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Abstract. We consider an example of the joint system of dynamical differential equations
and qKZ difference equations with parameters corresponding to equations for elliptic inte-
grals. We solve this system of equations modulo any power pn of a prime integer p. We
show that the p-adic limit of these solutions as n → ∞ determines a sequence of line bun-
dles, each of which is invariant with respect to the corresponding dynamical connection, and
that sequence of line bundles is invariant with respect to the corresponding qKZ difference
connection.
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2 ALEXANDER VARCHENKO

1. Introduction

Let z = (z1, z2),

Φ(t; z;λ, µ) = t−λ(t− z1)
−µ(t− z2)

−µ,

where λ, µ are rational numbers. Consider the column vector

I(C)(z;λ, µ) =

∫

C

( Φ

t− z1
,

Φ

t− z2

)

dt,(1.1)

where C ⊂ C− {0, z1, z2} is a contour on which the integrand takes its initial value when t
encircles C. As a function of z, the vector I(C)(z;λ, µ) extends to a multi-valued analytic
function on {a ∈ C2 | a1a2(a1 − a2) 6= 0}.

The function I(C)(z;λ, µ) satisfies the differential and difference equations,

z1
∂I

∂z1
(z;λ, µ) =

([

−λ− µ −µ
0 0

]

+
µz1

z1 − z2

[

−1 1
1 −1

])

I(z;λ, µ),(1.2)

z2
∂I

∂z2
(z;λ, µ) =

([

0 0
−µ −λ− µ

]

+
µz2

z2 − z1

[

−1 1
1 −1

])

I(z;λ, µ),

I(z;λ+ 1, µ) =

[

λ+µ
z1λ

µ
z1λ

µ
z2λ

λ+µ
z2λ

]

I(z;λ, µ) .(1.3)

If λ, µ, λ+2µ /∈ Z>0, then all solutions of these equations are given by integrals I(C)(z;λ, µ)
(with different choices of C) up to multiplication by a scalar 1-periodic function of λ, this
fact follows from [V1, Theorem 1.1].

Up to a gauge transformation, equations (1.2), (1.3) are the simplest example of the
trigonometric KZ differential equations and dynamical difference equations, see [TV1, MV].
They are also the simplest example of the dynamical differential equations and qKZ difference
equations, see [TV2, TV3]. Up to a gauge transformation, they are the equivariant quantum
differential equations and qKZ difference equation associated with the cotangent bundle of
projective line, see [TV3]. The family of functions I(C)(z;λ, µ), labeled by contours C, are
the hypergeometric solutions of these equations constructed in [MV, TV2]. In particular,
see the integral I(C)(z;λ, µ) (gauge transformed) in [TV2, Section 7.4]. We call equations
(1.2) the dynamical differential equations and equation (1.3) the qKZ difference equation.

In this paper we discuss polynomial solutions of equations (1.2) and (1.3) modulo pn,
where p is a prime integer and n is a positive integer. We also discuss the p-adic limit of
these solutions as n → ∞.

More precisely, we consider the following problem. For λ0 ∈ Q, let Λ(λ0) = {λ0+ l | l ∈ Z}
be the arithmetic sequence with initial term λ0 and step 1. For a positive integer ℓ, let
Λ(λ0, ℓ) = {λ0 + l | l ∈ Z, |λ0 + l| < ℓ} be an interval of the sequence Λ.

Problem. Let p be an prime integer, λ0, µ0 ∈ Q, ℓ ∈ Z>0. For any n ∈ Z>0, find a sequence
of column vectors

I(z;λ; ℓ;n) = (I1(z;λ; ℓ;n), I2(z;λ, ℓ;n)), λ ∈ Λ(λ0, ℓ),(1.4)

such that
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(i) the coordinates of these vectors are polynomials in z with integer coefficients,
(ii) each of the vectors I(z;λ; ℓ;n) satisfies modulo pn differential equations (1.2) with

parameter µ = µ0;
(iii) this sequence of vectors satisfies modulo pn the difference equation (1.3) with param-

eter µ = µ0.

We may also require that the vectors are functorial in the following sense. If λ ∈ Λ(λ0, ℓ0)
for some l0, then the vector I(z;λ; ℓ;n) does not depend on ℓ for ℓ > ℓ0. Having a solution
{I(z;λ; ℓ;n)} of this problem we may study the p-adic limit of the vectors as n → ∞.

In this paper we construct a solution of this problem for

(λ0, µ0) =
(

1
2
, 1
2

)

.(1.5)

We also describe the p-adic limit of our solution. It turns out that the limit is not a solution
of equations (1.2) and (1.3) over a p-adic field, as one may naively think, but a line bundle
invariant with respect to the dynamical connection, defined by equations (1.2), and invariant
with respect to the discrete qKZ connection, defined by equation (1.3), see Theorem 5.9.
Notice that there is no such a line bundle if we consider the same differential and difference
equations over the field of complex numbers, see Section 5.8.

The choice of parameters in (1.5) corresponds to elliptic integrals in (1.1). This choice
is technically, arithmetically easier than the choice of an arbitrary pair (λ0, µ0) of rational
numbers, although a similar construction can be performed for a wide class of parameters
(λ0, µ0).

Quantum differential equations and associated qKZ difference equations, as well as their
solutions, is a mathematical structure with applications in representation theory, algebraic
geometry, theory of special function, to name a few. It would be interesting to study how
the properties of these equations and their solutions are reflected in the solutions of the same
equations modulo powers of a prime integer and in their p-adic limits.

In Section 2 we reformulate equations (1.2) and (1.3) for (λ0, µ0) =
(

1
2
, 1
2

)

, see equations
(2.2), (2.3). In Section 3 we solve equations (2.2), (2.3) modulo a power ps of an odd prime
integer p. The construction of these solutions is a variant of the constructions in [SV, V3].
The constructed solutions are called the ps-hypergeometric solutions in [V3]. On the ps-
hypergeometric solutions see also [V2, V4, V5, VZ1, VZ2, RV1, RV2].

We prove Dwork-type congruences for these solutions in Section 4. Using these congruences
we descibe the p-adic limit of our solutions as s → ∞ in Section 5.

The author thanks R.Rimányi and A. Smirnov for useful discussions and Max Planck
Institute for Mathematics in Bonn for hospitality in May-June of 2022.
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2. Equations for (λ0, µ0) =
(

1
2
, 1
2

)

Denote

H1(z;λ) =

[

−λ− 1 −1
0 0

]

+
z1

z1 − z2

[

−1 1
1 −1

]

,(2.1)

H2(z;λ) =

[

0 0
−1 −λ− 1

]

+
z2

z2 − z1

[

−1 1
1 −1

]

,

K(z, λ) =

[λ+1
z1λ

1
z1λ

1
z2λ

λ+1
z2λ

]

.

The substitution (λ, µ) → (λ
2
, 1
2
) transforms the system of equations (1.2), (1.3) to the

following system of equations for a column vector I(z;λ),

2zi
∂I

∂zi
(z;λ) = Hi(z;λ)I(z;λ), i = 1, 2,(2.2)

I(z;λ+ 2) = K(z, λ)I(z;λ) ,(2.3)

Denote

Di(λ) := 2zi
∂

∂zi
−Hi(z;λ), i = 1, 2.(2.4)

3. Solutions modulo powers of p

3.1. Notations. In this paper p is an odd prime integer.

In this paper we consider the system of equations (2.2) and (2.3) for the values of λ from
the arithmetic sequence of odd integers, Λ := 1 + 2Z.

Given a positive integer s, denote

Λs = {λ ∈ 1 + 2Z | −ps < λ < ps},(3.1)

an interval of the arithmetic sequence Λ.

• For λ ∈ Λs, we have 0 < ps−λ
2

< ps.

• For a positive integer e, if s > e, λ ∈ Λe, then
∣

∣

ps−λ
2

∣

∣

p
> p−e, where |x|p denotes the

p-adic norm of a rational number x.

For a polynomial f(t), denote by {f(t)}s the coefficient of tp
s−1 in f(t). For a function g(z),

denote by grad
z
g the column gradient vector

(

∂g
∂z1

, ∂g
∂z2

)

.

3.2. Solutions. For λ ∈ Λs, define the master polynomial,

Φs(t; z;λ) := t(p
s−λ)/2(t− z1)

(ps−1)/2(t− z2)
(ps−1)/2.(3.2)

Define the column vector

Ψs(t; z;λ) =
(

Ψs,1(t; z;λ),Ψs,2(t; z;λ)
)

:= Φs(t; z;λ)
( 1

t− z1
,

1

t− z2

)

.

The coordinates of Ψs are polynomials in t, z with integer coefficients. We denote

Is(z;λ) = (Is,1(z;λ), Is,2(z;λ)) := {Ψs(t; z;λ)}s ,(3.3)
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the coefficient of tp
s−1 in Ψs(t; z;λ), and

Ts(z;λ) := {Φs(t; z;λ)}s ,(3.4)

the coefficient of tp
s−1 in Φs(t; z;λ). For every λ ∈ Λs, the functions Is,1, Is,2, Ts are polyno-

mials in z1, z2 with integer coefficients.
We have

1− ps

2
Is(z;λ) = grad

z
Ts(z;λ) .(3.5)

Theorem 3.1. Let s ∈ Z>0, λ ∈ Λs, i = 1, 2. Then the vector Is(z;λ) satisfies the

congruence

Di(λ)Is(z;λ) ≡ 0 (mod ps).(3.6)

Proof. We have

∂Φs

∂t
=

(ps − λ

2t
+

ps − 1

2(t− z1)
+

ps − 1

2(t− z2)

)

Φs .(3.7)

Also

−
∂Ψs,1

∂t
= Φs

(

−
ps − λ

2

1

t(t− z1)
−

ps − 3

2

1

(t− z1)2
−

ps − 1

2

1

(t− z1)(t− z2)

)

= Φs

(ps − λ

2z1

[1

t
−

1

t− z1

]

−
ps − 3

2

1

(t− z1)2
−

ps − 1

2

1

z1 − z2

[ 1

t− z1
−

1

t− z2

])

.

Hence

−Φs
ps − 3

2

1

(t− z1)2
= −

∂

∂t

( Φ

t− z1

)

+

+ Φs

(ps − λ

2z1

[ 1

t− z1
−

1

t

]

+
ps − 1

2

1

z1 − z2

[ 1

t− z1
−

1

t− z2

])

= −
∂

∂t

( Φs

t− z1

)

+ Φs

(ps − λ

2z1

1

t− z1
+

ps − 1

2

1

z1 − z2

[ 1

t− z1
−

1

t− z2

])

+ Φs
1

z1

(ps − 1

2

1

t− z1
+

ps − 1

2

1

t− z2

)

−
1

z1

∂Φs

∂t

= −
∂

∂t

( Φs

t− z1

)

−
1

z1

∂Φs

∂t

+ Φs

(2ps − λ− 1

2z1

1

t− z1
+

ps − 1

2z1

1

t− z2
+

ps − 1

2

1

z1 − z2

[ 1

t− z1
−

1

t− z2

])

.

We have
{ ∂

∂t

( Φs

t− z1

)}

s
≡ 0,

{∂Φs

∂t

}

s
≡ 0,

2ps − λ− 1

2
≡ −

λ+ 1

2
,

2ps − 1

2
≡ −

1

2
(3.8)

modulo ps. Hence

2z1
∂Is,1
∂z1

≡ −(λ+ 1)Is,1 − Is,2 +
z1

z1 − z2
(−Is,1 + Is,2) (mod ps) .



6 ALEXANDER VARCHENKO

We also have

∂Ψs,2

∂z1
= −

ps − 1

2

Φs

(t− z1)(t− z2)
= −

ps − 1

2

Φs

z1 − z2

[ 1

t− z1
−

1

t− z2

]

.

Hence

2z1
∂Is,2
∂z1

≡
z1

z1 − z2
(Is,1 − Is,2) (mod ps) .

Equation (3.6) for i = 1 is proved. Equation (3.6) for i = 2 is proved similarly. �

Theorem 3.2. Let s > e be positive integers, and λ, λ + 2 ∈ Λe. Then the vector Is(z;λ)
satisfies the congruence :

I(z;λ+ 2) ≡ K(z, λ)I(z;λ) (mod ps−e).(3.9)

Proof. Equation (3.7) can be written as

−
Φs

t
= −

2

ps − λ

∂Φs

∂t
+

ps − 1

ps − λ

( 1

t− z1
+

1

t− z2

)

Φs .

Hence

Ψs,1(z;λ+ 2) =
Φs(z;λ)

t(t− z1)
= −

Φs(z;λ)

z1

[1

t
−

1

t− z1

]

(3.10)

=
Φs(z;λ)

z1(t− z1)
−

2

(ps − λ)z1

∂Φs

∂t
+

ps − 1

ps − λ

( 1

z1(t− z1)
+

1

z1(t− z2)

)

Φs(z;λ)

By (3.8) the term
{

2
(ps−λ)z1

∂Φs

∂t

}

s
is divisible at least by ps−e. Hence (3.10) implies

Is,1(z;λ+ 2) ≡
λ+ 1

z1λ
Is,1(z;λ) +

1

z1λ
Is,2(z;λ) (mod ps−e).

Similarly we obtain

Is,2(z;λ+ 2) ≡
λ+ 1

z2λ
Is,2(z;λ) +

1

z2λ
Is,1(z;λ) (mod ps−e).

Theorem 3.2 is proved. �

3.3. Formulas for Is,1, Is,2, Ts.

Lemma 3.3. For λ ∈ Λs we have

Ts(z;λ) = (−1)
ps−λ

2

∑

k+ℓ= ps−λ
2

(ps−1
2

k

)(ps−1
2

ℓ

)

zk1z
ℓ
2 ,(3.11)

Is,1(z;λ) = (−1)
ps−λ

2
−1

∑

k+ℓ= ps−λ
2

−1

(ps−1
2

− 1

k

)(ps−1
2

ℓ

)

zk1z
ℓ
2 ,(3.12)

Is,2(z;λ) = (−1)
ps−λ

2
−1

∑

k+ℓ= ps−λ
2

−1

(ps−1
2

k

)( ps−1
2

− 1

ℓ

)

zk1z
ℓ
2 . �(3.13)
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3.4. p-ary representations. For λ ∈ Λs we have the following p-ary representations

ps − λ

2
= w0(λ) + w1(λ)p+ · · ·+ ws−1(λ)p

s−1,(3.14)

−λ

2
= w0(λ) + w1(λ)p+ · · ·+ ws−1(λ)p

s−1 +
p− 1

2
ps +

p− 1

2
ps+1 + . . .(3.15)

for some integers wi(λ), 0 6 wi(λ) 6 p− 1. Denote wi(λ) =
p−1
2

for i > s.

For λ ∈ Λ, denote by W (λ) the set of all distinct integers wi(λ) in the p-ary representation
of −λ

2
. The set W (λ) has at most p elements.

For example, −1
2

= p−1
2
(1+ p+ . . . ) and W (1) = {p−1

2
}, while 1

2
= p+1

2
+ p−1

2
(p+ p2+ . . . ),

and W (−1) = {p+1
2
, p−1

2
}.

For w = 0, 1, . . . , p − 1, let h(z;w) (resp. g1(z;w), resp. g2(z;w)) be the coefficient
of tp−1 in tw(t − z1)

(p−1)/2(t − z2)
(p−1)/2 (resp. in tw(t − z1)

(p−1)/2−1(t − z2)
(p−1)/2, resp. in

tw(t− z1)
(p−1)/2(t− z2)

(p−1)/2−1).

Lemma 3.4. For λ ∈ Λs we have

Ts(z;λ) ≡

s−1
∏

i=0

h
(

z
pi; wi(λ)

)

(mod p).(3.16)

The polynomial Ts(z;λ) is nonzero modulo p.

Proof. We have ps−1
2

= p−1
2

(1 + p+ · · ·+ ps−1). Then

Φs(t; z;λ) ≡
s−1
∏

i=0

(tp
i

)wi(λ)(tp
i

− zp
i

1 )(p−1)/2(tp
i

− zp
i

2 )(p−1)/2 (mod p).(3.17)

This implies (3.16). To prove the second statement of the lemma it is enough to check that
the polynomial h(z;w) is nonzero modulo p for w = 0, 1, . . . , p − 1. Indeed, there exist
nonnegative integers k, ℓ such that w = k + ℓ and k, ℓ 6 (p − 1)/2. Then the coefficient of

zk1z
ℓ
2 in h(z;w) equals (−1)w

( p−1
2
k

)( p−1
2
ℓ

)

and is nonzero modulo p by Lucas Theorem. �

Lemma 3.5. Let λ ∈ Λs and j = 1, 2. Then

Is,j(z;λ) ≡ gj(z;w0(λ))
s−1
∏

i=1

h
(

z
pi;wi(λ)

)

(mod p).(3.18)

If λ is not divisible by p, then Is,j(z;λ) is nonzero modulo p.

Proof. If λ is not divisible by p, then w0(λ) > 0. Then gj(z;w0(λ)) is nonzero modulo p.
Also, the polynomials h(z;wi(λ)) are nonzero modulo p. �

4. Dwork-type congruences

In this section we apply results from [V5] to obtain congruences relating the functions
Is(z;λ), Ts(z;λ) in z for different s. This type of congruences was originated by B.Dwork
in [Dw], see also, for example, [Me, MeV, VZ1, VZ2].

A congruence F (x) ≡ G(x) (mod ps) for two polynomials in some variables x with integer
coefficients is understood as the divisibility by ps of all coefficients of F (x)−G(x).
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Let F1(x), F2(x), G1(x), G2(x) be polynomials such that F2(x), G2(x) are both nonzero
modulo p. Then the congruence F1(x)/F2(x) ≡ G1(x)/G2(x) modulo ps is understood as the
congruence

F1(x)G2(x) ≡ G1(x)F2(x) (mod ps) .

Recall the master polynomial

Φs(t; z;λ) = t(p
s−λ)/2(t− z1)

(ps−1)/2(t− z2)
(ps−1)/2,

in particular,

Φ1(t; z; 1) = t(p−1)/2(t− z1)
(p−1)/2(t− z2)

(p−1)/2.

For λ ∈ Λe and s > e we have

Φs(t; z;λ) = Φe(t; z;λ)Φ1(t; z; 1)
pe+pe+1+···+ps−e−1

,(4.1)

In particular, we have

Φs−e(t; z; 1) = Φ1(t; z; 1)
1+p+···+ps−e−1

.

For λ ∈ Λe and s > e, the Newton polytope of Φs(t; z;λ) with respect to the variable t is
the interval

[

ps−λ
2

, ps−λ
2

+ ps − 1
]

.

For a positive integer k, the point kps − 1 lies in this interval only if k = 1.(4.2)

Recall that Ts(z;λ) = {Φs(t; z;λ)}s is the coefficient of tp
s−1 in Ψs(t; z;λ).

For λ ∈ Λe, the polynomial Ts(z;λ) is nonzeromodulo p ,(4.3)

by Lemma 5.7.

In [V5], certain congruences were proved for a sequence of polynomials like Φs(z;λ), s > e,
with properties like (4.1), (4.2), (4.3). In the case of the polynomials Φs(z;λ), s > e, the
congruences in [V5] say the following.

Theorem 4.1. Let e ∈ Z>0, λ ∈ Λe.

(i) For j ∈ {1, 2} denote Dj =
∂
∂zj

. Then for s > e we have

Dj(Ts(z;λ))

Ts(z;λ)
≡

Dj(Ts−1(z;λ))

Ts−1(z;λ)
(mod ps−e).(4.4)

(ii) For i, j ∈ {1, 2} and s > e we have

Di(Dj(Ts(z;λ)))

Ts(z;λ)
≡

Di(Dj(Ts−1(z;λ)))

Ts−1(z;λ)
(mod ps−e).(4.5)

Statements (i-ii) are special cases of [V5, Theorems 2.8 and 2.9].

Corollary 4.2. Let e ∈ Z>0, λ ∈ Λe, s > e, and i, j ∈ {1, 2}. Then

Is,j(z;λ)

Ts(z;λ)
≡

Is−1,j(z;λ)

Ts−1(z;λ)
(mod ps−e) ,(4.6)

∂Is,j
∂zi

(z;λ)

Ts(z;λ)
≡

∂Is−1,j

∂zi
(z;λ)

Ts−1(z;λ)
(mod ps−e) .(4.7)
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The corollary follows from formula (3.5) and Theorem 4.1.

Theorem 4.3. Let e ∈ Z>0. Let λ, λ+ 2 ∈ Λe and s > 2e. Then

Is(z;λ+ 2)

Ts(z;λ)
≡

Is−1(z;λ+ 2)

Ts−1(z;λ)
(mod ps−2e) .(4.8)

Proof. Using formulas (4.6), (4.7) and the fact that λ ∈ Λe, we obtain

1
λ

[λ+1
z1

1
z1

1
z2

λ+1
z2

]

Is(z;λ)
Ts(z;λ)

≡ 1
λ

[λ+1
z1

1
z1

1
z2

λ+1
z2

]

Is−1(z;λ)
Ts−1(z;λ)

(mod ps−2e).

Congruence (3.9) implies the congruences:

Is(z;λ+ 2)

Ts(z;λ)
≡

1

λ

[λ+1
z1

1
z1

1
z2

λ+1
z2

]

Is(z;λ)

Ts(z;λ)
(mod ps−e),

Is−1(z;λ+ 2)

Ts−1(z;λ)
≡

1

λ

[λ+1
z1

1
z1

1
z2

λ+1
z2

]

Is−1(z;λ)

Ts−1(z;λ)
(mod ps−e−1).

These three congruences imply congruence (4.8). �

5. Convergence

5.1. Unramified extensions of Qp. We fix an algebraic closure Qp of Qp. For every m,

there is a unique unramified extension of Qp in Qp of degree m, denoted by Q
(m)
p . This can

be obtained by attaching to Qp a primitive root of 1 of order pm − 1. The norm | · |p on Qp

extends to a norm | · |p on Q
(m)
p . Let

Z(m)
p = {a ∈ Q(m)

p | |a|p 6 1}

denote the ring of integers in Q
(m)
p . The ring Z

(m)
p has the unique maximal ideal

M(m)
p = {a ∈ Q(m)

p | |a|p < 1},

such that Z
(m)
p

/

M
(m)
p is isomorphic to the finite field Fpm.

For every t ∈ Fpm there is a unique t̃ ∈ Z
(m)
p that is a lift of t and such that t̃p

m

= t̃. The
element t̃ is called the Teichmuller lift of t.

5.2. Domain DB. For t ∈ Fpm and r > 0 denote

Dt,r = {a ∈ Z(m)
p | |a− t̃|p < r} .

We have the partition

Z(m)
p =

⋃

t∈Fpm

Dt,1 .

Recall z = (z1, z2). For B(z) ∈ Z[z], define

DB = {a ∈ (Z(m)
p )2 | |B(a)|p = 1}.
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Let B̄(z) be the projection of B(z) to Fp[z] ⊂ Fpm[z]. Then DB is the union of unit
polydiscs,

DB =
⋃

t1,t2∈Fpm

B̄(t1,t2)6=0

Dt1,1 ×Dt2,1 .

Lemma 5.1. For any nonnegative integer k we have

{a ∈ (Z(m)
p )2 | |B(apk)|p = 1} =

⋃

t1,t2∈Fpm

B̄(tp
k

1 ,tp
k

2 )6=0

Dt1,1 ×Dt2,1 =

=
⋃

t1,t2∈Fpm

B̄(t1,t2)6=0

Dt1,1 ×Dt2,1 = DB .

�

Lemma 5.2 ([VZ2, Lemma 6.1]). Let B̄(z) ∈ Fp[z] be a nonzero polynomial of degree d,
and d+ 1 < pm. Then the set {a ∈ (Fpm)

2 | B̄(a) 6= 0} is nonempty. Moreover, there are at

least p2m−1
pm−1

(pm − 1− d) + 1 points of (Fpm)
2 where B̄(z) is nonzero.

5.3. Domains of convergence. Recall the polynomials Ts(z;λ), Is,1(z;λ), Is,2(z;λ) as well
as the polynomials h(z;w), g1(z;w), g2(z;w). For λ ∈ Λ, denote

H(z;λ) =
∏

w∈W (λ)

h(z;w),

D
(m)(λ) = {a ∈ (Z(m)

p )2 | |H(a;λ)|p = 1}.

Let λ ∈ Λ be not divisible by p (that is, w0(λ) > 0). For j = 1, 2, denote

Gj(z;λ) = gj(z;w0(λ))
∏

w∈W (λ)

h(z;w),

D
(m)
∗ (λ) = {a ∈ (Z(m)

p )2 | |G1(a;λ)|p = 1 or |G2(a;λ)|p = 1}.

Denote C
(m) = {a ∈ (Z

(m)
p )2 | a1a2 6= 0}. For λ ∈ Λ divisible by p, denote

D
(m)
∗ (λ) = D

(m)(λ) ∩D
(m)
∗ (λ+ 2) ∩ C

(m).

Clearly, for any λ ∈ Λ, we have

D
(m)
∗ (λ) ⊂ D

(m)(λ),

and

⋂

λ∈Λ
D

(m)
∗ (λ) ⊃

{

a ∈ (Z(m)
p )2 |

∣

∣a1a2h(a; 0)

p−1
∏

w=1

h(a;w)g1(a;w)g2(a;w)
∣

∣

p
= 1

}

.(5.1)

Lemma 5.3. If m > 3, then
⋂

λ∈Λ D
(m)
∗ (λ) is nonempty.

Proof. We have deg
z
h(z;w) = w and deg

z
g1(z;w) = deg

z
g2(z;w) = w − 1. Hence the

polynomial in (5.1) has degree 3p2−7p+8
2

< p3 − 1. The lemma follows from Lemma 5.2. �
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Theorem 5.4. For e ∈ Z>0 and λ ∈ Λe, we have the following statements.

(i) The sequence of column vectors,
(

Is(z;λ)
Ts(z;λ)

)

s>e
, whose entries are rational functions in

z regular on D
(m)(λ), uniformly converges on D

(m)(λ) as s → ∞ to a a vector, whose

entries are analytic functions on D
(m)(λ). The vector will be denoted by I(z;λ) =

(I1(z;λ), I2(z;λ)).

(ii) The sequence of column vectors
(

Is(z;λ+2)
Ts(z;λ)

)

s>2e
, whose entries are rational functions

in z regular on D
(m)(λ), uniformly converges on D

(m)(λ) as s → ∞ to a vector,

whose entries are analytic functions on D
(m)(λ). The vector will be denoted by

Ĩ(z;λ+ 2) = (Ĩ1(z;λ+ 2), Ĩ2(z;λ+ 2)).

(iii) For j = 1, 2, the sequence of column vectors,
( ∂Is

∂zj
(z;λ)

Ts(z;λ)

)

s>e
, whose entries are rational

functions in z regular on D
(m)(λ), uniformly converges on D

(m)(λ) as s → ∞ to a

vector, whose entries are analytic functions on D
(m)(λ). The vector will be denoted

by I(i)(z;λ) = (I
(i)
1 (z;λ), I

(i)
2 (z;λ)).

Proof. Parts (i), (ii), (iii) follow from the congruences of (4.6), (4.7), (4.8), respectively. �

5.4. Relations between limiting vectors.

Lemma 5.5. Let λ ∈ Λ. We have the following equations on D
(m)(λ) :

∂I

∂zi
(z;λ) = I(i)(z;λ)−

1

2
Ii(z;λ)I(z;λ) ,(5.2)

I(i)(z;λ) = Hi(z;λ)I(z;λ),(5.3)

∂I

∂zi
(z;λ) =

(

Hi(z;λ)−
1

2
Ii(z;λ)

)

I(z;λ),(5.4)

Ĩ(z;λ+ 2) = K(z;λ)I(z;λ).(5.5)

Proof. Differentiating the congruence in (4.6) with respect to zi we obtain
∂Is,j
∂zi

Ts
−

∂Ts

∂zi

Ts

Is,j
Ts

≡

∂Is−1,j

∂zi

Ts−1
−

∂Ts−1

∂zi

Ts−1

Is−1,j

Ts−1
(mod ps−e) .

This congruence gives equation (5.2) as s → ∞. Equation (5.3) follows from the congruences
in (3.6) after dividing by Ts(z;λ) and taking the limit s → ∞. Equation (5.4) follows from
equations (5.2) and (5.3).

Equation (5.5) follows from congruence (3.9) after dividing by Ts(z;λ) and taking the
limit s → ∞. �

5.5. Limiting vectors. The vector-function Ĩ(z;λ + 2) = (Ĩ1(z;λ + 2), Ĩ2(z;λ + 2)) is
defined on D

(m)(λ), and the vector-function I(z;λ + 2) = (I1(z;λ + 2), I2(z;λ + 2)) is
defined on D

(m)(λ+ 2), see Theorem 5.4.

Lemma 5.6. The vector-functions Ĩ(z;λ + 2) and I(z;λ + 2) are proportional on

D
(m)(λ) ∩D

(m)(λ+ 2), that is,

Ĩ1(z;λ+ 2)I2(z;λ+ 2)− Ĩ2(z;λ+ 2)I1(z;λ+ 2) = 0.(5.6)



12 ALEXANDER VARCHENKO

Proof. To obtain Ĩ(z;λ+2) we divide the vector t Is(z;λ+2) by Ts(z;λ) and take the limit
as s → ∞. To obtain I(z;λ+ 2) we divide the same vector Is(z;λ+ 2) by Ts(z;λ+ 2) and
take the limit as s → ∞. Hence the limits are proportional. �

Lemma 5.7. Let e ∈ Z>0, λ ∈ Λe.

(i) Assume that a ∈ D
(m)(λ). Then |Ts(a;λ)|p = 1 for any s > e.

(ii) Assume that λ is not divisible by p and a ∈ D
(m)
∗ (λ). Then there exists j ∈ {1, 2}

such that |Is,j(a;λ)|p = 1 for any s > e.

Proof. The lemma follows from Lemmas 3.4 and 3.5. �

Lemma 5.8.

(i) Let λ ∈ Λ be not divisible by p and a ∈ D
(m)
∗ (λ). Then there exists j ∈ {1, 2} such

that |Ij(a;λ)|p = 1.

(ii) Let λ+ 2 ∈ Λ be not divisible by p and a ∈ D
(m)(λ)∩D

(m)
∗ (λ+2). Then there exists

j ∈ {1, 2} such that |Ĩj(a;λ+ 2)|p = 1.

(iii) Let λ ∈ Λ be divisible by p and a ∈ D
(m)
∗ (λ). Then the vector I(a;λ) is nonzero.

Proof. Under assumptions of part (i), there exists j ∈ {1, 2} such that |Gj(a;λ)|p = 1. Then
|Is,j(a;λ)|p = |Ts(a;λ)|p = 1 for all large s by Lemmas 3.4, 3.5, 5.1, 5.7. Part (i) is proved.

Under assumptions of part (ii), there exists j ∈ {1, 2} such that |Gj(a;λ+2)|p = 1. Then
|Is,j(a;λ + 2)|p = |Ts(a;λ)|p = 1 for all large s by Lemmas 3.4, 3.5, 5.1, 5.7. Part (ii) is
proved.

To prove part (iii) consider equation (5.5),

Ĩ(a;λ+ 2) =
1

λ

[λ+1
a1

1
a1

1
a2

λ+1
a2

]

I(a, λ),(5.7)

which holds for a ∈ D
(m)(λ). By part (ii), the vector Ĩ(a;λ + 2) is nonzero for a ∈

D
(m)(λ)∩D

(m)
∗ (λ+2). Since a ∈ D

(m)(λ)∩D
(m)
∗ (λ+2)∩C

(m) we have a1a2 6= 0. Hence the
matrix in (5.7) is well defined, and therefore I(a;λ) is nonzero. �

5.6. Invariant line bundle. Denote W = (Q
(m)
p )2, The differential operators

Di(λ) =
∂

∂zi
−Hi(z;λ), i = 1, 2,

define a connection on the trivial bundle W×(Z
(m)
p )2×Λ → (Z

(m)
p )2×Λ called the dynamical

connection.
For any λ ∈ Λ, we have a map of local sections of the bundle W × (Z

(m)
p )2 × {λ} →

(Z
(m)
p )2 × {λ} to local sections of the bundle W × (Z

(m)
p )2 × {λ + 2} → (Z

(m)
p )2 × {λ + 2}

defined by the formula,

τ : s(z) 7→ K(z;λ)s(z).(5.8)

We call the operator τ the qKZ discrete connection on the trivial bundle W× (Z
(m)
p )2×Λ →

(Z
(m)
p )2 × Λ.
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The dynamical and qKZ connections are compatible. Namely, for λ ∈ Λ and a local

section s(z) of W × (Z
(m)
p )2 × {λ} → (Z

(m)
p )2 × {λ} we have

D1(λ)
(

D2(λ)s(z)
)

= D2(λ)
(

D1(λ)s(z)
)

,

τ
(

Di(λ)s(z)
)

= Di(λ+ 2)
(

τs(z)
)

, i = 1, 2.

Denote

D
(m)[Λ] :=

⋃

λ∈Λ
D

(m)
∗ (λ)× {λ} ⊂ (Z(m)

p )2 × Λ.

For any (a, λ) ∈ D
(m)[Λ], the vector I(a, λ) is nonzero by Lemma 5.8.

For any (a, λ) ∈ D
(m)[Λ], let L(a,λ) ⊂ W be the one-dimensional vector subspace generated

by the vector I(a, λ). Then

L :=
⋃

(a,λ)∈D(m)[Λ]
L(a,λ) × {(a, λ)} → D

(m)[Λ]

is an analytic line subbundle of the trivial bundle W ×D
(m)[Λ] → D

(m)[Λ]

Theorem 5.9. The line bundle L → D
(m)[Λ] is invariant with respect to the dynamical and

qKZ connections. More precisely,

(i) if s(z) is a local section of L over D
(m)
∗ (λ)× {λ}, then Di(λ)s(z), i = 1, 2, also are

local sections of L over D
(m)
∗ (λ)× {λ};

(ii) if s(z) is a local section of L over (D
(m)
∗ (λ) ∩D

(m)
∗ (λ + 2)) × {λ}, then τs(z), is a

local section of L over (D
(m)
∗ (λ) ∩D

(m)
∗ (λ+ 2))× {λ+ 2}.

Proof. Let (a, λ) ∈ D
(m)
∗ (λ)×{λ}. Let c(z) be a scalar analytic function at a. Consider the

local section c(z)I(z;λ) of L at (a, λ). Then

Di(λ)
(

c(z)I(z;λ)
)

= − cHiI + c
∂I

∂zi
+

∂c

∂zi
I

= − cHiI + c
(

I(i) −
1

2
IiI

)

+
∂c

∂zi
I

= − cHiI + c
(

HiI −
1

2
IiI

)

+
∂c

∂zi
I

=
(

−
c

2
Ii +

∂c

∂zi

)

I .

Here we used Lemma 5.5. Clearly, the last expression is a local section of L at (a, λ). Part
(i) is proved.

By definition of τ , we have τ
(

c(z)I(z;λ)
)

= c(z)K(z;λ)I(z;λ). We also have the equality

c(z)K(z;λ)I(z;λ) = c(z)Ĩ(z;λ+ 2),

which holds on D
(m)(λ), by Lemma 5.5. The vectors Ĩ(z;λ+2) and I(z;λ+2) are propor-

tional on D
(m)(λ) ∩D

(m)(λ+ 2), by Lemma 5.6. For the smaller set D
(m)
∗ (λ) ∩D

(m)
∗ (λ+ 2),

the initial vector vector I(z;λ) and the resulting vector I(z;λ + 2) are both nonzero, by
Lemmas 5.7 and 5.8. This proves part (ii). �
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5.7. Special points.

Lemma 5.10. The points
(

0, 1; 1
)

,
(

1, 0; 1
)

,
(

1, 1; 1
)

belong to D
(m)
∗ (1)× {1} ⊂ D

(m)[Λ].

Proof. Straightforward calculation shows that Ts

(

0, 1; 1
)

= (−1)(p
s−1)/2, Is,1

(

0, 1; 1
)

=

(−1)(p
s−3)/2, Is,2

(

0, 1; 1
)

= (−1)(p
s−3)/2 ps−1

2
. Hence I

(

0, 1; 1
)

=
(

−1, 1
2

)

. Similarly we obtain

I
(

1, 0; 1
)

=
(

1
2
,−1

)

, I
(

1, 1; 1
)

=
(

− 1
2
,−1

2

)

. These vectors are nonzero modulo p. �

By Lemma 5.10, the analytic vector-function I(z; 1) is nonzero at (0, 1; 1), and its values

generate the line bundle L over a neighborhood of (0, 1) in D
(m)
∗ (1). Over a neighborhood of

(0, 1), the same line bundle can be defined differently. Consider the family of elliptic curves
X(z) defined by the equation y2 = t(t− z1)(t− z2). If the parameter (z1, z2) is close to (0, 1)
the curve X(z) has a vanishing cycle denoted by C0,1. The vector-function

I(C0,1)(z; 1) :=

∫

C0,1

( 1

(t− z1)y
,

1

(t− z2)y

)

dt(5.9)

is holomorphic at (0, 1), solves dynamical equations (2.2) for λ = 1, and I(C)(0, 1; 1) 6= 0.
The values of I(C)

(

z; 1
)

generate a line bundle denoted by L0,1 over a neighborhood of (0, 1).
The line bundle L0,1 is invariant with respect to the dynamical connection. The dynamical
connection for λ = 1 does not have other invariant proper nontrivial subbundles near (0, 1)
since other solutions of equations (2.2) for λ = 1 at (0,1) include log z1. Hence our line

bundle L coincides with the line bundle L0,1 over a neighborhood of (0, 1) ⊂ D
(m)
∗ (1).

Similarly, the elliptic curve X(z) has a vanishing cycle denoted by C1,0 if the parameter
(z1, z2) is close to (1, 0). The values of the nonzero vector-function

I(C1,0)(z; 1) :=

∫

C1,0

( 1

(t− z1)y
,

1

(t− z2)y

)

dt

generate a line bundle denoted by L1,0 over a neighborhood of (1, 0). Our line bundle L

coincides with the line bundle L1,0 over a neighborhood of (1, 0) in D
(m)
∗ (1).

Also, the elliptic curve X(z) has a vanishing cycle denoted by C1,1 if the parameter (z1, z2)
is close to (1, 1). Then the values of the nonzero vector-function

I(C1,1)(z; 1) :=

∫

C1,1

( 1

(t− z1)y
,

1

(t− z2)y

)

dt

generate a line bundle L1,1 over a neighborhood of (1, 1). Our line bundle L coincides with

the line bundle L1,1 over a neighborhood of (1, 1) in D
(m)
∗ (1).

Thus our global line bundle L extends over the field Q(m) the three local line bundles
L0,1, L1,0, L1,1, each defined by integrals over the cycles vanishing at different places. This
p-adic phenomenon was observed by B.Dwork in a different context, see [Dw] and also [V2,
Appendix], [VZ1]. The corresponding global line bundle was called a p-cycle in [Dw].

The operator τ of the qKZ difference connection identifies solutions of the dynamical
equations (2.2) with parameter λ with solutions of dynamical equations with parameter

λ + 2. Hence our line bundle L over a neighborhood of the point (0, 1) ∈ D
(m)
∗ (1 + 2k),
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k ∈ Z, corresponds to the line bundle generated by the vector-function

I(C0,1)(z; 1 + 2k) =

∫

C0,1

( 1

tk(t− z1)y
,

1

tk(t− z2)y

)

dt.(5.10)

The vector-valued functions

I(C1,0)(z; 1 + 2k) =

∫

C1,0

( 1

tk(t− z1)y
,

1

tk(t− z2)y

)

dt,

I(C1,1)(z; 1 + 2k) =

∫

C1,1

( 1

tk(t− z1)y
,

1

tk(t− z2)y

)

dt.

play similar roles in neighborhoods of points (1, 0) and (1, 1), respectively.

5.8. Monodromy. For an odd integer λ, the differential operators Di(λ), i = 1, 2, define
a flat dynamical connection on the trivial bundle C2 × C2 → C2. The flat sections of the
connection have the form

I(C)(z;λ, µ) =

∫

C

t−λ/2(t− z1)
−1/2(t− z2)

−1/2
( 1

t− z1
,

1

t− z2

)

dt,

see (1.1). The monodromy of this connection does not depend on the choice of the odd
integer λ and is isomorphic to the monodromy of the Gauss-Manin connection on the bundle
with fibers being the first homology groups of elliptic curves X(z) of the family defined by
the equation y2 = t(t−z1)(t−z2). It is classically known that this monodromy is irreducible.
Hence the dynamical connection defined by Di(λ), i = 1, 2, over the field of complex numbers
has no invariant line subbundles. Thus the presence of our line subbundle L → D

(m)[Λ],
invariant with respect to the dynamical and qKZ connections, is a specific p-adic feature.
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