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Figure 1. Our approach estimates absolute 3D positions of multiple humans in a scene, body shape and articulation in a globally and
temporally coherent manner from a single monocular RGB video. It achieves higher 3D reconstruction accuracy than competing methods,
allows motion re-targeting in the 3D space, and works exceptionally well even for in-the-wild videos.

Abstract

In this work, we consider the problem of estimating
the 3D position of multiple humans in a scene as well as
their body shape and articulation from a single RGB video
recorded with a static camera. In contrast to expensive
marker-based or multi-view systems, our lightweight setup
is ideal for private users as it enables an affordable 3D mo-
tion capture that is easy to install and does not require ex-
pert knowledge. To deal with this challenging setting, we
leverage recent advances in computer vision using large-
scale pre-trained models for a variety of modalities, in-
cluding 2D body joints, joint angles, normalized disparity
maps, and human segmentation masks. Thus, we introduce
the first non-linear optimization-based approach that jointly
solves for the absolute 3D position of each human, their ar-
ticulated pose, their individual shapes as well as the scale
of the scene. In particular, we estimate the scene depth
and person unique scale from normalized disparity predic-
tions using the 2D body joints and joint angles. Given the
per-frame scene depth, we reconstruct a point-cloud of the
static scene in 3D space. Finally, given the per-frame 3D
estimates of the humans and scene point-cloud, we perform
a space-time coherent optimization over the video to ensure
temporal, spatial and physical plausibility. We evaluate our
method on established multi-person 3D human pose bench-

marks where we consistently outperform previous methods
and we qualitatively demonstrate that our method is ro-
bust to in-the-wild conditions including challenging scenes
with people of different sizes. Code: https://github.
com/dluvizon/scene-aware-3d-multi-human

1. Introduction
Estimating the absolute 3D position, body shape, and ar-

ticulation of multiple people in a scene is a fundamental
research problem that has many applications in game devel-
opment, VR/AR, and HCI. Years of research went into de-
veloping sophisticated and expensive setups such as multi-
view systems, motion capture suits, and manually or semi-
automatically denoising of the tracked motions to then, for
example, animate CG characters with these captured mo-
tions. However, one ideally would like to obtain such an
absolute scene understanding from a capture setup that is
easy to install, affordable, and that does not require expert
knowledge, i.e. a single RGB camera. Such a lightweight
setup would enable 3D motion capture for private users, e.g.
avatar control via the smartphone, but it can also be applied
for post production in the movie industry where, for exam-
ple, one person should be replaced by another in a 3D con-
sistent manner. At the same time, it has to be stated that
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performing motion capture given such limited data is ex-
ceptionally more difficult compared to multi-view systems.
The major challenges for such a monocular setting, where
only a single static video of the entire scene with moving
persons is given, are the inherent depth ambiguity and oc-
clusions, among many others.

Therefore, recent monocular approaches focus on a sin-
gle human [33, 40] or even assume an actor template is
given [13, 14, 61]. Recently, some works started to research
the multi-person setting, but they either only learn a rela-
tive depth ordering of people in the scene [20] that is not
3D consistent over time or they directly predict absolute
depth, which is prone to overfit to the settings shown in the
training data [37]. Most of those works leverage recent ad-
vances in Computer Vision and take as input several types
of regressed data modalities obtained from models trained
on large-scale data. This involves 1) 2D body joints [4, 11],
2) joint angles [51], 3) normalized disparity maps [27, 41],
and 4) human segmentation masks [8]. Interestingly, none
of those works jointly considers all of those modalities.

To this end, this work investigates how each of those
modalities can benefit the task of multi-person absolute 3D
pose and shape estimation. A particular challenge, however,
is that each individual modality has, of course, advantages,
but also disadvantages. While 2D and 3D keypoint detec-
tions can help to infer the local 3D pose of a single person,
they cannot ensure 3D consistency across humans and the
scene. Joint angle estimates can be directly used to drive
CG characters, but they are usually less accurate than the
3D keypoint detectors due to error accumulation along the
kinematic chain. Normalized disparity maps provide global
reasoning of the entire scene as well as the humans in terms
of its scale-normalized depth, but they cannot provide abso-
lute depth and scale of the scene. Finally, human segmen-
tation masks can provide close to pixel-perfect and identity
preserving segmentations of humans in the scene, but they
lack a 3D understanding.

Now, to unite all the advantages of each of the modali-
ties while compensating for their potential limitations, we
propose the first optimization-based approach that jointly
recovers the absolute 3D position of all humans in the im-
ages, their articulated pose, their individual shapes, as well
as the scale of the scene from a single video recorded with a
static camera; see Fig. 1. In particular, we propose a novel
energy formulation, which infers the absolute scene depth
and the person unique scale from scale-normalized dispar-
ity predictions by using the 2D and joint angle estimates of
the humans in the scene as a prior. Once the per-frame ab-
solute depth is known, we reconstruct a dense point cloud of
the static scene in absolute 3D space by segmenting out the
humans using the predicted segmentations and aggregating
per-frame depth over time. Finally, we perform a coherent
space-time optimization over the entire sequence to ensure

temporal and spatial consistency as well as physical plausi-
bility leveraging the aggregated scene estimate and the joint
angle predictions. Note that in each of those steps, the com-
bination of different data modalities is leveraged through
our method and only this specific approach achieves the de-
sired result in the considered setting, as extensively shown
in our results. In summary, our primary technical contribu-
tions are as follows:

• The first monocular approach for multi-person abso-
lute pose and unique scale estimation that jointly esti-
mates multiple human poses and the 3D scene by com-
bining data modalities in a novel optimization frame-
work.

• A human body prior to disambiguate the scale of the
scene, which allows us to perform a coherent space-
time reasoning of the human motion in absolute space.

• We show that the estimated 3D human bodies can be
refined in 3D space and time by filtering body move-
ments in 3D coordinates and by penalizing implausible
poses w.r.t. the estimated scene, resulting in a more co-
herent final prediction.

Since our approach estimates joint angles, global positions
and scale, the recovered 3D human poses can be directly
applied to CG characters enabling exciting applications as
shown in Section 4. Moreover, we demonstrate that the joint
reasoning of the human body shape, pose, and the dense
scene over the entire video sequence improves state of the
art in terms of 3D localization, scene and person scale, as
well as body pose compared to prior work, both, quanti-
tatively and qualitatively. Finally, we show that several
downstream applications can be directly derived from our
method, like monocular human motion capture and avatar
control.

2. Related Work
3D human motion capture is an active research area, and

many works have been proposed in the past [6, 23, 31, 32,
36, 49, 50, 53, 55, 70]. Since we target a monocular setting,
we do not review multi-view- and depth-based methods. In-
stead, we review previous works that are most related to our
method.

2.1. 3D Human Pose Estimation

2.1.1 Single Person Pose Estimation

Estimating the human body pose in 3D from a single image
is a challenging problem that has been successfully handled
by learning a human body prior from MoCap data [19]. To
simplify the problem, previous methods usually predict 3D
coordinates relative to the root joint, assuming a normalized
human body size [33] and a fixed bounding box around the
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person in 3D space [36, 40]. However, when multiple peo-
ple are interacting with the environment, normalized and
root-relative predictions are not enough to disambiguate the
position and scale of individual persons in the scene. In
addition, directly estimating the 3D joint coordinates could
result in implausible poses, which is a problem that can be
mitigated by estimating joint angles instead [71].

Several works focus on estimating the full human mesh
deformation from videos [13, 14, 61], assuming that the ac-
tor mesh is provided in advance. Other works for single
human estimation [22,24,39] rely on SMPL [30] as a proxy
shape. Reconstructing shape proxies along with sparse 3D
skeletons is desirable in many scenarios (e.g., they can be
used for body parts segmentation). Moreover, SMPL serves
as a statistical prior on human body shapes and enables ad-
ditional supervisory terms such as human silhouette over-
lays in 2D, which can result in higher accuracy [39].

2.1.2 Multiple Person Pose Estimation

Estimating positions of each person w.r.t. the others is cru-
cial in multi-human pose estimation. Nonetheless, most of
the existing multi-person methods are by design perform-
ing root-relative predictions [1, 45, 46, 51]. Several tech-
niques predict translations of each person in the camera
reference frame. They either optimize the translation by
projecting and fitting the estimated 3D poses into the im-
age plane [9, 34, 66] or by directly regressing the distance
of the root joint to the camera with a deep neural net-
work [28, 37, 56, 69]. The first case can be more robust
to different camera setups, but is limited by the unknown
height of each person in the scene. The second strategy is
highly dependent on the training data and may not gener-
alize to camera configurations not present in the training.
Others explore human priors [26] to estimate a global tra-
jectory [64], but still fail to recover the body size.

Recent methods performing human depth estimation are
focused on penalizing depth ordering of multiple humans.
For instance, Jiang et al. [20] uses instance segmentation
masks to penalize depth inversion and Sun et al. [52] pro-
poses to infer the depth of each person based on an imagi-
nary bird’s-eye-view representation and to estimate the per-
son age as a proxy for the scale. Other approaches pre-
dict the relative depth among multiple persons by inferring
some scene properties. A possible scene simplification is to
assume a parametric planar floor, in such a way that each
prediction can be positioned to respect a plausible human-
floor contact [54, 65]. The common limitation of such ap-
proaches is the dependency on a simplified floor represen-
tation, which is often not the case in real applications. Con-
trarily, we estimate a scene point cloud that can represent a
arbitrary ground floor.

The works from Jiang et al. [20] and Ugrinovic et al. [54]

are the most closely related to ours. Similarly to the for-
mer, we also render the estimated human models into the
image plane to provide additional supervision in the depth
dimension, and, related to the latter, we also disambiguate
body size and depth for each person by constraining pre-
dictions with an estimated scene geometry. But differently
from [20], that does not take the scene into account, and
from [54], that relies on a simplified scene representation
and operates in a single frame, our method represents the
scene as a frustum point cloud and performs optimization
over the entire video sequence. In our work, we also rely
on a human body proxy model [30] to estimate joint angles
and we propose a new formulation to optimize the position
of the humans and the scene in a joint optimization process.
Therefore, our model improves the prediction of human po-
sitions by relying on an estimated proxy scene geometry
that does not depend on a simplified parametric model.

2.2. Scene-aware Motion Capture

Predicting and understanding how humans interact in
3D has recently gained a lot of attention. Several current
methods focus on positioning humans in a pre-scanned 3D
scene [12, 15, 18] and on simultaneous estimation of hu-
man poses and objects humans interact with [7, 59, 62]. A
different setup assumes an RGB-D sensor [68] or a mov-
ing camera [16, 25, 29, 67] that facilitates estimating the
scene geometry. Recent methods integrate physics-based
constraints into monocular 3D human motion capture and
mitigate foot-floor penetration and other severe artefacts
[47, 48]. Yu et al. [63] also support composite scenes in the
parcours and sports scenarios. Although there is a growing
interest in investigating the interactions of humans and ob-
jects [2, 10], 3D motion capture of multiple humans with
environmental awareness from a single monocular camera
remains underexplored.

Determining the absolute human scale in 3D is an ill-
posed and challenging task. Bieler et al. [3] estimate the
height of a single person from monocular videos by observ-
ing jumping people. Dabral et al. [10] require an interaction
with an object undergoing a free flight to resolve the abso-
lute scene scale. Both methods assume motion influenced
by the universal law of gravity near the surface of Earth,
which allows them to relate the time spent in the air or the
form of the observed trajectory with absolute distances in
the metric units. The downside is that jumping humans
or flying objects are restrictive assumptions. In contrast,
we use a human body and 3D scene priors in 3D multi-
human motion estimation and do not make strong assump-
tions about the observed human motions.

3. Method
The goal of our method is to estimate the absolute 3D

position of each human in the scene, i.e., up to a unique and
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Figure 2. Overview of our method. For each frame in a monocular RGB video, we first estimate a normalized disparity map, 2D human
poses, SMPL model parameters, and segmentation masks. These predictions are matched and tracked across frames to obtain per-person
associations (blue box). The multi-modal estimates are then fed into our optimization framework. The first part of our optimization
process estimates per-frame human models in global position and the scene geometry (yellow box). In the second part, the per-frame scene
predictions are aggregated into a single point cloud representation and the human predictions are refined in a space-time coherent manner
over the full video (red box). The yellow arrows indicate the energy terms minimized by our method. The output of our method is the
absolute 3D positions of each human in the scene, their shape and pose as well as the scene scale. � is the Hadamard product.

global scale, their proxy shape and pose, as well as the scene
scale solely from a monocular RGB video recorded with
a static camera for which we know the intrinsics. To this
end, we propose a unified approach that, for the first time,
leverages all available data modalities, including 2D joint
detections, regressed SMPL parameters, estimated dispar-
ity maps, and human segmentations. As illustrated in Fig-
ure 2, our method is divided into two stages. The first stage,
i.e. Image Modality Regression and Matching (Section 3.1),
extracts per-frame estimates and aggregates human-related
predictions to individuals throughout the video sequence.
The second stage, i.e. the proposed Optimization Frame-
work, estimates the person and per-frame scene scale, the
global 3D position of each person in the scene, as well as
the refined articulated body pose in the form of joint angles
per frame.

The optimization framework is further subdivided into
two parts. The Scene Scale and Depth Disambiguation part
(Section 3.2) recovers a consistent and absolute 3D scene
depth per frame, the human scales, and their absolute 3D
position and body pose by jointly reasoning about multi-
ple humans and the scene. The second part, referred to as
Space-time Coherent Pose Optimization (Section 3.3), re-
fines the pose and position of the estimated humans in a

space-time coherent formulation, i.e. we enforce over the
entire sequence the estimated poses to be temporally sta-
ble and physically plausible. For this, we leverage a rough
scene geometry estimation, which is obtained by aggregat-
ing the absolute depth maps also estimated by our method.
This final part significantly reduces artifacts, such as foot
sliding, human-scene intersections, and jitter. Before we
explain our method in more detail, we introduce relevant
notations.
Notations. The input of our framework is a video se-
quence It, with t ∈ {1, . . . , T}, where T is the number of
frames. We leverage the skinned multi-person linear model
(SMPL) [30] to represent the humans in the scene. SMPL is
a differentiable parametric human model that takes as input
the pose parameters θ ∈ R72, corresponding to the axis-
angles of 24 body joints and the global body rotation, and
PCA shape parameters β ∈ R10, and produces a skinned
human mesh

fsmpl(θ,β) = V, (1)

where V are the posed and shaped vertices of the human
body; for more details we refer to their paper [30]. The
mesh vertices regressed by SMPL can also be used to es-
timate a sparse 3D pose as J (V), where J (·) is a linear
regressor parameterized by a matrix W ∈ RJ×6890, and J
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denotes the total number of joints.
To account for translations in 3D space, we further add a

translation Γt,n ∈ R3 to the SMPL representation, where n
is the person index. Furthermore, the 3D human pose mod-
els are overwhelmingly biased towards adult body sizes.
Thus, we explicitly model the person scale by sn ∈ R+

and our final human mesh can be defined as

Ṽt,n = snVt,n + Γt,n. (2)

This human mesh for person n at time t is then fully deter-
mined by the parameters θt,n, Γt,n, βn, and sn, which we
aim to recover in the following. Important to note is that the
person scale sn and shape βn are unique for each person
and consistent across the entire video sequence.

3.1. Input Modality Regression and Matching

To solve this underconstrained and challenging problem,
our idea is to unite the strength of all data modalities, which
recent state-of-the-art Computer Vision methods provide, in
a single algorithm. More precisely, we leverage data-driven
priors in the form of four off-the-shelf methods for each
frame of the input video sequence, as shown in Figure 2.

First, we obtain normalized disparity maps d̂t from
the state-of-the-art DPT model [41], which are then post-
processed to enhance sharpness [58]. Note that these maps
only encode relative and normalized depth and they are not
consistent across frames, which becomes visible in the form
of depth jitter.

Second, 2D pose tracking is obtained by AlphaPose [11],
which coherently detects and tracks 2D joint positions
P̂2d

t,n ∈ RJ×2 in image space and over time. Although this
method is very robust due to training on large scale data, it
falls short in predicting 3D.

Third, we predict the body shape βt,n and joint angles
θ̂t,n for each person in each frame using ROMP [51]. Since
ROMP predicts varying shapes for a single person across
time, we average the predictions over the entire sequence to
obtain a temporally consistent body shape. Thus, the ver-
tices (Equation 2) are now only a function of the pose θt,n,
translation Γt,n, and scale sn, which will be important in
the next section. Moreover, to match the 2D AlphaPose
and the SMPL detections, we leverage ROMPs projection
model, compute the average Euclidean distance in image
space, and pair detections with the lowest distance based on
the Hungarian matching. It is worth mentioning that ROMP
cannot account for out-of-distribution body sizes, e.g. small
kids, neither it can predict the absolute 3D position of the
humans with respect to the scene.

Fourth, we also leverage human segmentation masks,
referred to as Ωt,n ∈ RH×W , which are obtained from
Mask2Former [8]. Similarly, if we consider all the remain-
ing pixels for frame t that do not belong to a person mask,
we can also obtain a per-frame background segmentation

mask Bt ∈ RH×W . To ensure that the 2D AlphaPose de-
tections, the SMPL detections, and the foreground masks
have a consistent person ID, we read the pixel values of
the segmented masks at the 2D joint detections for each de-
tected skeleton and apply a max-voting to retrieve the ID of
the person.

In summary, the inputs to our algorithm now are:

• d̂t: Normalized disparity maps

• P̂2d
t,n: 2D joint predictions

• θ̂t,n, β̂n: Pose angle and shape estimates

• Ωt,n,Bt: Human and background segmentations

Note that none of these predictions individually or by a triv-
ial combination is discriminative enough to fully describe
the entire scene, i.e. absolute 3D position, pose, and scale
of the humans in the scene. Next, we demonstrate how our
proposed method solves this problem.

3.2. Scene Scale and Depth Disambiguation

In the first part or our optimization process we focus on
jointly obtaining the joint angles θt,n, shape parameters βn,
global translation Γt,n, and scale sn of each person. Impor-
tantly, this step is performed jointly for the entire sequence,
where the global reference is in the static camera. How-
ever, estimating the height of a person and the scale given
only a single RGB video is, by itself, an ill-posed problem
as variations in scale can be compensated by a translation
along the depth and vice versa. As a result, infinitely many
scale/translation combinations can lead to the same 2D im-
age projections.

So far, we only considered individual humans without
looking at the surrounding scene, although the scene itself
can provide an important prior that helps to solve the above
problem. Therefore, we leverage recent advances in monoc-
ular depth estimation [41], which regress per-pixel normal-
ized disparity maps d̂t. It encodes the relative depth of each
person in the scene, but obtaining the absolute depth val-
ues solely from d̂t is also an ill-posed problem, and fur-
ther these predictions are not consistent across frames. The
question remains, how the absolute scene depth or equiva-
lently the human scales and translations can be recovered.

Our idea is to set the two entities, i.e., the scene and the
humans, into a relation such that they constrain each other
in an absolute 3D space. While the humans can already
be represented in absolute space by means of their global
translation Γt,n and scale sn, we also require a per-frame
conversion of temporally inconsistent normalized disparity
maps to absolute depth maps, which can be defined as

D̃t =
zfar,tznear,t

d̂t(zfar,t − znear,t) + znear,t
(3)
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where znear,t and zfar,t are the near and far depth values,
respectively. Intuitively, this operation shifts and scales the
normalized disparity maps to convert them to absolute depth
values. Importantly, these near and far values are optimized
per-frame to compensate for the temporal inconsistencies in
the disparity maps.

Once both humans and the scene can be represented in
absolute 3D space, we now relate them to each other by
jointly solving for κt,n ∈ {znear,t, zfar,t,θt,n,βn,Γt,n, sn}
by minimizing the energy

arg min
∀t∈{1,...,T},∀n∈{1,...,N}:κt,n

EI, with (4)

EI = Edepth + E2d + Esmpl + Ereg, (5)

which is jointly optimized over the entire sequence. In par-
ticular, our energy is composed of a depth term Edepth, a
2D image evidence term E2d, a joint angle and shape term
Esmpl, and additional regularization terms Ereg. In the fol-
lowing, we explain each term in more detail.

3.2.1 Depth Consistency Energy

Most importantly, to ensure a coherent depth between the
scene and all humans in the scene, we propose a depth con-
sistency energy

Edepth = λdepth
∑
t,n

(
M(Ψd(Ṽt,n))−M(D̃t)

)2
, (6)

M(D) =
∑ Ωt,n

|Ωt,n|
log(D), (7)

where |Ω| denotes the number of foreground pixels, M(·)
computes the average of the log-depth in the foreground,
Ψd(·) is a differentiable rasterizer [43] that projects and
converts a 3D mesh into a depth map in the image plane,
and λdepth is a hyperparameter. The vertices Ṽt,n refer to
the estimated SMPL models of each person in global space,
which are a function of the variables θt,n, βn, Γt,n, and sn
(Equation 2). The rasterized human depths are then com-
pared to the estimated absolute depth map D̃t of the scene
(Equation 3), which are a function of the variables znear,t
and zfar,t. Thus, this energy jointly optimizes the human
and the scene parameters. However, since both sides of the
penalty term contain free variables, this energy alone would
not disambiguate the problem.

3.2.2 Image Projection Energy

We introduce an additional data term, which further con-
strains the human-related variables by enforcing the 3D
bodies to project accurately into the image plane. More pre-
cisely, the data term

E2d = Ejoints + Esilhouette (8)

penalizes the error between the projected 3D body joints
J (Ṽt,n) of the optimized SMPL models and the respective
2D body joints P̂2d

t,n regressed by AlphaPose with

Ejoints =
∑
t,n

∥∥∥Π(J (Ṽt,n))− P̂2d
t,n

∥∥∥2
2
, (9)

where Π(·) is the perspective camera projection operator.
The right term of (8) penalizes the discrepancy between the
SMPL silhouette and the instance segmentation masks:

Esilhouette =
λsilhouette
|Ω|

∑
t,n

σt,n

∥∥∥Ψs(Ṽt,n)−Ωt,n

∥∥∥2
2
,

(10)
where Ψs(·) is a differentiable renderer [43] that projects
and converts a 3D mesh into a silhouette image and σt,n is
a visibility mask, so vertices hidden by other humans are
not penalized.

3.2.3 Joint Angle and Shape Energy

Since (8) only constrains the parameters in 2D image space,
we further add an additional data term that ensures that
the optimized SMPL parameters are close the prediction of
ROMP:

Esmpl = λsmpl

∑
t,n

∥∥∥θt,n − θ̂t,n

∥∥∥
1

+
∥∥∥βn − β̂n

∥∥∥
1
. (11)

Here, ‖·‖1 denotes the L1 norm.

3.2.4 Temporal and Human Priors

To further constrain the scale and position of a person, we
leverage priors on the human body size and on the temporal
information. This is achieved by our regularization term

Ereg = Escale + Espeed. (12)

For the scale term Escale, our assumptions are two-fold:
i) The scale of a person should not deviate too much from
the standard person size, i.e., the standard SMPL size when
sn = 1, and ii) the average scale of multiple people in the
scene should remain close to one. This dual assumption is
enforced by

Escale = λscale
∑
n

(sn − 1)
2

+

(∑
n

(sn − 1)

)2

, (13)

where the first term accounts for the individual person scale
and the second term accounts for the average scale of mul-
tiple persons.

In addition to the person scale, we also introduce an un-
derlying assumption that locomotion is rather smooth over
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Figure 3. Per-frame estimations of our method considering the first
optimization part (Section 3.2) only. From left to right: Estimated
depth map, frontal view of the scene and estimated humans, and
top view. Note how the persons’ absolute 3D location, articulated
pose and shape as well as the scene scale can be recovered from
a single input image, even with people of different sizes (bottom
row).

time based on the physical limits of the human body, so we
penalize large movements of the root joint by our energy

Espeed = λspeed
∑
t,n

‖Γt,n − Γt−1,n‖22 . (14)

In the optimization process described above, the per
frame human parameters and the absolute scene depth
are obtained by means of the optimized human ∀t ∈
{1, ..., T},∀n ∈ {1, ..., N} : θt,n,βn,Γt,n, sn, and scene
znear,t, zfar,t parameters. Figure 3 shows our estimated
scene and humans for example frames. Note that the es-
timated depth looks plausible, humans and the scene are
coherent with each other, and the reprojection of humans
into the input view looks accurate.

3.3. Space-time Coherent Pose Optimisation

Since we obtained absolute and per-frame human mod-
els and scene estimations, both information can be used to-
gether to further refine the human poses in a spatially and
temporally coherent manner. Therefore, in the last part
of our optimization method, we refine the estimated poses
in 3D by enforcing physical plausibility between humans
and the estimated scene, as well as by applying a temporal
smoothness term. More precisely, we extend (4) by includ-
ing a new energy term EII:

arg min
∀t∈{1,...,T},∀n∈{1,...,N}:κt,n

EI + EII, with (15)

EII = Econtact + Eslip + Etemporal. (16)

For implementing Econtact and Eslip, we leverage the esti-
mated scene geometry as a reference for enforcing foot con-
tact and penalizing foot slipping. In the following, we first
explain how the per-frame depth maps are aggregated into
a static 3D scene representation, then we present the energy
terms of EII in more detail.

3.3.1 Scene Point Cloud Estimation

Our method relies on humans as anchors in the scene, i.e.,
the estimated geometry around the humans tends to be co-
herent. However, mainly due to occlusions, the estimated
per-frame absolute depth values are not yet temporally con-
sistent for the whole scene. To obtain a static representa-
tion of the background, we rely on the segmentation masks
to aggregate the depth values in the background from each
frame into a single depth map. This static depth map
representation is obtained by computing the per-pixel me-
dian for the entire video sequence, which is a metric ro-
bust to outlier depth values. We also experimented with
more sophisticated aggregation strategies, such as aggre-
gating values near the human anchors weighted by a Gaus-
sian distribution—since the human positions are stable—
but this strategy was significantly more expensive and re-
sulted in marginal improvements. At the end of this ag-
gregation process, we obtain a single depth map D̂ of the
scene, which can be then converted to a point cloud repre-
sentation P ∈ RHW×3 in absolute 3D space.

3.3.2 Improving Physical Plausibility of Estimated
Motions

Recently, a series of works highlighted the importance of
physics awareness in monocular single person motion cap-
ture [25, 44, 47, 48] with assumptions about the camera and
floor plane positions. Inspired by them and the fact that we
obtain a coherent and unique scale estimation of the scene,
we propose to model in our energy formulation the phys-
ical interaction between the humans and the environment.
Here, the first term penalizes ”floating” characters, i.e., hu-
mans that are not in contact with the ground, and the second
term penalizes foot sliding, i.e., a foot that is in contact with
the ground should not move.

More precisely, given the scene point cloud P and the
estimated human meshes Ṽt,n, floating characters are pe-
nalized by

Econtact = λcontact
∑
t,n

ζ
(∥∥∥min(Ṽy+

t,n −P)
∥∥∥
1

)
(17)

where Ṽy+
t,n ∈ R1×3 is the vertex of person n at time t with

lower Y coordinate, considering that the Y -axis is the grav-
itational axis for our coordinate frame. In other words, the
term Econtact minimizes the distance between the lower ver-
tex Ṽy+ of each prediction and its respective closest point
in the scene point cloud. Here, ζ(·) is a robust thresholding
function, which only considers distances below 20cm.

The term

Eslip = λslip
∑
t,n

ζ
∥∥∥∆(Ṽ y+

t,n )
∥∥∥
1

(18)
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penalizes the movement of this lowest vertex in the time
domain (∆) when it is in contact with the scene. By ap-
plying those energy terms, we can now enforce that the hu-
mans interact more physically accurate with respect to the
3D scene.

3.3.3 Temporally Stable Pose

Furthermore, since the joint and absolute position optimized
by EI can still contain smaller jitter, we propose a temporal
stability term

Etemporal = λtemporal

∑
t,n

∥∥∥∆t(Ṽt,n)−∆t(V̄t,n)
∥∥∥2 ,

(19)
based on the 1C filter [5], where ∆t(Vt,n) = Vt,n −
Vt−1,n is the temporal variation of the human mesh ver-
tices and V̄t,n are the estimated SMPL vertices after tem-
poral filtering [5]. This term allows us to obtain temporally
more stable poses with significantly less jitter.

4. Experiments
In this section, we present an empirical evaluation of our

method. We first briefly describe the datasets and metrics
used in our experiments in Sections 4.1 and 4.2, followed
by the implementation details in Section 4.3. Next, we com-
pare our approach with the most related works to ours in
Section 4.4. In Section 4.5, we perform a thorough abla-
tion study of the main components of our method and show
additional qualitative results in Section 4.6.

4.1. Datasets

MuPoTs-3D [35] is a test dataset composed of 20 video
sequences with multiple people, including different types of
cameras in indoor and outdoor environments. We followed
the evaluation protocol from [35] in our experiments. This
dataset is especially challenging due to the large amount
of interactions between humans and the various types of
scenes. Ground-truth 3D pose annotations are provided in
absolute coordinates.
CMU Panoptic [21] is a dataset recorded in the Panoptic
Studio with multiple people. As in preliminary work [20,
65], we use this dataset for evaluation considering the
sequences haggling1, ultimatum1, and pizza1,
which are performed by several adults.

In addition to the previous datasets, we also evaluated
our method quantitatively on Internet videos considering
challenging cases with multiple people of different sizes,
including adults and children.

4.2. Metrics

MRPE and AP. We quantitatively evaluate the predic-
tion of the absolute 3D location of a human using the widely

adopted mean root position error (MRPE), in millimeters,
and the average precision of the human root joint (AProot

25 )
[37], considering the standard threshold of 25 cm.
3DPCK. The quality of the articulated 3D pose prediction
is measured using root-relative 3DPCK [33], with the stan-
dard threshold of 15 cm. The 3DPCK metric enables mea-
suring the correctness of the pose, independently of the pre-
diction of the absolute 3D location of the human.
MPJPE. For a fair comparison with previous methods,
we also report root-relative mean per-joint position error
(MPJPE) in the CMU Panoptic dataset.
Jitter. Finally, since we are targeting high-quality tem-
poral predictions in 3D coordinates, we also evaluate the
amount of jitter of our estimations, which is a critical in-
dicator for many downstream applications. For this eval-
uation, we adapted the temporal smoothness error esmooth

from [47] to evaluate the jitter in 3D coordinates.

4.3. Implementation Details

Our method is implemented in PyTorch [38] using Py-
Torch3D [43] for the rasterization (6) and silhouette render-
ing (10). The camera intrinsics are used in the 3D joint pro-
jection (9), rasterization (6), and rendering (10) parts, and
can be obtained from video metadata if not given. We ap-
ply the RMSprop [17] optimizer with the parameters α and
momentum set to 0.5 and 0.9, respectively, for all experi-
ments. In the optimization process, we initially minimize
the first part (4) only for 30 iterations, then perform the full
optimization (15) for more 200 iterations. We use a learn-
ing rate initially set to 0.01 and exponentially decaying with
factor 0.99. The weights λ(.) were empirically defined to
balance the magnitude of the individual energy terms, and
fixed in the method in all experiments, except when men-
tioned otherwise (ablation in Section 4.5). The values
were defined as λdepth = λspeed = 0.05, λsilhouette = 0.1,
λsmpl = λtemporal = 0.002, λscale = 0.0001, λcontact =
0.001, and λslip = 0.01. For numerical stability, we con-
strain the variables sn, znear,t, and zfar,t to be non-zero and
positive. Both human and background segmentation masks
were post-processed with morphological erosion and dila-
tion filters of size 3×3 and 5×5, respectively. For the sake
of GPU memory efficiency, we use mini batches of ten im-
ages in the depth and silhouette losses. Our experiments run
on a workstation with one Nvidia Titan V GPU with 12 GB
of memory.

4.4. Comparison with Previous Methods

In Table 1, we compare our method to the most related
prior work. We compare our method for human localiza-
tion considering MRPE and AProot

25 metrics with the meth-
ods that are capable of providing such predictions. We use
two protocols to evaluate the quality of the 3D pose. First,
we compare against the global 3D pose without any nor-
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Table 1. Comparison of our method with previous approaches on
MuPoTs-3D in the MRPE (lower is better), AProot

25 , and 3DPCK
metrics (higher is better), considering the global 3D pose and the
normalized (univ) ground truths. Our approach is superior to all
compared methods on the absolute metrics (MRPE, AProot

25 and
3DPCK3d), i.e., the most expressive ones for 3D human motion
capture. “†” evaluated on samples with IK only; “∗” evaluated on
root-relative predictions without IK; “‡” results only possible with
an additional 2D fitting stage, implemented as our baseline.

Method
Char.

control MRPE ↓ AProot
25 3DPCK3d 3DPCKuniv

LCR-Net [45] 8 – – – 53.8
LCR-Net++ [46] 8 – – – 70.6
3DMPPE [37] 8 – 31.0 – 81.8
SMAP [69] 8 – 45.5 – 80.3
XNect∗ [34] 8 – – 64.1 71.9
XNect† [34] 4 639 31.6 56.5 60.1
CRMH [20] 4 – – – 69.1
BEV [52] 4 – – – 70.2

Baseline (ROMP+2D fitting) 4 331‡ 45.4‡ 68.2‡ 71.8
Ours 4 266 62.3 74.9 78.9

malization, which is a fairer protocol for our method, since
we are capable of estimating the person scale (denoted by
3DPCK3d). In the second case, we compare against the uni-
versal 3D pose, which has all bone lengths normalized to a
standard size, as described in [35] (denoted as 3DPCKuniv).
For this universal protocol, in our method, we assume per-
son scale sn equals to one for all predictions. Note how our
method outperforms all prior work by a wide margin at 3D
localization and also performs better at estimating the ar-
ticulated pose compared to all other methods that allow for
character control. As a baseline, we evaluate ROMP [51]
predictions with an additional stage for fitting estimated
SMPL models to AlphaPose 2D body joint detections, since
this is the closest setup to our method without including our
new energy functions. For this, we assume a unitary person
scale (w.r.t. the SMPL neutral model) and optimize only
the global translation in 3D of each person. In a similar
manner, XNect [34] estimates the global position by fitting
the predicted 3D poses into 2D body joints, assuming a uni-
versal and normalized human body size. The inverse kine-
matics (IK) stage from XNect allows this global estimation,
however, since the optimized 3D human pose differs from
the preliminary estimated pose, the accuracy after IK drops
significantly. In summary, we observe that our approach
outperforms previous methods for human position estima-
tion by a significant margin, improving the average preci-
sion of the root joint from 45.4% to 62.3%. Our method
also outperforms all other approaches for human pose esti-
mation that are capable of driving a virtual character.

In Table 2, we compare our method with other ap-
proaches on the CMU Panoptic dataset. This dataset is spe-
cially challenging because in many sequences the persons
are only partially visible, either due to occlusions, or be-

Table 2. Comparison of our method with previous approaches
on the CMU Panoptic dataset for 3D pose estimation. Results
reported in millimeters. Camera views capturing only the upper
body parts were not used in our evaluation. † evaluated in all the
sequences. Best results are bold on the standard sequences and
underlined on the full-body visible sequences.

Metric Method Haggling Ultimatum Pizza Avg.

MPJPE
CRMH [20]† 129.6 153.0 156.7 146.4
BEV [52]† 90.7 113.1 125.2 109.6
Baseline 93.6 133.8 145.9 124.4
Ours 84.5 108.9 133.2 108.9

MRPE Baseline 235.2 269.6 356.4 287.0
Ours 213.7 208.0 229.7 217.1

cause the camera is capturing only the upper body part of
the actors. Even in this challenging scenario, our method
performs on par with the recent BEV [52] method, which
was trained on the CMU Panoptic dataset and, therefore,
performs better in the cases of partial body visibility then
our optimization approach. In order to evaluate the perfor-
mance of our method on the more practical scenario of cam-
eras recording the full body of the persons, we removed the
few sequences capturing only the upper body parts. In this
setup, we largely improve over other methods and over our
baseline, as can be seen by the underlined numbers in Ta-
ble 2.

For many downstream applications, such as gaming and
character control, jitter is a severe artifact that hinders us-
ability. Therefore, we also evaluated our method by report-
ing the temporal smoothness error esmooth in 3D coordi-
nates. The results from our method, as well as from previ-
ous work in the literature related to ours, are shown in Ta-
ble 3. In this experiment, we compared our approach with
two methods from the literature, showing a significant im-
provement in reducing the jitter artifact. Furthermore, we
also evaluated the contribution of different components of
our method. For instance, the temporal energy term in our
approach has a critical effect in reducing jitter. In addition,
the contact and slip terms also contribute in a small propor-
tion but consistently to all metrics, regardless the presence
or absence of the temporal energy. When all terms are in-
cluded, our approach is very stable, with an average jitter
error below 1cm.

4.5. Ablation Study

In this section, we perform additional evaluations of
the different components of our method. The results on
MuPoTs-3D are shown in Tables 4 and 5. First, we evaluate
the influence of the energy terms of the first part of our op-
timization framework. The energy term Edepth provides es-
sential information to disambiguate depth and scale, which
contributes to improving the position estimation. The flex-
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Ground-truth Ours Baseline (ROMP + 2D fitting) XNect

Figure 4. Comparisons of predictions from our method with other approaches. Compared to XNect and our baseline, our method is the
only one that is able to estimate the person scale. Therefore, it predicts human positions in a more coherent way even for people of smaller
height. 3D human poses are shown in the image plane (left) and top view (right). The ground-truth pose is not available for all the subjects
in the dataset. Digital zoom is recommended.

Table 3. Comparison of our method on MuPoTs-3D with previous
approaches on temporal smoothness error esmooth, that measures
the amount of jitter in the predictions in millimeters. We also
report the MRPE and 3DPCK3d metrics for completeness. Our
method has a drastically lower jitter in the prediction compared to
previous multi-person motion capture approaches.

Method Jitter ↓ MRPE ↓ 3DPCK3d ↑
XNect [34] 136.4 639 56.5
ROMP [51] 59.6 331 68.2

Ours (EI only) 17.5 281 73.5
Ours (EI + Econtact) 17.6 276 73.7
Ours (EI + Econtact + Eslip) 17.1 273 73.8
Ours (EI + Etemporal) 7.8 272 74.8
Ours (EI + Econtact + Eslip + Etemporal) 7.5 266 74.9

ibility provided by the person scale factor can be detrimen-
tal to the overall accuracy of the method if no constraints
are imposed on it. This can be seen in the second row of
Table 4, without Escale. By constraining our predictions
to remain close to the original estimates from ROMP, our
method enforces the final estimates to be valid and prevents
them from collapsing, as shown in the results without Esmpl.
Finally, Espeed is relevant for reducing jitter and the silhou-
ette term provides beneficial contributions to all the metrics.
With all the energy terms, our method is stable and precise
in estimating 3D position and pose. Since our method
relies on off-the-shelf predictors as input, we also provide
a concise evaluation considering two different 2D pose and
three different depth estimation models from the recent lit-
erature. The results in Table 5 show that the influence of the
depth estimation models is relatively small; however, the
best performing model is the most recent transformer archi-
tecture, which suggests that our approach directly benefits
from improved monocular depth estimations. Regarding 2D
pose estimation, HRNet [57] performed worse than Alpha-
Pose, since HRNet relies on person detection as a first step,

Table 4. Ablation study for different energy terms. Without the
proposed depth and scale terms, the global position in 3D cannot
be precisely recovered, i.e., AProot

25 drops from 62.3 to 47.4% and
to 22.2%, respectively. The SMPL term is critical for enforcing
valid estimates, and the speed term contributes to reducing the jit-
ter. The silhouette term provides consistent improvements in all
the metrics.

Experiment Jitter ↓ MRPE ↓ AProot
25 ↑ 3DPCK3d ↑

w/o Edepth 7.8 284 47.4 75.5
w/o Escale 7.7 541 22.2 68.9
w/o Esmpl 8.0 674 11.5 56.3
w/o Espeed 8.9 269 63.6 74.8
w/o Esilhouette 7.6 270 62.0 74.7

Ours (full) 7.5 266 62.3 74.9

Table 5. Our results considering different models for 2D pose and
monocular depth estimation. We observe that the human posi-
tion estimation from our method benefits directly from advances in
the monocular depth estimation when comparing MiDaS v2.1 [42]
and DPT-Large [41].

2D Pose Model Depth Model MRPE ↓ AProot
25 ↑ 3DPCK3d ↑

AlphaPose MiDaS v2.1 278 55.8 75.7
AlphaPose DPT-Hybrid 276 60.8 75.0
AlphaPose DPT-Large 266 62.3 74.9
HRNet DPT-Large 304 54.9 72.7

which makes it susceptible to detection failures.

4.6. Qualitative Results

Figure 4 provides additional qualitative results with pre-
dictions from our method in 3D coordinates, alongside
the ground truth pose. We compare our method with
XNect [34] and ROMP [51]. We can see that predictions
from ROMP do often not correspond to the correct posi-
tion of the humans in the scene, since it is not able to esti-
mate the correct person scale. For XNect, we can observe
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Input image Ours Baseline (ROMP + 2D fitting)

Figure 5. 3D Human poses estimated by our method from Internet videos. The baseline method can correctly localise the persons in the
image plane, but fails drastically in positioning the characters in 3D. Note from our method the correct character order along the depth
channel and the correctly estimated scale for each person. Digital zoom is recommended.

BEV

GLAMR

Ours

Input image

Figure 6. Our results compared to BEV [52] and GLAMR [64] on
a scene with people of different sizes.

that it also fails to recover the correct scale of the person,
which can be observed from the top view. On the other
hand, our approach can predict a 3D pose that corresponds
to the ground truth human annotation and is coherently po-
sitioned in 3D coordinates. We also compare our method
with GLAMR [64] and BEV [52] in Figure 6. GLAMR
fails to track all the persons in the scene and BEV fails to
predict coherent human positions. More qualitative com-
parisons are in the supplementary video.

Our method has the advantage of jointly estimating the
humans and the scene point cloud, which can be further
used to impose physical constrains in the estimated humans
over time. The effect of these constraints can be visually
seen in Figure 7, where we show a sequence of a person
standing on the floor. In the top row, where no physical

w
/o

 p
h
ys

ic
s 
te
rm

w
it
h
 p

h
ys

ic
s 
te
rm

frame t frame t+1

Figure 7. The effect of the physical constrains imposed by the es-
timated geometry in our predictions. The results without Econtact
and Eslip (top) contain more foot sliding artifacts than our results
with physical constrains (bottom).

constraints were applied, we can observe that the right foot
oscillates drastically from one frame to another. When the
physical constraints are applied (the bottom row), this arti-
fact is drastically reduced, and the right foot stays still in
contact with the ground.

Since our method does not require any specific train-
ing procedure and rely on multiple predictions from models
trained on a large corpus of data, our approach automati-
cally generalizes well for in-the-wild and Internet videos, as
can be seen in Figure 5 and can be directly used to drive vir-
tual characters from monocular RGB videos; see Figure 8.
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Figure 8. Our method can be directly used to drive virtual charac-
ters or animate avatars in augmented reality applications (bottom
row) from monocular RGB videos. Note the correct character or-
der along the depth channel. Thanks to our physical plausibility
constraints, barely any foot-floor penetrations or foot sliding are
observed in the animations; see the video.

5. Discussion

Our method achieves low reconstruction errors, because
it can successfully leverage multi-modal inputs to disam-
biguate the relative depths between humans and human
scales better than previous works. Moreover, our results
evince significantly less jitter and foot-floor penetrations
than the evaluated baselines for multi-human 3D pose esti-
mation and the ablative study confirms that all components
of the method contribute to the final accuracy. We have
demonstrated that the recovered 3D human motions can be
applied for virtual character animation, as one potential ap-
plication among the many others.
Limitations and Possible Extensions. Although our
method outperforms competing methods and makes a step
forward in monocular multi-human 3D motion capture, it
has several limitations caused by the severe ill-posedness of
our monocular setting. All these limitations open possibili-
ties for future extensions and follow-up works as described
in the following.

First, our approach relies on multiple inputs from pre-
trained models (depth maps and 2D body joints) and, there-
fore, could also be negatively affected by the output of
those methods; for example if the estimated depth maps
contain significant artefacts (e.g., when obtained on our-of-
distribution environments). On the other hand, this implies
that the performance of our approach has the potential to
keep increasing in the future with the progress in related
fields (cf. Table 5).

Our method also requires that people are entirely visi-
ble in most of the frames and move in the scene. Other-

wise, the setting becomes degenerate, and we do not get
enough cues for accurate reconstruction. Even though we
mitigate artefacts that appear as violations of physical laws
by geometric terms, some minor ones of this type remain.
Further improvements can be attained by methods explic-
itly modelling physical laws as in single-human 3D motion
capture [47, 48, 60].

Moreover, while the static camera assumption is practi-
cal, it is also very challenging, and a moving camera could
provide additional 3D reconstruction cues. Finally, the pro-
posed approach is an optimization method that can effi-
ciently process an entire video sequence and extract rele-
vant information about the scene from all frames globally.
However, due to this characteristic, the method in its current
version does not allow real-time applications.

6. Conclusion

We present a new holistic approach for multi-human 3D
motion capture from a single static monocular RGB cam-
era. Our core statement—that the synergy between multi-
modal inputs and priors can significantly boost the 3D re-
construction accuracy in this challenging setting—is con-
firmed by extensive experiments in which we set a new state
of the art on commonly used benchmarks. Moreover, as
expected, we confirm that the constraints from the scene
point clouds steadily boost the accuracy of the final 3D
poses. Qualitatively, our reconstructions evince substan-
tially fewer artefacts (such as jitter and foot-floor penetra-
tions), enabling exciting downstream applications such as
motion re-targeting for virtual characters. We believe that
the proposed holistic approach for multi-human 3D motion
capture can be extended in many useful ways, and we will
be excited to see follow-ups.
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[41] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 12179–12188, 2021. 2, 5, 10
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