffices to

bound each slope for the given nef polarization. The latter can be proved by induction on ranks of � as in the classical

case: To check the case when � is a line bundle, it suffices to show the set of slopes of sub line bundles is bounded by

slope of � itself, which is true again by approximation via adding each � 9; by C� and making C approach to zero. Here
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We then define a lexicographic order on elements in D as follows:

,1(C) =
3∑
08 C

8 < ,2(C) =
3∑
18 C

8 if

00 = 10, · · · , 08−1 = 18−1, 08 < 18 for some 8.

Since the coefficients of polynomials in D are bounded above, we can find the maximum polynomial

%(C) in D. Moreover, since the degree of a sheaf is a discrete quantity, we can find a subsheaf �1 in

the preimage of `−1
C (%(C)) whose rank is maximal.

Finally, we prove that �1 is exactly the maximal rank destabilizing subsheaf of � with respect

to (�1(C), . . . , �=−1 (C)) for C small enough. To show this, it suffices to show the following, whose

complete details are left to the reader:

Claim 20. Let D be a set of degree = polynomials with coefficients bounded above, and whose
coefficients are in 1

#
Z for some positive integer # . Then a polynomial %(C) ∈ D is maximum with

respect to the lexicographic order if and only if for small enough C > 0 %(C) > & (C) (in R) for all
other & (C) ∈ D.

The idea of the claim is the following: as C approaches zero, higher power terms are dominated

by those with lower powers, so the polynomial that has the largest first several terms under the

lexicographic order will also have maximum value in R for C small enough. �

The above filtration of subsheaves {�8} in general fails to be the Harder-Narasimhan filtration with

respect to (�1, . . . , �=−1) for C = 0. However, the filtration is in fact a weak Harder-Narasimhan
filtration with respect to (�1, . . . , �=−1), in the sense that each �8/�8−1 is semistable with respect

to (�1, . . . , �=−1), and we have inequalities

`(�8+1/�8) ≥ `(�8/�8−1), 1 ≤ 8 ≤ ; − 1.

Note that we do not have strict inequalities here, which is part of the definition of the Harder-

Narasimhan filtration.

The semistability of the subsheaves �8 can be seen as follows:

Lemma 21. Let � ′ be a subsheaf of the torsion-free sheaf � such that for C > 0 small enough,
� ′ is semistable with respect to (�1(C), . . . , �=−1 (C)). Then � ′ is semistable with respect to
(�1, . . . , �=−1).

Proof. Assume � ′ admits a subsheaf � ′
1

whose slope with respect to (�1, . . . , �=−1) is strictly larger

than that of � ′. By the continuity of the polynomial `C in C, we get the inequality `C (� ′
1
) > `C (� ′)

for C > 0 small enough, which contradicts our assumption. �

The same strategy above in fact implies the existence and uniqueness of the Harder-Narasimhan

filtration for nef divisors, generalizing the result for ample ones.

Corollary 22. Let (�1, . . . , �=−1) be a set of nef divisors of - . Then any torsion-free coherent
sheaf � over - admits a unique Harder-Narasimhan filtration with respect to the polarization
(�1, . . . , �=−1).

Proof. Let � be a fixed ample divisor over - . By Theorem 19, there exists a unique filtration of sat-

urated subsheaves �8 of � , such that when C > 0 is very small, �8 is the Harder-Narasimhan filtration

of � with respect to (�1(C), . . . , �=−1 (C)). Each �8 is semistable with respect to (�1, . . . , �=−1)

we observe that the inequality holds for any C > 0, so by the continuity, we get the upper bound. The general case of �

follows from the induction hypothesis on � ′ and � ′′ in a short exact sequence of vector bundles � ′ → � → � ′′.
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by Lemma 21, and the slopes of �8/�8−1 is non-strictly decreasing. Thus by picking the sub-

sheaves in this filtration so that the slopes of the factors become strictly decreasing, we get the

Harder-Narasimhan filtration of � with respect to (�1, . . . , �=−1). At last, the uniqueness of the

Harder-Narasimhan filtration follows from the uniqueness of the maximal destabilizing subsheaf

with respect to (�1, . . . , �=−1), where the latter can be checked via the continuity of `C . So we are

done. �

At last, we give a simple example illustrating the degeneration of the Harder-Narasimhan filtra-

tion.

Example:

Let - = P1 × P1 be the product of two projective lines over a field :. Let � be the trivial

divisor, � be the ample divisor of bidegree (1, 2) over - , and let � (C) := � + C� be the sum.

Denote !1 = (0, 1) and !2 = (1, 0) to be the two line bundles over - , and let � be the the direct

sum !1 ⊕ !2. Then for any C > 0, the divisor � (C) is ample in - as it can be written as a sum

of the pullback of ample divisors on two separate factors of - . Moreover, for each C > 0, we

have !1 · � (C) = 2C > C = !2 · � (C), and thus

(∗) 0 ⊂ !1 ⊂ �

is the Harder-Narasimhan filtration of � for the ample polarization � (C), for any C > 0. However,

when C = 0, as � (0) = � = 0 is the trivial divisor, any subsheaf of � has the same slope 0.

In particular, the Harder-Narasimhan filtration of � is the trivial filtration, and the filtration (∗)
becomes a filtration of subsheaves whose graded pieces have the same slopes.

Positive characteristic. The main difference in characteristic ? is that we need to work with the

notion of strong semistability, as the Frobenius pullbacks of semistable sheaves are not necessarily

semistable.

First, we recall a few basic notions from algebraic geometry in positive characteristic. Let :

be an algebraically closed field of characteristic ? > 0. Let - be a smooth projective :-variety.

The absolute Frobenius morphism �- : - → - is the map on - given locally on an open subset

Spec ' ⊂ - by 0 ↦→ 0? . For simplicity of notation, we just denote �- by �. Note that � is not a

map of :-schemes.

We also fix nef divisors �1, . . . , �=−1 on - and we will compute slope with respect to the

polarization (�1, . . . , �=−1).

Definition 23 (Strong semistability). A coherent sheaf � on - is said to be strongly semistable if

(�4)∗� is a semistable sheaf on - for all 4 ≥ 0.

Remark 24. A coherent sheaf that is semistable but not strongly semistable can be found for example

in [Bre05, Corollary 2].

In the positive characteristic, instead of just keeping track of `min and `max of a coherent sheaf,

we also keep track of a few other invariants related to the Frobenius pullbacks. We note first that

Frobenius pullback alters the slope of a sheaf, indeed we have that `((�4)∗�) = ?4`(�). For this

reason, we define the related quantity

!max(�) := lim
4→∞

`max((�4)∗�)
?4

.

Note that the sequence
`max ( (� 4)∗�)

?4 is increasing in 4, thus the limit !max(�) exists in R ∪ {∞}.
We will show later that this limit is indeed finite. Similarly, we can define !min. By definition, we
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have !max (�) ≥ `max (�) and !min(�) ≤ `min (�). It immediately follows from the definition that

if � is strongly semistable, then

!max = `max = `(�) = `min(�) = !min (�).
Let us set

U(�) := max{!max (�) − `max (�), `min(�) − !min (�)}.
We would like to find an upper estimate for U(�). To do this, we first state a theorem on how

to detect instability of the Frobenius pullback of a semistable sheaf. For details, refer to [Lan04b,

Section 2]. The idea is to make use of the canonical connection �∗� → �∗� ⊗Ω- on the Frobenius

pullback.

Theorem 25. Let � be a semistable sheaf on - such that �∗� is not a semistable sheaf on - . Let
0 = �0 ⊂ �1 ⊂ · · · ⊂ �< = �∗� be the Harder-Narasimhan filtration of �∗� . Then, the natural
O- homomorphisms �8 → (�/�8) ⊗ Ω- induced by the canonical connection are non-zero.

We now estimate the the minimum and maximum slopes of the Frobenius pullback of a semistable

sheaf. The idea is to use the non-zero maps above along with Theorem 25 to get an estimate of how

far apart the slopes can be.

Lemma 26. Let � be a nef divisor such that )- (�) is globally generated (or equivalently if
Ω ↩→ O- (�)⊕; for some ;) and let � be a torsion-free semistable sheaf on - . Then,

`max(�∗�) − `min(�∗�) ≤ (rk(�) − 1)� · �1 · · · · · �=−1.

Proof. Let 0 = �0 ⊂ �1 ⊂ · · · ⊂ �< = �∗� be the Harder-Narasimhan filtration of �∗� . Using

Theorem 25, we have that the O- -homomorphism �8 → �∗�/�8 ⊗ Ω- is non-zero. Thus, we get

that

`(�8/�8−1) = `min (�8) ≤ `max(�∗�/�8 ⊗ Ω- ).
SinceΩ ↩→ O- (�)⊕;, we get that `max (�∗�/�8⊗Ω- ) ≤ `max(�∗�/�8⊗O- (�)) = `(�8+1/�8)+

� · �1 · · · · · �=−1.

Thus, we get that

`(�8/�8−1) − `(�8+1/�8) ≤ � · �1 · · · · · �=−1

Summing this inequality, we get the result. �

Proposition 27. If � is a nef divisor such that )- (�) is globally generated and � is a torsion-free
sheaf on - , then

`max (�∗�)
?

≤ `max(�) +
(rk(�) − 1)

?
� · �1 . . . �=−1

Proof. Let 0 = �0 ⊂ �1 ⊂ · · · ⊂ �< = � be the Harder-Narasimhan filtration of � . Applying the

previous proposition to �∗(�8/�8−1), we get that

`max(�∗(�8/�8−1))
?

≤ `(�8/�8−1) +
(rk(�) − 1)

?
� · �1 . . . �=−1.

Note that �∗�8 form a filtration of �∗� and thus by Lemma 16 `max(�∗�) ≤ max8{`max (�∗(�8/�8−1))}.
Using this, we get the required result. �

We have the following bound on U(�) (which in particular shows that !max (�) and !min(�) are

finite).

Proposition 28. If � is a nef divisor such that )- (�) is globally generated, then

U(�) ≤ (rk(�) − 1)
? − 1

� · �1 . . . �=−1.
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Proof. Applying induction to the previous proposition, we see that

`max ((�4
-
)∗�)

?4
≤ `max(�) + (rk(�) − 1)

(
1

?
+ 1

?2
+ · · · + 1

?4

)
� · �1 . . . �=−1.

Letting 4 → ∞, we get the required result. �

Finite determinancy of the Harder-Narasimhan filtration. We will now prove the following

theorem.

Theorem 29. For every torsion-free sheaf � , there exists a non-negative integer 40 such that all the
factors in the Harder-Narasimhan filtration of (�40)∗� are strongly semistable.

The proof uses the Harder-Narasimhan polygon (see Definition 17). For any sheaf � over a

smooth projective variety - , let us define ?(�) := (rk�, deg�) ∈ R2. We also define

HNP4 (�) := {(G, H) ∈ R2 | (G, ?4H) ∈ HNP((�4)∗�)}.
Note that HNP4 (�) forms an increasing sequence of convex subsets of R2 and we define

HNP∞ (�) :=
⋃

4 HNP4 (�).

Proposition 30. �#%∞(�) is a bounded convex polygon.

Proof. It is clear that HNP∞ (�) is convex as each of the HNP4 (�) are convex. To see that it is

bounded, note that the rank coordinates of HNP4 (�) lie in in the interval [0, rk(�)]. The fact that

U(�) is finite also tells us that there is a uniform bound on the degree coordinates of HNP4 (�).
Thus we see that HNP∞ (�) is a bounded subset of R2.

To show HNP∞(�) is a polygon, we claim that it is a convex hull of the set {(A, @∞,A ) | A ∈
{0, . . . , rk(�)}, where @∞,A = sup{3 | (A, 3) ∈ HNP∞ (�)}. Note that @∞,0 = ?(0) = (0, 0) and

@∞,rk (�) = ?(�) = (rk(�), deg(�)).
It is clear that the convex hull of these points is contained in HNP∞ (�). To see the converse, first

note that all HNP: (�) and thus HNP∞ (�) lie above the line segment joining ?(�0) = (0, 0) and

?(�) = (rk(�), deg(�)). It is thus enough to show that every vertex of HNP4 (�) lies in the convex

hull for all 4. Pick any vertex (A, 3) of HNP4 (�) for some 4 and some A ∈ {0, . . . , rk(�)}. Then,

since (A, 3) lies above the line segment ?(0)?(�) and below the point (A, @A ), one can easily see

that (A, 3) lies in the convex hull of ?(0), ?(�) and (A, @A ). �

Before proving the finite determinancy of the Harder-Narasimhan filtration, let us introduce some

notation. Let 0 = �0,4 ⊂ · · · ⊂ �<4 ,4 denote the Harder-Narasimhan filtration of (�4)∗� . Let

?8,4 = (rk(�8,4),
deg(�8,4)/?4) denote the vertices of HNP4 (�).

Let (0, 0) = ?0,∞, . . . , ?B,∞ = ?(�) denote the vertices of the HNP∞ (�) and denote the coordi-

nates of ? 9,∞ as ? 9,∞ = (A 9,∞, 3 9,∞). Let us denote the slope of the line segment ? ( 9−1) ,∞ ? 9,∞ as

` 9,∞. For every 9 , there exists a sequence ?8 9 ,4 → ? 9,∞ for some sequence 8 9 as 4 → ∞.

Proof of Theorem 29. We prove that there exists some 40 such that �#%40
(�) = �#%∞(�). We

show this by induction on rank. In the rank one case, there is nothing to show.

Pick 0 < n ≪ 1. Then we have the Euclidean distance ‖?8 9 ,4 − ? 9,∞ ‖ < n for all 9 and all 4 ≫ 0.

Replacing � by (�4)∗� for some large 4, we may assume that ‖?8 9 ,4 − ? 9,∞ ‖ < n holds for all 4 ≥ 0.

Since the rank coordinates of ?8 9 ,4 and ? 9,∞ can only take integer values, it must be the case that

A 9,∞ = rk(�8 9 ,4).
We first show that there exists an integer 40 such that �81,4 = (�4−40)∗�81,40

for all 4 ≥ 40.

Consider the first line segment B of the polygon HNP∞ (�81,0). Note that B cannot lie above the line
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segment ?0,∞?1,∞ (see Remark 18). We will show that B actually lies on the line segment ?0,∞?1,∞.

Assuming that is the case, we apply the induction hypothesis to �81 ,0 to get: there exists a subsheaf

� of (� ;)∗�81 ,0 such that (G, deg�

?; ) ∈ B ⊂ ?0,∞?1,∞ i.e. � is strongly semistable. Once again, we

may replace � by (� ;)∗� to assume that ; = 0. By induction hypothesis, since the theorem holds

for �/� and since `(�) = `max(�) = 31,∞
A1,∞

, we also get the theorem for � .

Now suppose that B lies strictly below the line segment ?0,∞?1,∞. We will deduce a contradiction

from this. Since ?81 ,; → ?81 ,∞ as ; → ∞, we can find an integer ; such that ?0,; ?81,; lies above B.

Thus, `max ((� ;)∗�) > `max ((� ;)∗�81 ,0) for such an integer ;.

Since {(� ;)∗�81 ,0, (� ;)∗�81+1,0, . . . , (� ;)∗�} form a filtration of (� ;)∗� , using Lemma 16, we get

that there exists an integer 9 > 81 such that

`max((� ;)∗(� 9,0/� 9−1,0)) > `max((� ;)∗�81 ,0).
Consider a saturated subsheaf� ⊂ (� ;)∗(� 9,0) such that `(�/(� ;)∗(� 9−1,0)) = `max ((� ;)∗ (� 9,0/� 9−1,0)).
Then, (rk(�), deg(�)

?; ) ∈ HNP; (�). Let us try to estimate the difference in the areas of HNP; (�) and

HNP(�). There is a lower bound on the difference in areas by considering the triangle , joining

the points ? 9−1,0, ? 9,0 and (rk(�), deg(�)
?; ). Let ˜̀1 :=

` ( (� ;)∗ (� 9,0/� 9−1,0))
?; and ˜̀2 :=

` (�/(� ;)∗� 9−1,0)
?;

denote the slopes of the sides of , that contain ? 9−1,0. Using the fact that the rk-coordinates of

these points can only take integer values, we can get a get a lower bound on the area of the triangle

, by considering the triangle , ′ joining ? 9−1,0, ? 9−1,0 + (1, ˜̀1), ? 9−1,0 + (1, ˜̀2) (see Figure 2).

? 9−1,0

? 9,0

(rk(�), deg(�)
?; )

? 9−1 + (1, ˜̀1)

? 9−1 + (1, ˜̀2)

, ′

Figure 2. Triangles , and , ′ appearing in the proof of Theorem 29. The larger

triangle is , and the smaller triangle inside it is , ′.

Thus it follows:

Area(HNP; (�)) − Area(HNP(�))
≥ Area(, ′)

≥ 1

2
( ˜̀2 − ˜̀1)

=
1

2

(
`(�/(� ;

-
)∗(� 9−1,0))
?;

−
`((� ;

-
)∗(� 9,0/� 9−1,0))

?;

)
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≥ 1

2

(
`(�81,0) − `(� 9,0/� 9−1,0)

)

≥ 1

2
((`1∞ − n) − `(� 9,0/� 9−1,0)).

To finish the estimate, we need to get an upper bound on `(� 9,0/� 9−1,0). To do this, let D be

such that 8D < 9 ≤ 8D+1. Then the line segment ? 9−1,0 ? 9,0 is sandwiched between the line segments

?8D ,0?8D+1,0 and ?8D ,∞?8D+1 ,∞ (see Figure 3). Using the fact that ‖?8D ,∞ − ?8D0‖ ≤ n and estimating

the slope of the line segment ? 9−1,0 ? 9,0, we get that |`(� 9,0/� 9−1,0) − `D+1,∞ | ≤ 3n . Thus, we have

?8D ,∞

?8D+1 ,∞

?8D ,0

?8D+1 ,0? 9−1,0

? 9,0

≤ n

≤ n

Figure 3. Estimating `(� 9,0/� 9−1,0). The red line shows the boundary of

HNP∞ (�) and the blue line shows the boundary of HNP(�).

Area(HNP; (�)) − Area(HNP(�)) ≥ 1

2
(`1∞ − `2∞ − 4n).

But the difference in areas between HNP(�) and HNP∞(�) is at most An , which gives us a contra-

diction for a small enough choice of n . �

3. Bogomolov’s inequality

In this section, we give several equivalent statements on Bogomolov’s inequality, about the

positivity of Δ(�) · �2 · · ·�=−1.

Fix a positive integer A. Let - be a smooth projective variety of dimension = ≥ 2 over an

algebraically closed field : in any characteristic. Note that in the characteristic zero case, we define

strong semistability to be the same as the semistability. We fix a nef divisor � over - such that

)- (�) is globally generated. Define the constant VA = VA (�;�1, . . . , �=−1) for a choice of divisors

(�1, . . . , �=−1) as below

VA (�;�1, . . . , �=−1) :=




0, if char(:) = 0;
(
A (A−1)
?−1

��1 · · ·�=−1

)2

, if char(:) = ?.

We also reference the discriminant of a rank A torsion-free sheaf � , denoted as Δ(�), is defined as

Δ(�) := 2A · 22 (�) − (A − 1)21 (�)2.
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When � is a non-trivial subsheaf of rank B in � , we set

b�,� =
21 (�)
B

− 21 (�)
A

.

We also use  + to denote an open cone in Num(-), defined as in the beginning of Subsection 3.

The main theorem is the following.

Theorem 31 (BI(A)). Let (�1, . . . , �=−1) be a collection of nef line bundles over - , and let
3 = �2

1
· �2 · · ·�=−1 ≥ 0. Fix a positive integer A. Then the following statements are equivalent.

(i) Assume each �8 is ample, and � is a strongly (�1, . . . , �=−1)-semistable torsion-free
sheaf of rank A ′ ≤ A. Then we have

Δ(�)�2 . . . �=−1 ≥ 0.

(ii) Let � be a (�1, . . . , �=−1)-semistable torsion-free sheaf of rank A ′ for some A ′ ≤ A. Then
we have

3 · Δ(�)�2 · · ·�=−1 + VA ′ ≥ 0.

(iii) Let � be a torsion-free sheaf of rank A ′ for some A ′ ≤ A over - , and assume 3 ·
Δ(�)�2 · · ·�=−1 + VA ′ < 0. Then there exists a saturated subsheaf � ′ of � such that
b�′,� ∈  +.

(iv) Let � be a strongly (�1, . . . , �=−1)-semistable torsion-free sheaf of rank A ′ ≤ A over - .
Then

Δ(�)�2 · · ·�=−1 ≥ 0.

Remark 32. In terms of the notations as in [Lan04b], the above corresponds to )5(A) ⇒ )3(A) ⇒
)4(A) ⇒ )2(A) ⇒ )5(A). Note that the last implication from )2(A) to )5(A) is trivial, as the

statement (i) is the same as (iv) but with a stronger assumption.

Remark 33. In characteristic zero, since VA = 0 and the strong semistability is the same as the

semistability, the statement above can be more or less combined into one single statement about the

non-negativity of Δ(�)�2 · · ·�=−1 ≥ 0. This was first proved by Bogomolov in [Bog78], thus the

name.

(8) ⇒ (88). In this subsection, our goal is to prove the implication (8) ⇒ (88) in Theorem BI(A) for

torsion-free sheaf � of rank A, and we follow [Lan04b, §3.6].

To prove the statement, we start with the following preparation. Let � be an ample line bundle

over - , and let (�1, . . . , �=−1) be as in Theorem BI(A) (ii). Then (�1(C), . . . , �=−1 (C)) := (�1 +
C�, . . . , �=−1 + C�) is a polarization of ample line bundles.

Lemma 34. Assume Theorem BI(A) (i). Then for C > 0 we have

�1(C)2�2(C) · · ·�=−1 (C) · Δ(�)�2(C) . . . �=−1 (C)+
A2(!<0G,C (�) − `C (�)) (`C (�) − !<8=,C (�)) ≥ 0.

Here we follow the notations !<0G and !<8= as in Subsection 2, and denote !<0G,C , !<8=,C and

`C as the ones defined using the polarization (�1(C), . . . , �=−1 (C)).
Remark 35. Before we prove the lemma, it is worth noting that the above inequality together with

its proof, which only uses Theorem BI(A) (i), applies also to a general polarization (�1, . . . , �=−1)
for ample �8 , in place of (�1(C), . . . , �=−1 (C)). More explicitly, Theorem BI(A), (i) will imply the

inequality

�2
1�2 · · ·�=−1 · Δ(�)�2 · · ·�=−1 + A2(!max − `) (!min − `) ≥ 0,

where �8 are all ample.
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Proof. We first notice that by Theorem 29, there exists : ∈ N such that all of the factors in the Harder-

Narasimhan filtration of (�:)∗� are strongly semistable. Denote 0 = �0 ⊂ · · · �< = (�:)∗� to

be the corresponding filtration of (�:)∗� , and let �8 be the quotient �8/�8−1, A8 = rk(�8), and

`8,C = `C (�8). Then by the Hodge index theorem, 2 we have

Δ((�:)∗�)�2(C) · · ·�=−1 (C)
A

=

∑

8

Δ(�8)�2(C) · · ·�=−1 (C)
A8

− 1

A

∑

8< 9

A8A 9 (
21(�8)
A8

−
21 (� 9)
A 9

)2�2(C) · · ·�=−1 (C)

≥
∑

8

Δ(�8)�2(C) · · ·�=−1 (C)
A8

− 1

A3

∑

8< 9

A8A 9 (`8,C − ` 9,C )2.

The assumption of Theorem BI(A) (i) and the ampleness of �8 (C) provides us with the inequality

Δ(�8)�2(C) · · ·�=−1 (C) ≥ 0.

On the other hand, we have the following elementary inequality on A8, `8 (with A =
∑

8 A8 and

A` =
∑

8 A8`8) that

(3.1)
∑

8< 9

A8A 9 (`8 − ` 9)2 ≤ A2(`1 − `) (` − `<).

Combine with the inequality above, we get the inequality in the statement of lemma. �

With the above lemma together with the approximation technique as in Subsection 2, we are ready

to prove the aforementioned implication.

Proof of Theorem BI(A), (8) ⇒ (88). Let � be a fixed ample line bundle. By Theorem 19, we can

find a filtration of torsion-free coherent subsheaves 0 = �0 ⊂ �1 ⊂ · · · ⊂ �< = � of � such that

it is the Harder-Narasimhan filtration with respect to the polarizations (�1(C), . . . , �=−1 (C)), where

C > 0 is very close to 0. As � is (�1, . . . , �=−1)-semistable, we have

`(�) ≥ `(�1)
= lim

C→0+
`C (�1)

≥ lim
C→0+

`C (�)

= `(�).
By the choice of �1, the above implies the equality

`(�) = lim
C→0+

`<0G,C (�).

Similarly, we have

`(�) = lim
C→0+

`<8=,C (�).

On the other hand, Proposition 28 states that for a nef divisor � such that)- (�) is globally generated,

we have

!<0G,C (�) − `<0G,C (�), `<8=,C (�) − !<8=,C (�) ≤
A − 1

? − 1
��1(C) · · ·�=−1 (C).

2Here we are using the form of the Hodge index theorem that (�2�2 . . . �=−1)·(�2
1
�2 . . . �=−1) ≤ (��1�2 . . . �=−1)2,

where �8 are nef divisors satisfying �2
1
�2 · · ·�=−1 > 0. This can be proved using the standard Hodge index theorem

for ample divisors together with the approximation technique as in Subsection 2.
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In particular, the limit of the right hand side of the inequality above is equal to A−1
?−1

��1 · · ·�=−1,

whose square is 1
A2 VA . In this way, apply the inequality of Lemma 34 for each C > 0, we get

�2
1�2 · · ·�=−1 · Δ(�)�2 . . . �=−1 + VA

= lim
C→0+

(

�2
1�2 · · ·�=−1 · Δ(�)�2 . . . �=−1 + A2

(
A − 1

? − 1
��1(C) · · ·�=−1 (C)

)2
)

≥ lim
C→0+

(
�1(C)2�2 (C) · · ·�=−1 (C) · Δ(�)�2(C) · · ·�=−1 (C)

)

+ A2(!<0G,C (�) − `C (�)) (`C (�) − !<8=,C (�))
≥ 0.

�

(88) ⇒ (888). In this subsection, we show the implication (88) ⇒ (888), following [Lan04b, §3.7]

As a preparation, we define an open cone in Num(-) as follows.

Definition 36. Let  + be the following open cone in Num(-):

 +
= {� ∈ Num(-) : �2�2 · · ·�=−1 > 0, and �� ′�2 · · ·�=−1 ≥ 0

for all nef � ′}.

The following description is used in the proof.

Lemma 37. A divisor � ∈  + if and only if it satisfies the inequalities �!�2 · · ·�= > 0 for all
! ∈  ̄+ \ {0}.

Before we start, we also mention several elementary computational results whose proofs are left

as exercises to the reader.

Lemma 38. Let 0 → � ′ → � → � ′′ → 0 be a short exact sequence of coherent sheaves. Let A ′

(resp. A ′′) be the rank of � ′ (resp. � ′′), and assume they are positive. We have

Δ(�)�2 · · ·�=−1

A
+ AA

′

A ′′
b2
�′,��2 · · ·�=−1 =

Δ(� ′)�2 · · ·�=−1

A ′
+

Δ(� ′′)�2 · · ·�=−1

A ′′

Lemma 39. Let 0 → � ′ → � → � ′′ → 0 be a short exact sequence of coherent sheaves. Let A ′

(A ′′) be the rank of � ′ (� ′′) respectively.

• If � is a non-trivial subsheaf of � ′, then

b�,� = b�′,� + b�,�′ .

• If � ′′ ⊂ � ′′ is a proper subsheaf of rank B, and denote by � the kernel of the map
� → � ′′/� ′′, then

b�,� =
A ′(A ′′ − B)
(A ′ + B)A ′′ b�

′,� + B

A ′ + B b�
′′,�′′ .

Proof of Theorem BI(A), (88) ⇒ (888). We prove (iii) inductively on rk(�) = A, assuming the state-

ment (ii). As a starting point, we notice that when � is of rank one, as Δ(�) = 0 and V1 ≥ 0,

the statement (iii) is automatically true. In general, the assumption of Theorem BI(A) (ii) tells us

that � is not semistable with respect to (�1, . . . , �=−1). Thus we have the maximal destabilizing
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subsheaf � ′ ⊂ � with respect to the polarization. Let � ′′
= �/� ′, and A ′, A ′′ be the ranks of � ′, � ′′

respectively. Then by Lemma 38 we have

Δ(�)�2 · · ·�=−1

A
+ AA

′

A ′′
b2
�′,��2 · · ·�=−1 =

Δ(� ′)�2 · · ·�=−1

A ′
+ Δ(� ′′)�2 · · ·�=−1

A ′′
.

We also have
VA

A
≥ VA ′

A ′
+ VA

′′

A ′′
.

So by multiplying 3 = �2
1
�2 · · ·�=−1, either b2

�′,��2 · · ·�=−1 > 0, or one of 3Δ(� ′)�2 · · ·�=−1 +
VA ′ or 3Δ(� ′′)�2 · · ·�=−1 + VA ′′ is negative.

In the first case above, we claim that b�′,� ∈  +. To see this, by the definition of  + and the

assumption on b�′,� it suffices to show that for any ! ∈  +\{0} we have b�′,� !�2 · · ·�=−1 > 0.

Note first the assumption of � ′ and � implies that the inequality is true for ! = �1, and it reduces

to show the sign of the function ! ↦→ b�′,�!�2 · · ·�=−1 is not changing on  +. This then follows

from the continuity of the function, the connectivity of  +, and the Hodge Index Theorem that

(b�′,�!�2 · · ·�=−1)2 ≥ b2
�′,��2 · · ·�=−1 · !2�2 · · ·�=−1 > 0,

for ! ∈  +\{0}.
Suppose now b2

�′,��2 · · ·�=−1 ≤ 0 and we are in the second case above. Note that since both

� ′ and � ′′ are of smaller ranks, we can apply the induction hypotheses of ranks to get the following

dichotomy:

• There is a saturated subsheaf � ⊂ � ′ such that b�,�′ ∈  +, or

• There is a saturated subsheaf � ′′ ⊂ � ′′ such that b�′′,�′′ ∈  +.

Applying Lemma 39, we get in either case that b�,� is a positive linear combination of b�′,� and

some element ! in  +.

To proceed, define the open subcone C(b) := {� ∈  + \ {0} : b · ��2 · · ·�=−1 > 0} ⊂  +

for a given b ∈ Num(-). We observe that by replacing � ′ with � in either case, we get strictly

larger cones than before: C(b�′,� ) ( C(b�,� ). Here the inclusion part is clear, as b�,� is the sum

of b�′,� with some ! ∈  +, where the second term only contributes positive values in the product

b�,���2 · · ·�=−1. To see the inclusion is strict, as b�′,� is not in  +, by Lemma 37 there exists

some ! ′ ∈  +\{0} such that b�′,�!
′�2 · · ·�=−1 ≤ 0 but !! ′�2 · · ·�=−1 > 0. On the other hand,

as � ′ is the maximal destabilizing subsheaf of � with respect to the polarization (�1, . . . , �=−1),
we have b�′,��1 · · ·�=−1 > 0 and !�1 · · ·�=−1 > 0, where the latter follows as ! ∈  +. In this

way, there exists some real number C ∈ [0, 1) such that b�′,� (C�1 + (1 − C)! ′)�2 · · ·�=−1 = 0, and

thus

b�,� (C�1 + (1 − C)! ′)�2 · · ·�=−1

= b�′,� (C�1 + (1 − C)! ′)�2 · · ·�=−1

+ ! (C�1 + (1 − C)! ′)�2 · · ·�=−1

= 0 + ! (C�1 + (1 − C)! ′)�2 · · ·�=−1

> 0 = b�′,� (C�1 + (1 − C)! ′)�2 · · ·�=−1.

So the element C�1 + (1 − C)! ′ is in C(b�,� ) but not in C(b�′,� ). In this way, we get a sequence

of strictly increasing subcones of  + by replacing � ′ by �, until we reach to the situation where

b2
�′,��2 · · ·�=−1 > 0.
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It remains to show that this process terminates within finite replacements. First note that by

choosing ample R-basis �1, · · · , �d, which are contained in C(b�′,� ) for Num(-), 3 we have

b�,� ∈ 1

A!
(Z�1 + · · · + Z�d).

Furthermore, we also have

0 < b�,�� 9�2 · · ·�=−1 < `
9
max(�) − ` 9 (�),

for all 9 = 1, 2, · · · , d, where ` 9 denote the slopes with respect to (� 9 , �2, · · · , �=−1). Thus b�,�

is in fact contained in a bounded discrete hence finite subset of Num(-). �

(888) ⇒ (8E). In this section, we follow [Lan04b, §3.8] to show the implication (888) ⇒ (8E).
We follow the definition of VA as in the beginning of this section, and the definition of the cone

 + with respect to the polarization (�1, . . . , �=−1) as in the last subsection.

By the definition of b�′,� and  +, the statement (iii) implies that � is not semistable with respect

to (�1, . . . , �=−1).

Remark 40. The implication (888) =⇒ (8E) is easy in char(:) = 0, by the definition of  + applying

at b�′,��1 · · ·�=−1.

Proof of Theorem BI(A), (888) ⇒ (8E). Assume� is a torsion-free sheaf such thatΔ(�)�2 · · ·�=−1 <

0. We will deduce that � is not strongly semistable. We would like to apply Theorem BI(A), (iii) to

the Frobenius pullback (� ;)∗� of � . Since Δ((� ;)∗�) = ?2;
Δ(�), we get that

�2
1�2 · · ·�=−1 · Δ((� ;)∗�)�2 · · ·�=−1 + VA =

�2
1�2 · · ·�=−1 · ?2; · Δ(�)�2 · · ·�=−1 + VA

is negative when ; is large enough. By the assumption of Theorem BI(A), (iii) we can find a saturated

subsheaf � ′ of (� ;)∗� with b�′,(� ;)∗� ∈  +. By the definition of  + as in Definition 36, we have

b�′,(� ;)∗��1 · · ·�=−1 > 0,

in particular, the pullback (� ;)∗� is not semistable. Hence the torsion-free sheaf � itself is not

strongly semistable. �

4. Restriction to hypersurfaces and Bogomolov’s inequality

In this section, we prove one of the main technical ingredients Theorem 41, which controls the

change of various numerical invariants as one passes to hypersurfaces. Following this, we complete

the induction schema sketched in the introduction. We follow the proof as in [Lan04b, §3.5, §3.9]

and [Lan04a]. Combining the section with the equivalent statements in Theorem BI(A), we finish

the proof of all theorems in [Lan04b, Section 3].

Fix a positive integer A, and let - be a smooth projective variety over :. Consider the following

statement.

Theorem 41 (Res(A)). Let � be a torsion-free sheaf of rank A over - , and let (�1, . . . , �=−1) be a
collection of nef divisors over - with 3 := �2

1
�2 · · ·�=−1 ≥ 0.

3Note that since C(b�′� ) is an open subcone in  + ⊂ Num(-) that is non-empty (it contains �1), such a basis of �8

exists.
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Assume that �1 is very ample and the restriction of � to a very general divisor � ∈ |�1 | is
not semistable (with respect to (�2 |� , ..., �=−1 |�)). Let `8 (A8) denote the slopes (ranks) of the
Harder-Narasimhan filtration of � |�. Then

∑

8< 9

A8A 9 (`8 − ` 9 )2 ≤ 3Δ(�)�2...�=−1 + 2A2(!<0G − `) (` − !<8=).

Our goal this section is to show the following two implications

'4B(A) + �� (A − 1) =⇒ �� (A) =⇒ '4B(A + 1).

Note that since both Theorem Res(A) and Theorem BI(A) are empty and thus automatically true for

A = 1, the above induction process proves that both Res(r) and BI(r) hold true for all A ≥ 1.

'4B(A) + �� (A −1) ⇒ �� (A). In this subsection, we consider the implication '4B(A) +�� (A −1) ⇒
�� (A), following [Lan04b, §3.5] and [Lan04a]. This is achieved via an inductive argument on the

dimension of - . We first prove the case when - is a surface. Further, we do not need to assume

BI(A − 1) for the base case.

Proposition 42. Let - be a surface. Assume Theorem Res(A) holds for all torsion-free sheaves of
rank ≤ A, then Theorem BI(A) holds for all torsion-free sheaves of rank ≤ A and all ample divisor
�1.

Proof. By the equivalence of statements in Theorem BI(A), it suffices to show the assumption implies

the statement in Theorem BI(A), (i), i.e. the inequality Δ(�) ≥ 0, for a strongly �1-semistable

torsion-free sheaf � of rank ≤ A, where �1 is ample.

Let � be a rank A vector bundle that is strongly �1-semistable. Suppose by way of contradiction

that Δ(�) < 0. We may further assume that � is locally free, by the inequality

Δ(�∗∗) = Δ(�) − 2A length(�∗∗/�),

where the reflection �∗∗ is locally free on - . We first claim that under the assumption, the restriction

to a general curve � ∈ |�1 | is also strongly semistable. To see this, since � is strongly semistable,

` = !<0G = !min, and since (by assumption) Δ(�) < 0, from the assumption we would get a

contradiction

0 ≤
∑

8< 9

A8A 9 (`8 − ` 9)2 < 0,

where we use the notation in Res(A). Similarly, as (�:)∗� is semistable, its restriction to a general

curve� is also semistable. Thus, the restriction of � to a very general curve � is strongly semistable.

For the remainder of the proof, fix such a very general �.

Now consider the symmetric power (:A� |� . The strategy is to compute j((:A�) in two different

ways and use them to deduce a contradiction. Since symmetric powers of strongly semistable sheaves

on curves are strongly semistable (see [HL10, Corollary 3.2.10] for the characteristic zero case and

[Miy87, Sections 3 and 5] for the positive characteristic case), it follows that (:A� |� is strongly

semistable. Consider the short exact sequence arising from �:

0 → (:A� (−:21(�) − �) → (:A� (−:21 (�)) → (:A� (−:21 (�)) |� → 0.

This allows us to estimate

ℎ0 ((:A� (−:21 (�)) ≤ ℎ0 ((:A� (−:21(�) − �)) + ℎ0 ((:A� (−:21(�)) |�).
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Consider the first term on the right hand side. This quantity is equal to dim
(
Hom(O- (:21 (�) + �), (:A�)

)
,

and we claim that this number is zero. Note that the slope ofO- (:21(�)+�) is given by :A`(�)+�2
1
,

and by the splitting principle, the slope of the symmetric power can be seen to be

`((:A (�)) =
(A+:A−1

:A

)
:21 (�)�1

(A+:A−1
:A

) = :A`(�).

Since �1 is ample, �2
1
> 0, so the claim follows as there are no morphisms from semistable sheaves

of higher slope to those of lower slope. Thus we get ℎ0 ((:A� (−:21 (�)) ≤ ℎ0 ((:A� (−:21(�)) |�).
Given any semistable vector bundle � on a curve, we have the further estimate ℎ0(�) ≤

max{0, deg� + rk�}. Using the sequence

0 −→ � (−;%) −→ � −→ � |;% −→ 0,

the above inequality can be seen from the estimation ℎ0 (�) ≤ ℎ0 (� ⊗ O� (−;%)) + rk(�); =

0 + rk(�); ≤ max{0, rk� + deg�}, where % is a point on �, ; = max{0, ⌈`(�)⌉}, and ℎ0 (� ⊗
O� (−;%)) = 0 as `(O� (;%)) > `(�).

Thus, we have ℎ0 ((:A� (−:21(�)) = $ (:A ). By Serre duality, we have the same order of

magnitude estimate for ℎ2 ((:A� (−:21(�)). On the other hand, the splitting principle for Chern

classes and Hirzebruch-Riemann-Roch theorem can be used to get the following estimate (for

example, see [Bog78, Section 10])

j(-, (:A� (−:21 (�)) = − AAΔ(�)
2(A + 1)! :

A+1 +$ (:A ).

Since Δ(�) < 0, this polynomial is eventually positive and is of order :A+1, but this is an obvious

contradiction as ℎ0 and ℎ2 are of order :A . �

To show the implication for general - , we induct on the dimension of - , using the above surface

case as the base case. However, different from the assumption in Proposition 42, for this to work

we require the additional assumption of �� (A − 1) (i.e. Theorem �� (A − 1)). Precisely, we want to

show that assuming

• �� (A − 1) and '4B(A) for - of any dimension;

• �� (A) for varieties of dimension < =,

then we have �� (A) holds for any variety - of dimension =.

Proof of Theorem �� (A). Similar to the proposition above, we aim to prove Theorem BI(A), (i) for

- of dimension =, namely the inequality Δ(�)�2 · · ·�=−1 ≥ 0 for a strongly (�1, . . . , �=−1)-
semistable torsion-free sheaf � over - , where �8 are all ample.

Assume to the contrary that Δ(�)�2 . . . �=−1 < 0. For a general divisor in |�2 | (which we

also denote as �2), we have Δ(� |�2
)�3 . . . �=−1 = Δ(�)�2 . . . �=−1 < 0. Consider the po-

larization (�2
2
, �3, . . . , �=−1) := (�2, �2, �3, . . . , �=−1). We first assume that � is strongly

(�2
2
, �3, . . . �=−1)-semistable. Applying '4B(A) to the Frobenius twists (�:)∗� with respect to

(�2
2
, . . . , �=−1), then if (�:)∗� |�2

is not semistable we would get the inequality
∑

8< 9

A8A 9 (`8 − ` 9)2 ≤ 3?:Δ(�)�2 · · ·�=−1 + 0 < 0,

which is impossible. Thus � |�2
is strongly semistable for ample divisors (�2, . . . �=−1), and by the

induction hypothesis, since � |�2
is defined over a hypersurface of - we have Δ(� |�2

)�3 . . . �=−1 =

Δ(�)�2 . . . �=−1 ≥ 0, a contradiction.
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For the rest, we assume� is not strongly (�2
2
, �3, . . . , �=−1)-semistable. The trick is to interpolate

between the polarizations (�1, �2, . . . , �=−1) and (�2
2
, �3, . . . , �=−1). Let �C be the product

((1 − C)�1 + C�2)�2 . . . �=−1. By assumption, � is strongly �0-semistable while it is not strongly

�1-semistable. Since not being strongly semistable is an open condition with respect to C, there

exists a number C: ∈ [0, 1) such that � is strongly �C: -semistable but not strongly �C -semistable for

all C: < C ≤ 1.

Let : be a positive integer such that (�:)∗� is not semistable for �1. Using Theorem 19, we see

that the Harder-Narasimhan filtration of � with respect to �C remains constant for all C: < C < C: + n
for some n > 0 small enough. We let � ′ denote the maximal destabilizing sheaf of (�:)∗� with

respect to the polarization �C for C: < C < C: + n . By the continuity of the slope with respect to C, it

follows that � ′ and (�:)∗� have the same �C: -slope (see Lemma 21). Since � ′ is a subsheaf of a

semistable sheaf with the same slope, � ′ is also semistable with respect to �C: . It also follows that

the quotient � ′′
= (�:)∗�/� ′ is �C: -semistable as well. Let A, A ′ and A ′′ denote the ranks of � , � ′

and � ′′ respectively.

Now we apply Lemma 38 to the short exact sequence � ′ → � → � ′′ to get that

Δ((�:)∗�)�2 . . . �=−1

A
=
Δ(� ′)�2 . . . �=−1

A ′
+ Δ(� ′′)�2 . . . �=−1

A ′′
−
A ′A ′′

A
b2
�′,�′′�2 . . . �=−1.

Note that by the Hodge index theorem, we have

b2
�′,�′′�2 . . . �=−1 · (C:�1 + (1 − C:)�2)2�2 . . . �=−1 ≤ (b�′,�′′�C: )2.

Since � ′, � ′′ have the same �C: -slope, (b�′,�′′�C: )2
= 0 and by ampleness of �1, . . . , �=−1, we

have that

3 (C:) := (C:�1 + (1 − C:)�2)2�2 . . . �=−1 > 0.

Moreover by Theorem BI(A), (ii) but for (A − 1) in place of A, we get that the inequalities as below

Δ((�:)∗�)�2 . . . �=−1

A
≥ − 1

3 (C:)

(
VA ′ (C:)
A ′

+ VA
′′ (C:)
A ′′

)
≥ − VA (C:)

A3 (C:)
,

where we denote VA (C) to be VA ((1 − C)�1,+C�2, �2, . . . , �=−1). In this way, we get

Δ(�)�2 · · ·�=−1 ≥ − VA (C:)
3 (C:)?2:

.

Notice that the function
VA (C)
3(C) for C ∈ [0, 1] is defined and continuous, thus bounded. Taking the

limit as : approaches infinity, we get the inequality

Δ(�)�2 · · ·�=−1 ≥ 0,

which is a contradiction, so we are done. �

Remark 43. Pointed out by the referee, the last paragraph of the proof above can be argued as

follows. As � ′ and � ′′ are of the same �C: -slopes as the strongly �C: -semistable sheaf � , both of

them are strongly �C: -semistable. Thus applying the induction hypothesis of Theorem BI(A), (i) to

� ′, � ′′ for the polarization �C: , we see

Δ(� ′)�2 . . . �=−1

A ′
+ Δ(� ′′)�2 . . . �=−1

A ′′
≥ 0.

In this way, by the same vanishing of b�′,�′′�2 · · ·�=−1 proved above, we get the positivity of

Δ(�)�2 · · ·�=−1.
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�� (A) ⇒ '4B(A + 1). We then consider the implication �� (A) ⇒ '4B(A + 1), following [Lan04b,

§3.9].

Let A be a non-negative integer, and (�1, . . . , �=−1) be a nef polarization over - with 3 =

�2
1
�2 · · ·�=−1 ≥ 0.

Proof. Let Π be the projective space associated to the linear system |�1 |. Let / ⊂ Π × - be the

incident scheme, defined as the locus {(�, G) ∈ Π × - | G ∈ �}, where ? : / → Π and @ : / → -

are the two natural maps induced by the projections. For each B ∈ Π, we let /B be its fiber along the

map @, which is a divisor in - . Let 0 = �0 ⊂ �1 ⊂ · · · ⊂ �< = @∗� be the Harder–Narasimhan

filtration of @∗� associated to the polarizaion

(?∗OΠ(1)dimΠ, @∗�2, . . . , @
∗�=−1) =

(?∗OΠ(1), . . . , ?∗OΠ (1), @∗�2, . . . , @
∗�=−1)

over / . Denote �8 to be the subquotient �8/�8−1. Here we observe that the pull back of the filtration

{�8} at a general fiber /B for B ∈ Π is the Harder–Narasimhan filtration of � |/B
at the hypersurface

/B ∈ |� |. Indeed, the slope of @∗� with respect to (?∗OΠ(1)dimΠ, @∗�2, . . . , @
∗�=−1) is the same as

the slope of @∗� |/B
. This shows that the filtration {�8 } is also the relative Harder-Narasimhan filtraion

for @∗� with respect to the map ?. In particular, we have the equalities A8 = rk�8 and `8 = `(�8),
where the latter is with respect to the polarization given by (?∗OΠ (1)dimΠ, @∗�2, . . . , @

∗�=−1).
Now let P1

� Λ ⊂ Π be a sufficiently general pencil, corresponding to a linear subsystem of |� |
in - parametrized by a line P1 ⊂ Π. Let � ⊂ - be the base of Λ, which is the intersection of /B for

any two (hence all) B ∈ Λ, and is of codimension 2 in - . Denote by . the incident scheme for Λ,

which is equal to the closed subscheme ?−1
Λ inside of / . Here by the construction of the incident

scheme for a pencil, the projection map . = ?−1
Λ → - coincides with the blowup of - at the base

locus �. Moreover, depending on the dimension of - , we can write the first Chern class of the

restriction �8 |. in terms of the following:

• If dim(-) = 2, then � consists of a union of a finite amount of points, and we may write

each 21 (�8 |. ) as "8 +
∑

9 18 9# 9 , with "8 ∈ Pic(-) and # 9 being the 9-th exceptional

divisor for 1 ≤ 9 ≤ ;. We define 18 to be the number

∑
9 18 9

;
.

• If dim(-) ≥ 3, then by Bertini’s theorem the blowup center � is a smooth connected

closed subscheme of codimension two in - , and we may write each 21 (�8 |. ) as "8 +18# ,

for "8 ∈ Pic(-) and # being the exceptional divisor.

In any of the above cases, with respect to the polarization

(?∗OΛ (1), @∗�2, . . . , @
∗�=−1)

over . , we can write the slope `8 as the following

(0) `8 =
"8�1 · · ·�=−1 + 183

A8
.

Here as the collection of torsion-free sheaves {�8} forms the graded pieces of a filtration of @∗� , we

have

(1)
∑

8

18 = 21 (@∗�)?∗OΛ (1)@∗�2 · · · @∗�=−1 = 0.

Furthermore, since (@ |. )∗ (�8 |. ) ⊂ � , we have the inequalities
∑

9≤8 " 9�1 · · ·�=−1
∑

9≤8 A 9
≤ `max, for all 8,
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which is equivalent to the following inequalities

(2)
∑

9≤8
1 93 ≥

∑

9≤8
A 9 (` 9 − `max).

Finally, we are ready to prove the implication. As each �8 is of rank ≤ A − 1, by Theorem BI(A),

(i) for the polarization (?∗OΠ(1)dimΠ, @∗�2, . . . , @
∗�=−1) over / , we have

Δ(�8)?∗OΠ (1)dimΠ@∗�2 · · · @∗�=−1 =

Δ(�8 |. )?∗OΛ (1)@∗�2 · · · @∗�=−1 ≥ 0, for all 8.

Applying this, we get

3Δ(�)�2 · · ·�=−1

A

=

∑

8

3Δ(�8 |. )?∗OΛ (1)@∗�2 · · · @∗�=−1

A8

− 3

A

∑

8< 9

A8A 9

(
21 (�8 |. )

A8
−
21 (� 9 |. )

A 9

)2

(@ |. )∗(�2 · · ·�=−1)

≥ −3
A

∑

8< 9

A8A 9

(
21 (�8 |. )

A8
−
21 (� 9 |. )

A 9

)2

(@ |. )∗(�2 · · ·�=−1)

=
3

A

∑

8< 9

A8A 9

(
3 ( 18
A8

−
1 9

A 9
)2 − ("8

A8
−
" 9

A 9
)2�2 · · ·�=−1

)

≥ 1

A

∑

8< 9

A8A 9

(
32 ( 18

A8
−
1 9

A 9
)2 − ("8�1 . . . �=−1

A8
−
" 9�1 · · ·�=−1

A 9
)2

)
,

where the first inequality is the application of the statement (i) as above, the equality after is a

rearrangement using the formula (0), and the last inequality follows from the Hodge index theorem

applied to "8

A8
− " 9

A 9
and the polarization �1, · · · , �=−1. Moreover, using the formula (0), we may

rewrite the last expression of the inequalities above as

23

A

∑

8< 9

(`8 − ` 9) (18A 9 − 1 9A8) −
1

A

∑

8< 9

A8A 9 (`8 − ` 9)2

Using (1), one further simplifies the above to

2
∑

8

318`8 −
1

A

∑

8< 9

A8A 9 (`8 − ` 9)2.

Here more concretely, the simplification above can be seen via an induction on <. If < = 1, this

is obvious. Suppose this is true for < − 1. Then

23

A

∑

8< 9

(`8 − ` 9) (18A 9 − 1 9A8)

= 2
∑

8< 9≤<−1

(`8 − ` 9 ) ((18 +
1<

<
)A 9 − (1 9 +

1<

<
)A8)

+ 1<
<

∑

8< 9≤<−1

(`8 − ` 9 ) (A8 − A 9) +
23

A

∑

8≤<−1

(`8 − `<) (18A< − 1<A8)
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=
2(A − A<)

A

∑

8≤<−1

3 (18 +
1<

<
)`8

+ 23

A

(

A<

∑

8≤<−1

18`8 − 1< (`A − `<A<) + 1<`<A< + 1<`< (A − A<)
)

+ 1<
<

∑

8< 9≤<−1

(`8 − ` 9 ) (A8 − A 9)

= 2
∑

8

318`8

where the second equality follows from induction hypothesis. Furthermore, using the formula (2)

together with an elementary equality
∑

8

0818 =
∑

8

(
∑

9≤8
0 9 ) (18 − 18+1),

we get
∑

8

318`8 =
∑

8

(
∑

9≤8
31 9 ) (`8 − ` 9)

≥
∑

8

(
∑

9≤8
A 9 (` 9 − `max) (`8 − `8+1)

)

=

∑

8

(A8`2
8 − A``max)

≥
∑

8

A8`
2
8 − A`2 + A (` − `max) (` − `min)

=

∑

8< 9

A8A 9

A
(`8 − ` 9)2 + A (` − `max) (` − `min).

As a consequence, we get

3Δ(�)�2 · · ·�=−1

A
≥

∑

8< 9

A8A 9

A
(`8 − ` 9)2 + 2A (` − `max) (` − `min).

At last, by moving the second term in the right hand side above and the inequalities !max ≥ `max,

`min ≥ !min, we get the one as in Theorem Res(A). �

5. Boundedness of torsion-free sheaves

At last, we use the ingredients in the last two sections to show the boundedness, following [Lan04b,

Section 4]

We start with the following result combining the inequalities in the last two sections into a uniform

one, following [Lan04b, Corollary 3.11].

Corollary 44. Let � be a torsion-free sheaf on - and �1 be very ample, �2, . . . , �=−1 be ample,
and let � ∈ |�1 | be a general divisor. Then, we have that

A

2
(!max(� |�) − !min (� |�))2 ≤ 3Δ(�)�2 . . . �=−1 + 2A2 (!max − `) (` − !min)
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Proof. First consider the case when � |� is not strongly semistable. Then, the inequality follows

from Theorem Res(A) as well as an elementary inequality [Lan04b, Lemma 1.3] as below:
∑

8< 9

A8A 9 (`8 − ` 9 )2 ≥ A1A<

A1 + A<
A (`1 − `<)2 ≥ A

2
(`1 − `<)2

where A1, . . . , A< are positive real numbers and `1, . . . , `< are real numbers and A = A1 + · · · + A<.

Now consider the case when � |� is strongly semistable. Then, the left-hand side of the inequality

is just zero and the result follows from the inequality in Remark 35 (where the latter is proved using

Theorem BI(A), (i)). �

The boundedness is deduced from the following result. A more precise version is given in

[Lan04b].

Theorem 45. Let �1, . . . , �=−1 be very ample divisors on - and let -; = |�1 | ∩ · · · ∩ |�; |,
1 ≤ ; ≤ = − 1 be very general complete intersections. Pick a nef divisor � such that )-;

(�) is
globally generated for all 0 ≤ ; ≤ = − 1. Set VA = V(A; �, �1, . . . , �=−1). Let `max,; , `min,; denote
the maximal and minimal slopes of the Harder-Narasimhan filtration of � |-;

. Then we have the
following inequality,

`max,; − `min,; ≤

� (A, =)
(√

max{3Δ(�)�2 . . . �=−1, 0} +
√
VA + (`max − `min)

)
,

where � (A, =) is a constant depending only on A and =.

Remark 46. Before we move on to the proof, it is worth mentioning that except for `max − `min, the

rest of terms in the right hand side together with `min,; can all be bounded using constants depending

only on - and the Hilbert polynomial of � .

Proof. For ; = 1, we use Corollary 44, and get

(!max,1 − !min,1)2 ≤ 2

A
3Δ(�)�2 . . . �=−1 + 4A (!max − `) (` − !min)

≤ 2

A
max{3Δ(�)�2 . . . �=−1, 0} + 4A (!max − !min)2

≤ 4A
(
max{3Δ(�)�2 . . . �=−1, 0} + (!max − !min)2

)

Now using the definition and Proposition 28 that `max− `min ≤ !max− !min ≤ `max− `min+ 2
√
VA
A

,

we get

(`max,1 − `min,1)2

≤ 4A
(
max{3Δ(�)�2 . . . �=−1, 0} + (`max − `min + 2

√
VA )2

)

Using
√
0 + 1 ≤

√
0 +

√
1 for 0, 1 ≥ 0, we get

`max,1 − `min,1

≤ 4
√
A
(√

max{3Δ(�)�2 . . . �=−1, 0} + (`max − `min) +
√
VA

)
,

which gives the required inequality for ; = 1. For higher ;, we use induction. �
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Now we are ready to prove the main theorem of the article, which states that the moduli space,

parametrizing torsion-free sheaves with a fixed Hilbert polynomial, and with a upper-bound for the

slopes of their Harder-Narasimhan filtrations, is bounded.

Theorem 47. Let - be a projective variety over an algebraically closed field with an ample line
bundle O- (1). Let % be a polynomial of degree 3 and let `0 ∈ R. Then, the family of torsion-free
sheaves whose Hilbert polynomial are % and whose `max are at most `0 is bounded.

Proof. We use the same notation as in Theorem 45. According to Kleiman’s criteria (Theorem

14) and Lemma 15, to prove boundedness, it is enough to give an upper bound of `max,; (or more

specifically for ; = 1). Note that `; = `(� |-;
) is independent of � and depends only on % for all

0 ≤ ; ≤ =. To get such an upper bound, we use Theorem 45 to get

`max,; (�) ≤ `; + (`max,; (�) − `min,; (�))
≤ �1 + �2(`max(�) − `min(�))
≤ �1 + �2A (`0 − `),

where �1, �2 are constants independent of � . Here the last inequality follows from `max ≤ `0 and

the observation that A` ≤ `min(�) + (A − 1)`max(�). �

A more general version of the above theorem for pure-dimensional sheaves can be proved by

imitating the proof in [Sim94, Theorem 1.1].
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