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Summary

In this thesis we study various aspects of hyper-Kähler manifolds and abelian varieties such
as their derived categories, sheaves, cycles, and topology. The thesis consists of six parts,
which have appeared in [24–28,30].
The first part is mostly a survey of [201]. We show that the LLV algebra is a derived in-

variant. Therefore, derived equivalences between hyper-Kähler manifolds yield Hodge isome-
tries between their Verbitsky components, which come from isometries between their Mukai
lattices. Moreover, derived equivalent hyper-Kähler manifolds have isomorphic Q-Hodge
structures.
The study of derived categories of hyper-Kähler manifolds is further refined in the next

section. We introduce an extended Mukai vector with values in the Mukai lattice. This yields
a structural result dividing derived equivalences into three cases with different geometric
meaning. Moreover, for K3[n]-type hyper-Kähler manifolds we define an integral lattice
which is a derived invariant giving a higher-dimensional analogue to Mukai’s results [155]
for K3 surfaces. This has many consequences such as finiteness of K3[n]-type Fourier–Mukai
partners of K3[n]-type hyper-Kähler manifolds.

The subsequent section conceptualizes the extended Mukai vector by introducing the notion
of atomic objects on hyper-Kähler manifolds. We relate the notion of atomicity to different
obstruction maps. Stable atomic bundles are shown to be projectively hyperholomorphic, a
class of bundles for which we prove formality of the dg algebra of derived endomorphisms. A
thorough study of atomic Lagrangian submanifolds yields a structural result and expectations
for the general behaviour of atomic objects. Our methods also yield that there do not exist
spherical sheaves on any hyper-Kähler manifold of dimension at least four.
The question of topological properties of hyper-Kähler manifolds is discussed in the fourth

part, which is a joint work with Jieao Song. The main result is a conditional bound on
the second Betti number for hyper-Kähler manifolds X in terms of the two characteristic
classes c2(X)2 and c4(X). In the known examples this bound is better than previous ones
[84,122] and remains true for orbifolds of dimension four. We further investigate (conjectural)
properties that the generalized Fujiki constants and Riemann–Roch polynomials possess and
discuss implications.

The fifth part studies group actions on hyper-Kähler manifolds and derived categories and
is joint work with Georg Oberdieck. We show that fixed loci of actions by a finite group
G on moduli spaces of stable objects on certain smooth projective varieties X which are
induced by an action of G on the derived category Db(X) are covered by moduli spaces
of semistable objects of the equivariant category Db(X)G. This yields a generalization of
the derived McKay correspondence for symplectic surfaces and completely determines the
fixed locus of a symplectic automorphism acting on a moduli space of stable objects on a K3
surface.
The final part of this thesis is a joint work with Olivier de Gaay Fortman and studies

one-cycles on abelian varieties. We link the integral Hodge conjecture for one-cycles to lifts

v



of the correspondence obtained from the Poincaré bundle. This implies the integral Hodge
conjecture for one-cycles for products of Jacobians of curves. The arguments also work over
other fields and yield the integral Tate conjecture for one-cycles for Jacobians of curves over
the separable closure of a finitely generated field.
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1. Introduction

This thesis consists of six parts, which are based on [24–28, 30]. Each part constitutes a
chapter of the appendix. In this chapter we give a global introduction to the topics of the
six parts, thereby also linking the individual chapters. The next six chapters are summaries
of the results of the respective parts. The eighth chapter serves as a conclusion of this thesis,
relating it to current research and discussing possible next directions.

1.1. Holomorphic symplectic manifolds

1.1.1. Generalities
We will start by introducing the manifolds which will be primarily studied in this thesis. For
the necessary backgrounds on complex geometry we refer to [96].
Let X be a compact Kähler manifold. For most of what follows the algebraically inclined

reader can assume X to be a projective manifold. To X we can associate its canonical bundle
ωX , which is the determinant line bundle ωX := det ΩX of the cotangent bundle ΩX = T ∨X
of X. An important class of compact Kähler manifolds X are those for which the canonical
bundle is trivial, i.e. ωX is isomorphic to the trivial holomorphic line bundle OX . These are
called Calabi–Yau manifolds.

The Beauville–Bogomolov decomposition theorem [21, Thm. 2] asserts that for a Calabi–
Yau manifold there exists a finite étale cover π : Z → X such that Z decomposes

Z ∼= T ×
∏
i

Yi ×
∏
j

Mj . (1.1.1)

Here, T = Ck/Λ is a complex torus for some lattice Λ ⊂ Ck of full rank and the Yi are strict
Calabi–Yau manifolds, i.e. each Yi is a Calabi–Yau manifold such that Ωr

Yi
admits holomorphic

sections only for r ∈ {0, dimYi}. The last factors Mj appearing in the decomposition are
hyper-Kähler manifolds. A compact Kähler manifold X is called hyper-Kähler if it is simply
connected and its space H0(X,Ω2

X) of holomorphic two-forms is spanned by a nowhere-
degenerate symplectic form.
We say that a manifold X is holomorphic symplectic if it admits a holomorphic two-form

σ ∈ H0(X,Ω2
X) which defines a non-degenerate symplectic form at each point x ∈ X. In

particular, for such X the symplectic form σ induces an isomorphism

σ : TX ∼= ΩX .

Since strict Calabi–Yau manifolds of dimension at least three do not admit holomorphic
two-forms, the factors in the decomposition (1.1.1) for holomorphic symplectic manifolds
are either complex tori or hyper-Kähler manifolds. Most of the time, we will investigate
holomorphic symplectic manifolds in this thesis.
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1.1.2. Examples

The existence of a non-degenerate holomorphic symplectic form forces the dimension of a
holomorphic symplectic manifold X to be even. Thus, the lowest complex dimension in
which non-trivial examples of such manifolds can exist is two.
There are two types of surfaces which are holomorphic symplectic. The first one are abelian

surfaces (or, more generally, two-dimensional complex tori) and the second one K3 surfaces.
For an introduction to complex tori in general we recommend [31] and for the theory of K3
surfaces [100].
A classic example of a K3 surface is the Fermat quartic

Z(x4 + y4 + z4 + w4) ⊂ P3.

Any two K3 surfaces are deformation-equivalent to another showing that the topological
invariants of K3 surfaces are always the same. The most prominent result for K3 surfaces is
arguably the Global Torelli theorem stating that two K3 surfaces S and S′ are isomorphic
if and only if the second integral cohomology groups H2(S,Z) and H2(S′,Z) are Hodge
isometric. We will introduce the intersection form and Hodge structure in Section 1.2.3.
Let us now concentrate on the case of complex dimension greater than two. We again have

even-dimensional complex tori, which are quite well understood and examples are easy to
construct. For hyper-Kähler manifolds, only a few constructions are known, some of which
we briefly explain.
Firstly, one can start with a K3 surface S and consider the Hilbert scheme S[n] of sub-

schemes of length n. It is a crepant resolution of the symmetric product S(n) = Sn/Sn

and was proven by Fujiki [74] for n = 2 and in full generality by Beauville [21] to be a
hyper-Kähler manifold. This yields examples in all even complex dimensions starting with
four. Other constructions such as the Fano variety of lines of a cubic fourfold turn out to be
deformation-equivalent to the Hilbert scheme [23].
Similarly, Beauville constructed hyper-Kähler manifolds starting from an abelian surface

(or complex two-dimensional torus) A. In this case the Hilbert scheme A[n] is not simply
connected and admits an isotrivial fibration

Σ: A[n] → A

by summing over the support of the corresponding subscheme. The fibres of Σ are again
hyper-Kähler manifolds called generalized Kummer manifolds. This yields again examples in
all even dimensions greater than two.
There are two more examples in dimension six respectively ten. These were discovered by

O’Grady [170,171] as desingularizations of certain singular moduli spaces of stable sheaves on
abelian respectively K3 surfaces. Up to deformations this list is for the time being exhaustive.

1.2. Hyper-Kähler manifolds

Throughout the thesis a particular emphasis is put on the study of hyper-Kähler manifolds.
Therefore, we will discuss this class of manifolds in more detail in this chapter.
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1.2.1. Second cohomology
Let X be a hyper-Kähler manifold of dimension 2n. Its cohomology H∗(X,Q) has been
investigated by many authors, for example [21, 33, 34, 75, 130, 207]. In this subsection we
focus on the cohomological degree two part.
The second integral cohomology H2(X,Z) of a hyper-Kähler manifold X is endowed with a

quadratic form q = qX called the Beauville–Bogomolov–Fujiki (BBF) form. It is the unique
primitive integral quadratic form which can be defined up to sign by satisfying∫

X
λ2n = CXq(λ)n

for all λ ∈ H2(X,Z). Here, CX > 0 is a positive rational constant only depending on the
deformation class of X. It is called the Fujiki constant of X. The BBF form has signature
(3, b2(X)− 3).

The space H2(X,Z) together with the Beauville–Bogomolov–Fujiki form and its Hodge
structure inherited from X being Kähler encodes a lot of information about the manifold.
Here are some examples of this phenomenon.
(i) The very general hyper-Kähler manifold is not projective. However, those that are

are dense in moduli. To determine whether or not a given hyper-Kähler manifold X
is projective there is the following criterion due to Huybrechts [95, Thm. 3.11]: X is
projective if and only if there exists a class

λ ∈ H1,1(X,Z) := H2(X,Z) ∩H1,1(X)

with q(λ) > 0.

(ii) The Kähler cone of a very general hyper-Kähler manifold equals its positive cone CX ⊂
H2(X,R), where CX is the connected component of the open subset

{ω | q(ω) > 0} ⊂ H2(X,R)

containing a Kähler class [95, Cor. 5.7].

(iii) Deformations of hyper-Kähler manifolds are governed by the period map taking values
in the open subset

{σ ∈ P(H2(X,C)) | q(σ) = 0, q(σ, σ̄) > 0} ⊂ P(H2(X,C))

of the quadric defined by q. An extensive study of the period map has lead to the Global
Torelli theorem for hyper-Kähler manifolds. For more details we refer to [99,211].

Due to its importance, the second cohomology has been intensively studied. In all known
examples the isomorphism type of (H2(X,Z), q) has been determined [21,187]. For example
in the case of K3 surfaces S we have

(H2(S,Z), q) ∼= U⊕3 ⊕ E8(−1)⊕2

for U the hyperbolic plane and E8(−1) the unique even unimodular negative definite lattice
of rank eight. In complex dimension four Guan [84] has determined the general bound
b2(X) ≤ 23 for the second Betti number. In higher dimensions, a conjectural bound has been
put forward [122]. In Chapter D we also obtain a bound on the second Betti number. To
explain its ingredients, we need to recall more facts.
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1.2.2. Verbitsky component and Fujiki classes
We now turn our attention to a subalgebra of the cohomology H∗(X,Q) of a 2n-dimensional
hyper-Kähler manifold X.
Starting from the second rational cohomology group H2(X,Q) one can define the Verbitsky

component SH(X,Q) ⊂ H∗(X,Q) of X as the subalgebra generated by H2(X,Q). Bogomolov
[34] and Verbitsky [207] have determined the ring structure of SH(X,C) = SH(X,Q) ⊗Q C
and proven the ring isomorphism

SH(X,C) ∼= Sym•H2(X,C)/〈xn+1 | q(x) = 0〉.

In particular, the intersection product on the full cohomology H∗(X,C) restricts to a non-
degenerate pairing on SH(X,C). This gives an orthogonal decomposition

H∗(X,C) ∼= SH(X,C)⊕ SH(X,C)⊥

yielding an analogous decomposition

H∗(X,Q) ∼= SH(X,Q)⊕ SH(X,Q)⊥ (1.2.1)

over the rational numbers.
The dual of the BBF form q ∈ H4(X,Q) lies in the Verbitsky component SH4(X,Q). Its

powers qk ∈ SH4k(X,Q) span the subspace of elements of the Verbitsky component which
stay of type (2k, 2k) for all first-order deformations of X [130, Prop. 2.14]. Thus, for an
arbitrary class γ ∈ H4k(X,Q) which stays of type (2k, 2k) on all first-order deformations of
X the projection of γ via (1.2.1) to the Verbitsky component is a multiple of qk. This implies
that there exists a constant C(γ) ∈ Q such that for all ω ∈ H2(X,Q) we must have∫

X
γω2n−2k = C(γ)q(ω)n−k. (1.2.2)

The constant C(γ) is called the generalized Fujiki constant of γ. The case γ = 1 := [X]
recovers the Fujiki constant C(1) = CX . Fujiki [75] and Huybrechts [95] introduced these
numbers.
The property (1.2.2) enables us to define the Riemann–Roch polynomial RRX(q) of X.

Namely, recall that the Hirzebruch–Riemann–Roch theorem asserts that for a line bundle
L ∈ Pic(X) we have

χ(X,L) =
∑
i

(−1)i dim Hi(X,L) =
∫
X

ch(L)td (1.2.3)

for td := tdX the Todd class of X. The right hand side of (1.2.3) can be rewritten as∫
X

ch(L)td =
n∑
i=0

∫
X

c1(L)2i

(2i)! td2n−2i =
n∑
i=0

C(td2n−2i)
(2i)! q(c1(L))i

where td2n−2i ∈ H4n−4i(X,Q) denotes the degree 4n − 4i component of td. The Riemann–
Roch polynomial of X is now defined as

RRX(q) :=
n∑
i=0

C(td2n−2i)
(2i)! qi.
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The above discussion implies that the Riemann–Roch polynomial satisfies

RRX(q(c1(L))) = χ(X,L)

for all line bundles L ∈ Pic(X).
One of our main results in Chapter D is a bound on the second Betti number in all dimen-

sions depending only on the two generalized Fujiki constants of c2(X)2 and c4(X). It also
determines whether or not the second Chern class c2(X) lies inside the Verbitsky component
SH(X,Q). We relate these questions to the coefficients of the Riemann–Roch polynomial of
X and discuss potential restrictions on its coefficients as well as on the generalized Fujiki
constants of (products of) Chern class. For more information on the results of [30] we refer
to Chapter 5.

1.2.3. LLV algebra and Mukai lattice
We now consider the full cohomology H∗(X,Q) of a hyper-Kähler manifold of dimension
2n. This space is equipped with an action of a Lie algebra, which will also yield another
perspective on the Verbitsky component. The results are mostly due to Looijenga–Lunts
[130] and [207], see [81] and [199] for a modern account.
Let ω ∈ H2(X,R) be a Kähler class of a hyper-Kähler manifold of dimension 2n. The Hard

Lefschetz theorem asserts that the operator

eω := ω ∪_ ∈ End(H∗(X,R))

given by cupping with ω induces isomorphisms

ekω : H2n−k(X,R) ∼= H2n+k(X,R) (1.2.4)

for all k ≥ 0. Recall the dual Lefschetz operator Λω ∈ End(H∗(X,R)) and the cohomological
grading operator h ∈ End(X,R) defined by acting on H2n+k(X,R) via k · id. The Hard
Lefschetz isomorphisms (1.2.4) are equivalent to saying that the three elements (eω, h,Λω)
generate a Lie subalgebra of End(H∗(X,R)) isomorphic to the real Lie algebra sl2.
What happens if we do not consider only one Kähler class at a time? This question has

been investigated by Looijenga–Lunts [130] and Verbitsky [207]. It has been observed in [199]
that their results descend to cohomology with rational coefficients, which is the setting we
will now explain.
More generally, we can not only look at Kähler classes, but at any class ω ∈ H2(X,Q)

satisfying (1.2.4) for all k ≥ 0, that is

ekω : H2n−k(X,Q) ∼= H2n+k(X,Q).

We say that such a class ω is a Hard Lefschetz class or satisfies the Hard Lefschetz property.
For every such class ω we obtain a rational sl2-triple (eω, h,Λω) generating a Lie subalgebra
of End(H∗(X,Q)) isomorphic to the rational Lie algebra sl2. We define the Looijenga–Lunts–
Verbitsky (LLV) Lie algebra

g(X) ⊂ End(H∗(X,Q))

of X as the Lie subalgebra of End(H∗(X,Q)) generated by all such sl2-triples (eω, h,Λω) for
all Hard Lefschetz classes ω ∈ H2(X,Q).
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The LLV algebra and its applications to the cohomology of hyper-Kähler manifolds will
be fundamental in Chapters A, B and C. Let us, therefore, study this Lie algebra further.
For this we consider the vector space

H̃(X,Q) := Qα⊕H2(X,Q)⊕Qβ

of dimension b2(X)+2. We upgrade it to a quadratic space by equipping it with the quadratic
form q̃ which restricts to H2(X,Q) as the BBF form q. Moreover, the classes α and β are
orthogonal to H2(X,Q) and satisfy

q̃(α) = q̃(β) = 0, q̃(α, β) = −1.

This vector space also has a grading by declaring α of degree zero, H2(X,Q) of degree two,
and β of degree four. Finally, H̃(X,Q) can also be endowed with two Hodge structures. One
is pure of weight two and extends the known weight-two Hodge structure on H2(X,Q). That
is

H̃2,0(X) := H2,0(X), H̃0,2(X) := H0,2(X), H̃1,1(X) := H1,1(X)⊕ Cα⊕ Cβ. (1.2.5)

On the other hand, we can include the grading into the picture and consider H̃(X,Q) as
the sum of three Hodge structures of weight zero, two, and four respectively. In this case
H̃(X,Q) admits a Hodge diamond

Cα

H2,0(X) H1,1(X) H0,2(X)

Cβ

(1.2.6)

mimicking the one of a K3 surface.
In both cases the sub-Hodge structure H2(X,Q) is equipped with its standard weight-

two Hodge structure and α and β are both Hodge classes, i.e. they are both of type (p, p)
independent of the Hodge structure of X. Each of the two perspectives will be used in this
thesis and it will be clear from the context which one is meant. Most of the time we will
consider the Hodge structure (1.2.5).
The quadratic space H̃(X,Q) appears with different names in the literature such as Mukai

completion, rational Mukai lattice or extended Mukai lattice. We will call it the Mukai lattice
of X throughout the next chapters.
Let us come back to the LLV algebra g(X). We introduced the Mukai lattice at this point

to explain the structure of g(X). Namely, Looijenga–Lunts, and Verbitsky have shown that
there is a Lie algebra isomorphism

g(X) ∼= so(H̃(X,Q)) (1.2.7)

(again, in [130, 207] this is only proven over the real numbers; the result holds true with
rational coefficients as explained in [199]). Let us make the isomorphism (1.2.7) explicit by
explaining how operators of g(X) act on the Mukai lattice H̃(X,Q), which is the standard
representation of so(H̃(X,Q)).
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For ω ∈ H2(X,Q) the induced operator eω satisfies

α 7→ ω, λ 7→ q(λ, ω)β, β 7→ 0

for all λ ∈ H2(X,Q). The grading operator h acts trivially on H2(X,Q). It multiplies α with
−2 and β with 2.
Note that the adjoint action of h equips g(X) with a grading compatible with the action

on H∗(X,Q). That is, an element f ∈ g(X) is of degree k if and only if it sends elements
x ∈ Hj(X,Q) to elements contained inside Hj+k(X,Q). We will denote the operators of
degree k by g(X)k. One consequence of the isomorphism (1.2.7) is that g(X) decomposes

g(X) = g(X)2 ⊕ g(X)0 ⊕ g(X)−2.

In particular, for two Lefschetz classes ω, ω′ ∈ H2(X,Q) the corresponding dual Lefschetz
operators Λω,Λω′ commute, that is

[Λω,Λω′ ] = 0.

Moreover, the degree zero part further decomposes

g(X)0 = ḡ(X)⊕Qh

where ḡ(X) = [g(X)0, g(X)0] is the semisimple part. The Lie subalgebra ḡ(X) acts on
H∗(X,Q) via derivations and we have

ḡ(X) ∼= so(H2(X,Q)).

The existence of the action of the LLV algebra g(X) on the cohomology H∗(X,Q) implies
that the latter decomposes

H∗(X,Q) ∼=
⊕
λ

Vλ (1.2.8)

into irreducible g(X)-representations Vλ. This has been recently investigated in [81]. The
most prominent irreducible representation is the Verbitsky component. Let us discuss the
subalgebra SH(X,Q) from the viewpoint of the LLV algebra.

The Verbitsky component comes equipped with a Hodge structure as well as a grading
inherited from the inclusion SH(X,Q) ⊂ H∗(X,Q). We will upgrade it to a quadratic space
by introducing the Mukai pairing qSH defined via

qSH(ω1 · · ·ωm, µ1 · · ·µ2n−m) = (−1)m
∫
X
ω1 · · ·ωmµ1 · · ·µ2n−m

for all ωi, µj ∈ H2(X,Q). Similarly, the space Symn(H̃(X,Q)) is equipped with a bilinear
form

q[n](x1 · · ·xn, y1 · · · yn) = (−1)ncX
∑
σ∈Sn

n∏
i=1

q̃(xi, yσ(i)),

where
cX := CX

2nn!
(2n)!
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denotes the small Fujiki constant. The action of the LLV algebra g(X) ∼= so(H̃(X,Q)) on
H̃(X,Q) extends to one on Symn(H̃(X,Q)) by derivations. The important observation now
is that there exists an injective morphism

ψ : SH(X,Q) ↪→ Symn(H̃(X,Q))

of g(X)-modules sitting inside a short exact sequence

0→ SH(X,Q) ψ−→ Symn(H̃(X,Q)) ∆−→ Symn−2(H̃(X,Q))→ 0 (1.2.9)

of g(X)-modules. Here, ∆ is the Laplace operator given by

v1 . . . vn 7→
∑
i<j

q̃(vi, vj)v1 . . . v̂i . . . v̂j . . . vn.

The morphism ψ respects the structures we have introduced. That is, ψ is an isometric
inclusion of quadratic spaces, it is a morphism of g(X)-modules, and it is a graded morphism
which respects the Hodge structures present on SH(X,Q) and Symn(H̃(X,Q)).
Although it first appeared more than two decades ago, the LLV algebra has experienced

a re-emergence in recent years. Applications of g(X) in the realm of hyper-Kähler geometry
vary such as computations of Hodge numbers [81], topology of Lagrangian fibrations [198],
or proving parts of Beauville’s conjecture on the behaviour of the cycle class map [161, 166]
to name a few.
To relate the LLV algebra to our results and bounds on invariants of hyper-Kähler manifolds

in Chapter D, note that the existence of the decomposition (1.2.8) forces restrictions on the
possible Hodge and Betti numbers. This has been studied and refined for example in [122].
Moreover, as mentioned before, the Lie algebra g(X) also takes up a prominent role in

Chapters A, B and C. For example, in Chapter C we introduce a new class of sheaves and
objects on hyper-Kähler manifolds. The definition is given purely in terms of the LLV algebra
and the Mukai lattice. In a nutshell, the Hodge diamond (1.2.6) of the Mukai lattice does not
only mimic the shape of the Hodge diamond of a K3 surface, but also enables one to obtain
similar statements valid on K3 surfaces also on higher-dimensional hyper-Kähler manifolds.
To name already one example at this point, the Mukai vector morphism on a K3 surface

S induces a morphism

Coh(S)→ H̃(S,Q), E 7→ v(E) := ch(E)td1/2.

This association is used frequently when investigating K3 surfaces, for example in the theory
of moduli spaces of stable sheaves or in the study of derived categories. In Chapters B and
C we explore the question of whether and when such a morphism with image in the Mukai
lattice exists for hyper-Kähler manifolds of dimension greater than two. For the precise
statements and implications we refer to the separate introductions in Chapters 3 and 4.

1.3. Derived categories
To relate and explain the contents of the other chapters we will introduce some background on
derived categories of smooth projective manifolds over the complex numbers. For a thorough
introduction see [97]. In this section all functors are implicitly derived.
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1.3.1. Fourier–Mukai transforms and cohomology
Let X be a smooth projective variety. We associate to it its derived category Db(X) which
is the bounded derived category of coherent sheaves Db(X) := Db(Coh(X)) on X. This
algebraic invariant attached to a variety X captures many (geometric) features of X as well
as reveals certain new ones.
We now consider X and Y two smooth projective varieties together with an object E ∈

Db(X×Y ). We associate to E the Fourier–Mukai transform FME with Fourier–Mukai kernel
E which is the exact functor FME : Db(X)→ Db(Y ) defined via

F 7→ pY ∗ (p∗XF ⊗ E)

with pX and pY the respective projections. For example, taking X = Y and E = O∆ the
structure sheaf of the diagonal yields the identity functor FME ' idX . Another example is
the Fourier–Mukai kernel ∆∗L for some line bundle L ∈ Pic(X) which induces the auto-
equivalence

FM∆∗L ' L⊗_
given by tensoring with L.

The importance of Fourier–Mukai functors stems from a result due to Orlov [175] saying
that any fully faithful exact functor

Φ: Db(X)→ Db(Y )

is isomorphic to a Fourier–Mukai functor Φ ' FME with Fourier–Mukai kernel

E ∈ Db(X × Y ),

which is unique up to isomorphism (Orlov required the existence of right and left adjoint func-
tors, but this assumption can be dropped using [36]). In particular, any derived equivalence
is a Fourier–Mukai transform.
The formalism of Fourier–Mukai transforms FME : Db(X) → Db(Y ) between varieties X

and Y induce maps on several invariants associated to the varieties. Most important to us is
the cohomological Fourier–Mukai transform FMH

E . Namely, a class e ∈ H∗(X ×Y,Q) induces
similarly to above a morphism

ϕe : H∗(X,Q)→ H∗(Y,Q), x 7→ pY ∗(p∗Xx · e).

We then define FMH
E := ϕv(E). The reason for using the Mukai vector v(E) instead of only

the Chern character ch(E) is justified by the following diagram

Db(X) Db(Y )

H∗(X,Q) H∗(Y,Q)

FME

v v

FMH
E

which is commutative by the Grothendieck–Riemann–Roch theorem.
In particular, a derived equivalence

FME : Db(X) ∼= Db(Y )
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induces naturally an isomorphism

FMH
E : H∗(X,Q) ∼= H∗(Y,Q)

of vector spaces. Note that FMH
E does neither preserve the cup product nor the grading of

the cohomology rings. On the positive side, since

v(E) ∈
⊕
p

Hp,p(X × Y ) ∩H∗(X × Y,Q),

the cohomological Fourier–Mukai transform induces for all i an isomorphism

FMH
E :

⊕
q−p=i

Hp,q(X) ∼=
⊕
q−p=i

Hp,q(Y ). (1.3.1)

Furthermore, Căldăraru [59] extended Mukai’s observation [155] that the cohomological
Fourier–Mukai transform preserves a certain quadratic form on the cohomology. In gen-
eral, for an element

v =
∑
j

vj ∈
⊕
j

Hj(X,C)

one defines the dual of v as

v∨ :=
∑
j

√
−1jvj ∈ H∗(X,C).

The Mukai pairing on H∗(X,C) is then defined as the quadratic form

〈v, v′〉 :=
∫
X

exp(c1(X)/2) · v∨ · v′.

Let us comment on the definition. Firstly, the dual of an element v ∈ H2∗(X,Q) in the even
cohomology can be defined already over the rational numbers. Moreover, for two elements
E ,F ∈ Db(X) their Euler pairing χ(E ,F) is defined via

χ(E ,F) :=
∑
i

(−1)i dim Exti(E ,F).

The Hirzebruch–Riemann–Roch formula then yields the equality

χ(E ,F) = 〈v(E), v(F)〉.

Let us consider one case of interest to us, namely Calabi–Yau manifolds X. Since c1(X) =
c1(TX) = 0, the Mukai pairing becomes in this case a non-degenerate symmetric pairing on
the rational cohomology groups H∗(X,Q).

1.3.2. Geometric considerations
The derived category Db(X) of a smooth projective variety is, furthermore, equipped with a
Serre functor SX . By definition, a Serre functor is an exact equivalence SX : Db(X) ∼= Db(X)
such that for all objects E ,F ∈ Db(X) there exist bi-functorial isomorphisms

HomDb(X)(E ,F) ∼= HomDb(X)(F , SX(E))∨.

10



Serre Duality implies that we have SX ' _⊗ ωX [dimX]. All derived equivalences commute
with the Serre functor.
How much information about X does the derived category Db(X) contain? An answer to

this question in the case that ωX or its dual is ample was given by Bondal and Orlov [35].
More precisely, consider any X for which ωX is (anti-)ample and a smooth projective variety
Y which is derived equivalent to X, i.e. there exists an exact equivalence Db(X) ∼= Db(Y ).
Then, Y must in fact already be isomorphic to X. This does not hold true for all smooth
projective varieties and we will encounter interesting equivalences between non-isomorphic
(even non-birational) varieties in subsequent sections.
There are also other geometric information which are preserved under derived equivalences

for arbitrary smooth projective varieties. For example, if X and Y are smooth projective
varieties, then Φ: Db(X) ∼= Db(Y ) implies that dimX = dimY . This follows for example
easily from Orlov’s representability result together with the explicit form of the Serre functors
which commute with Φ.
Moreover, a similar argument again involving the explicit form of the Serre functors shows

that a derived equivalence Db(X) ∼= Db(Y ) induces an isomorphism of canonical rings

R(X) ∼= R(Y ),

where we recall
R(X) :=

⊕
i≥0

H0(X,ωiX)

is the graded ring associated to non-zero sections of powers of the canonical bundle. In
particular, one deduces equality of Kodaira dimensions of X and Y . Another related fact is
that in the case of Kodaira dimension zero the order of the canonical line bundle viewed as
an element in the Picard group is also a derived invariant. Therefore, varieties Y which are
derived equivalent to Calabi–Yau manifolds X must also be Calabi–Yau.

1.3.3. Auto-equivalences

To the derived category Db(X) of a variety X we can associate its group of auto-equivalences
Aut(Db(X)) which is the group of isomorphism classes of exact equivalences

Φ ' FME : Db(X) ∼= Db(X).

This group will play an important role in Chapters C and E.
There is for any variety X an injective group homomorphism

Z× (Aut(X) n Pic(X)) ↪→ Aut(Db(X)).

Therefore, the elements of this subgroup are frequently called standard (auto-)equivalences.
Looking again at varieties X with (anti-)ample canonical bundle, Bondal and Orlov have
shown that the group of standard equivalences for X agrees with Aut(Db(X)) [35]. In this
sense, their derived categories are well understood.
The situation can become more interesting, for example, in the case of Calabi–Yau man-

ifolds. Let us introduce one example of a derived equivalence which will appear frequently
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in the subsequent chapters. We say that an object E ∈ Db(X) is spherical if its Ext algebra
satisfies

Ext∗(E , E) ∼= H∗(SdimX ,C),

i.e. the Ext algebra is as a ring isomorphic to the complex cohomology of a sphere of the
same dimension (therefore the name). Any line bundle on a strict Calabi–Yau manifold is
spherical. Seidel and Thomas [196] have constructed for each spherical object E an auto-
equivalence STE called the spherical twist associated to E . The Fourier–Mukai kernel F of
STE ' FMF can be defined by the distinguished triangle

E∨ � E ev−→ ∆∗OX → F (1.3.2)

in Db(X×X). That is, F is isomorphic to the cone of the natural evaluation morphism. The
defining distinguished triangle (1.3.2) lets one also easily calculate the corresponding action
on cohomology

STH
E : H∗(X,Q)→ H∗(X,Q), v 7→ v − 〈v(E), v〉 · v(E).

In particular, since
〈v(E), v(E)〉 = 1 + (−1)dimX ,

for even-dimensional varieties the spherical twist acts on H∗(X,Q) as the reflection in the
hyperplane orthogonal to v(E). One can deduce from this that in the even-dimensional case

STH
E ◦ STH

E = id ∈ Aut(H∗(X,Q))

and STE ◦ STE is not isomorphic to a shift.

1.3.4. Hochschild (co)homology and polyvector fields

There are other cohomology groups and vector spaces attached to (the derived category of)
X, which will be introduced next. This will play an important role in Chapters A and C.
For more information we refer to [58–60].

Let X again be a smooth projective variety. We can associate to it its Hochschild coho-
mology HH∗(X). The Hochschild cohomology groups are defined via

HH∗(X) := Ext∗X×X(∆∗OX ,∆∗OX),

where ∆: X ↪→ X × X is the diagonal embedding. Composition of morphisms turns the
Hochschild cohomology of X into a graded ring. Next we introduce the Hochschild homology
HH∗(X) of X as

HH∗(X) := Ext∗X×X(∆∗ω−1
X [−dimX],∆∗OX).

Composition of morphisms turns HH∗(X) into a graded module over HH∗(X). Note that
∆∗OX as well as ∆∗ω−1

X [−dimX] are Fourier–Mukai kernels of auto-equivalences of X. This
allows to interpret elements in the Hochschild (co)homology as natural transformations giving
rise to a ring morphism

χE : HH∗(X)→ HomDb(X)(E , E [∗])
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called the obstruction map of E . Moreover, associating to X its Hochschild (co)homology is
via conjugation functorial for derived equivalences. That is, for a derived equivalence

Φ: Db(X) ∼= Db(Y )

we obtain a ring isomorphism

ΦHH : HH∗(X) ∼= HH∗(Y ), f 7→ Φ ◦ f ◦ Φ−1

as well as an isomorphism

ΦHH : HH∗(X) ∼= HH∗(Y ), f 7→ Φ ◦ f ◦ Φ−1

compatible with the module structure.
How do these two invariants look like? This is answered by the Hochschild–Konstant–

Rosenberg (HKR) isomorphisms. For this let us introduce the ring of polyvector fields

HT∗(X) :=
⊕
p+q=∗

Hq(X,ΛpTX).

The HKR isomorphisms now identify the Hochschild cohomology of X with the ring of
polyvector fields, i.e. there exists an isomorphism of vector spaces

IHKR : HH∗(X) ∼= HT∗(X),

as well as the Hochschild homology groups of X with the de Rham cohomology groups

IHKR : HH∗(X) ∼= HΩ∗(X) :=
⊕
q−p=∗

Hq(X,Ωp
X).

Note that HT∗(X) is also a ring and the de Rham cohomology is naturally a module over
HT∗(X) via contraction of vector fields

HT∗(X)×HΩ∗(X)→ HΩ∗(X), (v, x) 7→ vyx.

However, in general the HKR isomorphisms do not respect the ring and module structure
present on both sides. It was conjectured by Căldăraru and proven in [47] that this holds
true for the modified HKR isomorphisms IK respectively IK. These are obtained from the
standard HKR isomorphisms by twisting with the square root of the Todd class td1/2, i.e.

IK : HH∗(X) IHKR
−−−→ HT∗(X) td−1/2y_−−−−−−→ HT∗(X);

IK : HH∗(X) IHKR−−−→ HΩ∗(X) td1/2∧_−−−−−→ HΩ∗(X).

The compatibility of the ring and module structure means that for x, y ∈ HH∗(X) and
z ∈ HH∗(X) we have

IK(x ◦ y) = IK(x) ∧ IK(y), IK(x ◦ z) = IK(x)yIK(z).

The situation becomes more accessible in the case that X is holomorphic symplectic of
dimension 2n. That is, a non-degenerate holomorphic two-form σ ∈ H0(X,Ω2

X) induces an
isomorphism

σ : TX ∼= ΩX .
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This leads to the following chain of ring isomorphisms

ϕ : HT∗(X) =
⊕
p+q=∗

Hq(X,ΛpTX) ∼=
⊕
p+q=∗

Hq(X,Ωp
X) ∼= H∗(X,C). (1.3.3)

Note that the composition ϕ is, moreover, graded. Furthermore, the top power σn ∈
H0(X,Ω2n

X ) induces the graded isomorphism

HT∗(X) ∼= HΩ∗(X), v 7→ vyσn

realizing the de Rham cohomology as a free module of rank one over HT∗(X) with gener-
ator σn. Thus, also HH∗(X) is in this case a free module of rank one over the Hochschild
cohomology generated by any non-zero element in HH−2n(X).

Another feature that this structure possesses is an analogue of the Chern character. More
precisely, Căldăraru introduced for any object E ∈ Db(X) on an arbitrary smooth projective
variety X its Hochschild Chern character chHH(E) ∈ HH0(X). It can be uniquely character-
ized by the property

TrX×X(µ ◦ chHH(E)) = TrX(µE)

for all elements µ ∈ HH∗(X), where

µE := χ(E) ∈ Ext∗(E , E).

Here, TrX×X and TrX are the trace morphisms on X ×X respectively X obtained from the
Serre Duality pairing. In addition, the HKR isomorphism identifies the Hochschild Chern
character chHH(E) with the usual Chern character ch(E), that is

IHKR(chHH(E)) = ch(E) ∈ H∗(X,Q).

This implies, in particular, the identity

IK(chHH(E)) = v(E) ∈ H∗(X,Q).

Introducing Hochschild cohomology to the picture is the main point in Chapter A. We
will consider following [201] a version of the LLV algebra for Hochschild cohomology for
hyper-Kähler manifolds X. This will imply that the usual LLV algebra g(X) is in a certain
sense preserved by any auto-equivalence. Our results in Chapter B are building upon this
observation. In addition, the Hochschild Chern character is frequently used in Chapter C.
One result we obtain by applying the above is that there exist no spherical sheaves on any
higher-dimensional hyper-Kähler manifold. Again, for more details we refer to the later
chapters.

1.3.5. Abelian varieties and the Fourier transform

After having discussed the general structure and properties of derived categories we will now
turn our attention to the derived categories of certain Calabi–Yau manifolds. In this section
we will briefly explain a particular example of a derived equivalence first discovered by Mukai
[154], which will be fundamental in Chapter F.
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Let A be an abelian variety of dimension g, i.e. a projective complex torus. Attached to
A is the dual abelian variety

Â := A∨ ∼= Pic0(A).

One can view Â as the moduli space of all line bundles of degree zero on A. Using this
definition it can be shown that on the product

A× Â

there exists a (normalized) universal family PA called the Poincaré (line) bundle. As such it
satisfies the following universal property. Consider a variety Y and a line bundle

M ∈ Pic(A× Y ).

Assume that M restricts to {0A} × Y as the trivial line bundle and for all closed points
y ∈ Y the restricted line bundle My ∈ Pic(A) is of degree zero. Then, there exists a unique
morphism

fM : Y → Â

which satisfies
M ∼= (idA × fM )∗PA.

The Fourier–Mukai transform FA := FMPA with Fourier–Mukai kernel the Poincaré bundle
PA is called the Fourier transform. Mukai first observed that the Fourier transform induces
a derived equivalence

FA : Db(A) ∼= Db(Â).

Moreover, the composition
Db(A) FA−−→ Db(Â) FA−−→ Db(A) (1.3.4)

is isomorphic to (−1)∗[−g], where −1 denotes the inversion coming from the group structure.
For the second equivalence in (1.3.4) we interpreted PA as a bundle on Â×A via the natural
isomorphism which interchanges the factors.
Thus, the Fourier transform yields many examples of derived equivalent varieties which

may not even be birational. Furthermore, the induced cohomological Fourier transform

FMH
PA : H∗(A,Q) ∼= H∗(Â,Q)

restricts for all k to an isomorphism of integral cohomology groups

FMH
PA : Hk(A,Z) ∼= H2g−k(Â,Z),

which up to sign can be identified with the Poincaré duality isomorphism.
There are many other results on derived categories of abelian varieties and equivalences

between them. We refer to [97] for an overview. We use the Poincaré bundle PA and the
Fourier transform in Chapter F. We briefly explain already here what we will study.
Recall the diagram (1.3.1) which shows the compatibility of a Fourier–Mukai transform

FME : Db(X) ∼= Db(Y )
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between derived categories and the corresponding cohomological Fourier–Mukai transform

FMH
E : H∗(X,Q) ∼= H∗(Y,Q)

on cohomology. One can consider as an intermediate step the morphism

FMA
E : A(X) ∼= A(Y ) (1.3.5)

between the rational Chow groups of X and Y induced by the element

ch(E) ∈ A(X × Y ).

This morphism is compatible as in (1.3.1) with FME as well as FMH
E . Since the Chern

character of PA is an element in the integral cohomology H∗(A × Â,Z) and, in particular,
induces an isomorphism between integral cohomology groups, a natural question is whether
(1.3.5) in the case of the Poincaré bundle also already exists over the integers. We link
this question in Chapter F with the integral Hodge conjecture for one-cycles. This implies,
among other things, that the integral Hodge conjecture for one-cycles holds for (products of)
Jacobians of smooth curves. Again, for a more thorough introduction to our results we refer
to Chapter 7.

1.3.6. K3 surfaces
We now consider derived categories Db(S) of projective K3 surfaces S.
Recall that we have associated to S its Mukai lattice

H̃(S,Q),

which, in the surface case, is the usual cohomology H∗(S,Q) by identifying α = 1 and β = p.
It is equipped with the usual grading and Hodge structure and we modified the cup product
by a sign. In the following, we will diverge from the convention in Section 1.2.3 by a global
sign and consider the bilinear form

q((rα, λ, sβ), (r′α, λ′, s′β)) = λλ′ − rs′ − sr′.

This is the standard notation for K3 surfaces, which is commonly used and stems from the
fact that Mukai [155] introduced it in this form. We will also write v2 for q(v, v).
Let us now consider two K3 surfaces S and S′ together with a derived equivalence

Φ: Db(S) ∼= Db(S′).

Mukai showed that the associated isomorphism

ΦH̃ : H̃(S,Q) ∼= H̃(S′,Q)

restricts to a Hodge isometry
ΦH̃ : H̃(S,Z) ∼= H̃(S′,Z) (1.3.6)

between the integral Mukai lattices. Orlov in [175] proved the converse. That is, two K3
surfaces S and S′ are derived equivalent if and only if there exists a Hodge isometry as in
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(1.3.6). Thus, the Mukai lattice H̃(S,Z) determines the derived category completely similar
to H2(S,Z) determining the isomorphism type of S. This result is, therefore, sometimes
called the Derived Global Torelli theorem.
One ingredient in Orlov’s proof is the following construction of derived equivalences be-

tween K3 surfaces. If we start with S we can consider the moduli space MS
H(v) of H-stable

sheaves E on S with Mukai vector v(E) = v for an ample line bundle H. For background on
stability and moduli spaces in general we refer to [103] and for a survey in the case of K3
surfaces [100, Sec. 10]. We take a vector v ∈ H̃(S,Z) which is primitive, i.e. the quotient

H̃(S,Z)/Zv

is torsion-free, and assume the polarization H to be generic with respect to v. Under these
circumstances the moduli space MS

H(v) is a smooth projective manifold of dimension v2 + 2.
In particular, in the case that v is isotropic meaning v2 = 0, the space MS

H(v) is a surface,
which turns out to be again a K3 surface. In some cases (depending on the Mukai vector v)
there exists a universal family E on the product

MS
H(v)× S

and the moduli space is fine. When this happens the Fourier–Mukai transform FME with
Fourier–Mukai kernel the universal family E induces a derived equivalence

FME : Db(MS
H(v)) ∼= Db(S).

This equivalence is in many cases non-trivial, i.e. MS
H(v) is frequently not isomorphic to S.

One consequence of the Derived Global Torelli theorem is that the derived category is
governed by an even unimodular lattice together with a weight-two Hodge structure. This
has been used by Bridgeland [43] to show that up to isomorphism there are only finitely
many K3 surfaces S′ being derived equivalent to a given K3 surface S. Such K3 surfaces
S′ are called Fourier–Mukai partners of S. Moreover, any Fourier–Mukai partner of S is
isomorphic to a moduli space MS

H(v) of stable sheaves on S.
We now consider the group Aut(Db(S)) of auto-equivalences of a K3 surface S. The above

implies that it admits a representation

ρ : Aut(Db(S))→ H̃(S,Z).

A similar strategy as in the proof of the Derived Global Torelli theorem can be used to obtain
a lower bound for the image Im(ρ) of ρ. Namely, the group

Aut+(H̃(S,Z)) ⊂ O(H̃(S,Z))

of Hodge isometries of H̃(S,Z) with real spinor norm one is always contained in Im(ρ). It has
been proven that, in fact, the image coincides with Aut+(H̃(S,Z)) [105]. Hence, the study of
Aut(Db(S)) is now reduced to understanding the kernel Ker(ρ).
A conjecture describing this kernel has been put forward by Bridgeland [41]. It involves

the (connected component of the) space Stab†(S) of stability conditions on S. The concept
of stability conditions on derived categories has been introduced by Bridgeland [40] as a
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generalization of the notion of slope-stability for coherent sheaves. The space Stab†(S) admits
a covering map

π : Stab†(S)→ P+
0 (S),

where P+
0 (S) ⊂ NS(S) ⊗ C is a certain open subset. Furthermore, the subgroup of Ker(ρ)

preserving the connected component Stab†(S) is the group of deck transformations of π.
The conjecture then says that Aut(Db(S)) preserves Stab†(S) and, moreover, that Stab†(S)
is simply connected. This would yield an isomorphism

π1(P+
0 (S)) ∼= Ker(ρ)

and the short exact sequence

1→ π1(P+
0 (S))→ Aut(Db(S))→ Aut+(H̃(S,Z))→ 1.

The conjecture has been verified for K3 surfaces with Picard rank one [15].
The theory of derived categories of K3 surfaces will be used as well as serves as a motivation

for many of the subsequent chapters. To elaborate a bit on this, in Chapter B we establish
analogues of the above results for higher-dimensional hyper-Kähler manifolds. For example,
in the case of K3[n]-type hyper-Kähler manifolds we show the existence of a lattice Λ of rank
b2(S[n]) + 2 = 25 which satisfies the conclusion of Mukai’s results in [155]. This yields for
example finiteness of K3[n]-type Fourier–Mukai partners for K3[n]-type hyper-Kähler mani-
folds. Moreover, Fourier–Mukai partners of moduli spaces of sheaves MS

H(v) on a K3 surface
are again moduli spaces on the same K3 surface S. In addition, we obtain a lower bound for
the image of the corresponding representation

Aut(Db(S[n]))→ Aut(Λ)

for Hilbert schemes S[n] of elliptic K3 surfaces.
Furthermore, in Chapter E we study derived equivalences of finite order of K3 and abelian

surfaces which are symplectic meaning that they act trivially when restricted to the symplectic
form. We relate the resulting equivariant derived categories to fixed loci on moduli spaces of
stable objects using among other things the above results.

1.3.7. Hyper-Kähler manifolds

We also want to mention results about the derived category Db(X) of a hyper-Kähler manifold
X obtained before the article [201].
Let, therefore, X be a projective hyper-Kähler manifold. By the general theory recalled

above any smooth projective variety Y which is derived equivalent to X must again be
Calabi–Yau. In [107] the authors refined this statement and showed that, in fact, Y must
also be a hyper-Kähler manifold. The proof uses the decomposition theorem (1.1.1) and
Hochschild cohomology to exclude the other factors.
There are also known results for certain special hyper-Kähler manifolds such as Hilbert

schemes. Bridgeland–King–Reid [42] established the equivalence

Db(S[n]) ∼= Db(Sn)Sn
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between the derived category of the Hilbert scheme S[n] of a surface S and the Sn-equivariant
derived category of Sn. Ploog [185] used this to lift derived equivalences between surfaces to
their Hilbert schemes. In particular, one obtains a group homomorphism

Aut(Db(S))→ Aut(Db(S[n])), (1.3.7)

which, in the case that S is a K3 surface, provides many examples of interesting auto-
equivalences of higher-dimensional hyper-Kähler manifolds. Moreover, one deduces that two
derived equivalent surfaces

Db(S) ∼= Db(S′)

have derived equivalent Hilbert schemes

Db(S[n]) ∼= Db(S′[n]). (1.3.8)

Not much more has been known previously about derived categories of hyper-Kähler man-
ifolds X. Taelman in [201] recently showed that the LLV algebra g(X) is a derived invariant.
We explain his results and, for example, consequences for Hodge structures of derived equiv-
alent hyper-Kähler manifolds in Chapter A.
Taelman’s results will be heavily used in Chapter B. There, we also exploit Ploog’s map

(1.3.7) to obtain examples of derived equivalences on K3[n]-type hyper-Kähler manifolds.
This is used to compute the derived monodromy group of X. Another result in Chapter B
is a converse to (1.3.8) saying that two Hilbert schemes S[n] and S′[n] are derived equivalent
only if the corresponding K3 surfaces S and S′ are derived equivalent. For more details we
refer to Chapter 2.
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2. Introduction to derived categories of
hyper-Kähler manifolds via the LLV algebra

In this chapter we give an overview of Chapter A, which has appeared in [24].
In the first chapter of the appendix we further investigate the derived category Db(X) of a

hyper-Kähler manifold X and equivalences between them. It can mostly be seen as a review
of the first half of the article [201].

2.1. Hochschild LLV algebra
Recall that given a derived equivalence

Φ: Db(X) ∼= Db(Y )

between hyper-Kähler manifolds we obtain an isomorphism

ΦH : H∗(X,Q) ∼= H∗(Y,Q) (2.1.1)

between the cohomology groups. The main idea in this chapter is to introduce the LLV
algebras g(X) respectively g(Y ) into the picture. Recall that this Lie algebra is defined
in terms of the cup product and the grading neither of which are preserved under derived
equivalences.
To circumvent this problem, we focus our attention to the isomorphism

ΦHT : HT∗(X) ∼= HT∗(Y ) (2.1.2)

between the rings of polyvector fields of X respectively Y . This has the advantage of preserv-
ing the ring structure as well as the grading, but is only defined over the complex numbers.
As a first step we introduce another complex Lie algebra

g′(X) ⊂ End(HT∗(X)).

Namely, as in Section 1.2.3 we say that µ ∈ HT2(X) is Hard Lefschetz if the operator

eµ := µ ∧_ ∈ End(HT∗(X))

induces for all k ≥ 0 isomorphisms

ekµ : HT2n−k(X) ∼= HT2n+k(X).

This is as before equivalent to the existence of an action of the complex Lie algebra sl2 on
HT∗(X) such that the subspace of degree two operators is generated by eµ. The Lie algebra
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g′(X) is then defined as the smallest Lie subalgebra of End(HT∗(X)) containing all such
complex Lie algebras sl2 for all Hard Lefschetz elements µ ∈ HT2(X).

The graded ring isomorphism HT∗(X) ∼= H∗(X,C) from (1.3.3) induced by choosing a
symplectic form σ implies that there exists an abstract isomorphism

g′(X) ∼= g(X)C := g(X)⊗Q C

of complex Lie algebras.

2.2. Comparison and main result
The next important step is to relate the Lie algebra g′(X) with the isomorphism (2.1.1). This
is done by considering the free action of the ring of polyvector fields HT∗(X) on the de Rham
cohomology H∗(X,Ω∗X). Since in the case of hyper-Kähler manifolds, H∗(X,Ω∗X) ∼= H∗(X,C)
is a free module of rank one over HT∗(X), we can use the isomorphism

HT∗(X) ∼= H∗(X,Ω∗X), µ 7→ µyσn

obtained from the symplectic form σ to view g′(X) as a subalgebra of End(H∗(X,C)). With
these preparations the following is the key ingredient for the proof of the main result of
Chapter A.

Theorem 2.2.1 (Theorem A.5.4). The Lie algebras g(X)⊗Q C and g′(X) are equal as Lie
subalgebras of the Lie algebra End(H∗(X,C)).

This result will be proven in Section A.5.
Going back to our discussions about derived equivalences between hyper-Kähler manifolds

we obtain as an immediate consequence the main result due to Taelman [201, Thm. A].

Theorem 2.2.2 (Theorem A.1.1). A derived equivalence Φ: Db(X) ∼= Db(Y ) between pro-
jective hyper-Kähler manifolds induces naturally a Lie algebra isomorphism

Φg : g(X) ∼= g(Y ).

The induced isomorphism of quadratic spaces

ΦH : H∗(X,Q) ∼= H∗(Y,Q)

is equivariant with respect to Φg.

Spelling this out this means that for x ∈ H∗(X,Q) and f ∈ g(X) we have

ΦH(f.x) = Φg(f).ΦH(x). (2.2.1)

2.3. Induced action on the Mukai lattice
The rest of the article is devoted to applications of this result. To start, recall that the
Verbitsky component SH(X,Q) ⊂ H∗(X,Q) is the unique irreducible representation of the
LLV algebra whose complexification contains σn ∈ H0(X,Ω2n

X ). Using (1.3.1) we deduce the
following consequence.
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Corollary 2.3.1 (Corollary A.6.2). For a derived equivalence Φ: Db(X) ∼= Db(Y ) between
hyper-Kähler manifolds the induced isomorphism ΦH restricts to a Hodge isometry

ΦSH : SH(X,Q) ∼= SH(Y,Q).

Thus, instead of the full cohomology H∗(X,Q) one can in the study of derived equivalences
restrict to the Verbitsky component SH(X,Q) of X.
Next, the Mukai lattice H̃(X,Q) and the LLV isomorphism

g(X) ∼= so(H̃(X,Q))

enter the discussion in Section A.7. The short exact sequence (1.2.9) implies that any isometry

g ∈ O(H̃(X,Q))

induces an isometry gn of Symn(H̃(X,Q)) which restricts to one on the Verbitsky component.
Moreover, this isometry normalizes by construction the action of the LLV algebra as in (2.2.1).
Proposition A.7.2 establishes the converse as long as n is odd or the second Betti number
b2(X) is odd, where we recall that X is of dimension 2n.
In conclusion, the natural representation

ρH : Aut(Db(X))→ O(H∗(X,Q))

factors by Corollary 2.3.1 over the representation

ρSH : Aut(Db(X))→ O(SH(X,Q)).

The above implies that, furthermore, the representation ρSH itself also factors over a repre-
sentation

ρH̃ : Aut(Db(X))→ O(H̃(X,Q))
when n or b2(X) is odd. We also discuss a version of this for equivalences Φ: Db(X) ∼= Db(Y )
between different hyper-Kähler manifolds. As long as X and Y are deformation equivalent,
an analogous statement can be deduced also in the relative setting implying the existence of
a Hodge isometry

ΦH̃ : H̃(X,Q) ∼= H̃(Y,Q), (2.3.1)
which is functorial for derived equivalences.
It is not known whether or not derived equivalent hyper-Kähler manifolds are deformation-

equivalent. Nevertheless, we always have.

Theorem 2.3.2 (Theorem A.7.4). Let X and Y be arbitrary hyper-Kähler manifolds and
Φ: Db(X) ∼= Db(Y ) be a derived equivalence. Then, there exists a Hodge similitude

φ : H̃(X,Q)→ H̃(Y,Q)

and a scalar λ ∈ Q∗ such that

SH(X,Q) SH(Y,Q)

Symn(H̃(X,Q)) Symn(H̃(Y,Q))

ΦSH

ψ ψ

λ·Symnφ

commutes.
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2.4. Derived invariance of Hodge numbers
Soldatenkov [199] recently studied Hodge structures of hyper-Kähler manifolds. Motivated
by the proof of [199, Thm. 3.6] we have included Theorem A.8.1 showing that whether or
not an algebra automorphism

φ : H∗(X,Q) ∼= H∗(X,Q)

respects the Hodge structures can be determined on the restriction

φ : H2(X,Q) ∼= H2(X,Q)

to the second cohomology groups.
In [176] Orlov conjectured that derived equivalent varieties have the same Hodge numbers.

A similar strategy as in the proof of Theorem A.8.1 together with Theorem 2.3.2 is used
to prove the final result in the chapter which establishes Orlov’s conjecture for projective
hyper-Kähler manifolds.

Theorem 2.4.1 (Theorem A.8.2). Let X and Y be derived equivalent hyper-Kähler mani-
folds. Then, for all i ∈ Z we have an isomorphism

Hi(X,Q) ∼= Hi(Y,Q)

of Q-Hodge structures.

Contribution by the author of the thesis
Chapter A is based on a talk, which the author delivered in the Bonn–Paris seminar in the
summer term 2021 and has been written solely by the author. Its mathematical content
is based on the work of Taelman [201]. We do not claim mathematical originality in this
chapter.

Notation
Chapter A follows mostly the notation we have introduced and used so far. We briefly
highlight the differences that occur.
The BBF form q on the second cohomology is denoted by b and the Mukai pairing qSH on

the Verbitsky component by bSH. The Mukai lattice H̃(X,Q) of a hyper-Kähler manifold is
called extended Mukai lattice and it is equipped with the quadratic form b̃. The pairing q[n]
on Symn(H̃(X,Q)) is denoted by b[n].
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3. Introduction to derived categories of
hyper-Kähler manifolds: extended Mukai
vector and integral structure

This chapter is an introduction to the results of Chapter B, which has appeared in [25]. It is
a direct continuation of the preceding chapter.
The main focus of this chapter is again the derived category Db(X) of a hyper-Kähler

manifold and equivalences between them. The main ingredient in our study is the Mukai
lattice H̃(X,Q), which by the results of the previous chapter governs in a certain sense the
derived category.

3.1. Square root of Todd class
Our starting point is, however, a purely topological consideration. Namely, we consider the
formal square root td1/2 of the Todd class td of X, which can also be thought of as the Mukai
vector v(OX) of the trivial line bundle OX . It is a linear combination

td1/2 = 1 + 1
24c2(X) + 7

5760c2(X)2 − 1
1440c4(X) + . . .

of products of Chern classes. Let us introduce the number

rX := C(c2(X))2nn!(2n− 1)
(2n)!24cX

= C(c2(X))(2n− 1)
24CX

.

Nieper-Wißkirchen [162, p. 738] has proven the identity∫
X

td1/2 exp(ω) =
(

1 + q(ω)
2rX

)n ∫
X

td1/2 (3.1.1)

for all ω ∈ H2(X,Q). We will reprove this formula in Section D.5.3. Observe that (3.1.1) only
depends on the projection (td1/2)SH ∈ SH(X,Q) of td1/2 under the orthogonal decomposition

H∗(X,Q) ∼= SH(X,Q)⊕ SH(X,Q)⊥

to the Verbitsky component.
Let us relate this picture with the isometric inclusion

ψ : SH(X,Q) ↪→ Symn(H̃(X,Q)).

We denote the corresponding orthogonal split

T : Symn(H̃(X,Q))� SH(X,Q).

The above discussion then yields the following.
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Proposition 3.1.1 (Proposition B.3.4). Let X be a hyper-Kähler manifold of dimension 2n.
Then,

(td1/2)SH = T

((α+ rXβ)n
n!

)
∈ SH(X,Q).

Thus, the square root of the Todd class when projected to the Verbitsky component can
be expressed as the n-th power of a linear polynomial.

3.2. Extended Mukai vector
If we use again the interpretation td1/2 = v(OX), Proposition 3.1.1 can be rephrased by the
equality

v(OX)SH = T

((α+ rXβ)n
n!

)
∈ SH(X,Q). (3.2.1)

In particular, the (projection of the) Mukai vector v(OX) of the structure sheaf OX can be
related with a vector

ṽ := α+ rXβ ∈ H̃(X,Q)

in the Mukai lattice. This prompts the question whether there are other sheaves or objects
for which we can relate their classical Mukai vector with elements in the Mukai lattice. This
leads to the definition of the extended Mukai vector. In the most general form this is given
in Definition B.4.16. Note that this notion will be refined and further studied in the next
chapter.
Let us, therefore, consider in this introduction the two cases of interest for our study of

derived categories. The first one are objects E ∈ Db(X) such that there exists an equivalence
Φ ∈ Aut(Db(X)) which satisfies

Φ(OX) ∼= E .

Starting from (3.2.1) the functoriality of the assignment

Φ 7→ ΦH̃

allows us to define in the case that n or b2(X) is odd an extended Mukai ṽ(E) ∈ H̃(X,Q),
which up to sign equals ΦH̃(ṽ)1. For the precise statements see Definitions B.4.3 and B.4.6.
As an example, to a line bundle L ∈ Pic(X) we associate the vector

ṽ(L) := α+ c1(L) +
(q(c1(L))

2 + rX

)
β ∈ H̃(X,Q).

We gain have the compatibility

v(L)SH = T

(
ṽ(L)n
n!

)
∈ SH(X,Q).

Other examples of this kind we consider are Lagrangian projective spaces Pn ⊂ X inside
hyper-Kähler manifolds, see Example B.4.17.

1The sign only occurs in the case n even and b2(X) odd and is due to a certain sign convention in [201]. For
everything that follows the explicit choice of the sign can be ignored.
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In the second case the starting point is the skyscraper sheaf k(x) for a point x ∈ X which
satisfies

v(k(x)) = T

(
βn

cX

)
∈ SH(X,Q).

As above, objects E ∈ Db(X) for which there exists an equivalence Φ ∈ Aut(Db(X)) with
Φ(k(x)) ∼= E for some x ∈ X admit an extended Mukai vector ṽ(E) ∈ H̃(X,Q). Other
examples we consider which are of this type are line bundles of degree zero supported on
Lagrangian tori. Objects in one of the two classes and their Mukai vector satisfy many
intriguing properties, see for example Lemma B.4.13.

3.3. Structural result
In the previous chapter we have seen that a derived equivalence

Φ: Db(X) ∼= Db(Y )

between deformation-equivalent hyper-Kähler manifolds induces a Hodge isometry

ΦH̃ : H̃(X,Q) ∼= H̃(Y,Q)

between the corresponding Mukai lattices. Our interest in the extended Mukai vector stems
from the fact that it allows us to easily deduce properties or often directly compute the
induced Hodge isometry ΦH̃. This principle is exploited to establish the following structural
result for derived equivalences between hyper-Kähler manifolds.

Theorem 3.3.1 (Theorem B.4.15). Let X and Y be deformation-equivalent projective hyper-
Kähler manifolds and Φ: Db(X) ∼= Db(Y ) an equivalence with Fourier–Mukai kernel E. The
rank r of E is of the form ann!

cX
for a ∈ Q. If r = 0, then E induces a covering of X and Y

with Lagrangian cycles, or there exists a Hodge isometry H2(X,Z) ∼= H2(Y,Z).

Let us explain this result a bit further.
Theorem 3.3.1 divides derived equivalences Φ ' FME : Db(X) ∼= Db(Y ) into three cases.

In the first case the rank r of the Fourier–Mukai kernel E is non-zero and the theorem asserts
that the possible values for r are severely restricted. Note that in all known cases cX ∈ Z
which implies that in the expression

ann!
cX

a must also already be an integer.
In the other cases, the rank of E is zero. If we assume, for example, that E is an X-flat

sheaf, then the second case yields that the codimension n component of supp(E) is a flat
family of Lagrangian subvarieties of Y parameterized by X which dominates Y .

In the final case, the derived equivalence Φ yields the existence of a Hodge isometry

H2(X,Z) ∼= H2(Y,Z). (3.3.1)

If this isometry equals the action of a parallel transport operator, the Global Torelli theorem
asserts that X and Y must be birational. Up to finite index, any Hodge isometry (3.3.1) is
induced from a parallel transport operator [137, Lem. 6.23].
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3.4. Derived monodromy group
The rest of the chapter focuses on hyper-Kähler manifolds X of K3[n]-type, i.e. manifolds
which are deformation-equivalent to the Hilbert scheme S[n] of n points on a K3 surface S.
Our first goal is to describe how derived equivalences can act on the extended Mukai lattice

H̃(X,Q) of K3[n]-type hyper-Kähler manifolds. The conceptual tool we use is the following.
Definition 3.4.1 (Definition B.6.1). The derived monodromy group DMon(X) is the sub-
group of O(SH(X,Q)) generated by all isometries of the form

SH(X,Q) γ1−→ SH(X1,Q) F−→ SH(X2,Q)
γ−1

2−−→ SH(X,Q).

The isomorphisms γi are induced from parallel transport operators between X and Xi

and F = ΦSH for a derived equivalence Φ: Db(X1) ∼= Db(X2), see Section B.6 for further
details. The results from the last chapter implies that we can (and will) consider the derived
monodromy group DMon(X) as a subgroup of O(H̃(X,Q)).
When studying the derived monodromy group one looks at the induced isometries of de-

rived equivalences of all deformations of X. Determining the group DMon(X), therefore, in
particular yields an upper bound on the image of the representation

ρH̃ : Aut(Db(X))→ O(H̃(X,Q)).

As summarized in Section 1.3.6 in the case of K3 surfaces S this image is understood and
one obtains that the derived monodromy group

DMon(S) = O+(H̃(S,Z))

is the group of isometries of the integral Mukai lattice with real spinor norm one.
To describe DMon(X) for K3[n]-type hyper-Kähler manifolds, recall from (1.3.7) the group

homomorphism
Aut(Db(S))→ Aut(Db(S[n]))

obtained using the Bridgeland–King–Reid equivalence. We observe in Proposition B.6.3 that
this yields a group homomorphism

dn : DMon(S)→ DMon(S[n]).

Our first step towards understanding the derived category of K3[n]-type hyper-Kähler mani-
folds is the computation of the morphism dn.
Theorem 3.4.2 (Theorem B.7.4). The homomorphism dn : DMon(S) → DMon(S[n]) is
given by

g 7→ det(g)n+1B−δ/2 ◦ ι(g) ◦Bδ/2.
The group homomorphism

ι : O(H̃(S,Q))→ O(H̃(S[n],Q))

is obtained from the natural inclusion H̃(S,Q) ⊂ H̃(S[n],Q). Furthermore, the class δ ∈
H2(S[n],Z) is half the exceptional divisor of the Hilbert–Chow morphism S[n] → S(n) and for
λ ∈ H2(X,Q) the isometry Bλ ∈ O(H̃(X,Q)) is defined via

Bλ(rα+ µ+ sβ) = rα+ µ+ rλ+
(
s+ q(λ, µ) + r

q(λ, λ)
2

)
β.
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3.5. Derived categories of K3[n]-type hyper-Kähler manifolds
As in the case of K3 surfaces we would like to find an even lattice which governs the derived
category of K3[n]-type hyper Kähler manifolds X of dimension 2n and equivalences between
them. For this purpose we fix a class δ ∈ H2(X,Q) with square 2−2n and divisibility 2n−2.

Definition 3.5.1 (Theorem B.5.2). For δ ∈ H2(X,Z) as above we define the K3[n] lattice as

Λ := B−δ/2(H̃(X,Z)) ⊂ H̃(X,Q).

A detailed study of this lattice together with properties of the extended Mukai vectors
yields the following bounds for the derived monodromy group.

Theorem 3.5.2 (Theorem B.8.1). Let X be a K3[n]-type hyper-Kähler manifold. There are
inclusions

Ô+(Λ) ⊂ DMon(X) ⊂ O(Λ).
In particular, the K3[n] lattice Λ is fixed by all derived equivalences.

The group Ô+(Λ) is the group of isometries of Λ with real spinor norm one which act via
±id on the discriminant group. For details on these groups and lattice theory in general, see
[100, Sec. 14] and [82].
As an immediate consequence we find that the representation

ρH̃ : Aut(Db(X))→ O(H̃(X,Q))

factors over a representation

ρH̃ : Aut(Db(X))→ Aut(ΛX), (3.5.1)

where Aut(ΛX) is the group of Hodge isometries of the lattice ΛX equipped with the Hodge
structure coming from the inclusion ΛX ⊂ H̃(X,Q). We also obtain a relative version of this
statement, which yields a complete analogue for Mukai’s result [155] for derived equivalences
between K3 surfaces.

Theorem 3.5.3 (Theorem B.9.2). Let X and Y be projective K3[n]-type hyper-Kähler mani-
folds and Φ: Db(X) ∼= Db(Y ) a derived equivalence. Then, ΦH̃ restricts to a Hodge isometry

ΦH̃ : ΛX ∼= ΛY .

Hence, the K3[n] lattice governs in a similar sense to the surface case derived equivalences
between K3[n]-type hyper-Kähler manifolds. This has strong implications. Here is one ex-
ample.

Theorem 3.5.4 (Theorem B.9.4). For a fixed projective K3[n]-type hyper-Kähler manifold
X the number of projective K3[n]-type manifolds Y up to isomorphism with Db(X) ∼= Db(Y )
is finite.

Another consequences regards smooth moduli spaces MS
σ (v) of σ-stable objects on the K3

surface S with Mukai vector v. In [17] it is shown that a hyper-Kähler manifold X which is
birational toMS

σ (v) is isomorphic to a moduli space of stable objects on the same K3 surfaces.
The K3[n] lattice allows us to strengthen this result to consider derived equivalences.
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Corollary 3.5.5 (Corollary B.9.6). Let MS
σ (v) be a smooth moduli space of stable objects

on a projective K3 surface S and X a projective K3[n]-type hyper-Kähler manifold such that
Db(X) ∼= Db(MS

σ (v)). Then, X is itself a moduli space of stable objects on S.

This also immediately yields.

Corollary 3.5.6 (Corollary B.9.7). For two smooth moduli spaces MS
σ (v) and MS′

σ′ (v′) of
stable objects on projective K3 surfaces S and S′ with Db(MS

σ (v)) ∼= Db(MS′
σ′ (v′)) we have

Db(S) ∼= Db(S′). Furthermore, S and S′ are derived equivalent if and only if their Hilbert
schemes S[n] and S′[n] are derived equivalent.

A final consequence of the above we would like to mention in the introduction is a bound
on the image Im(ρH̃) of the representation (3.5.1) for Hilbert schemes S[n] of elliptic K3
surfaces.

Theorem 3.5.7 (Theorem B.9.8). For the Hilbert scheme S[n] of a K3 surface with U ⊂
NS(S) the image Im(ρH̃) of the representation ρH̃ satisfies

Âut+(ΛS[n]) ⊂ Im(ρH̃) ⊂ Aut(ΛS[n]).

The group Âut+(ΛS[n]) is the group of all Hodge isometries of ΛS[n] with real spinor norm
one which act via ±id on the discriminant group. When n−1 is a prime power, the inclusion

Âut+(ΛS[n]) ⊂ Aut+(ΛS[n])

is an equality. In these cases Theorem 3.5.7 determines Im(ρH̃) up to index two.

Notation
Chapter B uses the same notation as Chapter A. For convenience let us again mention the
notational differences that occur.
The BBF form q on the second cohomology is denoted by b and the Mukai pairing qSH on

the Verbitsky component by bSH. The orthogonal projection

H∗(X,Q)→ SH(X,Q)

to the Verbitsky component is denoted by (_) in this chapter. The Mukai lattice H̃(X,Q) of
a hyper-Kähler manifold is again called extended Mukai lattice and it is equipped with the
quadratic form b̃. The pairing q[n] on Symn(H̃(X,Q)) is denoted by b[n].

30



4. Introduction to atomic objects on
hyper-Kähler manifolds

In this chapter we present an overview of the content of Chapter C, which has appeared in
[26].
The impetus for this part was to better understand the extended Mukai vector of the

preceding chapter with an aim to obtain an improved conceptual picture.

4.1. Extended Mukai vector revisited

We consider again a hyper-Kähler manifold X of dimension 2n. Recall that for a sheaf or
an object E we said that it admits an extended Mukai vector ṽ(E) ∈ H̃(X,Q) if there exists
c ∈ Q such that

v(E)SH = c · T (ṽ(E)n) ∈ SH(X,Q).

Here, (_)SH denotes again the orthogonal projection to the Verbitsky component obtained
from the decomposition

H∗(X,Q) = SH(X,Q)⊕ SH(X,Q)⊥

and, as before, T is the orthogonal split for the isometric inclusion

ψ : SH(X,Q) ↪→ Symn(H̃(X,Q)).

For our purposes in Chapter B this definition is sufficient. However, it relates only the
Verbitsky component SH(X,Q) with the Mukai v(E) and ignores all other irreducible repre-
sentations Vλ of the LLV algebra from the decomposition

H∗(X,Q) ∼=
⊕
λ

Vλ. (4.1.1)

4.2. Atomic objects

Instead of only looking at SH(X,Q) we can use (4.1.1) to decompose the Mukai vector v(E)
of a sheaf respective object E as

v(E) =
∑
λ

v(E)λ ∈
⊕
λ

Vλ. (4.2.1)

We want a notion which relates the Mukai vector v(E) with the Mukai lattice H̃(X,Q) and
takes into account all summands v(E)λ. This leads to the central notion of this chapter.
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Definition 4.2.1 (Definition C.1.1). A sheaf E ∈ Coh(X) or an object E ∈ Db(X) is called
atomic if there exists a non-zero vector ṽ ∈ H̃(X,Q) such that the annihilator Lie subalgebra
Ann(v(E)) ⊂ g(X) of the representation of g(X) on H∗(X,Q) equals the annihilator Lie
subalgebra Ann(ṽ) ⊂ g(X) ∼= so(H̃(X,Q)) of the representation of g(X) on H̃(X,Q).

Let us explain this notion a bit more. A first observation is that any non-zero sheaf on
a K3 surface is atomic. In this sense, atomic sheaves and objects can be considered as
generalizations of sheaves on K3 surfaces. We will explore this philosophy in more depth in
the next sections.
Next, recall that the Mukai vector v(E) of any object is a Hodge class, i.e. contained in

the subspace ⊕
p

Hp,p(X,Q) :=
⊕
p

Hp,p(X) ∩H∗(X,Q).

For a general element x ∈ H∗(X,Q) which is Hodge one can consider two cases. The first
one is when x is annihilated by the LLV algebra g(X). This is equivalent to the inclusion of
the annihilator Lie subalgebra Ann(x) of the LLV algebra to be an equality

Ann(x) = g(X).

The second case is that the inclusion

Ann(x) ⊂ g(X)

is strict and the annihilator is a proper subalgebra. With this in mind an equivalent definition
for objects to be atomic is the following.

Proposition 4.2.2 (Proposition C.3.1). An object E ∈ Db(X) is atomic if and only if
Ann(v(E)) ⊂ g(X) is a Lie subalgebra of codimension b2(X) + 1, which is the smallest
positive codimension possible.

Thus, atomic objects E are exactly those, for which their annihilator Lie subalgebra
Ann(v(E)) ⊂ g(X) is a proper subalgebra of the largest dimension possible. In particu-
lar, since by Lemma C.3.7 the Mukai vector of any non-zero sheaf projects non-trivially to
the Verbitsky component, a sheaf E is atomic if and only if the Lie algebra Ann(v(E)) is as
large as possible.
Furthermore, atomic objects admit an extended Mukai vector in the sense of Section 4.1.

Therefore, atomic objects inherit all the properties we discussed in Section B.4. For example,
if the rank rk(E) of E is non-zero, then the atomic object E admits the Mukai vector

ṽ(E) = rk(E)α+ c1(E) + sβ ∈ H̃(X,Q)

in the Mukai lattice for some s ∈ Q.
Moreover, since being atomic is a purely cohomological notion involving only the LLV

algebra, the property of being atomic is stable under deformations and derived equivalences,
see Proposition C.3.10. In addition, many summands in the decomposition (4.2.1) must
vanish for atomic objects. That is, irreducible representations Vλ which admit elements
satisfying Definition 4.2.1 are severely restricted. In particular, the Mukai vector of an
atomic object can only lie in certain subspaces Vλ.
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4.3. Obstruction maps
As has been observed above every non-zero sheaf on a K3 surface is atomic. In the remaining
part we would like to convey our intuition that atomic objects on hyper-Kähler manifolds
behave in many aspects like sheaves on K3 surfaces.
We start by studying aspects of deformation theory for atomic objects. More precisely, let

us introduce the cohomological obstruction map

obsE : HT2(X)→ H∗(X,C), µ 7→ µyv(E).

Recall that
HT2(X) = H0(X,Λ2TX)⊕H1(X, TX)⊕H2(X,OX).

The space H1(X, TX) parameterizes first-order deformations of the manifold X. For an
element µ ∈ H1(X, TX) the cohomological obstruction map obsE measures whether the Mukai
vector v(E) stays a Hodge class along the given first-order deformation direction. More
generally, the space HT2(X) parameterizes by [204] first-order deformations of the category
Db(X) and obsE again measures whether the element v(E) deforms along.

Let us relate the cohomological obstruction map with the notion of atomicity.

Theorem 4.3.1 (Theorem C.1.2). Let X be a hyper-Kähler manifold and E ∈ Db(X). Then,
E is atomic if and only if the cohomological obstruction map obsE has a one-dimensional
image.

The theorem says that atomic objects E are precisely those objects for which the subspace
of HT2(X) of first-order deformations for which v(E) stays a Hodge class has codimension
one. This result relates the (symplectic) geometry of polyvector fields and deformation theory
with the representation theory of the LLV algebra. This relation will be used throughout the
rest and is often crucially used in the proof of later results.
Instead of looking only at cohomology, let us now consider the question whether or not the

object E itself deforms along a given first-order deformation direction in HH2(X) ∼= HT2(X).
As shown in [204, Prop. 6.1] this is governed by the obstruction map

χE : HH2(X)→ Ext2(E , E),

which we introduced in Section 1.3.4. The obstruction map χE for the object E sits in the
commutative diagram

HH∗(X) Ext∗(E , E)

HT∗(X),

χE

IHKR
y exp(AtE)

where exp(AtE) is the exponential of the Atiyah class AtE ∈ Ext1(E , E ⊗ Ω1
X) of E [94]. We

will call objects E for which the kernel Ker(χE) has codimension one 1-obstructed. These
objects were recently investigated by Markman [139]. We want to relate them to the notion
of atomicity.

Theorem 4.3.2 (Theorem C.1.3). If E ∈ Db(X) is a 1-obstructed object such that v(E)
is not annihilated by the LLV algebra g(X), then E is atomic. In particular, 1-obstructed
sheaves are atomic.
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Observe that the Mukai vector of atomic objects is not annihilated by the LLV algebra
g(X). In particular, for a 1-obstructed object E its Mukai vector v(E) not being annihilated
by the LLV algebra is necessary and sufficient for E to be atomic. In fact, we believe that
this extra assumption is vacuous. That is, we conjecture that Mukai vectors of 1-obstructed
objects are never annihilated by the LLV algebra.
What about the converse in Theorem 4.3.2? This already fails for vector bundles on K3

surfaces. More precisely, we observe in Example C.4.4 that for a non-trivial line bundle
L ∈ Pic(S) on a K3 surface the bundle

OS ⊕ L

is not 1-obstructed. However, if we restrict to simple atomic sheaves, we speculate the
following.

Conjecture A (Conjecture E). Let X be a hyper-Kähler manifold and E a simple atomic
object. For each γ ∈ HH2(X) with 0 6= χE(γ) = γE ∈ Ext2(E , E) there exists µ ∈ HH2n−2(X)
such that the composition µE ◦ γE ∈ Ext2n(E , E) is non-zero.

Note that for a simple object E ∈ Db(X) Serre Duality equips Ext∗(E , E) with a perfect
pairing by identifying

Ext2n(E , E) ∼= C.

From this viewpoint one may ask whether this pairing restricts to a non-degenerate pairing
on the subalgebra given by the image

Im(χE) ⊂ Ext∗(E , E)

of the obstruction map
χE : HH∗(X)→ Ext∗(E , E).

The above conjecture is a special case of this question.
As evidence, note that Conjecture A holds for K3 surfaces. Moreover, Proposition C.4.6

shows that simple 1-obstructed sheaves satisfy the conclusion of the conjecture. Proving it
would establish the following connection between 1-obstructed and atomic objects.

Theorem 4.3.3 (Theorem C.1.4). If E ∈ Db(X) is a simple object satisfying the conclusion
of Conjecture E, then E is 1-obstructed if and only if E is atomic.

In particular, for a simple object E consider the three properties: E is atomic, E is 1-
obstructed, E satisfies the conclusion of Conjecture A. Then, any two of these properties
imply the remaining one.

4.4. Comparison to other notions
Prior to our study of atomic sheaves there were two prominent notions of bundles on higher-
dimensional hyper-Kähler manifolds. The first one is that of (projectively) hyperholomorphic
bundles due to Verbitsky [208]. We recall their definitions and properties in Section C.5.
O’Grady proposed in [172] the notion of modular sheaves and bundles. This is also a com-
pletely topological notion asking that the discriminant

∆(E) := −2rch2(E) + ch1(E)2 ∈ H4(X,Q)
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of the sheaf E when projected to the Verbitsky component is a multiple of the dual q of the
BBF form.
Let us relate these with the notion of atomic sheaves and objects.

Proposition 4.4.1 (Proposition C.1.5). Let E be a torsion-free atomic sheaf. Then, E is
modular.

The converse does not hold. An easy counterexample is given by the ideal sheaf I of any
point x ∈ X on a hyper-Kähler manifold of dimension at least four.

Proposition 4.4.2 (Proposition C.1.6). Let E be a slope polystable atomic vector bundle.
Then, E is projectively hyperholomorphic.

We note that since projectively hyperholomorphic bundles are polystable [208, Thm. 2.3],
atomic bundles are projectively hyperholomorphic if and only if they are polystable.
Again, the converse does not hold. A counterexample is provided by the tangent bundle
TX on higher dimensional hyper-Kähler manifolds, see Proposition C.8.3.

4.5. Deformations of stable atomic bundles
The deformation behaviour of slope stable bundles on K3 surfaces is particularly well-
behaved. We show that this conclusion remains true for stable atomic bundles on hyper-
Kähler manifolds.

Proposition 4.5.1 (Proposition C.5.5). Let E be a slope stable atomic bundle. Then, P(E)
deforms over the whole moduli space of Kähler deformations of X.

This is a consequence of Proposition 4.4.2. Another way of phrasing the above is that
the endomorphism bundle End(E , E) is hyperholomorphic for any hyper-Kähler metric. In
particular, also End(E , E) deforms along with any Kähler deformation of X.

Fixing the manifold X let us consider the deformation behaviour of a stable atomic bundle
E on X. This question is governed by the dg Lie algebra

RHom(E , E),

see [134, 197] for the necessary background. We recall that a dg (Lie) algebra L is formal if
it is isomorphic

L ∼= H∗(L)
as a dg (Lie) algebra to its cohomology algebra.

Theorem 4.5.2 (Theorem C.1.7). Let E be an atomic slope stable vector bundle. Then, the
dg algebra RHom(E⊕k, E⊕k) is formal for any k > 0.

More generally, we establish the above result under the weaker assumption that E is a
stable projectively hyperholomorphic bundle. Thus, also for these bundles the associated dg
algebra is formal.
To relate this to the deformation behaviour of atomic bundles E , formality for the associated

dg Lie algebra implies that the local versal deformation space associated to the deformations
of E on X is isomorphic to the preimage of 0 under

κ2 : Ext1(E , E)→ Ext2(E , E), f 7→ f ◦ f.
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In particular, this space has at most quadratic singularities, see Corollary C.6.3. For more
details and a thorough discussion we refer to Section C.6.

4.6. Atomic Lagrangians
An import class of submanifolds of hyper-Kähler manifolds are Lagrangian submanifolds.
We take a closer look at these manifolds using the notion of atomic sheaves.

Definition 4.6.1 (Definition C.7.1). We call a connected Lagrangian submanifold ι : L ⊂ X
atomic if ι∗OL is an atomic sheaf.

The main result about atomic Lagrangians is the following.

Theorem 4.6.2 (Theorem C.1.8). Let ι : L ⊂ X be a connected Lagrangian submanifold.
Then ι∗OL is atomic if and only if the restriction map ι∗ : H2(X,Q) → H2(L,Q) has a
one-dimensional image and c1(L) = c1(TL) ∈ Im(ι∗) ⊂ H2(L,Q).

Let us consider this result from the viewpoint of obstructions to deformations via The-
orem 4.3.1. Namely, since the sheaf ι∗OL is supported on a Lagrangian submanifold, the
cohomological obstruction map obsι∗OL vanishes when restricted to H2(X,OX). It, therefore,
remains to control first-order deformations parameterized by H1(X, TX) and H0(X,Λ2TX).
The fact that the restriction map

ι∗ : H2(X,Q)→ H2(L,Q)

of the pullback homomorphism has a one-dimensional image translates into the the kernel of
obsι∗OL having a one-dimensional image when restricted to H1(X, TX). The condition that
c1(L) is supposed to be contained in the image Im(ι∗) means that the obstruction coming
from the Poisson deformation direction agrees with the obstructions coming from H1(X, TX).

This again establishes a nice analogy to the surface case. Namely, Lagrangian submanifolds
C of a K3 surface are smooth curves of any genera. In particular, they are either Fano
manifolds, are K-trivial, or their canonical bundle ωC is ample. This conclusion remains
true for atomic Lagrangians inside hyper-Kähler manifolds.
Atomic Lagrangians provide a convenient class of examples, which we further study in

Section C.7. Among other things we study the question of formality for the associated
derived endomorphisms. Moreover, the ring isomorphism

Ext∗(ι∗OL, ι∗OL) ∼= H∗(L,C)

shows that their Ext algebra are of topological nature and, in particular, graded-commutative.
As demonstrated in Proposition C.7.7, one may compare this with the case of simple objects
E ∈ Db(S) on K3 surfaces S, where we always have

Ext∗(E , E) ∼= H∗(C,C)

for some Riemann surface C. We speculate that this topological nature of the Ext algebra
Ext∗(E , E) for simple atomic objects E remains true. This would, in particular, mean that
Ext∗(E , E) is graded-commutative. We refer to Conjecture F and the surrounding discussion
for a partial form of this statement.
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4.7. Spherical sheaves and objects
In the appendix we study spherical sheaves and objects on hyper-Kähler manifolds. This
part is independent of our discussion of atomic objects.
For many of our results in this chapter, such as Theorem 4.3.3, we related the Mukai

vector v(E) of an object E to properties of the Ext algebra Ext∗(E , E). A refined study of
this relationship yields the following result, which seems to have been expected, but no proof
existed so far in the literature.

Theorem 4.7.1 (Theorem C.1.9). There exist no spherical sheaves on a hyper-Kähler man-
ifold X of dimension greater than two. Moreover, if X is of K3[n] with n > 1 or OG10-type,
then Db(X) contains no spherical objects.

This result is deduced from Theorem C.A.2 which relates non-vanishing results for pro-
jections of the Mukai vector v(E) of an object E to non-vanishing of certain Ext groups
Extj(E , E). For example, any non-zero sheaf E on a hyper-Kähler manifold satisfies

Ext2(E , E) 6= 0,

see Corollary C.A.3.
In general, we show that the Mukai vector of a spherical object must be contained in the

subspace U of H2n(X,Q) which is the orthogonal complement of the subalgebra generated
by all cohomology classes of degree at most 2n − 1. In particular, U is annihilated by the
LLV algebra g(X). We expect that spherical objects on hyper-Kähler manifolds can only
exist for K3 surfaces.
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5. Introduction to second Chern class and
Fujiki constants of hyper-Kähler manifolds

We will give an introduction to the results of Chapter D. It has appeared as [30] and is a
joint work with Jieao Song.
In this part we study the (conjectural) behaviour of the generalized Fujiki constants and

the Riemann–Roch polynomial of hyper-Kähler manifolds X. At first sight quite surprisingly,
this leads to a conditional bound on the second Betti number b2(X).

5.1. Topological restrictions
In Section 1.1.2 we have listed up to deformations all currently known examples of hyper-
Kähler manifolds. The scarcity of examples and the difficulty to construct hyper-Kähler
manifolds naturally prompts the question what restrictions this class of manifolds must obey.
There are several results in this direction of which we want to name a few. The Ver-

bitsky component SH(X,Q) ⊂ H∗(X,Q) is always a subalgebra of the cohomology. The
isomorphism

SH2k(X,C) ∼= Symk(H2(X,C))
for k ≤ n due to Verbitsky [207] gives a lower bound on the even Betti numbers. Furthermore,
Fujiki [75] proved that the odd Betti numbers b2k+1(X) are always divisible by four.

In dimension four Guan [84] obtained the general bound

b2(X) ≤ 23

and, moreover, if b2(X) < 23, then the second Betti number is at most eight. The main
ingredient for these result is the following relation

4n∑
j=0

(−1)j(3j2 − n(12n+ 1))bj(X) = 0

for hyper-Kähler manifolds X of dimension 2n due to Salamon [191].
There are also other constraints apart from the Betti numbers. For example, the Bo-

gomolov inequality implies that the generalized Fujiki constant of the second Chern class
c2 := c2(X) of X satisfies

C(c2) > 0.

The result of Nieper-Wißkirchen (3.1.1) shows that the generalized Fujiki constants C(td1/2
2k )

of the square root of the Todd class in each degree 4k are also always positive. Jiang [113]
recently showed the positivity

C(td2k) > 0
for the Todd class itself. In particular, the coefficients of the Riemann–Roch polynomial
RRX(q) of X must be positive.
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5.2. Characteristic classes and Verbitsky component

The point of departure for this part is the following. Can we determine when certain charac-
teristic classes lie in the Verbitsky component? A first candidate to investigate is the second
Chern class c2 of X. It was known before [138, Lem. 1.5] that it is not always contained in
SH(X,Q).
In general, we decompose

H4(X,Q) ∼= SH4(X,Q)⊕ SH4(X,Q)⊥

which allows us to write
c2 = aq + z (5.2.1)

with z ∈ SH4(X,Q)⊥ and a 6= 0. The first result towards an answer to the above question
is the following which is obtained from squaring both sides of (5.2.1) and investigating the
factors.

Proposition 5.2.1 (Proposition D.2.3). We have the following inequality

C(c2
2) ≥ C(c2)2

C(q)2 C(q2), (5.2.2)

where equality holds if and only if c2 ∈ Sym2(H2(X,Q)).

Since qk ∈ SH(X,Q), the generalized Fujiki constants C(qk) can be expressed in terms of
the second Betti number b2(X) and the Fujiki constant CX = C(1), see Proposition D.2.4.
This allows to rewrite (5.2.2) as

C(c2
2) ≥ (2n− 1)(b2(X) + 2n− 4)C(c2)2

(2n− 3)(b2(X) + 2n− 2)C(1) .

5.3. Bounding the second Betti number

We want to relate the preceding section with our discussion about constraints for hyper-
Kähler manifolds. Nieper-Wißkirchen’s result (3.1.1) about the factorization of td1/2 when
restricted to the Verbitsky component yields the relation

7C(c2
2)− 4C(c4) = 5(2n− 1)C(c2)2

(2n− 3)C(1)

between generalized Fujiki constants, see Corollary D.2.6. Combining everything we said so
far leads to the following reformulation of the main result of the present part, which also
determines precisely whether or not the second Chern class lies in the Verbitsky component.

Theorem 5.3.1 (Remark D.2.8). Let X be a hyper-Kähler manifold of dimension 2n with
second Betti number b2(X) and let us write C(c2

2) = µC(c4). If

µ > 2, (5.3.1)
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then we have the inequality
b2(X) ≤ 9− 2n+ 10

µ− 2 (5.3.2)

and equality holds if and only if c2 ∈ Sym2H2(X,Q). If condition (5.3.1) does not hold, then
c2 is not contained in the Verbitsky component.

Let us discuss this statement further.
Firstly, the condition (5.3.1) is equivalent to

C(ch4) > 0.

This holds true in dimension four [169, Lem. 4.6]. We will comment more on the expected
positivity behaviour of generalized Fujiki constants in the next section.
Moreover, in all known examples we have C(ch4) > 0. That is, Theorem 5.3.1 applies in

theses cases and yields a bound on the second Betti number. In the case that X is of K3[n]

or OG10-type we have
b2(X) ≤ n+ 17 + 12

n+ 1
and for manifolds of Kumn or OG6-type the bound is

b2(X) ≤ n+ 5,

see Examples D.2.12 and D.2.13. In particular, for Kum2-type hyper-Kähler manifolds this
bound is stronger than the one by Guan. Furthermore, note that the bound is attained
for K3[2], K3[3], OG10, Kum2 as well as OG6-type hyper-Kähler manifolds and is, therefore,
sharp. In addition, for these manifolds the theorem implies that the second Chern class lies
in the Verbitsky component.
Theorem 5.3.1 can equivalently be formulated in terms of the coefficients of the Riemann–

Roch polynomial
RRX(q) = A0q

n +A1q
n−1 +A2q

n−2 + . . . ,

which is Theorem D.1.1. The condition (5.3.1) becomes

2nA0A2 < (n− 1)A2
1 (5.3.3)

and the bound (5.3.2) translates into the inequality

b2(X) ≤ 1

1− 2nA0A2
(n− 1)A2

1

− (2n− 2).

If the Riemann–Roch polynomial factorizes

RRX(q) = A0

n∏
i=1

(q + λi)

with n distinct roots λi, then (5.3.3) is satisfied and the bound on the second Betti number
reads

b2(X) ≤ n− 1
n
∑
λ2
i

(∑λi)2 − 1
− (2n− 2),

see Remark D.2.9.
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5.4. Generalized Fujiki constants
Theorem 5.3.1 remains true for primitive symplectic orbifolds as in [73, Def. 3.1]. Generalized
Fujiki constants still exist for this class of varieties [146, Lem. 4.6]. Moreover, an orbifold
version of the Hirzebruch–Riemann–Roch theorem has been established by Blache [32].

We explore Theorem 5.3.1 for many examples of orbifolds in Section D.3. In all cases we
check, condition (5.3.1) is satisfied and Theorem 5.3.1 yields bounds on the second Betti
number which are frequently attained. The reason why (5.3.1) remains true in the singular
case is that one expects the inequality

C(ch4) > 0

to hold true pointwise on the level of forms for the right representative of ch4.
More generally, we expect the following positivity behaviour for generalized Fujiki constants

of products of Chern classes and characters.

Conjecture B (Conjecture K). For k1, . . . , kr ∈ Z>0 with k := ∑
i ki ≤ n we have

(−1)kC(ch2k1 · · · ch2kr) > 0 as well as C(c2k1 · · · c2kr) > 0.

This question was independently asked in [50] and generalizes [169, Qu. 4.7, 4.8] to products
for which k < n. The combination of the consistent positivity for products of Chern classes
together with the alternating behaviour in the case of products of Chern characters would
yield many constraints and relations between these numbers. As above, one expects the
positivity conditions in Conjecture B to hold true pointwise.

In Section D.4 we discuss generalized Fujiki constants for the known smooth hyper-Kähler
manifolds. The case of K3[n] and Kumn-type are well-known [68,163]. For X one of the two
sporadic examples, we show that all Chern classes satisfy

c2i ∈ SH(X,Q),

i.e. they are all contained inside the Verbitsky component. Together with the knowledge of
the Riemann–Roch polynomial polynomial of X, this easily allows to compute all generalized
Fujiki constants.

5.5. Conjectural form of the Riemann–Roch polynomial
In the final section we further explore the possible shape of the Riemann–Roch polynomial
RRX(q) of X and the resulting constraints for other invariants.
The main expectation for the shape of RRX(q) is the following.

Conjecture C (Conjecture I). Let X be a primitively symplectic orbifold of dimension 2n.

(i) The Riemann–Roch polynomial RRX(q) has n distinct negative real roots forming an
arithmetic sequence.

(ii) If X is smooth, then its Riemann–Roch polynomial RRX(q) has even negative integer
roots λ1, . . . , λn satisfying λi − λi−1 = 2.
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The second point necessarily involves the smoothness assumption and fails already for
many examples we discuss in Section D.3. It is a slight strengthening of [113, Conj. 1.3].
We study these questions using Rozansky–Witten theory. As a warm up, we give a shorter

proof of Nieper-Wißkirchen’s result (3.1.1), see Section D.5.3. The main input is the Wheeling
theorem, which we recall in Theorem D.5.1. We explore a similar strategy for the Riemann–
Roch polynomial in Section D.5.4. It leads to the following expectation.

Conjecture D (Conjecture H). Let X be a hyper-Kähler manifold of dimension 2n > 2. We
have

C(ch4)
C(1) = 5(n+ 1)

(2n− 1)(2n− 3) . (5.5.1)

In particular, this would yield the expected positivity C(ch4) > 0. We prove in Proposi-
tion D.5.3 that Conjecture C (ii) implies (5.5.1). See Conjecture J for another expectation
obtained from the above consideration involving C(ch8).
To make the above conjectures more explicit, let us consider their consequences for four-

dimensional hyper-Kähler manifolds. One implication is that they limit the possible values
of generalized Fujiki constants to two.

Proposition 5.5.1 (Proposition D.5.4). Assuming Conjecture D, for n = 2 the following
are the only possibilities for the generalized Fujiki constants of a hyper-Kähler fourfold.

C(1) C(c2) C(c2
2) C(c4)

3 30 828 324
9 54 756 108

Moreover, there are, therefore, only two possible Riemann–Roch polynomials RRX(q) for
hyper-Kähler fourfolds. This also drastically lowers the possible Betti and Hodge numbers
in dimension four.

Corollary 5.5.2 (Corollary D.1.2). Assuming Conjecture D in dimension 4, the Betti num-
bers of a hyper-Kähler fourfold X are one of the following:

• b2(X) = 5, b3(X) = 0, b4(X) = 96;

• b2(X) = 6, b3(X) = 4, b4(X) = 102;

• b2(X) = 7, b3(X) = 8, b4(X) = 108;

• b2(X) = 23, b3(X) = 0, b4(X) = 276.

Contribution by the author of the thesis
This chapter and all the results were obtained in collaboration with Jieao Song. We started a
mail conversation about the question whether and when the second Chern class lies inside the
Verbitsky component. We realized together that this question has connections to bounding
the second Betti numbers. From then on the collaboration was intensified and the author of
this thesis also visited Song in Paris for a week. All the results and conjectures were obtained
together and are shared equally between both authors.
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Notation
We want to again mention the few differences in the notation between the previous chapters
and Chapter D.

Hyper-Kähler manifolds are called hyperkähler manifolds in this chapter. The BBF form
q is denoted by qX and the fundamental class [X] ∈ H0(X,Z) of a manifold X by 1.
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6. Introduction to equivariant categories of
symplectic surfaces and fixed loci of
Bridgeland moduli spaces

In this chapter we discuss Chapter E and the results therein. The research was done jointly
with Georg Oberdieck and has appeared in [28].
In this chapter, we consider symplectic group actions on hyper-Kähler manifolds and de-

rived categories. The fixed locus of the geometric action is shown to be governed by the
equivariant category of the categorical action.

6.1. Symplectic actions on hyper-Kähler manifolds

Let us start with a K3 surface S and an automorphism f ∈ Aut(S) in the group of auto-
morphisms of S. We assume that f act symplectically, i.e. that the induced action on the
symplectic form is trivial. This, in particular, implies that the fixed locus

Sf ⊂ S

is a symplectic submanifold and is, therefore, discrete. Mukai [156] studied (groups of)
symplectic automorphisms of finite order and showed that one has

|Sf | ∈ {2, 3, 4, 6, 8}.

If we consider the action of a symplectic automorphism f on a higher-dimensional hyper-
Kähler manifold X, then the fixed locus Xf is again a union of symplectic submanifolds. For
example, if we consider a symplectic involution on a hyper-Kähler manifold of K3[2]-type,
then the fixed locus consists always of 28 isolated fixed points and one K3 surface [149]. Fixed
loci for involutions on higher-dimensional known hyper-Kähler manifolds were investigated in
[118]. The idea in both articles is to deform a given pair (X, f) consisting of a hyper-Kähler
manifold X together with an involution f to another pair (X ′, f ′) on which one can compute
the fixed locus explicitly, see [150, Sec. 5] for an introduction to deformation of such pairs.
In the above cases X ′ is either S[n] for S a K3 surface or Kumn(A) for an abelian surface A.
The involution f ′ is induced from a symplectic involution on the surface itself.

6.2. Fixed loci for moduli spaces

Thus, in order to study the fixed locus of a group

G ⊂ Aut(X)
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of symplectic automorphisms of a hyper-Kähler manifold one is lead to study this question
for a specific representative of the deformation class of the pair (X,G). Natural candidates
for the known examples are smooth moduli spacesMS

σ (v) of σ-stable objects on holomorphic
symplectic surfaces S. Using also the derived category Db(S) one can consider not only
automorphisms, but any finite subgroup

G ⊂ Aut(Db(S))

of symplectic auto-equivalences such that the induced action of G leaves σ ∈ Stab†(S) and
v ∈ H̃1,1(S,Z) invariant. This, in particular, then implies that G acts via automorphisms on
the moduli space MS

σ (v).
More generally, we study the fixed locus of induced automorphisms on Bridgeland moduli

spaces for a larger class of smooth projective varieties X and relate the fixed locus with
moduli spaces on the equivariant category. We now introduce the framework to state our
results.
Let us consider X for which there exists a connected component

Stab∗(X) ⊂ Stab(X)

of the space of stability conditions which satisfies the technical condition (†) of Section E.3.6.
For example, X could be any smooth projective curve or surface. It is known that for any
stability condition σ ∈ Stab∗(X) and element v ∈ K(Db(X)) there exists good moduli spaces
MX
σ (v) of σ-semistable objects with class v [6].
Moreover, let us assume that there exists a finite group G acting on Db(X). We refer

to the accompanying paper [29] for an introduction to categorical actions and equivariant
categories. For example, G could be a finite group of automorphisms of X. We consider the
equivariant category

Db(X)G,

which can be interpreted as a noncommutative way of taking a quotient by a group ac-
tion. The G-action on Db(X) also yields an action on Stab(X) as well as K(Db(X)).
Any G-invariant stability condition σ ∈ Stab(X) induces by [133] a stability condition
σG ∈ Stab(Db(X)G) for the equivariant category. One of our main results is the existence
of proper good moduli spaces MσG(v′) of σG-semistable objects in Db(X)G for some class
v′ ∈ K(Db(X)G), see Theorem E.3.22. This is used to describe the fixed locus in the following
way.

Theorem 6.2.1 (Theorem E.1.2). Let σ ∈ Stab∗(X) be G-invariant and let M = MX
σ (v)

be a smooth good moduli space of σ-stable objects in Db(X) of class v ∈ K(Db(X))G. Then,
the natural morphism ⊔

v′ 7→v
MσG(v′) → MG (6.2.1)

is a G∨-torsor over the union of all G-linearizable connected components of MG. Here, v′
runs over all classes in K(Db(X)G) mapping to v under the forgetful functor.
Furthermore, (6.2.1) is surjective if H2(G,C∗) = 0 or, more generally, if the G-action on

Db(X) factors through the action of a quotient G� Q such that G is a Schur covering group
of Q.
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Schur covering groups are discussed in Section E.2.1. The dual group G∨ is defined as
G∨ := Hom(G,C∗).

We say that a connected component N ⊂ MX
σ (v)G is G-linearizable if there exists a point

[E] ∈ N such that E admits a G-linearization. The obstruction for the existence of a
linearization is an element in the group cohomology group H2(G,C∗) [185]. Thus, if G is,
for example, cyclic, the above result determines the entire fixed locus up to possibly an étale
cover.
To establish the result, we investigate group actions on (derived) categories in Section E.2.

Orlov’s representability result [175] allows to lift the action on Db(X) to one on the (moduli)
stacks. On the level of (moduli) stacks the close relation between fixed stack and equivariant
category follows readily from the definitions, see Proposition E.3.9 and [189]. One then uses
the moduli theory for objects in Db(X) to deduce Theorem E.3.22 saying that also the moduli
functor for objects in the equivariant category is well-behaved. The map (6.2.1) is obtained
from passing to good moduli spaces.

6.3. Equivariant categories of symplectic surfaces
We now return to our setting X = S a symplectic surface. Theorem 6.2.1 shows that (the G-
linearizable components of the) fixed locus of Bridgeland moduli spaces for symplectic group
actions induced from Db(S) are covered by Bridgeland moduli spaces on the equivariant
category. This can be used in two different ways.
Firstly, it helps to understand equivariant categories. That is, let us again consider a group

G ⊂ Aut(Db(S))
of symplectic equivalences which we assume acts on Db(S). Take a G-invariant stability
condition σ ∈ Stab†(S) and an element

v ∈ H̃1,1(S,Z)
fixed by the action of G on cohomology. This again leads to an induced action by automor-
phisms of G on MS

σ (v).
Theorem 6.3.1 (Theorem E.1.1). Assume that MS

σ (v) is a fine moduli space and that the
fixed locus Mσ(v)G has a 2-dimensional G-linearizable connected component F . Then, there
exists a subgroup H ⊂ G∨ = Hom(G,C∗), a connected H-torsor S′ → F , and an equivalence

Db(S′)
∼=−→ Db(S)G.

Recall that the derived McKay correspondences yields for a finite group G ⊂ Aut(S) acting
symplectically on S a derived equivalence

Db(S)G ∼= Db(S′), (6.3.1)
where S′ is a minimal resolution of the quotient S/G. The above result recovers (6.3.1) by
considering

MS
σ (v) = S[|G|]

with the natural induced action of G on S[|G|]. Thus, Theorem 6.3.1 can be regarded as a gen-
eralization of the derived McKay correspondence for symplectic surfaces. For a more general
version allowing coarse moduli spaces with strictly semistable objects, see Theorem E.5.4.
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6.4. Fixed loci of Bridgeland moduli spaces for K3 surfaces
In the last section we used Theorem 6.2.1 to describe the equivariant category Db(S)G. On
the other hand, once we understand Db(S)G we can use Theorem 6.2.1 to describe fixed loci
of Bridgeland moduli spaces.
We consider a symplectic G-action on Db(S) with S a symplectic surface. Let us look at

the moduli space MS
σ (v) for G-invariant σ ∈ Stab†(S) and v ∈ H̃1,1(X,Z). We assume that

there exists an equivalence
Φ: Db(S′) ∼= Db(S)G,

where S′ is a symplectic surface (one can also, more generally, allow twisted symplectic
surfaces using Brauer classes). Hence, Theorem E.1.2 shows that⊔

v′∈Rv
MS′
σG

(v′)→MS
σ (v)G

is a G∨-torsor over the union of all G-linearizable components. Here,

Rv ⊂ H̃1,1(S′,Z)

is the set of all elements which get mapped to v under (p ◦ Φ)H̃ and

p : Db(S)G → Db(S)

is the forgetful functor. In the following special case we can determine the fixed locus com-
pletely.

Theorem 6.4.1 (Theorem E.1.3). Suppose that G is cyclic and that S′ is a K3 surface. If
MS
σ (v) is a moduli space of stable objects, then we have an isomorphism

MS
σ (v)G ∼=

⊔
v′∈Rv/G∨

MσG(v′).

Phrased differently, in the above situation the torsor from Theorem E.1.2 is shown to be
trivial leading, therefore, to an explicit description of the fixed locus.

6.5. Symplectic automorphisms of Bridgeland moduli spaces
The previous section yields a general procedure how to determine fixed loci of moduli spaces
of stable objectsMS

σ (v) for symplectic G-actions which are induced by an action of the group
G on Db(S). For K3 surfaces, the condition that the action is induced from an action on
Db(S) is, in fact, no restriction.

Proposition 6.5.1 (Proposition E.1.4). Let S be a K3 surface and let σ′ ∈ Stab†(S) be
a stability condition. Let G be a finite group which acts faithfully and symplectically on a
moduli space M = MS

σ′(v) of σ′-stable objects. Then the following holds:

(a) There exists a surjection G′ → G from a finite group G′ and a symplectic action of
G′ on Db(S) fixing some stability condition inside Stab†(S) which induces the given
G-action on M .
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(b) If G is cyclic, then we can take G′ = G in part (a).

We illustrate and apply the obtained results in Section E.7 and explicitly study fixed loci
and derived categories for low-dimensional examples. The chapter ends with two appendices.
In the first one we discuss properties of hearts of bounded t-structures that are part of a
stability condition inside Stab†(S) for a symplectic surface S. The second section of the
appendix establishes a formula for the Euler characteristic of the fixed locus of a moduli
space of stable objects on a K3 surface S for a symplectic automorphism of finite order.

Contribution by the author of the thesis
The results of this part are obtained jointly with Georg Oberdieck. We discussed fixed loci
of symplectic automorphisms and wanted to understand the symplectic manifolds that can
appear as such. We realized that fixed loci can be related to moduli spaces in the equivariant
category which lead to the here presented collaboration. All the results are shared equally
between the two authors.

Notation
The notation in Chapter E differs in three instances from the one used so far.
Firstly, a Fourier–Mukai functor with kernel E is denoted by FE instead of FME . Further-

more, the square root of the Todd class of a K3 surface S is called
√

td(S). For moduli spaces
MX
σ (v) of σ-stable objects with class v on the smooth projective variety X the underlying

manifold is dropped from the notation and the moduli space is denoted by Mσ(v).
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7. Introduction to integral Fourier transforms
and the integral Hodge conjecture for
one-cycles on abelian varieties

This chapter gives an overview over the results obtained in Chapter F. It has appeared as
[27] and is a joint work with Olivier de Gaay Fortman.
In this part we study lifts of the Fourier transform on rational Chow groups to integral

Chow groups. It turns out that such lifts are linked with the integral Hodge conjecture for
one-cycles, which we prove for products of Jacobians of smooth projective curves.

7.1. Cycles and Hodge conjecture
We will leave the realm of hyper-Kähler manifolds and will consider the non-simply connected
factors that can appear in the Beauville–Bogomolov decomposition (1.1.1). That is, this part
concerns abelian varieties A and cycles on them.
Recall that a subvariety Z ⊂ A determines a class

[Z] ∈ H2k(A,Z),

which is known to be contained in the subspace

[Z] ∈ Hk,k(A,Z) := H2k(A,Z) ∩Hk,k(A).

This association can be enlarged to the natural graded ring homomorphism

cl : A(A)Z → H∗(A,Z),

called the cycle class map, from the integral Chow groups A(A)Z of A to the integral coho-
mology (in this chapter, to avoid confusions, we will always indicate whether we work with
integral or rational Chow groups). The famous Hodge conjecture for k-cycles states that the
induced morphism

cl : Ak(A)Q → H2k(A,Q)

with rational coefficients is supposed to be surjective. The integral Hodge conjecture for
k-cycles is asking for the corresponding morphism

cl : Ak(A)Z → H2k(A,Z) (7.1.1)

with integral coefficients to be surjective. A cohomology class is called algebraic, if it lies
in the image of (7.1.1). It is known that the integral Hodge conjecture fails in general
[12,14,205].
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7.2. Abelian varieties and Fourier transform
For complex abelian varieties A, however, no counterexample to the integral Hodge conjecture
is known. The main motivation was to study its validity for this class of manifolds. In
particular, we discuss this question for one-cycles. Note that the (rational) Hodge conjecture
for one-cycles holds for any smooth projective variety X by the Lefschetz theorem on (1, 1)-
classes, saying that the map

cl : A1(X)Z → H2(X,Z)

is surjective, in combination with the Hard Lefschetz theorem.
We now focus on the case of an abelian variety A of dimension g. Recall from Section 1.3.5

that the Poincare bundle PA on A× Â induces an isomorphism

FA := FMH
PA : H2(A,Z) ∼= H2g−2(A,Z), (7.2.1)

where we remark that v(PA) = ch(PA) since the tangent bundle of any abelian variety is
trivial. Moreover, since

ch(PA) ∈
⊕
p

Hp,p(A× Â,Z),

the isomorphism (7.2.1) restricts to an isomorphism between Hodge classes. However, one
cannot deduce from this the integral Hodge conjecture for one-cycles on Â, as the class ch(PA)
is, a priori, not algebraic1.
Rephrasing the above, if there exists a group homomorphism

F : A(A)Z → A(Â)Z (7.2.2)

inducing a commutative diagram

A(A)Z A(Â)Z

H∗(A,Z) H∗(Â,Z),

F

cl cl

FA

(7.2.3)

then the (known) integral Hodge conjecture for codimension one cycles on A implies the
integral Hodge conjecture for one-cycles on Â. More generally, one could ask for a morphism
F as in (7.2.2) which does not only lift the morphism FA on cohomology, but also yields a
commutative diagram

A(A)Z A(Â)Z

A(A)Q A(Â)Q

F

cl cl

ch(PA)

(7.2.4)

lifting the homomorphism obtained from the (ungraded) correspondence ch(PA) ∈ A(A× Â)
to integral Chow groups.
The remarkable fact is, that not only does a lift F as in (7.2.3) yield consequences for the

integral Hodge conjecture, but also, conversely, the integral Hodge conjecture for one-cycles
1Recall that this asks for a class to be an integral linear combination of cycles.
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implies the existence of a lift F satisfying the stronger compatibility (7.2.4). Moreover, such
an F is then again induced by an (ungraded) correspondence. This is the content of the
following theorem.

Theorem 7.2.1 (Theorem F.1.1). Let A be a complex abelian variety of dimension g with
Poincaré bundle PA. The following three statements are equivalent:

(i) The cohomology class c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A× Â,Z) is algebraic.

(ii) The Chern character ch(PA) = exp(c1(PA)) ∈ H∗(A× Â,Z) is algebraic.

(iii) The integral Hodge conjecture for one-cycles holds for A× Â.

Any of these statements implies that

(iv) The integral Hodge conjecture for one-cycles holds for A and Â.

Suppose that A is principally polarized by θ ∈ H1,1(A,Z) and consider the following state-
ments:

(v) The minimal cohomology class γθ := θg−1/(g − 1)! ∈ H2g−2(A,Z) is algebraic.

(vi) The cohomology class c1(PA)2g−2/(2g − 2)! ∈ H4g−4(A× Â,Z) is algebraic.

Then, statements (i) – (vi) are equivalent. If they hold, the class θi/i! ∈ H2i(A,Z) is algebraic
for i ≥ 1.

The minimal cohomology class γθ attached to a principally polarized abelian variety (A, θ)
has been frequently investigated, see for example [20] where some properties of this class are
being proven. Theorem 7.2.1 makes it worthwhile to study the class

RA := c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A× Â,Z).

This class has the advantage that it can be defined for arbitrary (not necessarily principally
polarized) abelian varieties. We show in Section F.3.2 that the cycle RA satisfies similar
properties mimicking the ones shown for γθ by Beauville.

The crucial ingredient needed to prove the above result is to relate the algebraicity of the
class RA with the algebraicity of the whole Chern character ch(PA). This uses a result due
to Moonen–Polishchuk [153] showing that a certain ideal in the Chow ring (equipped with
the Pontryagin product) admits a divided power structure.

7.3. Jacobians, density, and torsion bounds

An immediate application of Theorem 7.2.1 yields the following.

Theorem 7.3.1 (Theorem F.1.2). Let C1, . . . , Cn be smooth projective curves over C. Then,
the integral Hodge conjecture for one-cycles holds for the product of Jacobians J(C1)× · · · ×
J(Cn).
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Note that passing from studying the integral Hodge conjecture for one-cycles for one Ja-
cobian to products of Jacobians is, a priori, not clear and crucially uses Theorem 7.2.1.
This yields a large set of principally polarized abelian varieties satisfying the integral

Hodge conjecture for one-cycles. We use it together with Theorem 7.2.1 to obtain density of
polarized abelian varieties in their moduli space for arbitrary polarization type.

Theorem 7.3.2 (Theorem F.1.3). Let δ = (δ1, . . . , δg) be positive integers such that δi|δi+1
and let Ag,δ(C) be the coarse moduli space of polarized abelian varieties over C with polar-
ization type δ. There is a countable union X ⊂ Ag,δ(C) of closed algebraic subvarieties of
dimension at least g, that satisfies the following property: X is dense in the analytic topology
and the integral Hodge conjecture for one-cycles holds for those polarized abelian varieties
whose isomorphism class lies in X.

The lower bound on the dimension of the components of X depends on the polarization
type δ and is often greater than g. See Remark F.4.7 for a more precise discussion on this.

The integral Hodge conjecture for one-cycles is equivalent to asking that the abelian group

Z2g−2(A) := Hg−1,g−1(A,Z)/Im(cl),

called the degree 2g − 2 Voisin group, is trivial. Note that Z2g−2(A) is always torsion (for
any smooth projective variety). In Section F.5 we discuss how one can use Theorem 7.2.1
to bound the torsion of the degree 2g − 2 Voisin group. The most general result in this
direction is Theorem F.5.3. There, we consider the smallest integer n such that the cycle
n ·RA (respectively n · θA for principally polarized A) is algebraic and show that

gcd(n2, (2g − 2)!) · Z2g−2(A) = (0).

For Prym varieties this gives the following.

Theorem 7.3.3 (Theorem F.1.5). Let A be a g-dimensional Prym variety over C. Then,
4 · Z2g−2(A) = (0).

7.4. Finitely generated fields and Tate conjecture
Since the Poincaré line bundle PA attached to an abelian variety A is universal, it is natural
to wonder whether the above results can be generalized to abelian varieties over other fields
than the complex numbers.
This is, indeed, the case and is studied in Section F.6. There, we consider fields k which

are the separable closure of a finitely generated field. The idea is to replace Betti cohomology
with étale cohomology and study, instead of the (integral) Hodge conjecture, the (integral)
Tate conjecture for one-cycles.
Let X be a smooth projective variety of dimension d over the separable closure k of a

finitely generated field. Recall that X satisfies the integral Tate conjecture for one-cycles
if for every prime number ` different from char(k) and for some finitely generated field of
definition k0 ⊂ k of X the (`-adic) cycle class map

cl : A1(X)Z` := A1(X)⊗Z Z` →
⋃
U

H2d−2
ét (X,Z`(d− 1))U (7.4.1)
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is surjective, where U ranges over the open subgroups of Gal(k/k0). Elements in the target
of (7.4.1) are called Tate classes.
If we now again consider X = A an abelian variety, then the Poincaré bundle PA is always

defined over any field of definition k0. In particular, its Chern classes are Galois-invariant
and, therefore, integral Tate classes. Thus, the induced correspondence

FA : H2
ét(A,Z`(1)) ∼−→ H2g−2

ét (Â,Z`(g − 1)) (7.4.2)

again sends integral Tate classes to integral Tate classes.
Tate [202], Faltings [70,71], and Zarhin [218,219] have shown the (usual) Tate conjecture for

codimension one cycles holds true for abelian varieties. Totaro [206, Lemma 6.2] established
the integral version. Hence, to obtain the integral Tate conjecture for one-cycles on an abelian
variety A one can proceed similarly as over the complex numbers inspecting this time (7.4.2).

Theorem 7.4.1 (Theorem F.1.6). Let A be an abelian variety of dimension g over the
separable closure k of a finitely generated field.

• The abelian variety A satisfies the integral Tate conjecture for one-cycles over k if the
cohomology class c1(PA)2g−1/(2g− 1)! ∈ H4g−2

ét (A× Â,Z`(2g− 1)) is the class of a one-cycle
with Z`-coefficients for every prime number ` < (2g − 1)! unequal to char(k).

• Suppose that A is principally polarized and let θ` ∈ H2
ét(A,Z`(1)) be the class of the

polarization. The map (7.4.1) is surjective if γθ` := θg−1
` /(g − 1)! ∈ H2g−2

ét (A,Z`(g − 1))
is in its image. In particular, if ` > (g − 1)!, then this always holds. Thus, A satisfies the
integral Tate conjecture for one-cycles if γθ` is in the image of (7.4.1) for every prime number
` < (g − 1)! unequal to char(k).

We again obtain the immediate corollary that products of Jacobians of smooth projective
curves over k satisfy the integral Tate conjecture for one-cycles. Moreover, the density result
established in Theorem 7.3.2 also has an analogue in positive characteristic.

Theorem 7.4.2 (Theorem F.1.7). Let k be the algebraic closure of a finitely generated field of
characteristic p > 0. Let Ag be the coarse moduli space over k of principally polarized abelian
varieties of dimension g over k. The subset of Ag(k) of isomorphism classes of principally
polarized abelian varieties over k that satisfy the integral Tate conjecture for one-cycles over
k is Zariski dense in Ag.

Contribution by the author of the thesis

The results in this part are obtained in collaboration with Olivier de Gaay Fortman. The
project was initiated through a research stay of de Gaay Fortman in Bonn. We discussed open
questions in the study of cycles on abelian varieties and observed that the Fourier transform
on cohomology relates different degree cycles. We discovered the paper [153] and realized
that it could be applied to these questions. From there on, we elaborated jointly on lifts of
Fourier transforms and their consequences. All the results are shared equally between the
two authors.
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Notation
We want to again mention the notational change which occurs in Chapter F in comparison
to the previous parts.

Integral Chow groups for a variety X are denoted by CH(X) instead of A(X)Z and rational
Chow groups by CH(X)Q. The symbol Ag,δ is reserved to denote exclusively moduli spaces
for δ-polarized abelian varieties of dimension g.
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8. Summary and outlook

The final chapter of this thesis serves as a conclusion as well as an outlook. We will relate
some of our results to current research. Moreover, we discuss possible further questions and
research directions, which evolve from and complement our results presented in this thesis1.

8.1. Derived categories of hyper-Kähler manifolds
In this thesis we established many new results about the derived category Db(X) of hyper-
Kähler manifolds X. Here, we would like to discuss questions and problems which would
enhance the understanding of these categories and equivalences between them.

8.1.1. Relation with other notions

Let us consider two projective hyper-Kähler manifolds X and Y . We want to understand the
relations and implications between isomorphisms of different invariants attached to X and
Y .

For example, if X and Y are birational, then we know that there exists a Hodge isometry

H2(X,Z) ∼= H2(Y,Z). (8.1.1)

Moreover, by [83, Prop. 4.6] any two birational hyper-Kähler manifolds are deformation-
equivalent. Furthermore, for two hyper-Kähler manifolds X and Y which are birational
there exists a graded ring isomorphism

A∗(X) ∼= A∗(Y )

of the Chow rings [188].
How do derived categories fit into this picture? In dimension two, that is K3 surfaces, the

notion of birational and isomorphic surfaces agree. The Global Torelli theorem shows that
two K3 surfaces S and S′ are isomorphic if and only if there exists a Hodge isometry

H2(S,Z) ∼= H2(S′,Z).

Of course, this implies that their derived categories Db(S) ∼= Db(S′) are equivalent. In [102]
it is shown that derived equivalent K3 surfaces have isomorphic Chow motives

h(S) ∼= h(S′).

All K3 surfaces are deformation-equivalent.
1I wish to thank Daniel Huybrechts for stimulating conversations on many of the problems discussed in this
chapter.
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In higher dimensions, this picture is not yet completely understood, but there exist some
conjectures linking these notions. If we start with two projective hyper-Kähler manifolds X
and Y which are birational, then it is conjectured [120, Conj. 1.2] that there exists a derived
equivalence

Db(X) ∼= Db(Y ).
In general, this conjecture is open. It has been proven for the Mukai flop, a special con-
struction of a birational correspondence involving a Lagrangian Pn ⊂ X, in [160]. Recently,
Halpern-Leistner [86], building upon [17], showed that the conjecture holds if X is isomorphic
to a smooth moduli space MS

σ (v) of stable objects on a K3 surface S. Recall that we prove
in Proposition B.9.9 a converse of this statement for Hilbert schemes of elliptic K3 surfaces.
Next, let us assume we have two hyper-Kähler manifolds X and Y together with a Hodge

isometry as in (8.1.1). We know that this does not necessarily imply that X and Y are
birational [159]. However, it is not known what the existence of a Hodge isometry between
the second cohomology groups of X and Y implies for their derived categories. Note that
if the hyper-Kähler manifolds are of K3[n]-type, a Hodge isometry (8.1.1) induces a Hodge
isometry

ΛX ∼= ΛY
between the associated K3[n] lattices. It is tempting to speculate that in this case the varieties
are derived equivalent, see also [137, Qu. 10.8]. We have already observed in Section B.10.2
that the converse does not hold, see also [4, 145].
Orlov [176] conjectured that derived equivalent hyper-Kähler manifolds have isomorphic

Chow motives. This seems to be largely open. Another question is the relation between the
derived categories of hyper-Kähler manifolds X and Y and their deformation types. Does a
derived equivalence

Φ: Db(X) ∼= Db(Y )
imply that X and Y are deformation-equivalent? The Hodge similitude

φ : H̃(X,Q)→ H̃(Y,Q)

from Theorem 2.3.2 implies, by Witt cancellation, that there exists a Hodge similitude

φ′ : H2(X,Q)→ H2(Y,Q).

However, in general it is not even known whether hyper-Kähler manifolds X and Y for which
there exists a Hodge isometry

H2(X,Z) ∼= H2(Y,Z)
are deformation-equivalent (even if we assume, for example, cX = cY ).

Another idea to link derived categories and deformation types would be to use that the
derived equivalence Φ is equivalent to a Fourier–Mukai transform Φ ' FME with Fourier–
Mukai kernel E ∈ Db(X × Y ). Starting from this one may try to deform X and Y together
with the kernel E to end up with an element

E ′ ∈ Db(X ′ × Y ′).

Can one find such a deformation such that the induced equivalence FME ′ is as in the third
case of Theorem 3.3.1? One could hope to then modify E ′ by pre and postcomposing with
auto-equivalences on X ′ and Y ′ to obtain an irreducible component Z ⊂ supp(E ′) mapping
birationally onto X ′ respectively Y ′.

58



8.1.2. Derived Torelli for K3[n]-type hyper-Kähler manifolds
Using our results from Chapter B one can ask more refined questions for the derived category
of K3[n]-type hyper-Kähler manifolds.
A natural problem prompted by Theorem 3.5.3 is whether, as in the case of K3 surfaces,

the converse holds. That is, are K3[n]-type hyper-Kähler manifolds X and Y which admit a
Hodge isometry

ΛX ∼= ΛY
derived equivalent? One may look at the proof in the two-dimensional case and see what is
missing in higher dimensions.
Starting with a Hodge isometry

ϕ : ΛX ∼= ΛY
one may first assume that ϕ(β) = ±β. As in Proposition B.9.9 after applying the Hodge
isometry Bλ for some λ ∈ H1,1(Y,Z) one ends up with a Hodge isometry

ϕ′ : H2(X,Z) ∼= H2(Y,Z).

This leads again to the question whether this implies that X and Y are derived equivalent.
If ϕ′ agrees with the action of a parallel transport operator, e.g. this is up to sign true if
n − 1 is a prime power [137, Lem. 9.2], then X and Y are birational and a positive answer
to Kawamata’s conjecture [120, Conj. 1.2] would yield the desired result.
For general ϕ the image of β is some arbitrary class

ṽ := rα+ λ+ sβ ∈ ΛY .

For r 6= 0 one uses in the case of K3 surfaces S that moduli spaces MS
H(v) of stable sheaves

with Mukai vector ṽ is a smooth projective K3 surface and its universal family yields a derived
equivalence reducing this case to the previous one. For r = 0 one uses the auto-equivalences
given by tensoring with high powers of an ample line bundle together with the spherical twist
STOS to reduce to the case r 6= 0.

8.1.3. Equivalences of fine moduli spaces of stable sheaves
As we have seen, there are a lot of ingredients missing even for K3[n]-type hyper-Kähler
manifolds. If we assume that X = S[n] is the Hilbert scheme of n points, the situation is
slightly better. Firstly, as demonstrated in Lemma B.9.10 a Hodge isometry

H2(S[n],Z) ∼= H2(Y,Z) (8.1.2)

implies that Y is as well a fine moduli space of stable sheaves on S. If n − 1 is a prime
power [137, Lem. 9.2] or, by Proposition B.9.9, S is an elliptic K3 surface with a section,
then (8.1.2) yields that Y must be birational to S[n]. Halpern-Leistner’s result [86] yields the
desired derived equivalence.
In the general case, i.e. n− 1 is not a prime power and S is not elliptic, one would need to

answer the question whether a fine moduli space MS
H(v) of stable sheaves on a K3 surface S

of dimension 2n is derived equivalent to S[n]. It is tempting to use the universal family E on
the product

MS
H(v)× S
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together with the Bridgeland–King–Reid equivalence

Db(S[n]) ∼= Db(Sn)Sn (8.1.3)

and consider the object

p∗1E ⊗ p∗2E ⊗ · · · ⊗ p∗nE ∈ Db(M s
H(v)× Sn)

equipped with the natural 1×Sn-linearization, where

pi : MS
H(v)× Sn → S

denotes the projection to the i-th K3 surface. However, the induced Fourier–Mukai transform
is not an equivalence.
Similarly, one may try to use the universal ideal sheaf I on S × S[n] for a K3 surface S.

The object
T := π∗12E ⊗ π∗23I ∈ Db(MS

H(v)× S × S[n])

pushed forward to MS
H(v) × S[n] is the composition of the Fourier–Mukai transforms with

kernels E respectively I. As such, it cannot be an equivalence. Can one modify T in a
certain way to make it an equivalence? For example, for MS

H(v) = S[n], the relative Ext1
sheaf discussed in Section B.10.1 yields a derived equivalence. Can viewing I as a Pn−1

functor
FMI : Db(S)→ Db(S[n])

as in [2] help for such a construction?

8.1.4. Deformation and derived equivalence for K3[n]-type hyper-Kähler
manifolds

In another direction, Theorem B.9.4 raises the question whether one can still obtain finiteness
of Fourier–Mukai partners without restricting to K3[n]-type hyper-Kähler manifolds. Let us
consider the case n = 2. If Y is a hyper-Kähler manifold derived equivalent to a K3[2]-type
hyper-Kähler manifold X, then, by Theorem A.8.2, Y has the same Hodge numbers as X. As
in the proof of Proposition D.5.4, the Hodge numbers of a hyper-Kähler fourfold determine
c4(Y ) as well as c2(Y )2. Since H∗(Y,Q) = SH(Y,Q) for dimension reasons, we have c2(Y ) ∈
SH(Y,Q). Therefore, c2(Y )2 determines C(c2(Y )). The relation from Corollary D.2.6 shows
that the Riemann–Roch polynomial RRY (q) is the same as the one for X and, therefore,
cY = 1.

We now specialize to X = S[2] with U ⊂ NS(S) and assume that the induced Hodge
similitude

ϕ : H̃(S[2],Q)→ H̃(Y,Q) (8.1.4)

from Theorem A.7.4 is a Hodge isometry. Theorem B.9.8 shows that we can precompose ϕ
by an equivalence

Φ ∈ Aut(Db(S[2]))

such that the composite Hodge isometry

η := ϕ ◦ ΦH̃ : H̃(S[2],Q) ∼= H̃(Y,Q)
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satisfies η(β) = kβ for some k ∈ Q. As in the proof of Theorem B.4.15, we can use topological
K-theory and the equality cS[2] = cY to deduce k ∈ {±1}. Then, following the proof of the
third case of Theorem B.4.15, we find that there exists a Hodge isometry

H2(S[2],Z) ∼= H2(Y,Z)

of the integral second cohomology groups. Employing [64, Cor. 1.6], we see that in fact Y is
of K3[2]-type.

There are two obstacles to make this rigorous. The first one is that we do not know whether
(8.1.4) is always a Hodge isometry. For two hyper-Kähler manifolds X and Y the existence
of a Hodge isometry

SH(X,Q) ∼= SH(Y,Q)

in general only implies the existence of an isometry

(H̃(X,Q), q) ∼= (H̃(Y,Q), µq) (8.1.5)

for some µ ∈ Q∗, see [201, Sec. 4]. For even n, there exist examples with µ ∈ Q∗ \ Q2 not
a square such that the associated kernels of the Laplacians as in (1.2.9) are isometric. To
exclude such cases, one could try to use some integral structure, such as topologicalK-theory,
which is preserved under derived equivalences. Can this be combined with the indivisibility
of the BBF form to exclude (8.1.5) with µ 6= 1?
The other obstacle is that we needed X = S[2] with U ⊂ NS(S) to modify the Hodge

isometry (8.1.4). A naive hope would be to use deformation theory to reduce to this case.
Namely, assume we start with a general X of K3[2]-type and an equivalence

FME : Db(X) ∼= Db(Y ).

This induces isomorphisms
FMHT
E : HT2(X) ∼= HT2(Y )

and we can consider first-order deformation directions inside H1(X, TX) which are mapped
by FMHT

E to elements inside H1(Y, TY ). In [204, Thm. 1.1] it is shown that the equivalence
FME lifts to first-order. It would be highly desirable to be able to upgrade this to algebraic
families. Roughly, for two families

πX : X → B, πY : Y → B

over a one dimensional base B representing the above first-order deformation directions one
could hope to find an element F ∈ Db(X ×B Y) lifting E .

8.1.5. Study of the representation ρH̃

A way to circumvent the deformation theory of Fourier–Mukai transforms would be to study
the representation

ρH̃ : Aut(Db(X))→ Aut(ΛX)

for arbitrary K3[n]-type hyper-Kähler manifolds X. What can we say about the image
Im(ρH̃)? This has two parts.
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The first is to construct auto-equivalences of K3[n]-type hyper-Kähler manifolds, especially
when X is not isomorphic to a Hilbert scheme S[n]. For example, let us consider Hodge
isometries of H2(X,Z) which are parallel transport operators. By [137, Thm. 1.6] these are
composed of two classes. One is given by the induced action of birational self-maps of X.
Can one modify the closure of the graph of such a map to obtain an auto-equivalence?
The other case is the subgroup generated by reflections along prime exceptional divisors,

which are integral effective divisors with negative BBF-square. In the case of K3 surfaces S,
these correspond to smooth rational curves C ⊂ S. The reflection s[C] along the −2-class
[C] ∈ H2(S,Z) can be obtained as the induced action of an auto-equivalence. Indeed, the
spherical twist

STOC(−C) ∈ Aut(Db(S))

associated to the spherical sheaf OC(−C) satisfies

STH̃
OC(−C) = s[C].

Consider the diagram
C S

p.

ι

π

One can interpret the auto-equivalence STOC(−C) (up to line bundle twists) as the induced
equivalence associated to the spherical functor

ι∗ ◦ π∗ : Db(p)→ Db(S).

Can this approach be generalized to prime exceptional divisors E to obtain that the induced
reflection s[E] lies in the image of ρH̃? For example, in dimension four the exceptional divisor
E ⊂ S[2] of the Hilbert–Chow morphism is prime exceptional and sits in a diagram

E ∼= P(ΩS) S[2]

S.

ι

π

We have already encountered in Section B.10.1 the corresponding spherical twist associated
to the spherical functor

ι∗ ◦ π∗ : Db(S)→ Db(S[2])

and seen that, indeed, it acts on the Mukai lattice H̃(S[2],Q), up to conjugation by twisting
with the line bundle OS[2](δ), as the reflection s[E].
This example can easily be generalized to smooth prime exceptional divisors ι : E ↪→ X

which admit a fibration
π : E → B

onto a smooth 2n− 2-dimensional base such that all fibres of π are projective lines. That is,
in this case we again obtain a spherical functor

ι∗ ◦ π∗ : Db(B)→ Db(X)
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and the induced spherical twist acts on the extended Mukai lattice up to conjugation with
a line bundle twist as the reflection s[E] along E. In general, if one wants to get rid of the
smoothness assumption on X and B, one could try to work with the category of perfect
complexes and categorical resolutions.
Another question related to the image of the representation ρH̃ is to find a sharp upper

bound. For example, in Theorem B.9.8 we have obtained the lower bound

Âut+(ΛS[n]) ⊂ Im(ρH̃)

for Hilbert schemes S[n] of elliptic K3 surfaces with a section. Is this inclusion an equality?
For example, in the case n = 2, the group Âut+(ΛS[2]) equals Aut+(ΛS[2]) and the ques-
tion becomes whether all equivalences respect the natural orientation of the four positive
directions. It is not clear if the approach in [105], where this question was answered for K3
surfaces, can be generalized to higher dimensions.

8.1.6. Generalized Kummer manifolds
What we have not discussed so far are derived categories of Kumn-type hyper-Kähler mani-
folds and equivalences between them. We briefly mention some difficulties that occur in this
case as well as a specific open problem.
A major tool used in Chapter B was the derived monodromy group DMon(S[n]), which we

studied using Ploog’s map
Aut(Db(S))→ Aut(Db(S[n])).

Underlying it is the Bridgeland–King–Reid isomorphism (8.1.3). For the generalized Kum-
mer manifold Kumn(A) of dimension 2n associated to an abelian surface A there exists an
analogue of the above. Namely, let us consider the group Sn+1 acting on An. The inclusion

Sn ↪→ Sn+1

of the first n-factors acts via permutation of factors on An. The transposition (1 n+1) gives
the automorphism

(1 n+ 1): An ∼= An, (x1, x2, x3, . . . xn) 7→ (−
n∑
i=1

xi, x2, x3, . . . , xn).

Then, by [144, Thm. 6.2] there exists a derived equivalence

Db(Kumn(A)) ∼= Db(An)Sn+1 . (8.1.6)

One sees already from the definition of the action of Sn+1 that this case is more involved.
In particular, a Fourier–Mukai kernel E ∈ Db(A×A) giving a derived equivalence

FME : Db(A) ∼= Db(A)

lifts to the object
E�n ∈ Db(An ×An)

which, in general, does not admit a Sn+1 × Sn+1-linearization, see [184]. As we saw
in Chapter B, one does not need the knowledge of the full group of auto-equivalences
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Aut(Db(Kumn(A))), but rather one equivalence whose induced action on H̃(Kumn(A),Z)
sends β to a vector with non-zero minimal rank.
A particular example of the above failure of lifting derived equivalences between abelian

surfaces to the associated generalized Kummer manifolds is given by the Poincaré bundle PA
[184, Sec. 4.4]. It is not known whether, in general, the two derived categories Db(Kumn(A))
and Db(Kumn(Â)) are equivalent. Note that we always have a Hodge isometry

H2(Kumn(A),Z) ∼= H2(Kumn(Â),Z).

The group G = A[n + 1] of (n + 1)-torsion points of an abelian surface A acts via auto-
morphisms on the manifold Kumn(A). The quotient

Kumn(A)/G

does not admit a symplectic resolution for n > 1, since the fixed locus has components of
codimension greater than two. Thus, one is instead lead to consider the equivariant category
Db(Kumn(A))G. We can show that there exists a derived equivalence

Db(Kumn(A))G ∼= Db(Kumn(Â))

relating the derived category of the dual abelian surface with the equivariant category. Hence,
one can recover Db(Kumn(Â)) from Db(Kumn(A)) using the G-action.

8.2. Atomic objects

In Chapter C we have defined the notion of atomic sheaves and objects and initiated the study
of their properties. It would be beneficial if these sheaves and objects would be investigated
in more depth.
Two open problems in this realm we have already mentioned are Conjectures E and F. Let

us elaborate a bit on possible attempts to prove the latter.

8.2.1. Actions on Ext algebra

For a slope stable atomic bundle E we would like to investigate the pairing

Ext1(E , E)× Ext1(E , E)→ Ext2(E , E). (8.2.1)

One approach could be to construct an action of a group G (or Lie algebra) on the Ext
algebra Ext∗(E , E) which is equivariant for the algebra structure. The tensor product of the
G-representation Ext1(E , E) would then decompose

Ext1(E , E)⊗ Ext1(E , E) ∼= Sym2(Ext1(E , E))⊕ Λ2(Ext1(E , E))

respecting the G-action. Can G and the action of G on Ext1(E , E) and Ext2(E , E) be chosen
in a way that the only possible G-equivariant map

Sym2(Ext1(E , E))→ Ext2(E , E) (8.2.2)
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is the zero morphism? This would yield the desired skew-symmetry. In [208, Sec. 3] Verbitsky
constructed an action of the group SU(2) on

H∗(X, End(E))

using real structures.
One may try to construct the action not on the Ext algebra itself, but on the larger algebra

H∗,∗(X, End(E)),

i.e. the de Rham cohomology with values in the endomorphism bundle End(E). We have the
natural identification

H0,∗(X, End(E)) ∼= Ext∗(E , E).

Thus, the same approach may be conducted for the larger algebra H∗,∗(X, End(E)). Note
that for a hyper-Kähler metric the induced SU(2)-action (equivalently su(2)-action) on the
level of forms with values in End(E) yields an action of SU(2) on H∗,∗(X, End(E)). However,
inspecting the decomposition of the degree one and two components of this algebra into
irreducible SU(2)-representations, the analogous map to (8.2.2) does not vanish. In the case
of the atomic bundle being a line bundle E = L ∈ Pic(X) one can combine all possible
su(2)-actions on

H∗,∗(X, End(E)) ∼= H∗,∗(X,OX) ∼= H∗(X,Ω∗X)

to obtain the action of the reduced LLV algebra ḡ(X) acting on the de Rham cohomology.
Recall that this acts by derivations and, therefore, the integrated action is multiplicative.
Of course, in this case we know already that the multiplication on the usual cohomology
is graded-commutative. Can one, in general, combine the su(2)-actions for a stable atomic
bundle E to obtain a larger Lie algebra acting on H∗,∗(X, End(E))?

8.2.2. Relation to other deformation problems

Another approach to Conjecture F may be to relate the deformation problem for the stable
bundle E on X to another deformation problem, which then might be easier to solve.

To have an example in mind, let us consider the sheaf of first-order differential operators
D(X, E) with scalar symbol associated to E , see [112, Sec. 2] for an introduction to this notion
and its properties. It sits inside the short exact sequence

0→ End(E , E)→ D(X, E)→ TX → 0 (8.2.3)

and the associated extension class inside

Ext1(TX , End(E)) ∼= Ext1(E , E ⊗ ΩX)

is exactly the Atiyah class. To the vector bundle D(X, E) we can associate a dg Lie algebra
L whose associated deformation functor is isomorphic to the deformation functor of the pair
(X, E), see [111]. That is, it controls deformations of the manifold X together with the vector
bundle E . In [112] this deformation problem was studied for Calabi–Yau varieties together
with a line bundle.
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Let us discuss a possible analogue for atomic bundles E on hyper-Kähler manifolds X. One
can complete (8.2.3) to the following commutative diagram

0 OX OX 0

0 End(E) D(X, E) TX 0

0 End(E)0 D(X, E)0 TX 0,

(8.2.4)

where again End(E)0 denotes the bundle of traceless endomorphisms and D(X, E)0 the cor-
responding cokernel. The lower short exact sequence equals the derived pushforward of the
short exact sequence

0→ TP(E)|X → TP(E) → π∗TX → 0

under the projective bundle morphism π : P(E) → X. In particular, the dg Lie algebra
associated to TP(E) is quasi-isomorphic to the one associated to D(X, E)0. This implies
that the deformation functor associated to the latter governs the deformation problem of
deforming P(E). The long exact sequence in cohomology of the lower short exact sequence
in (8.2.4) reads

H1(X, End(E)) ↪→ H1(X,D(X, E)0)→ H1(X, TX) τ−→ H2(X, End(E)0)→ H2(X,D(X, E)0).

Note that if E is 1-obstructed, then the morphism τ is trivial and one can deduce that, in
order to study the pairing (8.2.1), it suffices to study the deformation problem associated to
P(E).
As a closing note to this subsection we want to mention that in [139, Sec. 13] Markman

studies certain 1-obstructed sheaves and bundles E on the Fano variety of lines F (X) of a
cubic fourfold X ⊂ P5. The specific choice is motivated from [128], where, starting from the
Fano variety of lines F (X), a hyper-Kähler manifold MX of OG10-type is constructed via a
fibration into intermediate Jacobians. If we denote by ṽ ∈ ΛF (X) (a representative of) the
Mukai vector of the sheaf E in the Mukai lattice, one obtains a rank 24 integral lattice

ṽ⊥ ⊂ ΛF (X).

One can check that, in fact, there exists a Hodge isometry

ṽ⊥ ∼= H2(MX ,Z)

mimicking the Hodge isometry

H2(MS
H(v)) ∼= v⊥ ⊂ H∗(S,Z)

for smooth moduli spaces MS
H(v) of stable sheaves on a K3 surface S.
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8.2.3. Mukai vector

The definition of atomic objects E yields an element ṽ ∈ H̃(X,Q) relating the two annihilator
Lie subalgebras Ann(v(E)) and Ann(ṽ) of the LLV algebra g(X). The element ṽ is only unique
up to a scalar. For an arbitrary atomic object E it is not clear what the precise multiple of ṽ
should be that one could call the extended Mukai vector ṽ(E) of E . In Section B.4 we studied
the two cases when E is in the orbit of OX respectively k(x) under the group Aut(Db(X)).
As done in Section C.3 it is tempting to declare

ṽ(E) = rk(E)α+ c1(E) + sβ ∈ H̃(X,Q)

for some s ∈ Q if rk(E) 6= 0. However, this does not always seem to be the best choice. For
example, consider the P2-vector bundles E on K3[2]-type hyper-Kähler manifolds studied in
[172, Thm. 1.4]. In accordance with objects in the OX -orbit, one may demand the equality

v(E) = T (ṽ(E)2)
2 .

However, this would mean that one would normalize the vector in the Mukai lattice to be

ṽ(E) =
√

rk(E)α+ c1(E)√
rk(E)

+ s√
rk(E)

β. (8.2.5)

Note that the examples in [172, Thm. 1.4] all satisfy rk(E) = r2
0 for some positive integer

r0 ∈ Z. Moreover, the multiple ṽ(E) in (8.2.5) satisfies

ṽ(E)2 = −5
2

just like the P2-objects in the orbit of OX .

8.2.4. Examples

Of course, more examples or existence results for atomic sheaves on higher-dimensional hyper-
Kähler manifolds would be highly desirable. For example, as in [172], can one use Lagrangian
fibrations and the knowledge of semi-homogeneous bundles on abelian varieties to construct
new examples of stable atomic bundles? These would then deform to nearby complex struc-
tures not admitting Lagrangian fibrations using the results of Chapter C.

8.3. Restrictions on generalized Fujiki constants and
Riemann–Roch polynomials

In this section we discuss open questions concerning properties of generalized Fujiki constants
of hyper-Kähler manifolds2.

2I thank Gebhard Martin, Mirko Mauri, and Jieao Song for interesting discussions about the topics of this
section.
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8.3.1. Positivity

It would be worthwhile to establish Conjecture D or one of its higher degree analogues.
Already the positivity in Conjecture B would yield many restrictions on generalized Fujiki
constants.

In principle, the latter conjecture could be proven purely via linear algebra. Namely, one
could use that the Chern character ch(TX) of the tangent bundle of a hyper-Kähler manifold
X can be represented as the trace of the exponential of the Atiyah class

AtTX ∈ Ext1(TX , TX ⊗ Ω1
X).

The symplectic structure yields additional symmetries which implies that this class is, in
fact, contained in H1(X,Sym3TX) [163, Cor. 1.3].
The positivity C(−ch2(X)) > 0 can be deduced directly on the level of forms. In [193, Sec.

4] this strategy is being tested for higher degree Chern characters. An idea would be to group
the terms that appear in an expression of the exponential of the Atiyah class into terms which,
when compared correctly with each other, yield the desired positivity pointwise.

8.3.2. Small Fujiki constant

One can also consider the small Fujiki constant cX . In general, it is only known that this is a
positive rational number. Using the Riemann–Roch polynomial, this can be refined. Namely,
the leading coefficient of RRX(q) is equal to

cX
2nn! .

We now employ the fact that RRX(q) sends all integers which are attained by the BBF form
q again to integers. Thus, if H2(X,Z) is known to be an even lattice and

Im(q) = 2Z,

then cX must already be an integer. Indeed, this would follow under these assumptions from
the property of integer-valued polynomials that the binomial coefficients

q(q − 1) . . . (q − k + 1)/k!

yield a basis of this class of polynomials.

8.3.3. Riemann–Roch polynomial via Lagrangian fibrations

Another approach to obtain more information on generalized Fujiki constants is to try to
exploit the relationship of these numbers with the geometry of the hyper-Kähler manifold
X.
One example of this kind was recently explored in [64], in particular Theorem 3.1 in loc.

cit. Namely, the existence of a Lagrangian fibration

π : X → Pn
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with certain numerical properties is used to compute the Riemann–Roch polynomial RRX(q)
of X. This idea goes back to [190], where this strategy was used to determine the Riemann–
Roch polynomial of OG10-type hyper-Kähler manifolds. The main point is to consider the
line bundle L = π∗OPn(1) and another line bundleM which restricts to smooth fibres to a
principal polarization. One then shows that

Rπ∗M∼= π∗M

is, in fact, a line bundle. The projection formula for the line bundles

M⊗L⊗i

together with the Hirzebruch–Riemann–Roch theorem implies that the Riemann–Roch poly-
nomial of X equals that of S[n] with S a K3 surface, where dimX = 2n.
One could consider the above strategy for Lagrangian fibrations whose fibres do not carry

a principal polarization. We sketch here a possible example.
Consider X a hyper-Kähler manifold with two different Lagrangian fibrations

π1 : X → Pn, π2 : X → Pn

and let us denote the corresponding non-isomorphic nef line bundles Li = π∗iOPn(1). The
product

M := L1 ⊗ L2

must then be an ample line bundle. In particular, it restricts to a polarization on smooth
fibres for both Lagrangian fibrations πi. Hence, L2 is π1-relatively ample and vice versa. As
in the proof of [64, Thm. 3.1] we get a vector bundle

E := Rπ1∗L2 ∼= π1∗L2

of rank
d :=

∏
i

di,

where L2 restricts to the general fibre of π1 as a polarization of type (d1, . . . , dn). Moreover,
we can compute for a smooth fibre A ⊂ X of π1

d · n! =
∫
A

c1(L2)n =
∫
X

c1(L1)nc1(L2)n = n! · cX · q(c1(L1), c1(L2))n.

It seems reasonable to expect

q(c1(L1), c1(L2)) = d1

so that there exists a polarization L′ on a generic fibre A whose d1-th power is isomorphic to
L2|A. This would give

cX =
∏
i

di
d1
.

One can also use the two Lagrangian fibrations to show that

Hi(X, E ⊗ OPn(k))
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vanishes for 0 < i < n and all k ∈ Z. In particular, by [173, Thm. 2.3.1], the bundle E
decomposes into line bundles

E ∼=
⊕
i

OPn(ai).

Using, for example, RRX(0) = n + 1 and the positivity of the coefficients of the Riemann–
Roch polynomial, one can bound the integers ai.

Hence, also in the above case one can relate the Riemann–Roch polynomial of X with
(sums of) Euler characteristics of line bundles on the projective space. It is, however, not
clear whether one can deform an arbitrary (unknown) hyper-Kähler manifold X to one with
two Lagrangian fibrations as discussed above. The result [119, Thm. 3.3] shows that this is
predicted by the SYZ conjecture as soon as b2(X) ≥ 5.

8.3.4. Hyper-Kähler fourfolds with largest second Betti number

We want to close this section with the following question. Is any hyper-Kähler fourfold X
with b2(X) = 23 of K3[2]-type?
As already discussed, any such manifold X shares the Hodge numbers and the Riemann–

Roch polynomial with that of S[2] for S a K3 surface. Moreover, [64, Lem. 3.2] shows that
the BBF form q of X must be even. It would be enough to establish the inclusion

U ⊂ H2(X,Z)

to apply [64, Thm. 1.5].
Expressed differently, for an isotropic class e ∈ H2(X,Z) (which exists since b2(X) = 23)

we would need to find another class f ∈ H2(X,Z) such that

q(e, f) = 1,

which, using cX = 1, is equivalent to ∫
X
e2f2 = 2.

For K3 surfaces S Poincaré Duality implies that the quadratic form on H2(S,Z) is unimodular.
This allows one to obtain the inclusion U ⊂ H2(S,Z).

For the fourfold X under consideration, we still have that the pairing

H2(X,Z)×H6(X,Z)→ H8(X,Z) ∼= Z (8.3.1)

is perfect. Note that the polarized Fujiki relations∫
X
λ1λ2λ3λ4 = q(λ1, λ2)q(λ3, λ4) + q(λ1, λ3)q(λ2, λ4) + q(λ1, λ4)q(λ2, λ3)

together with the fact that H2(X,Z) is an even lattice show that for ω ∈ H2(X,Z) the element

ω3 ∈ H6(X,Z)
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is divisible as an element in H6(X,Z) by at least six. Let us assume that ω3/6 is primitive
inside H6(X,Z) and that this element is dual to our isotropic class e under (8.3.1). This
would yield

1 = 1
6

∫
X
eω3 = q(e, ω)q(ω, ω)

2 .

Since the right hand side is a product of integers, we would have obtained the desired element
which pairs to one with e. Any element in H6(X,Z) can up to scaling with a rational number
be written as the product of three elements of H2(X,Z).
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A. Derived categories of hyper-Kähler
manifolds via the LLV algebra

ABSTRACT. We mostly review work of Taelman [201] on derived cat-
egories of hyper-Kähler manifolds. We study the LLV algebra using
polyvector fields to prove that it is a derived invariant. Applications to
the action of derived equivalences on cohomology and to the study of
their Hodge structures are given.

A.1. Introduction
In this note we discuss the (bounded) derived category Db(X) := Db(Coh(X)) and its group
of auto-equivalences Aut(Db(X)) for projective hyper-Kähler manifolds X. The situation in
dimension two, that is for K3 surfaces, is fairly well understood and we refer to [97, Sec. 10]
for an overview. Therefore, we will only concentrate on the higher-dimensional case. More
precisely, we mainly present the first part of Taelman’s paper [201].
These notes are, for the most part, light on derived categories and focus more on a different

perspective of the Looijenga–Lunts–Verbitsky (LLV) Lie algebra g(X) [130, 207] which will
allow us to show the following.

Theorem A.1.1 (Taelman). A derived equivalence Φ: Db(X) ∼−→ Db(Y ) between projective
hyper-Kähler manifolds induces naturally a Lie algebra isomorphism

Φg : g(X) ∼−→ g(Y ).

The induced isomorphism of quadratic spaces

ΦH : H∗(X,Q) ∼−→ H∗(Y,Q)

is equivariant with respect to Φg.

The theorem will be proven in Section A.5.
We start these notes by introducing the main objects of study and a collection of known

results prior to [201]. Afterwards, we introduce a new Lie subalgebra of the (ungraded) endo-
morphism algebra End(H∗(X,C)) which is better suited for the study of derived categories.
In the subsequent section we establish Theorem A.1.1 via proving that the newly defined Lie
subalgebra coincides with the well-known LLV Lie algebra g(X)⊗Q C with scalars extended
to the complex numbers. The next three sections will draw consequences from this result
for the action of derived equivalences on cohomology and for Hodge structures of derived
equivalent hyper-Kähler manifolds.
This review was prepared in the context of the seminar organized by the ERC Synergy Grant HyperK,
Grant agreement ID 854361. The talk was delivered on May 21, 2021. The author is supported by the
International Max–Planck Research School on Moduli Spaces of the Max–Planck Society.
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Notation
We work over the complex numbers. Throughout these notes X and Y will be projective
hyper-Kähler manifolds of dimension 2n. All functors will be implicitely derived.

Acknowledgements
I thank Olivier Debarre and Daniel Huybrechts for helpful remarks on a preliminary version
of this article.

A.2. Derived categories
A.2.1. General theory
For a thorough introduction to derived categories we recommend [97]. Let us recall one of
the most important results in the study of derived equivalences proved by Orlov [175].

Theorem A.2.1. Let Z and T be smooth projective varieties and Φ: Db(Z) ∼−→ Db(T ) be an
exact derived equivalence. Then Φ is isomorphic to a Fourier–Mukai functor, i.e. there exists
E ∈ Db(Z × T ) such that

Φ ∼= FME := pT ∗ ◦ (E ⊗_) ◦ p∗Z .

Orlov’s result is in fact stronger in that it applies also to fully faithful exact functors
between the derived categories of smooth projective varieties. The resulting isomorphism is
an isomorphism of exact functors.
Moreover, a derived equivalence as in the theorem naturally induces isomorphisms of sev-

eral invariants associated with the varieties such as (topological) K-theory [97, Sec. 5.2].
For us the most important invariant will be singular cohomology. Namely, every derived
equivalence FME induces a cohomological Fourier–Mukai transform FMH

E given by the corre-
spondence v(E) ∈ H∗(Z×T ) where v = ch(_)

√
td is the Mukai vector. These are compatible

via the Mukai vector, i.e. the following diagram commutes

Db(Z) Db(T )

H∗(Z,Q) H∗(T,Q).

FME

v v

FMH
E

(A.2.1)

Hence, the study of derived categories leads naturally to cycles on hyper-Kähler manifolds.

Remark A.2.2. Let us mention properties of the cohomological Fourier–Mukai transform
FMH

E .

• Since v(E) ∈ ⊕pHp,p(Z×T ) is algebraic, the isomorphism FMH
E respects the weight-zero

Hodge structure on H∗(Z) (respectively H∗(T )) given by

H−i,i(Z) =
⊕
q−p=i

Hp,q(Z)

for i ∈ Z where the Hodge structure on the right-hand side is the usual one [97, Prop.
5.39].
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• The isomorphism FMH
E respects the generalized Mukai pairing, see [59].

• The cohomological Fourier–Mukai transform FMH
E respects neither the cup product

structure on cohomology nor the cohomological grading as can be seen by considering
the equivalence given by tensoring with a non-trivial line bundle.

A.2.2. Case of hyper-Kähler manifolds
We know that if a smooth projective variety Z is derived equivalent to a hyper-Kähler
manifold X, then the dimensions of X and Z coincide and the canonical bundle ωZ is trivial
[97, Sec. 4]. Huybrechts and Nieper-Wißkirchen [107] have proven that Z must in fact also
be an irreducible hyper-Kähler manifold.

A.3. Recollection of the LLV Lie algebra
We quickly recall the definition of the LLV Lie algebra introduced independently by Looi-
jenga–Lunts [130] and Verbitsky [207]. For a more thorough discussion we refer to [39].
Let X be a hyper-Kähler manifold and λ ∈ H2(X,Q) be a cohomology class. We attach

to it the operator
eλ := λ ∪_ ∈ End(H∗(X,Q))

given by cup product with the class λ. We say that λ has the Hard Lefschetz property, if for
all i the maps

eiλ : H2n−i(X,Q)→ H2n+i(X,Q)

are isomorphisms. The class λ is often called a Hard Lefschetz class. We denote by h ∈
End(H∗(X,Q)) the grading operator acting on Hi(X,Q) via (i−2n)id. For a Hard Lefschetz
class λ ∈ H2(X,Q), the triple

(eλ, h, fλ),

where fλ is the dual Lefschetz operator, spans a Lie subalgebra of End(H∗(X,Q)) isomorphic
to the Lie algebra sl2.

Definition A.3.1. The LLV Lie algebra g(X) is the Lie subalgebra of End(H∗(X,Q)) gen-
erated by all sl2-triples (eλ, h, fλ) for λ ∈ H2(X,Q) Hard Lefschetz.

As said in the beginning, we refer to [39] or [130, 207] for more details and properties
of g(X). Our main goal is to relate the Lie algebra g(X) to Db(X). Note that since a
cohomological Fourier–Mukai functor does not respect cup product nor grading, which are
the defining properties of the LLV algebra, it is a priori not clear how this can be done. The
main ingredient for it is the ring of polyvector fields, to be introduced now.

A.4. Polyvector fields
Definition A.4.1. The ring of polyvector fields HT∗(X) is the graded C-algebra whose
degree k part is

HTk(X) := ⊕p+q=kHq(X,ΛpTX).

The ring structure is induced from the exterior algebra.
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For X a hyper-Kähler manifold we can choose a symplectic form σ ∈ H0(X,Ω2
X) which

induces isomorphisms
ΛpTX ∼= Ωp

X

which, in turn, induce a graded C-algebra isomorphism

HT∗(X) = H∗(X,Λ∗TX) ∼= H∗(X,Ω∗X) ∼= H∗(X,C). (A.4.1)

Thus, as a graded C-algebra, the ring of polyvectors is isomorphic to the de Rham cohomol-
ogy.

In this note, we are mostly interested in another viewpoint of the polyvector fields. Namely,
the ring of polyvectors acts on the de Rham cohomology by contraction. That is, given
v ∈ Hq(X,ΛpTX) and x ∈ Hq′(X,Ωp′

X) the action is defined as

vyx ∈ Hq+q′(X,Ωp′−p
X ).

The following is immediate, see also [201, Lem. 2.4].

Lemma A.4.2. For X a hyper-Kähler manifold the de Rham cohomology is a free module
of rank one over the polyvector fields generated by a Calabi–Yau form σn ∈ H0(X,Ω2n

X ).

The reason why the ring of polyvectors is of interest to us is the following crucial result. It
relies on the modified Hochschild–Konstant–Rosenberg isomorphism identifying Hochschild
(co)homology with polyvectors and the de Rham cohomology [47].

Theorem A.4.3. A derived equivalence Φ: Db(X) ∼−→ Db(Y ) induces naturally a C-algebra
isomorphism ΦHT : HT∗(X) ∼−→ HT∗(Y ) such that the action of the polyvector fields is equiv-
ariant for the induced isomorphism ΦH : H∗(X,C) ∼−→ H∗(Y,C).

Spelling this out, for v ∈ HT∗(X) and x ∈ H∗(X,C) we have

ΦH(vyx) = ΦHT(v)yΦH(x) ∈ H∗(Y,C).

A.5. Reinventing the LLV Lie algebra

We will define a new Lie algebra, which will turn out to be isomorphic to g(X) with scalars
extended to C. This will prove Theorem A.1.1 from the introduction.
Recall that X is a hyper-Kähler manifold of dimension 2n. We consider the holomor-

phic grading operator hp and the antihomolorphic grading operator hq defined by acting on
Hk,l(X) via

hp = (k − n)id, hq = (l − n)id.

To avoid confusions, the indices p and q do not relate to k or l in any way, but just refer to
the standard convention that the holomorphic degree of a smooth form is usually denoted by
p and the antiholomorphic degree of a form by q.
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With these definitions the usual grading operator h for the cohomological grading is just
h = hp + hq. We define the Hodge grading operator h′ := hq − hp.

h′-grading←−−−−−→
H0,0

H1,0 H0,1

H2,0 H1,1 H0,2

...

H2n,0 H2n−1,1 . . . Hn,n . . . H1,2n−1 H0,2n
xyh-grading

...
H2n,2n−2 H2n−1,2n−1 H2n,2n−2

H2n,2n−1 H2n−1,2n

H2n,2n

With this definition the action of the polyvector fields HT∗(X) on the de Rham cohomology
H∗(X,C) alluded to in Lemma A.4.2 has degree two with respect to the grading h′.

For µ ∈ HT2(X) we define the operator

eµ := µy_ ∈ End(H∗(X,C)).

We say that µ is Hard Lefschetz if the operator eµ satisfies the Hard Lefschetz isomorphisms
with respect to the grading operator h′. The Jacobson–Morozov theorem asserts that this is
equivalent to the existence of an operator fµ ∈ End(H∗(X,C)) such that

(eµ, h′, fµ)

generates a Lie subalgebra of End(H∗(X,C)) isomorphic to sl2.

Definition A.5.1. The complex Lie algebra g′(X) is defined to be the smallest Lie subalgebra
of End(H∗(X,C)) containing all sl2-triples (eµ, h′, fµ) for all Hard Lefschetz µ ∈ HT2(X).

Equivalently, one could have defined the Lie algebra g′(X) as the Lie subalgebra of the en-
domorphism algebra End(HT∗(X)) containing all sl2-triples with µ Hard Lefschetz. Through
the isomorphism

HT∗(X)yσn ∼= H∗(X,C)

these two definitions are identified.
Recall from (A.4.1) that the choice of a symplectic form produces an abstract graded

C-algebra isomorphism
HT∗(X) ∼= H∗(X,Ω∗X) ∼= H∗(X,C).

Thus, the choice of a symplectic form leads to the following result.

Lemma A.5.2. There is an isomorphism of complex Lie algebras

g(X)⊗Q C ∼= g′(X).
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We also deduce the following consequence from Theorem A.4.3.

Proposition A.5.3. For a derived equivalence between hyper-Kähler manifolds Φ: Db(X) ∼=
Db(Y ) the isomorphism

ΦHT : HT2(X) ∼−→ HT2(Y )
induces naturally a Lie algebra isomorphism

Φg : g′(X) ∼−→ g′(Y )

such that the induced isomorphism

ΦH : H∗(X,C) ∼−→ H∗(Y,C)

is equivariant with respect to Φg.

Spelling this again out means that for j ∈ g′(X) and x ∈ H∗(X,C) we have

ΦH(j.x) = Φg(j).ΦH(x) ∈ H∗(Y,C).

The connection between all that has been said so far and the main tool for all the applications
we will present is the following main theorem of [201] which was also implicitly proven (but
not stated in the form below) by Verbitsky [209].

Theorem A.5.4. The Lie algebras g(X)⊗QC and g′(X) are equal as Lie subalgebras of the
Lie algebra End(H∗(X,C)).

Proof. Verbitsky showed that there is an isomorphism of ungraded vector spaces

η : H∗(X,C) ∼−→ H∗(X,C).

The explicit description of η is not import, we only need the following two properties shown
by Verbitsky. Firstly, η conjugates the two Lie algebras, i.e.

η (g(X)⊗Q C) η−1 = g′(X).

Secondly, the isomorphism η is obtained by integrating the action of the Lie algebra g(X),
that is it lies in the subgroup of automorphism Aut(H∗(X,C)) generated by integrated op-
erators of g⊗Q C. Since all such operators µ contained in the above subgroup satisfy

µ (g(X)⊗Q C)µ−1 = g(X)⊗Q C.

one can conclude the proof.
We will, however, follow Taelman’s proof. From Lemma A.5.2 we infer that it is enough

to show only the inclusion
g′(X) ⊂ g(X)⊗Q C.

A straightforward calculation shows that

(eσ, hp, eσ̌)

is an sl2-triple, where σ̌ ∈ H0(Λ2TX) is the dual symplectic form (note that the Lefschetz
operator eσ acts via cup product, whereas eσ̌ acts by contraction of polyvector fields).
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Analogously or using Hodge symmetry, for the complex conjugate form σ̄ ∈ H2(X,OX)
the operator eσ̄ has the Hard Lefschetz property for the grading operator hq. The Jacobson–
Morozov Theorem grants the existence of an operator g ∈ End(H∗(X,C)) such that

(eσ̄, hq, g)

forms an sl2-triple. An easy check shows that all elements from the sl2-triple (eσ, hp, eσ̌)
commute with all elements from the sl2-triple (eσ̄, hq, g). For example, eσ and eσ̄ commute
as the de Rham cohomology is graded-commutative and the operators eσ and eσ̌ commute
with hq, because they do not change the antiholomorphic degree of a form. Similar arguments
apply to the other operators. Thus we obtain two new sl2-triples

(eσ + eσ̄, h, eσ̌ + g), (eσ − eσ̄, h, eσ̌ − g).

This gives that eσ̌ ∈ g(X)⊗Q C. Since [eσ, eσ̌] = hp and hp + hq = h, we deduce furthermore
that hp, hq and therefore h′ = hq − hp are all contained inside g(X)⊗Q C.
Since evidently eσ̄ is also contained in g(X)⊗QC (the action via contraction of polyvector

fields agrees with the cup product), it is left to show that for almost all µ ∈ H1(X, TX) the
operator eµ lies in g(X)⊗Q C. This follows from the identity

[eσ̌, eη] = eµ

for η ∈ H1(X,ΩX) satisfying
µ = σ̌yη ∈ H1(X, TX)

which follows from a straightforward calculation, see [201, Lem. 2.13].

The theorem implies that the isomorphism Φg from Proposition A.5.3 is already defined
over Q, since the same holds for the induced isomorphism on singular cohomology. We thus
have proved Theorem A.1.1 which we state her again for the reader’s convenience.

Corollary A.5.5. A derived equivalence Φ: Db(X) ∼−→ Db(Y ) between hyper-Kähler mani-
folds induces naturally a Lie algebra isomorphism

Φg : g(X) ∼−→ g(Y )

such that the induced isomorphism

ΦH : H∗(X,Q) ∼−→ H∗(Y,Q)

is equivariant with respect to Φg.

A.6. Verbitsky component and extended Mukai lattice
We want to draw consequences of Theorem A.5.4 for the study of derived equivalences of
hyper-Kähler manifolds and their induced actions on cohomology.

Definition A.6.1. The Verbitsky component SH(X,Q) ⊂ H∗(X,Q) is the subalgebra gen-
erated by H2(X,Q).
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It is easy to see that the Verbitsky component is an irreducible representation of the LLV
Lie algebra g(X) and it is characterized as such as the irreducible representation whose
Hodge structure attains the maximal possible width. It is equipped with the Mukai pairing
bSH defined via

bSH(λ1 . . . λm, µ1 . . . µ2n−m) := (−1)m
∫
X
λ1 · · ·λmµ1 · · ·µ2n−m

for classes λi, µj ∈ H2(X,Q) which agrees with the generalized Mukai pairing alluded to in
Remark A.2.2.

Corollary A.6.2. For a derived equivalence Φ: Db(X) ∼−→ Db(Y ) between hyper-Kähler man-
ifolds the induced isomorphism ΦH restricts to a Hodge isometry

ΦSH : SH(X,Q) ∼−→ SH(Y,Q).

Proof. Since the Verbitsky component is the unique irreducible representation whose Hodge
structure attains the maximal possible width and by Theorem A.1.1 the isomorphism ΦH

respects the LLV algebra, we conclude that ΦH must restrict to an isomorphism of the Verbit-
sky component. The Mukai pairing on the Verbitsky component agrees with the generalized
Mukai pairing, which is a derived invariant.

We want to study the Verbitsky component and the LLV Lie algebra more closely to further
refine the study of Aut(Db(X)).

Definition A.6.3. The rational quadratic vector space defined by

H̃(X,Q) := Qα⊕H2(X,Q)⊕Qβ.

is called the extended Mukai lattice. Its quadratic form b̃ restricts to the Beauville–Bogomo-
lov–Fujiki form b on H2(X,Q) [83, Sec. 23] and the two classes α and β are orthogonal to
H2(X,Q) and satisfy b̃(α, β) = −1 as well as b̃(α, α) = b̃(β, β) = 0.

Furthermore, we define on H̃(X,Q) a grading by declaring α to be of degree −2, H2(X,Q)
sits in degree zero and β is of degree two. Finally, the extended Mukai lattice is equipped
with a weight-two Hodge structure

(H̃(X,Q)⊗ C)2,0 := H2,0(X)
(H̃(X,Q)⊗ C)0,2 := H0,2(X)
(H̃(X,Q)⊗ C)1,1 := H1,1(X)⊕ Cα⊕ Cβ.

There exists a graded morphism ψ : SH(X,Q)[−2n] → Symn(H̃(X,Q)) sitting in the fol-
lowing short exact sequence

0→ SH(X,Q)[−2n] ψ−→ Symn(H̃(X,Q)) ∆n−−→ Symn−2(H̃(X,Q))→ 0.

Here, the map ∆n is the Laplacian operator defined on pure tensors via

v1 · · · vn 7→
∑
i<j

b̃(vi, vj)v1 · · · v̂i · · · v̂j · · · vn.
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Surjectivity follows easily from the fact that the symmetric power SymkV of a vector space
V is generated by v · · · v for all v ∈ V . The map ψ is uniquely determined (up to scaling)
by the condition that it is a morphism of g(X)-modules. The g(X)-structure of H̃(X,Q)
is defined by eω(α) = ω, eω(µ) = b(ω, µ)β and eω(β) = 0 for all classes ω, µ ∈ H2(X,Q).
The n-th symmetric power Symn(H̃(X,Q)) then inherits the structure of a g(X)-module by
letting g(X) act by derivations. We fix once and for all a choice of ψ by setting ψ(1) = αn/n!.
By Schur’s lemma, ψ is injective.

Taelman [201, Sec. 3] showed that the map ψ is an isometry with respect to the Mukai
pairing on SH(X,Q) and the pairing

b[n](x1 · · ·xn, y1 · · · yn) = (−1)ncX
∑
σ∈Sn

n∏
i=1

b̃(xi, yσ(i))

on Symn(H̃(X,Q)), where cX is the Fujiki constant characterized by the property∫
X
ω2n = cX

(2n)!
2nn! b(ω, ω)n

for all ω ∈ H2(X,Q). Note that our definition of b[n] differs from Taelman’s definition by the
Fujiki constant. Ours has the advantage that ψ is always an isometry.
Summing up, the inclusion ψ respects the

• g(X)-module structure,

• quadratic forms,

• Hodge structures,

• gradings.

A.7. Action of derived equivalences on the extended Mukai lattice
Recall that we have deduced the existence of a representation

ρSH : Aut(Db(X))→ O(SH(X,Q)) (A.7.1)

and the isometries in the image of this representation normalize the action of the LLV algebra
g(X), i.e. for these g ∈ O(SH(X,Q)) we have

gg(X)g−1 = g(X) ⊂ End(SH(X,Q)).

Let us study these automorphisms a bit further.

Definition A.7.1. The group Aut(SH(X,Q), bSH, g(X)) is the group of all isometries of the
Verbitsky component that normalize the action of the LLV algebra.

The main representation-theoretic input for our discussion is the following result [201, Sec.
4].
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Proposition A.7.2. If n is odd or the second Betti number is odd, then

Aut(SH(X,Q), bSH, g(X)) ∼= O(H̃(X,Q)).

We make this isomorphism more explicit. Let X and Y be deformation-equivalent hyper-
Kähler manifolds together with a derived equivalence Φ: Db(X) ∼−→ Db(Y ). Then there exists
a unique Hodge isometry

ΦH̃ : H̃(X,Q) ∼−→ H̃(Y,Q)

inducing the following commutative diagram

SH(X,Q) SH(Y,Q)

Symn(H̃(X,Q)) Symn(H̃(Y,Q)).

ε(ΦH̃)ΦSH

ψ ψ

SymnΦH̃

The scalar ε(ΦH̃) ∈ {±1} depends on defining orientations on the vector spaces H̃(X,Q)
respectively H̃(Y,Q) and for X = Y we simply have ε(ΦH̃) = det(ΦH̃)n+1. In particular, in
the case X = Y , the representation (A.7.1) factors via the commutative diagram

O(H̃(X,Q))

Aut(Db(X))

O(SH(X,Q)).

ρH̃

ρSH

(A.7.2)

Remark A.7.3. In all known examples, derived equivalent hyper-Kähler manifolds are
deformation-equivalent, but this is not known in general. Without this assumption, the
above proposition has to be weakened as we shall demonstrate.

One can, using similitudes, still formulate a version of Proposition A.7.2 in the general
case. This will be needed in the next section for the application to Hodge structures.

Theorem A.7.4. Let X and Y be arbitrary hyper-Kähler manifolds and Φ: Db(X) ∼−→ Db(Y )
be a derived equivalence. Then there exists a Hodge similitude ΦH̃ : H̃(X,Q)→ H̃(Y,Q) and
a scalar λ ∈ Q∗ such that

SH(X,Q) SH(Y,Q)

Symn(H̃(X,Q)) Symn(H̃(Y,Q))

ΦSH

ψ ψ

λSymnΦH̃

commutes.
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A.8. Hodge structures
In this section we want to give one application of the results presented so far regarding
derived equivalent hyper-Kähler manifolds and their Hodge structures. We first want to
recall a recent result of Soldatenkov [199]1, whose statement and proof are similar in flavour
to what we will discuss afterwards for derived equivalences.

Theorem A.8.1. Let X and Y be arbitrary hyper-Kähler manifolds and ϕ : H2(X,Q) ∼−→
H2(Y,Q) be an isomorphism of Q-Hodge structures, which is the restriction of a global algebra
automorphism φ : H∗(X,Q) ∼−→ H∗(Y,Q). Then for all i ∈ Z the restrictions

φ : Hi(X,Q) ∼−→ Hi(Y,Q)

are isomorphisms of Q-Hodge structures.

Proof. We briefly sketch the argument. Since φ is a graded algebra automorphism, the adjoint
action produces an isomorphism

ad(φ) : g(X) ∼−→ g(Y ).

The fact that φ is graded implies that ad(φ)(h) = h. Moreover, the restriction of φ to
H2(X,Q) respects the Hodge structures. This implies that ad(φ)(h′) = h′, where again
h′ = hq − hp. Indeed, the adjoint action of φ is determined by its restriction to the degree
two component [199, Prop. 2.11]. As the morphism φ respects the Hodge structure on the
second cohomology, the claim follows.
Since h+ h′ = 2hq and h− h′ = 2hp we deduce ad(φ)(hp) = hp and ad(φ)(hq) = hq. This

is equivalent to φ being a morphism of Q-Hodge structures.

The assertion that the isomorphism of Hodge structures is the restriction of a global algebra
automorphism is frequently met. For example, Hodge isometries with positive determinant
can be extended to algebra automorphisms of the even cohomology by integrating the LLV
action. For more details and examples we refer to [199].
With this in mind, we can now prove the following result of Taelman [201, Sec. 5]. It also

establishes a conjecture of Orlov in the case of hyper-Kähler manifolds [176] stating that
derived equivalent varieties have the same Hodge numbers.

Theorem A.8.2. Let X and Y be derived equivalent hyper-Kähler manifolds. Then for all
i ∈ Z we have an isomorphism

Hi(X,Q) ∼= Hi(Y,Q)

of Q-Hodge structures.

Proof. Let us denote by Φ a derived equivalence between X and Y . Recall from [130, 207]
the Lie algebra isomorphism g(X) ∼= so(H̃(X,Q)) (in loc. cit. the isomorphism is only stated
over R. For the statement with rational coefficients, see [199, Prop. 2.9].). Composing this
isomorphism with Φg we obtain a Lie algebra isomorphism

so(H̃(X,Q)) ∼= so(H̃(Y,Q)).
1We thank Andrey Soldatenkov for a stimulating conversation about his results.

83



Every such Lie algebra isomorphism is equal to ad(φ) for some φ : H̃(X,Q) → H̃(Y,Q), see
[201, Prop. 4.1] which is the analogue of Proposition A.7.2 in this case. Theorem A.7.4 now
implies that φ must be a Hodge similitude. More precisely, it differs from ΦH̃ only by a
scalar.
Using

H̃(X,Q) ∼= Qα⊕Qβ ⊕NS(X)Q ⊕ T(X)Q
and Witt cancellation for quadratic spaces, one easily shows that there exists a Hodge isom-
etry γ ∈ SO(H̃(Y,Q)) such that the composition γ ◦ φ is now a graded Hodge similitude, i.e.
α and β are mapped to multiples of themselves. By definition, this implies that the adjoint
morphism of γ ◦ φ satisfies

ad(γ ◦ φ)(h) = h, ad(γ ◦ φ)(h′) = h′. (A.8.1)

Let us for the moment assume that we can find a global algebra isomorphism

η : H∗(Y,Q) ∼−→ H∗(Y,Q)

whose adjoint action equals γ as isomorphisms of the LLV Lie algebra g(Y ). Then we can
consider the composition

η ◦ ΦH : H∗(X,Q) ∼−→ H∗(Y,Q).
From (A.8.1) we infer again that ad(η ◦ΦH)(h) = h and ad(η ◦ΦH)(h′) = h′. As in the proof
of Theorem A.8.1 this implies that η ◦ΦH induces in each degree the desired isomorphism of
Hodge structures.
It is left to prove the existence of the global algebra isomorphism η. In general, inte-

grating the action of the LLV algebra g(X) produces an action of SO(H̃(Y,Q)) on the even
cohomology H2∗(Y,Q) [199, Prop. 2.10]. To construct an algebra automorphism of the full
cohomology H∗(Y,Q) one uses the Q-algebraic group GSpin. More precisely, one uses the
natural surjection

GSpin(H̃(Y,Q))� SO(H̃(Y,Q))
to lift γ and constructs an action of GSpin(H̃(Y,Q)) on the full cohomology such that the in-
duced action of Spin(H̃(Y,Q)) ⊂ GSpin(H̃(Y,Q)) is the integrated action of the LLV algebra.
For details we refer to [201, Sec. 5].

A.9. Further results
We have presented the first six sections of [201]. In the remaining part of loc. cit. the
representation ρH̃ from (A.7.2) is further studied. The main result is a bound on the image
of ρH̃ in terms of (subgroups) of the orthogonal group O(Λ) some lattice

Λ ⊂ H̃(X,Q)

for X (a deformation of) the Hilbert scheme of two points on a K3 surface.
In [25], building upon the results presented so far, the study of derived categories of

projective hyper-Kähler manifolds is further refined. The main technical tool is a Mukai
vector taking values in the extended Mukai lattice H̃(X,Q). This yields structural results
for derived categories and derived equivalences for general hyper-Kähler varieties as well as
many generalisations of results known for derived categories of K3 surfaces to the case of
higher-dimensional deformations of Hilbert schemes.
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B. Derived categories of hyper-Kähler
manifolds: extended Mukai vector and

integral structure

ABSTRACT. We introduce a linearised form of the square root of the
Todd class inside the Verbitsky component of a hyper-Kähler manifold
using the extended Mukai lattice. This enables us to define a Mukai
vector for certain objects in the derived category taking values inside
the extended Mukai lattice which is functorial for derived equivalences.
As applications, we obtain a structure theorem for derived equivalences
between hyper-Kähler manifolds as well as an integral lattice associated
to the derived category of hyper-Kähler manifolds deformation equiva-
lent to the Hilbert scheme of a K3 surface mimicking the surface case.

B.1. Introduction

B.1.1. Background: Derived categories of K3 surfaces

The study of derived categories of smooth projective varieties goes back to the works of Mukai
[154, 155]. Over the years derived categories and equivalences between them have attracted
great attention and culminated in many results, see for example [35,40–42,86,175].
Let X and Y be smooth projective varieties. We denote by Db(X) := Db(Coh(X)) the

bounded derived category of coherent sheaves on X. Orlov [175] showed that any derived
equivalence Φ: Db(X) ∼= Db(Y ) is isomorphic to a Fourier–Mukai functor FME with Fourier–
Mukai kernel E ∈ Db(X × Y ). In particular, using the Mukai vector

v = ch(_)td1/2 : Db(X)→ H∗(X,Q)

with td1/2 the formal square root of the Todd class td ∈ H∗(X,Q) the Fourier–Mukai functor
FME induces an isomorphism

ΦH = FMH
E : H∗(X,Q) ∼= H∗(Y,Q).

Let us specialize the above to the case of K3 surfaces S. Any smooth variety Y which is
derived equivalent to S is again a K3 surface [43]. The integral cohomology groups H∗(S,Z)
are equipped with the Mukai pairing b̃ which is equal to the intersection pairing up to a
sign b̃(1, p) = −1 for 1 ∈ H0(S,Z) the fundamental class and p ∈ H4(S,Z) the point class.

The author is supported by the International Max–Planck Research School on Moduli Spaces of the Max–
Planck Society.
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Moreover, the lattice H∗(S,Z) carries a weight-two Hodge structure inherited from H∗(S,Z).
As alluded to above for a derived equivalence Φ: Db(S) ∼= Db(S′) between two K3 surfaces
the following diagram commutes

Db(S) Db(S′)

H∗(S,Z) H∗(S′,Z).

Φ

v v

ΦH

(B.1.1)

Mukai has shown that the morphism ΦH associated to Φ is a Hodge isometry [155]. Further-
more, the lattice H∗(S,Z) together with its Hodge structure determines the derived category
completely. That is, two K3 surfaces S and S′ are derived equivalent if and only if H∗(S,Z)
and H∗(S′,Z) are Hodge isometric [175].
In particular, many properties of the derived category of a K3 surface S are encoded by

the lattice H∗(S,Z) of rank b2(S) + 2 together with its Hodge structure. For example, this
can be used to show that the number of Fourier–Mukai partners of S, that is the number of
non-isomorphic K3 surfaces S′ which are derived equivalent to S, is finite.
In addition, the group of auto-equivalences Aut(Db(S)) of K3 surfaces admits a represen-

tation
ρH : Aut(Db(S))→ H∗(S,Z).

The group Aut(Db(S)) contains elements such as spherical twists STE along spherical objects
E ∈ Db(S). These are symmetries which become only visible in the derived category. The
image of ρH has been computed to be Aut+(H∗(X,Z)), the group of Hodge isometries with
real spinor norm one [93, 105, 155, 175]. A conjecture describing the kernel of ρH has been
put forward by Bridgeland [41] and has been proven for K3 surfaces with Picard rank one
[15, Thm. 1.3].
The main goal of this paper is to find suitable analogues for the above results for the higher-

dimensional analogues of K3 surfaces, that is hyper-Kähler manifolds X. For example, we
want to study their derived categories and equivalences between them by means of an integral
lattice of rank b2(X) + 2.

B.1.2. Hyper-Kähler manifolds
Let X be a compact irreducible hyper-Kähler manifold of dimension 2n, that is a compact
simply connected Kähler manifold whose space of holomorphic two-forms is spanned by a
non-degenerate symplectic form. We briefly recall properties of X needed to state our results,
see Section B.2 for a more thorough recollection.
The second cohomology H2(X,Q) of X is endowed with a quadratic form called the

Beauville–Bogomolov–Fujiki (BBF) form b. Its Verbitsky component SH(X,Q) ⊂ H∗(X,Q)
of X is the subalgebra generated by all cohomology classes of degree two. It inherits a bilinear
form

bSH(ω1 · · ·ωm, µ1 · · ·µ2n−m) = (−1)m
∫
X
ω1 · · ·ωmµ1 · · ·µ2n−m

called Mukai pairing from the intersection pairing, where ωi, µj ∈ H2(X,Q). The extended
rational Mukai lattice of X is the graded vector space

H̃(X,Q) := Qα⊕H2(X,Q)⊕Qβ.
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This space is endowed with a bilinear form b̃ as well as a Hodge structure which both restrict
to the BBF form and the Hodge structure on H2(X,Q), respectively. The classes α and
β are of Hodge type, orthogonal to H2(X,Q) and satisfy b̃(α, α) = b̃(β, β) = 0 as well as
b̃(α, β) = −1 such that H̃(X,Q) resembles H(S,Q) for S a K3 surface, see Section B.2.2 for
more details. There exists an embedding

ψ : SH(X,Q) Symn(H̃(X,Q))

T

of quadratic spaces and T denotes the the orthogonal projection onto the subspace SH(X,Q).
The morphism ψ realizes the Verbitsky component as an irreducible representation of the
Looijenga–Lunts–Verbitsky (LLV) algebra g(X), see [130,201,207] and Section B.2.2.

Let us turn now to derived categories of hyper-Kähler manifolds X. Until recently not
much has been known about Db(X). Huybrechts–Nieper-Wißkirchen have shown that any
Fourier–Mukai partner of X is again a hyper-Kähler manifold [107, Thm. 0.4]. Taelman in
[201] has refined the study of the derived category ofX. He showed that a derived equivalence
Φ: Db(X) ∼= Db(Y ) between hyper-Kähler manifolds restricts to a Hodge isometry

ΦSH : SH(X,Q) ∼= SH(Y,Q)

which is functorially induced by a Hodge isometry

ΦH̃ : H̃(X,Q) ∼= H̃(Y,Q), (B.1.2)

see [201, Sec. 4] or Section B.2.3. This can be used to show that for derived equivalent
hyper-Kähler manifolds X and Y there is an isomorphism

Hi(X,Q) ∼= Hi(Y,Q)

of Q-Hodge structures for all i [201, Thm. D].

B.1.3. Extended Mukai vector
The starting point of this paper is the following observation.

Proposition B.3.4. Let X be a hyper-Kähler manifold of dimension 2n. Then

td1/2 = T

((α+ rXβ)n
n!

)
∈ SH(X,Q).

Here, we decompose
H∗(X,Q) = SH(X,Q)⊕ SH(X,Q)⊥

orthogonally with respect to the intersection product on cohomology and (_) denotes the
projection onto the subspace SH(X,Q). The number rX ∈ Q is an explicit constant depending
on n, the second Chern class c2(X), and the Fujiki constant cX of X, see (B.3.1). In
particular, it only depends on the deformation type of X. For K3 surfaces the proposition
reads

td1/2 = T (α+ β) = 1 + p ∈ H∗(X,Z)
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and for X of K3[n]-type we have

td1/2 = T

(
(α+ n+3

4 β)n

n!

)
∈ SH(X,Q).

This enables us to define in Section B.4 an extended Mukai vector

ṽ(E) ∈ H̃(X,Q)

for certain objects E ∈ Db(X). It relates to the classical Mukai vector v(E) ∈ H∗(X,Q) via

T (ṽ(E)n) = cv(E) ∈ SH(X,Q)

for c ∈ Q1 and this property characterizes the line spanned by ṽ(E) in H̃(X,Q). For example,
to a line bundle L ∈ Pic(X) with first Chern class c1(L) = λ we assign

ṽ(L) = α+ λ+
(
rX + b(λ, λ)

2

)
β ∈ H̃(X,Q).

Moreover, the formation of the extended Mukai vector is functorial2 for derived equivalences,
i.e. for a derived equivalence Φ the extended Mukai vector of Φ(E) equals ±ΦH̃(ṽ(E)). For
the details and precise definitions we refer to Section B.4.

B.1.4. Derived equivalences of hyper-Kähler manifolds

Consider a derived equivalence Φ: Db(X) ∼= Db(Y ) between projective hyper-Kähler mani-
folds X and Y . Associated to it we have the induced Hodge isometry

ΦH̃ : H̃(X,Q) ∼= H̃(Y,Q).

It is a priori very hard to calculate this isometry for a given derived equivalence. However,
the above defined extended Mukai vector allows us now to easily compute ΦH̃ for most known
examples of derived equivalences between hyper-Kähler manifolds. We demonstrate this in
Sections B.7 and B.10.
Moreover, its properties lead to the following structural result for derived equivalences

between hyper-Kähler manifolds.

Theorem B.4.15. Let X and Y be deformation-equivalent projective hyper-Kähler manifolds
and Φ: Db(X) ∼= Db(Y ) an equivalence with Fourier–Mukai kernel E. The rank r of E is of
the form ann!

cX
for a ∈ Q. If r = 0, then E induces coverings of X and Y with Lagrangian

cycles or there exists a Hodge isometry H2(X,Z) ∼= H2(Y,Z).

If, for example, E is an X-flat sheaf on X × Y , then the second statement of the the-
orem means that the codimension n component of supp(E) is a flat family of Lagrangian
subvarieties of Y which dominates Y .

1For all known deformation types of hyper-Kähler manifolds we actually have c ∈ Z.
2The (at first sight surprising) possible extra sign comes from a sign convention in [201, Thm. 4.9] for certain
hyper-Kähler manifolds. For all applications this issue can be ignored.
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Note that the number in the above theorem
ann!
cX

must in particular be an integer. For all known examples of hyper-Kähler manifolds cX ∈ Z
and therefore we must already have a ∈ Z using Legendre’s or de Polignac’s formula.
The theorem splits derived equivalences Φ = FME : Db(X) ∼= Db(Y ) between hyper-Kähler

manifolds into three cases. If the rank of the Fourier–Mukai kernel E is non-zero, we are in
the first case and the theorem asserts that the possible ranks of E are severly restricted. In
the second case, the geometries of X and Y are related by a correspondence in the n-th Chow
group An(X×Y ) which induces coverings of both manifolds by Lagrangian cycles. In the last
case the derived equivalence implies the existence of a Hodge isometry H2(X,Z) ∼= H2(Y,Z).
To obtain a geometric interpretation of this conclusion, recall that up to finite index any
Hodge isometry is induced from a parallel transport operator [137, Lem. 6.23]. The Global
Torelli Theorem [211] states that the existence of a Hodge isometry H2(X,Z) ∼= H2(Y,Z)
induced from a parallel transport operator is equivalent to X and Y being birational.

B.1.5. Integral structure
We now specialize for the rest of the introduction to the case of K3[n]-type hyper-Kähler
manifolds X, that is hyper-Kähler manifolds which are deformation-equivalent to Hilbert
scheme of length n subschemes on a K3 surface. In this case we are able to obtain an integral
lattice of rank b2(X)+2 invariant under derived equivalences mimicking the situation for K3
surfaces.
More explicitly, we define in Section B.5 an integral lattice

Λ ⊂ H̃(X,Q)

called K3[n] lattice which inherits a Hodge structure ΛX from X through the embedding.
As an abstract lattice it is isometric to H2(X,Z) ⊕ U with U the hyperbolic plane, but its
weight-two Hodge structure differs from the one induced from H2(X,Z) by a B-field twist,
see Remark B.5.8. The main difference in the higher-dimensional situation compared to the
case of K3 surfaces is that H2(X,Z) is not unimodular and the B-field twist compensates for
the non-trivial discriminant.
The K3[n] lattice is a sublattice Λ ⊂ Λg of index two of the lattice Λg generated by all

extended Mukai vectors of objects in Db(X). We refer to Section B.5 for a discussion of all
the lattices that appear and their relations.
Our main result now is the following yielding a complete analogue of Mukai’s results [155]

for derived equivalences of K3 surfaces.

Theorem B.9.2. Let X and Y be projective K3[n]-type hyper-Kähler manifolds and
Φ: Db(X) ∼= Db(Y ) a derived equivalence. Then ΦH̃ restricts to a Hodge isometry

ΦH̃ : ΛX ∼= ΛY .

Even stronger, the K3[n] lattice is invariant by the action of all (compositions of) parallel
transport operators and derived equivalences acting on the extended Mukai lattice H̃(X,Q).
The precise statement is Theorem B.8.1.
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As in the surface case, the existence of a lattice together with a Hodge structure governing
properties of the derived category has strong implications. Here is one example.

Theorem B.9.4. For a fixed projective K3[n]-type hyper-Kähler manifold X the number of
projective K3[n]-type manifolds Y up to isomorphism with Db(X) ∼= Db(Y ) is finite.

For all currently known deformation types of hyper-Kähler manifolds a derived equivalence
Db(X) ∼= Db(Y ) implies that X and Y must, in fact, be deformation-equivalent. In general,
it is not known whether this conclusion remains true for arbitrary hyper-Kähler manifolds.
In [17, Thm. 1.2] it is shown that any hyper-Kähler manifold which is birational to a

moduli space of stable objects on a K3 surface S is itself a moduli space of stable objects on
S. Using the K3[n] lattice we are able to upgrade this result to derived categories.

Corollary B.9.6. Let MS
σ (v) be a smooth moduli space of stable objects on a projective

K3 surface S and X a projective K3[n]-type hyper-Kähler manifold such that Db(X) ∼=
Db(MS

σ (v)). Then X is itself a moduli space of stable objects on S.

The corollary also yields the following.

Corollary B.9.7. For two smooth moduli spaces MS
σ (v) and MS′

σ′ (v′) of stable objects on
projective K3 surfaces S and S′ with Db(MS

σ (v)) ∼= Db(MS′
σ′ (v′)) we have Db(S) ∼= Db(S′).

Furthermore, S and S′ are derived equivalent if and only if their Hilbert schemes S[n] and
S′[n] are derived equivalent.

Finally, considering a single hyper-Kähler manifold X of K3[n]-type Theorem B.9.2 implies
that the representation

ρH̃ : Aut(Db(X))→ O(H̃(X,Q))

induced from (B.1.2) factors via a representation

ρH̃ : Aut(Db(X))→ Aut(ΛX).

Here, Aut(ΛX) denotes the group of all Hodge isometries of the K3[n] lattice ΛX . Specializing
to Hilbert schemes X = S[n] of elliptic K3 surfaces S with a section, we are able to give a
lower bound on the image of ρH̃.

Theorem B.9.8. For the Hilbert scheme S[n] of a K3 surface with U ⊂ NS(S) the image
Im(ρH̃) of the representation ρH̃ satisfies

Âut+(ΛS[n]) ⊂ Im(ρH̃) ⊂ Aut(ΛS[n]).

The group Âut+(ΛS[n]) is the group of all Hodge isometries with real spinor norm one
which act via ±id on the discriminant group.

Theorem B.9.2 as well as the existence of the extended Mukai vectors yield several further
strong consequences for the derived category and derived equivalences of hyper-Kähler man-
ifolds. Instead of reciting all of them here, we invite the reader to directly go to Sections B.4
and B.9.
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B.1.6. Related work

While finishing writing this paper, Eyal Markman informed us that he has also constructed
in [139] a Mukai vector with image in the extended Mukai lattice for certain objects in the
derived category. His approach uses Hochschild (co)homology and obstruction maps and is
independent and different from ours.
While working on this paper we also realised that a broader definition of the extended

Mukai vector is possible. This has lead to the definition of atomic objects on hyper-Kähler
manifolds studied in [26].

B.1.7. Structure of the paper

In Section B.2 we recall results for hyper-Kähler manifolds and their derived categories.
In the first part of this paper we study arbitrary hyper-Kähler manifolds. In Section B.3

we prove Proposition B.3.4 using results from Rozansky–Witten theory. In Section B.4 we
define the extended Mukai vector. There are two different classes of objects for which this
can be done and we discuss their properties and give examples.
In the second part we specialize to hyper-Kähler manifolds deformation-equivalent to the

Hilbert scheme of a K3 surface. In Sections B.5 and B.6 we introduce the lattices that
will play a role as well as the derived monodromy group. In Section B.7 we study derived
equivalences of the Hilbert scheme on the extended Mukai lattice using the extended Mukai
vector. With these preparations we prove in the subsequent section the invariance under
derived equivalences of the lattice Λ. Consequences of the previous results will be drawn in
Section B.9. We conclude by demonstrating how known derived equivalences of hyper-Kähler
manifolds fit into the new set-up.

B.1.8. Acknowledgements

I am indebted to my advisor Daniel Huybrechts for his constant support and encouragement
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B.1.9. Notation

We will always work over the complex numbers. The derived category Db(X) of a smooth
projective variety X is the bounded derived category of coherent sheaves on X. All functors
will be implicitly derived.
A lattice is a free Z-module of finite rank with an integral (mostly even) quadratic form.

We use the notations from [100, Sec. 14] and [82]. We remark that in Section B.8 we use
the word lattice as well to denote a full rank discrete subset W inside a finite dimensional
rational vector space V with a specified embeddingW ↪→ V . It will be clear from the context
what is meant.
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B.2. Recollections

We recollect facts and results and introduce the notation we will employ throughout the
paper.

B.2.1. Hyper-Kähler manifolds and their cohomology

Let X be a hyper-Kähler manifold of complex dimension 2n, i.e. a simply connected com-
pact Kähler manifold such that H0(X,Ω2

X) is generated by an everywhere non-degenerate
holomorphic two-form. The second cohomology H2(X,Z) possesses an integral primitive
quadratic form b called the Beauville–Bogomolov–Fujiki (BBF) form. It is characterized up
to sign by the property that there exists a constant cX , called the Fujiki constant, that only
depends on the deformation type of X such that∫

X
ω2n = cX

(2n)!
2nn! b(ω, ω)n

for all ω ∈ H2(X,Z). For the known examples of hyper-Kähler manifolds we have

cX =
{

1 K3[n] or OG10-type,
n+ 1 Kumn or OG6-type.

For the following, see [83, Cor. 23.17].

Proposition B.2.1. Let X be a hyper-Kähler manifold of dimension 2n and consider a class
µ ∈ H4p(X,R) which is of type (2p, 2p) on all small deformations of X. Then there exists a
constant C(µ) ∈ R such that ∫

X
µω2n−2p = C(µ)b(ω, ω)n−p

for all ω ∈ H2(X,R).

Using Rozansky–Witten theory Nieper-Wißkirchen [162] established results on character-
istic classes and Riemann–Roch formulae for hyper-Kähler manifolds.

Definition B.2.2. For ω ∈ H2(X,R) define its characteristic value as

λ(ω) := (2n)!12cX
2nn!(2n− 1)C(c2(X))b(ω, ω).

Using the Fujiki relations, one can check that the above definition agrees with [162, Def.
17]. For the formula of the square root of the Todd class we will need the following result,
cf. [162, p. 738].

Proposition B.2.3. For X a hyper-Kähler manifold of dimension 2n and arbitrary ω ∈
H2(X,R) it holds ∫

X
td1/2 exp(ω) = (1 + λ(ω))n

∫
X

td1/2.
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B.2.2. Verbitsky component

Denote by (H̃(X,Q), b̃) the rational quadratic vector space defined by

Qα⊕H2(X,Q)⊕Qβ.

The quadratic form b̃ on H̃(X,Q) restricts to the BBF form b on H2(X,Q) and the two classes
α and β are orthogonal to H2(X,Q) and satisfy b̃(α, β) = −1 as well as b̃(α, α) = b̃(β, β) = 0.
Although it is not integral, we call H̃(X,Q) the extended Mukai lattice of X.

Furthermore, we define on H̃(X,Q) a grading by declaring α to be of degree zero, H2(X,Q)
remains in degree two and β is of degree four. Finally, the extended Mukai lattice is equipped
with a weight-two Hodge structure

(H̃(X,Q)⊗Q C)2,0 := H2,0(X)
(H̃(X,Q)⊗Q C)0,2 := H0,2(X)
(H̃(X,Q)⊗Q C)1,1 := H1,1(X)⊕ Cα⊕ Cβ.

Let SH(X,Q) be the Verbitsky component, i.e. the graded subalgebra of H∗(X,Q) generated
by H2(X,Q). Verbitsky [34,207] proved the existence of a graded morphism ψ : SH(X,Q)→
Symn(H̃(X,Q)) sitting in a short exact sequence

0→ SH(X,Q) ψ−→ Symn(H̃(X,Q)) ∆−→ Symn−2(H̃(X,Q))→ 0.

Here, the map ∆ is the Laplacian operator defined on pure tensors via

v1 · · · vn 7→
∑
i<j

b̃(vi, vj)v1 · · · v̂i · · · v̂j · · · vn.

The map ψ is uniquely determined (up to scaling) by the condition that it is a morphism of
g(X)-modules, where g(X) denotes the Looijenga–Lunts–Verbitsky (LLV) algebra, see [130]
or [81]. Recall that g(X) is the Lie algebra generated by all sl2-triples (eω, h, fω) with eω the
Lefschetz operator for ω ∈ H2(X,Q) satisfying the Hard Lefschetz property, h the grading
operator and fω the dual Lefschetz operator.

The g(X)-structure of H̃(X,Q) is defined by the conditions eω(α) = ω, eω(µ) = b(ω, µ)β
and eω(β) = 0 for all classes ω, µ ∈ H2(X,Q). The n-th symmetric power Symn(H̃(X,Q))
then inherits the structure of a g(X)-module by letting g(X) act by derivations. The inclusion
realizes SH(X,Q) as an irreducible Lefschetz module [207]. We fix once and for all a choice
of ψ by setting ψ(1) = αn/n!.
Taelman [201, Sec. 3] showed that the map ψ is an isometry with respect to the Mukai

pairing
bSH(ω1 · · ·ωm, µ1 · · ·µ2n−m) = (−1)m

∫
X
ω1 · · ·ωmµ1 · · ·µ2n−m

on SH(X,Q) and the pairing

b[n](x1 · · ·xn, y1 · · · yn) = (−1)ncX
∑
σ∈Sn

n∏
i=1

b̃(xi, yσ(i))
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on Symn(H̃(X,Q)). Note that our definition of b[n] differs from Taelman’s definition by the
Fujiki constant. Ours has the advantage that ψ is always an isometry. The orthogonal
projection onto the subspace SH(X,Q) will be denoted by

T : Symn(H̃(X,Q))→ SH(X,Q).

Remark B.2.4. Observe that ψ is surjective in cohomological degrees 0, 2, 4n − 2 and 4n.
Equivalently, the projection T is injective restricted to these degrees.

Bogomolov and Verbitsky [34, 207] showed that the Verbitsky component can also be de-
scribed via

SH(X,C) ∼= Sym•H2(X,C)/〈µn+1 | b(µ, µ) = 0〉. (B.2.1)

B.2.3. Derived equivalences
The following is [201, Thm. A].

Theorem B.2.5 (Taelman). Let X and Y be projective hyper-Kähler manifolds together with
an equivalence Φ: Db(X) ∼= Db(Y ). Then Φ induces a canonical Lie algebra isomorphism

Φg : g(X) ∼= g(Y )

which is equivariant for the induced isometry ΦH : H∗(X,Q) ∼= H∗(Y,Q).

We reproduce some consequences of this result from [201, Sec. 4] needed below. The above
theorem implies that given an auto-equivalence Φ ∈ Aut(Db(X)), the induced action on
cohomology

ΦH : H∗(X,Q) ∼= H∗(X,Q)
restricts to a Hodge isometry

ΦSH : SH(X,Q) ∼= SH(X,Q)

which is equivariant with respect to Φg. This yields a representation

ρSH : Aut(Db(X))→ O(SH(X,Q)).

Moreover, the above represention ρSH factors over a representation

ρH̃ : Aut(Db(X))→ O(H̃(X,Q))

under the assumption that n is odd, or having n even and b2(X) odd. Note that all known
examples of hyper-Kähler manifolds satisfy one of the two conditions.
More precisely, for odd n every Hodge isometry ΦSH of SH(X,Q) is induced by an isometry

of Symn(H̃(X,Q)) which comes from a unique Hodge isometry ΦH̃ of H̃(X,Q) [201, Prop.
4.1], i.e. the following diagram

SH(X,Q) SH(X,Q)

Symn(H̃(X,Q)) Symn(H̃(X,Q))

ΦSH

ψ ψ

SymnΦH̃
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commutes. For even n and odd b2(X), there is an extra sign det(ΦH̃) = ε(ΦH̃) ∈ {±1} such
that

SH(X,Q) SH(X,Q)

Symn(H̃(X,Q)) Symn(H̃(X,Q))

ε(ΦH̃)ΦSH

ψ ψ

SymnΦH̃

(B.2.2)

commutes. We refer to [201, Sec. 4] for more details and proofs.
The process of associating to ΦSH the isometry ΦH̃ is non-trivial. Given an equivalence

we cannot say directly how it will act on H̃(X,Q), e.g. there is no obvious cycle associated
to the kernel of the equivalence. We circumvent this obstacle by using the extended Mukai
vector.

B.3. Square root of the Todd class

Denote by td1/2 the projection of the square root of the Todd class to the Verbitsky component
SH(X,Q). The main goal of this section is to express this class in terms of the extended
Mukai lattice. Throughout this section X will be a fixed hyper-Kähler manifold of dimension
2n of arbitrary deformation type.
Let us define a number

rX := C(c2(X))2nn!(2n− 1)
(2n)!24cX

(B.3.1)

where C(c2(X)) is the constant from Proposition B.2.1 associated to the second Chern class
c2(X). The number relates the BBF form and the characteristic value via

b(ω, ω) = 2rXλ(ω) (B.3.2)

for all ω ∈ H2(X,Q).

Lemma B.3.1. The following equality holds∫
X

td1/2 = cX
rnX
n! .

Proof. Let ω ∈ H2(X,R) be a Kähler class and t a formal variable. Proposition B.2.3 gives∫
X

td1/2 exp(tω) = (1 + λ(tω))n
∫
X

td1/2. (B.3.3)

Both sides are even polynomials in t of degree 2n. Comparing the coefficient in front of t2n
in (B.3.3) and using

td1/2 = 1 + terms of higher degree

we obtain
cX

(2n)!
2nn!

b(ω, ω)n
(2n)! = λ(ω)n

∫
X

td1/2.

Solving for
∫
X td1/2 and employing (B.3.2) yields the assertion.
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For the known examples of hyper-Kähler manifolds of dimension 2n we have

rX =
{
n+3

4 K3[n] or OG10-type,
n+1

4 Kumn or OG6-type.

Lemma B.3.1 for K3[n]- and Kumn-type hyper-Kähler manifolds was also obtained by Sawon
[194].
Denote for 0 ≤ i ≤ n by q2i ∈ SH4i(X,Q) the class defined by the property∫

X
q2iω

2n−2i = cX
(2n− 2i)!

2n−i(n− i)!b(ω, ω)n−i

for all ω ∈ H2(X,Q).

Lemma B.3.2. Let X be a hyper-Kähler manifold. Then the subspace of SH2i(X,Q) being
of type (i, i) on all small deformations is one-dimensional if i is even and zero otherwise.
These subspaces are generated by q2i.

Proof. This follows from Proposition B.2.1.

Using Lemma B.3.2 let us write

td1/2 = q0 + a2q2 + · · ·+ a2n−2q2n−2 + rnX
n! q2n ∈ SH(X,Q)

for a2i ∈ Q. We will now determine the remaining coefficients.

Lemma B.3.3. For 1 ≤ i ≤ n we have

a2i = riX
i! .

Proof. We use again (B.3.3) and this time compare the coefficients in front of t2n−2i. This
reads

a2icX
b(ω, ω)n−i

2n−i(n− i)! =
(

n

n− i

)
riXcX
2n−in!b(ω, ω)n−i.

Recall the isometric embedding ψ : SH(X,Q) ↪→ Symn(H̃(X,Q)) and the orthogonal pro-
jection T : Symn(H̃(X,Q))→ SH(X,Q). The class td1/2 has the following expression.

Proposition B.3.4. Let X be a hyper-Kähler manifold of dimension 2n. Then

td1/2 = T

((α+ rXβ)n
n!

)
∈ SH(X,Q).

If one ignores the orthogonal projection T for the moment, then the proposition says that
(the projection of) the square root of the Todd class can be expressed as the n-th power of
a linear polynomial. Note that the orthogonal projection T really is necessary since αn−iβi
is not in the kernel of the Laplacian operator ∆ for 1 ≤ i ≤ n− 1.
The key step to prove Proposition B.3.4 is to relate αn−iβi with the classes q2i. By

definition we have
T (αn) = n!1.

In general the connection is given by the following.
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Lemma B.3.5. For 1 ≤ i ≤ n we have

T (αn−iβi) = (n− i)!q2i.

Proof. By definition of the Mukai pairing on SH(X,Q) and the defining property of q2i the
assertion of the lemma is equivalent to

bSH(ω2n−2i, T (αn−iβi)) =
∫
X
ω2n−2iT (αn−iβi) = cX

(2n− 2i)!
2n−i b(ω, ω)n−i

for all ω ∈ H2(X,Q). The embedding ψ : SH(X,Q) ↪→ Symn(H̃(X,Q)) is an isometry and T
is its orthogonal split. The above is therefore equivalent to

b[n](ψ(ω2n−2i), αn−iβi) = cX
(2n− 2i)!

2n−i b(ω, ω)n−i

for all ω ∈ H2(X,Q). Since ψ is a morphism of g(X)-modules, we have

ψ(ω2n−2i) = ψ(e2n−2i
ω (1)) = e2n−2i

ω (ψ(1)) ∈ Symn(H̃(X,Q))

which is a Q-linear combination of tensors of the form αrωsβt. Only the tensor αiβn−i pairs
non-trivially with αn−iβi. We claim that

e2n−2i
ω (ψ(1)) = (2n− 2i)!

2n−i(n− i)!i!b(ω, ω)n−iαiβn−i + . . . .

Indeed, let us choose N � n and consider the terms αrωsβt for r + s+ t = N . We define
the order of such a term as r, i.e. the exponent of α. For general j ≥ 0 the element ejω(ψ(1))
decomposes

ejω(ψ(1)) = aj1

(
αN−jωj

(n− j)!

)
+ aj2

(
αN−j+1ωj−2β

(n− j + 21)!

)
+ · · ·+ aj

b j2 c

αN−b j2 cωj−2b j2 cβb
j
2 c

(N − b j2c)!


according to the order of the terms that appear. A straight forward proof by induction shows
that

ajk+1 =
(b j2c+ k)!

(b j2c − k)!k!2k

which are the coefficients of the Besse polynomials. This then yields the claim.
Observing that

b[n](αiβn−i, αn−iβi) = cX(n− i)!i!

finishes the proof.

The above lemma helps to understand the two extra classes α and β in the extended Mukai
lattice H̃(X,Q). Rather than trying to identify the classes α and β in H̃(X,Q) with a single
element in SH(X,Q) as in the case of K3 surfaces one should think simultaneously of all the
powers αn−iβi as (multiples of) the powers of the BBF-form qi2 ∈ SH4i(X,Q).

Proof of Proposition B.3.4. This follows immediately from Lemma B.3.1, Lemma B.3.3 and
Lemma B.3.5.
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Remark B.3.6. Proposition B.3.4 raises the analogous question for td. The formulas in the
known examples are as follows. If X is of K3[n] or OG10-type of dimension 2n, then

td = T

((α+ 2β) · · · (α+ (n+ 1)β)
n!

)
∈ SH(X,Q)

and if X is of Kumn or OG6-type of dimension 2n, then

td = T

((α+ β) · · · (α+ nβ)
n!

)
∈ SH(X,Q).

These expressions are obtained by an analogous approach as above using this time the known
forms of the Riemann–Roch polynomials [68, 162, 190]. There is a formula for td similar in
fashion as the one given in Proposition B.2.3 using Chebyshev polynomials, see [162, Thm.
5.2].

B.4. Extended Mukai vector
The previous section enables us to define a Mukai vector for interesting objects with image
in the extended Mukai lattice. We will distinguish two cases using the self-intersection of the
vector under consideration.

B.4.1. Square −2rX
Let X be a hyper-Kähler manifold of dimension 2n. A line bundle L ∈ Pic(X) naturally
induces an auto-equivalence

ML := _⊗ L ∈ Aut(Db(X)).

Its action MH
L on singular cohomology is given by multiplication with the Chern character of

L, i.e.
MH
L = _ · exp(λ) ∈ End(H∗(X,Q))

where λ = c1(L) ∈ H2(X,Z). Furthermore, denote by Bλ ∈ O(H̃(X,Q)) the isometry defined
by

Bλ(rα+ µ+ sβ) = rα+ µ+ rλ+
(
s+ b(λ, µ) + r

b(λ, λ)
2

)
β.

As checked in [201, Prop. 3.2] we have MH̃
L = Bλ, i.e. if we restrict MH

L to SH(X,Q) ⊂
H∗(X,Q), then it is given by the natural action of Bλ on Symn(H̃(X,Q)) via the diagram

SH(X,Q) SH(X,Q)

Symn(H̃(X,Q)) Symn(H̃(X,Q))

ε(MH̃
L)MSH

L

ψ ψ

SymnBλ

(B.4.1)

(where we set ε(ΦH̃) = 1 for all equivalences if n is odd). By definition

αn = ψ(n!1) = ψ(n!ch(OX)) ∈ Symn(H̃(X,Q))
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which yields

ψ(ch(L)) = Bλ(α)n
n! =

(
α+ λ+ b(λ,λ)

2 β
)n

n! ∈ Symn(H̃(X,Q)).

We will upgrade this to the Mukai vector. An immediate consequence from Proposi-
tion B.3.4 is that for the trivial line bundle OX ∈ Pic(X) and its Mukai vector v(OX) one
has

v(OX) = T

((α+ rXβ)n
n!

)
∈ SH(X,Q)

where (_) denotes again the projection from the cohomology H∗(X,Q) to the Verbitsky
component SH(X,Q). Note that (B.2.2) also induces a commutative diagram

SH(X,Q) SH(X,Q)

Symn(H̃(X,Q)) Symn(H̃(X,Q))

ε(ΦH̃)ΦSH

SymnΦH̃

T T (B.4.2)

for all equivalences Φ ∈ Aut(Db(X)). Since ML(OX) = L and by the compatibility of the
cohomological Fourier–Mukai transform MH

L(v(OX)) = v(L) we infer that

v(L) = T

(
(α+ λ+ (rX + b(λ,λ)

2 )β)n

n!

)
∈ SH(X,Q) (B.4.3)

for all line bundles L ∈ Pic(X).

Definition B.4.1. For L ∈ Pic(X) we define the extended Mukai vector of L with c1(L) = λ
as

ṽ(L) = α+ λ+
(
rX + b(λ, λ)

2

)
β ∈ H̃(X,Q).

With this definition, we have

v(L) = T

(
ṽ(L)n
n!

)
∈ SH(X,Q). (B.4.4)

Formula (B.4.4) is a helpful tool to deduce properties of ΦH̃ and compute its action on
H̃(X,Q) for an auto-equivalence Φ ∈ Aut(Db(X)). Here is one example.

If n is even, then the functoriality of the representation ρH̃ : Aut(Db(X)) → O(H̃(X,Q))
depends on the determinant of the isometry of H̃(X,Q). A useful criterion to calculate ε(ΦH̃)
for an auto-equivalence Φ ∈ Aut(Db(X)) is the following.

Lemma B.4.2. Let X be a projective hyper-Kähler manifold with n even and b2(X) odd.
Assume that a line bundle L is sent under an auto-equivalence Φ to an object F with positive
rank. Then ε(ΦH̃) = det(ΦH̃) = 1.

Proof. The class ṽ(L)n/n! ∈ Symn(H̃(X,Q)) maps under T to v(L). We know that ΦH sends
v(L) to v(F). Therefore v(L) is sent to v(F) under ΦSH. Since n is even, the coefficient in
front of αn in the expression (ΦH̃(ṽ(L)))n must be positive. The commutativity of (B.4.2)
forces ε(ΦH̃) = 1.
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Instead of twists with line bundles, we can also use other auto-equivalences to define an
extended Mukai vector for a larger set of objects.

Definition B.4.3. Let X be a projective hyper-Kähler manifold of dimension 2n with n odd
and E ∈ Db(X) an object such that there exists an auto-equivalence Φ ∈ Aut(Db(X)) with
Φ(OX) ∼= E . We define the extended Mukai vector of E as

ṽ(E) := ΦH̃(ṽ(OX)) ∈ H̃(X,Q).

This definition does not depend on the chosen equivalence. For such an object E we have
the equality

v(E) = T

(
ṽ(E)n
n!

)
. (B.4.5)

We will say that such objects are in the OX-orbit. With this terminology, objects in the
OX -orbit are cohomologically linearisable as in (B.4.5), which means that they admit an
extended Mukai vector in the extended Mukai lattice, see also Definition B.4.16.

Remark B.4.4. Ideally one would like to give an analogous definition in the case that
n is even and b2(X) is odd. However, one must be cautious since Definition B.4.3 is not
well-defined in this case and (B.4.5) may not serve as a defining property (vn = (−v)n for
all elements v ∈ H̃(X,Q)). The problem is the extra sign discussed in Section B.2.3. In
other words, associating to the natural isometry ΦSH an isometry ΦH̃ inducing ΦSH as done
in Section B.2.3 is not natural and leads to considering sign conventions when defining an
extended Mukai vector. We will give an adhoc definition.

Let X be a projective hyper-Kähler manifold of dimension 2n with n even and b2(X) odd
and choose once and for all a very general Kähler class ω ∈ H2(X,R). Consider an object
E ∈ Db(X) such that there is an equivalence Φ ∈ Aut(Db(X)) satisfying

Φ(OX) ∼= E .

If the rank of E is strictly positive, then Lemma B.4.2 forces ε(ΦH̃) = 1 and for negative rank
we obtain ε(ΦH̃) = −1. This motivates the following.

Definition B.4.5. We say that E is positive if ε(ΦH̃) = 1 and negative if ε(ΦH̃) = −1.

This definition is well-defined, i.e. it is independent of the chosen equivalence Φ. Keeping
the above notation, let us denote

v = ΦH̃(ṽ(OX)) = rα+ λ+ sβ.

We define the signum sgn(v) ∈ {±1} of the vector v. For r 6= 0 we set sgn(v) := sgn(r)
as the signum of the number r. If r = 0, then the self-pairing of ṽ(OX) forces λ 6= 0 and
c = b(ω, λ) 6= 0 as the Kähler class ω was assumed to be very general. We define in this case
sgn(v) := sgn(c).

Definition B.4.6. The extended Mukai vector of E is

ṽ(E) := ε(ΦH̃)sgn(v)v.
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We also say that such objects are in the OX-orbit. The extended Mukai vector ṽ(E) satisfies
a version of (B.4.5) namely

v(E) = ε(ΦH̃)T
(
ṽ(E)n
n!

)
. (B.4.6)

That is, objects in the OX -orbit are cohomologically linearisable, but for negative objects we
have to add an extra sign.

Remark B.4.7. The definition agrees with Definition B.4.1 for line bundles. The motivation
for this definition comes from the notion of a positive vector in the theory of moduli spaces
of stable sheaves for K3 surfaces as in [217, Def. 0.1]. Moreover, we expect that the choice of
a Kähler class is not important, i.e. the sign of b(ω, λ) is independent of the chosen Kähler
class. In all examples that we have calculated for K3[n]-type hyper-Kähler manifolds X the
class λ is always a multiple of the class Poincaré dual to a line in a projective space Pn ⊂ X,
therefore bounding the Kähler cone. For all our applications in subsequent chapters the sign
choices will not matter.

Definition B.4.6 for the case of even n is up to sign compatible with derived equivalences,
i.e. for E and F two objects in the OX -orbit and a derived equivalence Φ ∈ Aut(Db(X)) with
Φ(E) ∼= F we have

ΦH̃(ṽ(E)) = ±ṽ(F) ∈ H̃(X,Q) (B.4.7)

respectively
(ΦH̃(ṽ(E)))n = (ṽ(F))n ∈ Symn(H̃(X,Q)). (B.4.8)

We list some easy properties.

Lemma B.4.8. Let E be an object in the OX-orbit.

(i) The object E is a Pn-object.

(ii) Its Mukai vector satisfies 〈v(E), v(E)〉 = n+ 1.

(iii) Its extended Mukai vector satisfies b̃(ṽ(E), ṽ(E)) = −2rX .

(iv) The rank of E is of the form ±an for a ∈ Z.

(v) The rank and determinant of E determine v(E) completely.

Proof. For the notion of Pn-object and their properties see [110]. The pairing in (ii) is the
generalized Mukai product introduced in [58].
The first four points follow easily from the definitions and the fact that for an equivalence

Φ ∈ Aut(Db(X)) the induced isomorphism ΦH̃ of H̃(X,Q) is an isometry. Let r = an be
the rank of E and λ = c1(E) be its determinant. Equation (B.4.5) implies that we only have
to determine the extended Mukai vector of E . Using that the orthogonal projection T is
injective in degrees 0 and 2 we deduce that up to sign

ṽ(E) = aα+ λ

an−1 + cβ ∈ H̃(X,Q)

for c ∈ Q uniquely determined by the property b̃(ṽ(E), ṽ(E)) = −2rX .
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The lemma implies that the Chern classes of such objects are severely restricted.

Remark B.4.9. For K3 surfaces S the definition of the extended Mukai vector agrees with
the usual Mukai vector for line bundles if we identify H̃(S,Z) := H2(S,Z)⊕U with H∗(S,Z)
via α 7→ 1 and β 7→ p. Note that the Mukai vectors of topological line bundles generate
H∗(S,Z). For certain K3 surfaces (e.g. very general projective K3 surfaces of low degree
[15, Rem. 6.10]) we know that all spherical objects are in the orbit of the structure sheaf OS
under the action of the group of auto-equivalences.

B.4.2. Square 0
There is another class of objects for which one can naturally define an extended Mukai vector.
This does not involve Proposition B.3.4.
Lemma B.3.5 yields that the element β ∈ H̃(X,Q) has the property

βn = ψ(cXp) ∈ SH(X,Q).

Since we have for a point x ∈ X

v(k(x)) = ch(k(x)) = p ∈ H4n(X,Q)

we obtain the relation
ψ(v(k(x))) = βn

cX
∈ Symn(H̃(X,Q))

respectively
v(k(x)) = T

(
βn

cX

)
∈ SH(X,Q). (B.4.9)

Definition B.4.10. For a point x ∈ X and the associated skyscraper sheaf k(x) we define
its extended Mukai vector as

ṽ(k(x)) := β.

As in the case of objects in the OX -orbit this definition can be extended using derived
equivalences.

Definition B.4.11. Let X be a projective hyper-Kähler manifold of dimension 2n with n
odd, E ∈ Db(X) an object and Φ ∈ Aut(Db(X)) such that Φ(k(x)) ∼= E for some x ∈ X. We
define the extended Mukai vector of E as

ṽ(E) := ΦH̃(β) ∈ H̃(X,Q).

We will say that such objects are in the k(x)-orbit. The analogous relation to (B.4.9) for
objects in the k(x)-orbit reads

v(E) = T

(
ṽ(E)n
cX

)
∈ SH(X,Q). (B.4.10)

Again in the case n even and b2(X) odd one has to be more careful. Let E ∈ Db(X) be such
that there exists Φ ∈ Aut(Db(X)) with Φ(k(x)) ∼= E for some x ∈ X. Let us again write

v = ΦH̃(β) = rα+ λ+ sβ.
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We define again the signum sgn(v) of the vector v. As before for r 6= 0 we set sgn(v) := sgn(r).
In the case r = 0 and λ 6= 0 the Hodge Index Theorem asserts that c = b(λ, ω) 6= 0
for all Kähler classes ω. We assign sgn(v) := sgn(c). Finally for r = λ = 0 we define
sgn(v) := sgn(s).

Definition B.4.12. The extended Mukai vector of E is defined as

ṽ(E) := ε(ΦH̃)sgn(v)v.

We also say that such objects are in the k(x)-orbit. As above we have

v(E) = ε(ΦH̃)T
(
ṽ(E)n
cX

)
∈ SH(X,Q) (B.4.11)

and the formation of the extended Mukai vector is as in (B.4.7) and (B.4.8) functorial for
derived equivalences.

Lemma B.4.13. Let E be an object in the k(x)-orbit.

(i) Its Mukai vector v(E) lies in SH(X,Q) and satisfies bSH(v(E), v(E)) = 0.

(ii) Its extended Mukai vector satisfies b̃(ṽ(E), ṽ(E)) = 0.

(iii) The rank of E is of the form ±ann!
cX

for a ∈ Q.

(iv) The rank and determinant of E determine v(E) completely.

(v) If the rank of E is zero, then all Chern classes ci(E) are isotropic, that is σ|ci(E) =
σci(E) = 0 ∈ H2i+2(X,C) with σ ∈ H0(X,Ω2

X) a symplectic form.

Proof. The first three points follow easily from the definition and the fourth point is analogous
to Lemma B.4.8.
Suppose that the rank of E is zero and write

ṽ(E) = λ+ sβ ∈ H̃(X,Q)

with λ ∈ H1,1(X,Q) and s ∈ Q. We will assume that λ 6= 0, the other case being trivial.
Since

b̃(ṽ(E), ṽ(E)) = 0

we infer that b(λ, λ) = 0. Equation (B.4.10) gives

v(E) = T

((λ+ sβ)n
cX

)
∈ SH(X,Q) (B.4.12)

which is supported in cohomological degrees ranging from 2n to 4n. Up to a constant, the
degree 2n component of v(E) equals the n-th Chern character chn(E) which again up to a
constant equals the Chern class cn(E). From (B.4.12) we obtain

cn(E) = dT (λn) ∈ SH2n(X,Q)
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for some d ∈ Q. Since ψ is a morphism of g(X)-modules we get

ψ(λn) = ψ(enλ(1)) = enλ

(
αn

n!

)
= λn ∈ Symn(H̃(X,Q))

where the last equality used that b(λ, λ) = 0. Therefore T (λn) = λn ∈ SH(X,Q) and so in
particular

cn(E) = dλn.

The assertion of the lemma is therefore that σcn(E) = dσλn = 0. We have

b(λ, λ) = b(σ, σ) = b(λ, σ) = 0 (B.4.13)

which shows that
(λ+ σ)n+1 ∈ SH2n+2(X,C) (B.4.14)

must vanish by using (B.2.1). As each summand in (B.4.14) lies in a different piece of the
Hodge decomposition, we deduce that λnσ = 0.
For k > n, induction on k shows that σck(E) = 0 if and only if σv(E)2k = 0 where v(E)2k

denotes the cohomological degree 2k part of the Mukai vector. Equation (B.4.12) gives that
the degree 2k part of v(E) equals

v(E)2k = sk−n

cX

(
n

k − n

)
T (λ2n−kβk−n) ∈ SH2k(X,Q).

To determine the image of λ2n−kβk−n under the orthogonal projection note that T is as well
a morphism of g(X)-modules. Similarly to above, one shows

λ2n−kβk−n = e2n−k
λ

(
α2n−kβk−n

(2n− k)!

)
∈ Symn(H̃(X,Q))

using again that b(λ, λ) = 0. Lemma B.3.5 implies that we have

T (α2n−kβk−n) = (2n− k)!q2k−2n

which yields

v(E)2k = sk−n

cX

(
n

k − n

)
λ2n−kq2k−2n ∈ SH(X,Q).

Ignoring constants we have to show that λ2n−kq2k−2nσ ∈ SH(X,C) vanishes which is equiv-
alent to

λ2n−kq2k−2nσµ
2n−k−1 = 0 ∈ SH4n(X,C)

for all µ ∈ H2(X,Q). This follows similar to above using again (B.4.13) and the polarized
version of the Fujiki relations, see Proposition B.2.1.

Note that the number from Lemma B.4.13 (iii)

ann!
cX

must in particular be an integer. For all known examples of hyper-Kähler manifolds cX ∈ Z
and therefore we must already have a ∈ Z using Legendre’s or de Polignac’s formula.
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Remark B.4.14. We want to comment on the denominators appearing in (B.4.5) and
(B.4.10) and their relation.
The Chern character in degree 4n is of the form

ch2n(E) = 1
(2n)! (c1(E)2n + . . . ).

For a line bundle L ∈ Pic(X) we have by using the Fujiki relation

c1(L)2n

(2n)! = cX
(2n)!b(λ, λ)n

(2n)!n!2n = cX
n!
b(λ, λ)n

2n ∈ SH4n(X,Q).

For the known examples of hyper-Kähler manifolds the BBF form is even and the Fujiki
constant is integral. In these cases we have

c1(L)2n

(2n)! ∈
cX
n! Z (B.4.15)

by identifying the class p with 1 ∈ Z. The factor 1
cX

for objects in the k(x)-orbit paired
with cX

n! from (B.4.15) gives the factor 1
n! for objects in the OX -orbit. Note that all our

computations take place in the Verbitsky component SH(X,Q) which is over Q generated by
Chern characters of line bundles.

B.4.3. Structural result
The discussion of the two previous subsections enables us to prove the following general
structural result for derived equivalences between hyper-Kähler manifolds.

Theorem B.4.15. Let X and Y be deformation-equivalent projective hyper-Kähler manifolds
and Φ: Db(X) ∼= Db(Y ) an equivalence with Fourier–Mukai kernel E. The rank r of E is of
the form ann!

cX
for a ∈ Q. If r = 0, then E induces a covering of X and Y with Lagrangian

cycles, or there exists a Hodge isometry H2(X,Z) ∼= H2(Y,Z).

Proof. Let us first assume that either n is odd or that n is even and b2(X) odd.
We distinguish three cases depending on the image vector

v = aα+ λ+ sβ ∈ H̃(X,Q)

of β under ΦH̃. For a 6= 0 the assertion on the rank follows from Lemma B.4.13.
In the case that a = 0, but λ 6= 0, we consider the the n-th Chern class cn(E) ∈ An(X×Y )

in the Chow ring with rational coefficients. The compatibility of derived equivalences with
the induced maps between Chow and cohomology groups shows that for all x ∈ X and all
y ∈ Y the cycles cn(E)|x×Y ∈ An(Y ) respectively cn(E)|X×y ∈ An(X) are non-zero. Indeed
the cohomological degree 2n component of v(Ex) is equal to cn(Ex) considered in cohomology
which by assumption equals λn ∈ SH(Y,Q) and similarly for X. This shows that viewing
the cycle cn(E) as a family of cycles on Y parametrized by points x ∈ X these cycles cover
Y in the sense that for each y ∈ Y the family of cycles cn(E) restricts non-trivially to the
subvariety X×y. Since being isotropic is a cohomological property, the assertion follows now
from Lemma B.4.13 (v).
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Lastly, we assume that v = sβ for s ∈ Q. This assumption implies that the element
p ∈ H4n(X,Q) gets sent to ±snp ∈ H4n(Y,Q) under the induced cohomological Fourier–
Mukai transform ΦH. We can view the image of topological K-theory under the Mukai
vector map v(Ktop(X)) as a lattice inside the full cohomology H∗(X,Q) equipped with the
generalized Mukai pairing. We refer to [5] for a recollection of topological K-theory and its
relationship to derived categories and Fourier–Mukai transforms. The isomorphism ΦH then
induces an isometry between the lattices v(Ktop(X)) and v(Ktop(Y )). Since p ∈ v(Ktop(X))
is a primitive element, the same must be true for ΦH(p) = ±snp. Therefore s ∈ {±1}.
We may assume without loss of generality that s = 1. Since ΦH̃ is an isometry, we infer

that
ΦH̃(α) = α+ λ+ tβ ∈ H̃(Y,Q).

We claim that already λ ∈ H2(Y,Z). To see this, consider ṽ(OX) = α+ rXβ and its image

ΦH̃(ṽ(OX)) = α+ λ+ (t+ rX)β ∈ H̃(Y,Q).
As above the element v(OX) belongs to v(Ktop(X)) and therefore ΦH(v(OX)) must be con-
tained in v(Ktop(Y )). Using that the projection of v(Ktop(Y )) to its degree two component
lands inside H2(Y,Z) and the compatibility (B.4.2) we infer that also λ belongs to H2(Y,Z).
Employing that ΦH̃ is a Hodge isometry we furthermore conclude that λ ∈ H1,1(Y,Z).

Hence, there exists a line bundle L ∈ Pic(Y ) with first Chern class −λ. Changing Φ by
postcomposing it with ML we obtain a derived equivalence Db(X) ∼= Db(Y ) still denoted by
Φ which satisfies ΦH̃(α) = α and ΦH̃(β) = β. Thus, ΦH̃ restricts to a Hodge isometry

H2(X,Q) ∼= H2(Y,Q).
It remains to show that this isometry sends H2(X,Z) to H2(Y,Z). We employ the same

strategy as above. For λ ∈ H2(X,Z) the vector

ṽ(L) = α+ λ+
(
rX + b(λ, λ)

2

)
β

can be viewed as the extended Mukai vector of the (topological) line bundle L with first
Chern class λ. The Mukai vector v(L) lies inside v(Ktop(X)) and ṽ(L) is mapped under ΦH̃

to
α+ ΦH̃(λ) +

(
rX + b(λ, λ)

2

)
β.

As before, the compatibility with topological K-theory forces ΦH̃(λ) to lie inside H2(Y,Z).
This finishes the proof in the case n odd or n even and b2(X) odd.
If we now assume that n as well as b2(X) are odd, then we cannot apply the results from

[201] as explained in Section B.2.3 directly. That is, given a derived equivalence Φ: Db(X) ∼=
Db(Y ) the induced cohomological Fourier–Mukai transform ΦH : H∗(X,Q) ∼= H∗(Y,Q) still
restricts to a Hodge isometry

ΦSH : SH(X,Q) ∼= SH(Y,Q),
but there may not exist a Hodge isometry ϕ ∈ O(H̃(X,Q)) such that (B.2.2) commutes.
However, inspecting [201, Prop. 4.1] and its proof we see that there exists a Hodge isometry
ϕ ∈ O(H̃(X,Q)) unique up to sign such that via (B.2.2) either ΦSH or −ΦSH agrees with ϕn.
Reinspecting the above proof we see that this sign discrepancy does not affect the arguments
and the proof remains valid also in the case n even and b2(X) even.
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B.4.4. Concluding remarks and further examples

For general objects E ∈ Db(X) we make the following definition.

Definition B.4.16. An object E ∈ Db(X) admits an extended Mukai vector ṽ(E) ∈ H̃(X,Q)
if there exists c ∈ Q such that

v(E) = cT (ṽ(E)n) ∈ SH(X,Q).

With this definition, the vector ṽ(E) is not uniquely defined. One rather considers a
one-dimensional subspace V ⊂ H̃(X,Q) and demands that v(E) lies in the one-dimensional
subspace T (V n). In the above two series of examples we considered a certain natural choice
of c ∈ Q which then enabled us to define the extended Mukai vector as a uniquely determined
vector in H̃(X,Q).

Here are two observations how one can generate new examples of objects admitting an
extended Mukai vector from known ones:

• If Φ: Db(X) ∼= Db(Y ) is an equivalence, then E ∈ Db(X) admits an extended Mukai
vector if and only if Φ(E) ∈ Db(Y ) admits an extended Mukai vector.

• Let π : X → B be a smooth and projective morphism with hyper-Kähler manifolds as
fibres and E on X a B-flat sheaf or a B-perfect complex. For two points b, b′ ∈ B we
have that E|Xb admits an extended Mukai vector if and only if E|Xb′ admits an extended
Mukai vector.

One can prove similar results as in Lemmas B.4.8 and B.4.13 for objects E ∈ Db(X) satisfying
Definition B.4.16 for a fixed c ∈ Q. We just mention that if E has zero rank, then the
projections of all Chern classes of E to SH(X,Q) are isotropic. To see this one writes ṽ(E) =
λ + sβ for λ ∈ H2(X,Q) and s ∈ Q and uses that eσ(ṽ(E)) = eσ̄(ṽ(E)) = 0 for σ and σ̄ the
(anti-)holomorphic two-form.
An important class of cohomologically linearisable objects are line bundles and skyscraper

sheaves. We want to give further examples.

Example B.4.17. Let S be a projective K3 surface and P1 ∼= C ⊂ S a smooth rational curve
with class l = [C] ∈ H2(S,Z). This yields a Lagrangian projective space Pn ∼= C [n] ⊂ S[n]

inside the Hilbert scheme of n points. The proof of Proposition B.7.2 will imply that the
structure sheaf OPn is in the OS[n]-orbit. If we write H2(S[n],Z) = H2(S,Z)⊕Zδ where 2δ is
the class of the exceptional divisor, one has

ṽ(OPn) = l + δ

2 + n+ 1
2 β ∈ H̃(S[n],Q).

In particular, the projection [Pn] of the class [Pn] to SH2n(S[n],Q) equals

[Pn] = T

(
(l + δ

2)n

n!

)
∈ SH2n(S[n],Q).

This yields a partial answer to a question posed by Bakker [13, Q. 29]. For more on this
example, we refer to Proposition B.7.2 and Remark B.7.3.
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Example B.4.18. For a very general projective K3 surface S of degree 2g− 2 we will study
in Section B.10.2 the case of the moduli space of stable sheaves M = MS

H(0, 1, d + 1 − g)
which admits naturally a Lagrangian fibration π : M → Pg = |H|. The general fibre A is a
smooth abelian variety and a degree zero line bundle L supported on A is an example of an
object in the k(x)-orbit with

ṽ(L) = f ∈ H̃(M,Q)
where f ∈ H2(M,Z) is the image of the ample generator of Pic(Pg) under pullback via π.
For d = 0 the section Pg ⊂M again yields an object OPg ∈ Db(M) in the OM -orbit.

Example B.4.19. To the universal ideal sheaf I on S×S[2] one associates the Fourier–Mukai
kernel [2, 140]

E1 := Ext1π13(π∗12(I), π∗23(I)) ∈ Coh(S[2] × S[2])

where πij denote the projections from S[2] × S × S[2]. Consider a point p ∈ S[2] parametriz-
ing two distinct points x, y ∈ S and denote by Zx respectively Zy the subvarieties of S[2]

parametrizing subschemes whose support contains x respectively y. The derived equivalence
FME1 sends k(p) to the sheaf E1

p×S[2] which sits in a short exact sequence

0→ O(−δ)→ E1
p×S[2] → IZx∪Zy → 0

and is an example of an object in the k(x)-orbit with extended Mukai vector

ṽ(E1
p×S[2]) = α− δ

2 −
1
4β.

For more on this example, see Section B.10.1.

Remark B.4.20. Ideally, one would like to define a vector w̃ for all elements E ∈ Db(X) in
a coherent way. By this we mean for example that its formation should factor through the
K-group K(X) and is compatible with derived equivalences, i.e. the following diagram

Db(X) Db(Y )

H̃(X,Q) H̃(Y,Q)

Φ

w̃ w̃

ΦH̃

should commute. However, this is too much to ask for.
Indeed, consider for example the case X = S[2] of the Hilbert scheme of two points on a

projective K3 surface S. Using the Koszul resolution, one can check that the structure sheaf
of a complete intersection of divisors of codimension larger than two must have trivial image
under w̃. In particular, all sheaves supported on a zero-dimensional subscheme must have
trivial image under w̃. Therefore all previously defined objects in the k(x)-orbit must map
to zero under w̃. Hence, the vector w̃ vanishes for E1

p×S[2]⊗L for all line bundles L ∈ Pic(X).
It therefore also has to vanish on all divisors.
The same argument as above also shows that any vector

K0
top(S[2]) w̃−→ H̃(S[2],Q)

compatible with derived equivalences as above must vanish on all topological line bundles.
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B.5. Integral lattices for K3[n]-type hyper-Kähler manifolds
We want to apply the results and definitions from the previous sections. From now on, X
will denote a hyper-Kähler manifold of K3[n]-type with n > 1.

B.5.1. Lattices
In this section, we want to discuss the (potential) integral lattices inside the extended Mukai
lattice that appear and set up notation which will be used throughout the rest of the paper.
We will fix for X once and for all an isometry

H2(X,Z) ∼= H2(S[n],Z) ∼= H2(S,Z)⊕ Zδ, (B.5.1)

where S is a K3 surface, S[n] is the n-th Hilbert scheme with 2δ the class of the exceptional
divisor of the Hilbert–Chow morphism and the second isometry is given by (B.6.1) (for
X = S[n] we choose the first isometry to be the identity).
Let us first quickly review the case of a K3 surface S. There, the full integral cohomology

H∗(S,Z) = H̃(S,Z) with the Mukai pairing is governing the derived category [155,175]. That
is, an equivalence of K3 surfaces yields a Hodge isometry between the full integral cohomolo-
gies and two K3 surfaces are derived equivalent if and only if their integral cohomologies
are Hodge isometric. Moreover, the lattice spanned by the Mukai vectors of topological line
bundles equals the full integral cohomology.
In higher dimensions, the situation changes. There are several relevant lattices.

Definition B.5.1. We define the integral extended Mukai lattice as the lattice

H̃(X,Z) := Zα⊕H2(X,Z)⊕ Zβ ⊂ H̃(X,Q).

Several facts suggest that in higher dimensions this is the wrong lattice to look at. Firstly,
Definition B.4.1 and Examples B.4.17 and B.4.19 suggest that one should allow certain de-
nominators. Secondly, we will see in Proposition B.7.2 that derived equivalences do not send
integral elements to integral elements.

Definition B.5.2. For δ ∈ H2(X,Z) as above we define the K3[n] lattice as

Λ := B−δ/2(H̃(X,Z)) ⊂ H̃(X,Q).

This is independent of our fixed choice of δ, i.e. for any class γ ∈ H2(X,Z) of square 2−2n
and divisibility 2n− 2 one has

Λ = B−γ/2(H̃(X,Z)) ⊂ H̃(X,Q).

In dimension 4 this lattice was also considered by Taelman [201, Thm. E].
We introduce the notation

α̃ := B−δ/2(α) = α− δ

2 + 1− n
4 β, δ̃ := B−δ/2(δ) = δ + (n− 1)β.

With it one can define equivalently the K3[n] lattice as the lattice

Λ = Zα̃⊕H2(S,Z)⊕ Zδ̃ ⊕ Zβ = ΛS ⊕ Zδ̃ (B.5.2)
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where
ΛS = Zα̃⊕H2(S,Z)⊕ Zβ.

Note that α̃ and β still generate an integral hyperbolic plane and that the decomposition
ΛS⊕Zδ̃ is orthogonal. The integral extended Mukai lattice and the K3[n] lattice are isometric
as abstract lattices and neither is included in the other when seen inside H̃(X,Q).

Definition B.5.3. The geometric lattice Λg is defined as

Λg := ΛS ⊕ Z
δ̃

2 ⊂ H̃(X,Q).

Be aware that the quadratic form of Λg inherited from H̃(X,Q) may not be integral.
We want to motivate this definition. Recall that rX = n+3

4 and let us look at the lattice
generated by all extended Mukai vectors of topological line bundles, i.e.

ΛLB :=
〈{

ṽ(λ) := α+ λ+
(
n+ 3

4 + b(λ, λ)
2

)
β

∣∣∣∣ λ ∈ H2(X,Z)
}〉

.

Note that one can write the generators equivalently as

ṽ(λ) = α̃+ δ̃

2 + λ+
(

1 + b(λ, λ)
2

)
β.

If one ignores the term δ̃
2 for a moment, then the expression resembles the Mukai vector on a

K3 surface (where td1/2 = 1 + p). One can check that as an abstract lattice ΛLB is isometric
to H̃(X,Z).

In Section B.4.4 we saw that there are more objects than line bundles and skyscraper
sheaves of points for which we can define an extended Mukai vector. We have

ṽ(OPn) = l + δ̃

2 + β, ṽ(E1
p×S[n]) = α̃.

Lemma B.5.4. The geometric lattice Λg equals the lattice spanned by ΛLB as well as all
extended Mukai vectors from Section B.4.4.

Proof. This follows from a straightforward calculation.

Remark B.5.5. We expect that for all elements E ∈ Db(X) for which a (meaningful) ex-
tended Mukai vector ṽ(E) can be defined, one has ṽ(E) ∈ Λg. We will prove in Corollary B.8.7
that Λg is invariant under all parallel transport isometries as well as derived equivalences.

B.5.2. Hodge structures
All the above defined lattices carry a weight-two Hodge structure from their inclusion into
H̃(X,Q).

Definition B.5.6. For a lattice Γ ⊂ H̃(X,Q) we define its algebraic part as

Γalg := Γ ∩ H̃1,1(X,C) ⊂ H̃(X,Q)

and its transcendental part as

Γtr := Γ⊥alg ∩ Γ ⊂ H̃(X,Q).
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With this definition the transcendental part of the integral extended Mukai lattice equals
the transcendental lattice of the hyper-Kähler manifold X, i.e.

H2(X,Z)tr := H2(X,Z) ∩NS(X)⊥ = H̃(X,Z)tr ⊂ H2(X,Z).

Lemma B.5.7. The transcendental part Λtr of the K3[n] lattice Λ equals the transcendental
lattice of X.

Proof. Both inclusions follow from (B.5.2).

Remark B.5.8. The isometry B−δ/2 yields an isometry between the integral extended Mukai
lattice H̃(X,Z) and the K3[n] lattice Λ, which in general does not respect the Hodge struc-
tures. However, if we endow H̃(X,Z) with the twisted Hodge structure associated to the
B-field δ/2 ∈ H2(X,Q) as defined in [109, Def. 2.3], then B−δ/2 induces a Hodge isometry
between H̃(X,Z) endowed with the twisted Hodge structure and Λ equipped with the Hodge
structure coming from the embedding Λ ⊂ H̃(X,Q).
To see this consider a symplectic form σ ∈ H2(X,C). The twisted Hodge structure is

determined by the element σ + 1
2b(σ, δ)β and this is sent under B−δ/2 to the symplectic

form σ. The untwisted and the twisted Hodge structure on H̃(X,Z) have the same tran-
scendental lattice, whereas in the case of K3 surfaces the transcendental lattice of a twisted
Hodge structure associated to a non-trivial Brauer class is always a proper sublattice of the
transcendental lattice of the untwisted Hodge structure [109, Sec. 2].

B.6. Derived Monodromy group
Let X be a hyper-Kähler manifold of K3[n]-type and let X1 and X2 be deformations of X.
By this we mean smooth and proper morphisms πi : Xi → Bi for i ∈ {1, 2} with Bi connected
such that there is one point 0i ∈ Bi with π−1

i (0i) ∼= X and another point bi ∈ Bi such that
π−1
i (bi) ∼= Xi. Let γi : SH(X,Q) ∼= SH(Xi,Q) be parallel transport isometries obtained from

choosing a path between 0 and bi in Bi. Moreover, consider a Fourier–Mukai equivalence
f : Db(X1) ∼= Db(X2) and denote by F = fSH the induced isometry.

Definition B.6.1 (Taelman). The derived monodromy group DMon(X) is the subgroup of
O(SH(X,Q)) generated by all isometries of the form

SH(X,Q) γ1−→ SH(X1,Q) F−→ SH(X2,Q)
γ−1

2−−→ SH(X,Q).

We know from Section B.2.3 that the isometry F is induced from an isometry f H̃. Sim-
ilarly, the isometries γi are by [201, Prop. 4.1] induced by unique Hodge isometries γH̃

i ∈
O(H̃(X,Q)). This implies that the derived monodromy group has an inclusion DMon(X) ⊂
O(H̃(X,Q)). Throughout this paper we will consider the elements of DMon(X) always as
isometries of the extended Mukai lattice.
Let now S[n] be the Hilbert scheme of n points on a projective K3 surface S. Bridgeland,

King, and Reid [42] proved the existence of a derived equivalence

Db(S[n]) ∼= Db
Sn(Sn)
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where the latter is the Sn-equivariant derived category of the product variety Sn. For an
introduction and notation regarding equivariant categories we refer to [29]. For our purposes,
we will not take the equivalence from [42], but the one considered by Krug in [124]

Ψ: Db
Sn(Sn) ∼= Db(S[n]),

since it has nice properties for the computations we want to perform. Consider a line bundle
L on S. There is a natural line bundle Ln on S[n] associated to L which satisfies Ψ((L�n, 1)) =
Ln [124, Thm. 1.1]. This yields the well-known isomorphisms

Pic(S[n]) ∼= Pic(S)⊕ Zδ, H2(S[n],Z) ∼= H2(S,Z)⊕ Zδ (B.6.1)

where 2δ = [E] is the class of the exceptional divisor of the Hilbert–Chow morphism. Since
H1(Sn,C∗) = Z/2Z, the simple object L�n ∈ Db(Sn) possesses another linearisation given
by tensoring with the sign-representation. It holds

Ψ(L�n,−1) = Ln ⊗OS[n](−δ), (B.6.2)

where OS[n](−δ) ∈ Pic(S[n]) is the line bundle with first Chern class −δ [124, Rem. 3.10].
Ploog [185], later generalized by Ploog–Sosna [186], observed that there is an injective

group homomorphism

φ[n] : Aut(Db(S))× Z/2Z ↪→ Aut(Db
Sn(Sn)).

More precisely, Orlov’s Theorem [175] asserts that every auto-equivalence of Db(S) is given
by a Fourier–Mukai functor with kernel E ∈ Db(S × S). The kernel E�n can be canoni-
cally equipped with a Sn-linearisation, where Sn acts diagonally on Sn × Sn. The factor
H1(Sn,C∗) = Z/2Z corresponds to the two possible linearisations of the kernel. We will often
write φ[n](Φ) instead of φ[n]((Φ, 1)). Using the equivalence Ψ we also denote the resulting
homomorphism

Aut(Db(S))× Z/2Z ↪→ Aut(Db(S[n]))
obtained via conjugation by φ[n].

Lemma B.6.2. Let Φ ∈ Aut(Db(S)) such that ΦH ∈ O(H̃(S,Z)) is the identity. Then
φ[n](Φ) acts trivially on the extended Mukai lattice H̃(S[n],Q).

Proof. Let Φ = FME and let us consider FME�n ∈ Aut(Db(Sn)). Using [97, Exc. 5.13] and
the Künneth formula, one sees that FME�n acts trivial on singular cohomology H∗(Sn,Q).
The line bundle Ln ∈ Pic(S[n]) corresponds to the equivariant object (L�n, 1) in Db

Sn(Sn).
By [186, Prop. 2.3] the equivalence φ[n](Φ) sends (L�n,±1) to the objects (Φ(L)�n,±1).
Using the compatibility of Fourier–Mukai transforms with (equivariant) topologicalK-theory
[201, Sec. 6], one sees that φ[n](Φ) induces an isomorphism of equivariant topologicalK-theory
K0

top,Sn(Sn) which fixes the classes [(L�n,±1)].
Moreover, the equivalence Ψ induces an isomorphism K0

top,Sn(Sn) ∼= K0
top(S[n]), see [42, Ch.

10] or [201, Thm. 8.2]. This implies that φ[n](Φ) leaves the classes v(Ln) and v(Ln⊗OX(−δ))
in H∗(X,Q) invariant. Using the compatibility (B.4.2) we see that the classes ṽ(Ln) and
ṽ(Ln⊗O(−δ)) are fixed by the action of φ[n](Φ) on the extended Mukai lattice. To conclude
the proof, simply observe that these classes generate H̃(X,Q) as a Q-vector space, since ΛLB
from Section B.5.1 is a full rank lattice.
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Let π : S → B be a smooth and proper family of K3 surfaces and consider a path
γ : [0, 1]→ B. This yields a parallel transport isometry H∗(Sγ−1(0),Z) ∼= H∗(Sγ−1(1),Z) of the
fibres which we will also denote by γ. The family π induces naturally a corresponding family
π[n] : S [n] → B of relative Hilbert schemes over B. The path γ in B then gives for this defor-
mation a corresponding parallel transport isometry γ[n] : H∗(S [n]

γ−1(0),Q) ∼= H∗(S [n]
γ−1(1),Q).

Consider an element g ∈ DMon(S) of the form g = γ′ ◦ F ◦ γ. Here γ respectively γ′ are
as above parallel transport isometries obtained from deforming S to S′ respectively S′′ to S
and F = fH for a Fourier–Mukai equivalence f : Db(S′) ∼= Db(S′′). We associate to g the
element g[n] := γ′[n] ◦ φ[n](f)H̃ ◦ γ[n].

Proposition B.6.3. The association g 7→ g[n] yields a well-defined group homomorphism

dn : DMon(S)→ DMon(S[n]).

Proof. This follows as in the proof of Lemma B.6.2 together with the assertion of
Lemma B.6.2.

B.7. Auto-equivalences of Hilbert schemes
Let S be a projective K3 surface and S[n] be the n-th punctual Hilbert scheme. In this section
we will calculate the action of certain auto-equivalences on H̃(S[n],Q).

B.7.1. Sign equivalence
Denote by F ∈ Aut(Db

Sn(Sn)) the auto-equivalence given by tensoring with the sign-represen-
tation. It is the image of the generator of Z/2Z under φ[n]. We will also denote by F the
auto-equivalence of Db(S[n]) induced via the equivalence Ψ. For a vector v ∈ H̃1,1(S[n],Q)
we denote by

sv ∈ O(H̃(S[n],Q)), x 7→ x− 2 b̃(x, v)
b̃(v, v)

v

the Hodge isometry given by reflection along v.

Proposition B.7.1. The action of F on H̃(S[n],Q) is given by (−1)n+1sδ̃.

Proof. For all topological line bundles L ∈ K0
top(S) the involution F exchanges the equivari-

ant objects (L�n, 1) and (L�n,−1) viewed as elements in equivariant topological K-theory
K0

top,Sn(Sn). Thus, by (B.6.2) the induced isometry F H̃ on the extended Mukai lattice
exchanges ṽ(Ln) and ṽ(Ln ⊗OS[n](−δ)).

If n is odd, then we conclude from the above that for all λ ∈ H2(S,Z) ⊂ H2(S[n],Z) the
action on the extended Mukai lattice F H̃ satisfies

α̃+ δ̃

2 + λ+
(

1 + b̃(λ, λ)
2

)
β 7→ α̃− δ̃

2 + λ+
(

1 + b̃(λ, λ)
2

)
β.

This property completely characterizes F H̃.
If n is even, Lemma B.4.2 implies that the determinant of F H̃ must be one, because F

preserves the rank of objects. The result then follows as for n odd.
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B.7.2. Spherical twist
An object E ∈ Db(S) is called spherical if its Ext-algebra satisfies Ext∗(E , E) ∼= H∗(S2,C).
The auto-equivalence STE given by the Fourier–Mukai functor FMG with Fourier–Mukai
kernel defined via the distinguished triangle

E∨ � E → O∆ → G

in Db(S × S) is called the spherical twist [196]. Its action on the Mukai lattice H̃(S,Z) is
given by the reflection sv(E).

An important example is the spherical twist STOS along the structure sheaf OS . It induces
on cohomology the reflection along the vector 1+p. The morphism φ[n] yields an equivalence
P ∈ Aut(Db(S[n])).

Proposition B.7.2. The equivalence P acts on H̃(S[n],Q) via the isometry (−1)n+1sv, where
v = α̃+ β.

Proof. We want to understand the images of line bundles under P . The spherical twist STOS
sends the structure sheaf OS to OS [−1]. Applying [186, Prop. 2.3] we see that P (OSn , 1) =
(OSn ,−1)[−n] and P (OSn ,−1) = (OSn , 1)[−n]3. Lemma B.4.2 shows that ε(P H̃) = 1 if n is
even.
We first consider the case when n is odd. Assume there exists a smooth rational curve

C ⊂ S and let L = OS(C) be the corresponding line bundle with first Chern class l := c1(L).
Then by Riemann–Roch L has a unique section up to scaling and the higher cohomologies
of L vanish. The auto-equivalence STOS sends the line bundle L to L|C . We infer that the
equivariant object (L�n,−1) is being sent to ((L|C)�n,−1) under the auto-equivalence P .
We want to transfer this identity to the Hilbert scheme via Ψ. From (B.6.2) we know that
Ψ((L�n),−1) ∼= Ln ⊗OS[n](−δ).
It is left to compute Ψ((L|C)�n,−1)4. We claim Ψ((L|C)�n,−1) ∼= ι∗ωZ for ι : Z = C [n] ∼=

Pn ⊂ S[n]. We will sketch the arguments, see also [168, Sec. 3.2] for a thorough computation
of this identity.
The sheaf OC admits the resolution L∨ → OX . Taking the n-th box product we obtain[

Wn(L∨)→Wn−1(L∨)→ · · · →W 1(L∨)→W 0(L∨)
]
∼= (O�nC , 1)

where we used the notation as in [124, Def. 3.4]. Tensoring with the sign-representation and
envoking [168, Lem. 3.3][

W 0(L)→W 1(L)→ · · · →Wn−1(L)→Wn(L)
]
∼= ((L|C)�n,−1). (B.7.1)

Applying Ψ to (B.7.1) and using [124, Thm. 1.1] we find[
OS[n] → L[n] → · · · →

n−1∧
L[n] → det(L[n])

]
∼= Ψ((L|C)�n,−1). (B.7.2)

3The fact that the linearisations get exchanged follows from the Koszul sign convention for graded tensor
products.

4Thanks to the anonymous referee and Georg Oberdieck for spotting a mistake in an earlier version and
Georg Oberdieck for discussions on computing images under Ψ.
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In particular, the derived dual of Ψ(O�nX ,−1) is via (B.7.2) identified with the Koszul reso-
lution of a regular section of the bundle L[n] shifted by [n]. As the zero locus of this section
is exactly Z = C [n] the claim follows from Grothendieck–Verdier duality.

Taking extended Mukai vectors and using Lemma B.4.8 we see that P H̃ sends the vector
ṽ(Ln ⊗ OSn(−δ)) = α̃ − δ̃

2 + l to w = λ + cβ with λ ∈ H2(S[n],Q), because ι∗ωZ has rank
0. We already know P H̃(ṽ(OS[n](−δ))) = −ṽ(OS[n]) (we assume n odd) and since P H̃ is an
isometry we conclude that

c = b̃(w,−ṽ(OS[n])) = b̃(ṽ(Ln ⊗OS[n](−δ)), ṽ(OS[n](−δ))) = −1− n
2 .

Similarly we can use that P H̃(ṽ(OS[n])) = −ṽ(OS[n](−δ)) to infer

w = λ′ − δ

2 + −1− n
2 β = λ′ − δ̃

2 − β

with λ′ ∈ H2(S,Q) ⊂ H2(S[n],Q).
Since Z ∼= Pn, all curve classes on Z are multiples of each other. A line in Z is known to

have homology class l + (n− 1)δ∨ ∈ H2(X,Z) [88, Ex. 4.11], where δ∨ is the dual class to δ
satisfying

∫
S[n] δδ∨ = 1. Denoting s = l − δ

2 the cohomology class s2n−1 ∈ SH4n−2(S[n],Q) is
Poincaré dual to a multiple of the homology class l+ (n− 1)δ∨. Therefore, the degree 4n− 2
part in SH(S[n],Q) of v(ι∗ωZ) must be a multiple of s2n−1. Since for µ ∈ H2(S[n],Q) we have

ψ(µ2n−1) = ψ(e2n−1
µ (1)) = e2n−1

µ (ψ(1)) = b(µ, µ)n−1 (2n)!
2nn! µβ

n−1 ∈ Symn(H̃(X,Q))

we conclude that λ′ = l and
α̃+ δ̃

2 + l 7→ δ̃

2 + l − β.

In general, for a class l ∈ H2(S,Z) of square −2 there exists a deformation S′ of S such
that either l or −l is the class of a smooth rational curve C ′ ⊂ S′. Using Proposition B.6.3
we can assume that the topological line bundle L on S with first Chern class l is algebraic
and that L ∼= OS(C), where C ⊂ S is a smooth rational curve. By the above, we therefore
know the image of ṽ(Ln ⊗OS[n](−δ)) under P H̃. Since the vectors ṽ(Ln ⊗OS[n](−δ)) for L
a topological line bundle on S whose first Chern class has self-intersection −2 together with
ṽ(OS[n]) and ṽ(OS[n](−δ)) generate the vector space H̃(S[n],Q), we have proven the assertion
in the case that n is odd.

If n is even, then the above shows that P H̃ must be either sv or −sv. Using that ε(P H̃) =
det(P H̃) = 1 yields the assertion.

Remark B.7.3. Here is one observation from the proof which might help to understand the
extended Mukai lattice H̃(S[n],Q).
Given a smooth rational curve C ⊂ S inside a K3 surface and the corresponding line bundle
L = OS(C) ∈ Pic(S) we have associated to it a line bundle Ln ∈ Pic(S[n]). Its Mukai vector
v(Ln) has self-pairing n + 1 under the generalized Mukai pairing. We also associate to Ln
the class ṽ(Ln) ∈ H̃(S[n],Q). This class has self-pairing −(n+ 3)/2.
The auto-equivalence P induced from the spherical twist STOS via Ploog’s map φ[n] sends

the line bundle Ln ⊗ OS[n](−δ) to ι∗ωZ . This is compatible with the pairings since the
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self-intersection of the projective space Pn ∼= C [n] ⊂ S[n] is (−1)n(n + 1). The image of
ṽ(Ln ⊗OS[n](−δ)) under P H̃ is

l − δ

2 + −1− n
2 β = l − δ̃

2 − β.

Its self-intersection is equal to −(n + 3)/2 which is exactly the value of b(`, `), where ` is
the class of a line in the projective space C [n] and we view a curve class as an element in
H2(S[n],Q) via Poincaré duality.

In the above prove we have calculated Ψ(O�nC ,−1). One can also consider the image of
(O�nC , 1) under Ψ, i.e. with the canonical linearization. One can show that this is OYC ,
where YC ⊂ S[n] is the reducible subscheme which is the preimage of C(n) ⊂ S(n) under the
Hilbert–Chow morphism.

B.7.3. From K3 surfaces to Hilbert schemes
We can now describe the homomorphism dn from Proposition B.6.3. Consider the natural
inclusion H̃(S,Q) ↪→ H̃(S,Q)⊕Qδ = H̃(S[n],Q) of quadratic spaces. For g ∈ O(H̃(S,Q)) we
define ι(g) ∈ O(H̃(S[n],Q)) via ι(g)(λ) = g(λ) for λ ∈ H̃(S,Q) ⊂ H̃(S[n],Q) and ι(g)(δ) = δ.
This yields a group homomorphism

ι : O(H̃(S,Q))→ O(H̃(S[n],Q)).

Theorem B.7.4. The homomorphism dn : DMon(S)→ DMon(S[n]) is given by

g 7→ det(g)n+1B−δ/2 ◦ ι(g) ◦Bδ/2.

Proof. The group DMon(S) is equal to the group of orientation-preserving isometries
O+(H̃(S,Z)) of the full integral cohomology [93, 105]. This group is generated by the re-
flection along the −2-vector 1 + p and the isometries Bλ for λ ∈ H2(S,Z) [82, Prop. 3.4].
Note that the assignment of the statement of the theorem does define a group homomor-
phism O(H̃(S,Q)) → O(H̃(S[n],Q)). Hence, one can check on generators of DMon(S) that
this morphism agrees with dn. This is a straightforward calculation.

B.8. Invariant Lattice
Let X be again a K3[n]-type hyper-Kähler manifold with n > 1. Any Γ ∼= Z25 with an
inclusion Γ ↪→ H̃(X,Q) inherits a quadratic form which takes values in the rational numbers.
We will denote by O(Γ) ⊂ O(H̃(X,Q)) the group of all isometries γ satisfying γ(Γ) = Γ.

The main goal of this section is to prove the following result.

Theorem B.8.1. Let X be a K3[n]-type hyper-Kähler manifold. There are inclusions

Ô+(Λ) ⊂ DMon(X) ⊂ O(Λ).

In particular, the K3[n] lattice Λ is fixed by all derived equivalences.

The group Ô+(Λ) is the group of all isometries with spinor norm 1 and which act via ±id
on the discriminant group. For n = 2 this result was also obtained by Taelman [201, Thm.
9.8].
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B.8.1. Realizing orthogonal transformations as derived equivalences
The first inclusion follows easily from the results of the last sections.

Proposition B.8.2. There is an inclusion

Ô+(Λ) ⊂ DMon(X).

Proof. The shift [1] acts on the extended Mukai lattice by −id and therefore acts non-trivially
on the discriminant lattice and has determinant −1. Proposition B.7.2 endows us with an
isometry whose action on the discriminant lattice is trivial if and only if its determinant
is non-trivial and vice versa. Hence, it suffices to show that S̃O+(Λ), i.e. the group of
all isometries with spinor norm and determinant 1 acting trivially on the discriminant, is
contained in DMon(X). For this we will use the notion of Eichler transvections, for details
and notations see [82, Sec. 3].
Let us orthogonally decompose

Λ = U ⊕ Λ′

where the hyperbolic plane U is spanned by α̃ and −β. The group S̃O+(Λ) equals the group
EU (Λ′) of unimodular transvections [82, Prop. 3.4]. For λ ∈ Λ′ the Eichler transvection
t(−β, λ) equals Bλ (note that for δ̃ ∈ Λ′ the transvection t(−β, δ̃) also equals Bδ). Using
tensoring with line bundles we see that all these isometries are contained in DMon(X).
Furthermore, we infer from Proposition B.7.2 that the reflection sv along the vector v = α̃+β
lies in DMon(X). This involution exchanges α̃ and −β and acts trivially on Λ′. Using [82, Eq.
(6)] we deduce that the transvections t(α̃, λ) for λ ∈ Λ′ are contained in DMon(X). By
[82, Prop. 3.4] these isometries generate S̃O+(Λ) yielding the assertion.

B.8.2. Finding derived invariant lattices
The proof of the other inclusion in Theorem B.8.1 will occupy the remainder of this section.

Lemma B.8.3. There exists a lattice Γ ↪→ H̃(X,Q) of rank 25 such that DMon(X) ⊂ O(Γ).

Proof. The group DMon(X) has a natural and faithful action on SH(X,Q) via the embedding
DMon(X) ⊂ O(H̃(X,Q)). Moreover, DMon(X) preserves the integral lattice v(Ktop(X))) ∩
SH(X,Q) ⊂ SH(X,Q) in this representation. Therefore it is contained in an arithmetic
subgroup of O(H̃(X,Q)).

We want to classify lattices Γ with the property DMon(X) ⊂ O(Γ). We know by Proposi-
tion B.8.2 that for any such lattice Γ there is an inclusion Ô+(Λ) ⊂ O(Γ). This yields strong
restrictions.

Lemma B.8.4. Let Γ̃ be a lattice preserved by DMon(X) as in Lemma B.8.3. Up to replacing
Γ̃ by aΓ̃ ⊂ H̃(X,Q) for a ∈ Q the lattice Γ̃ is equal (as subsets) to kΛS ⊕ Zδ̃ ⊂ H̃(X,Q) for
some k ∈ Z satisfying k|(2n− 2).

Proof. Let us replace Γ̃ with aΓ̃ for a ∈ Q>0 such that Γ̃ ⊂ Λ and a is the smallest positive
rational number with that property.
Consider v ∈ Γ̃ and write v = x+ bδ̃ with x ∈ ΛS and b ∈ Z. If x 6= 0, then its divisibility

agrees with the largest integer t ∈ Z>0 such that x ∈ tΛS , since ΛS is unimodular. Consider
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now all v ∈ Γ̃ such that in the above decomposition x 6= 0 and let k be the minimum of all
integers t as above. Then kΛS ⊂ Γ̃.
Indeed, take an element v ∈ Γ̃ such that v = kx + cδ̃ for some c ∈ Z and x ∈ ΛS is

primitive. One immediately sees that O+(ΛS) can be embedded into Ô+(Λ) as the group
of all isometries fixing δ̃. Using [82, Prop. 3.3] we see that for every primitive y ∈ ΛS with
b̃(y, y) = b̃(x, x) the element ky + cδ̃ is contained in Γ̃. This yields kΛS ⊂ Γ̃.
Consider (kΛS)⊥ ⊂ Γ̃ and take the positive integer s ∈ Z such that (kΛS)⊥ = sZδ̃ ⊂ Γ̃.

We claim Γ̃ = kΛS⊕sZδ̃. For this take an arbitrary v ∈ Γ̃ and write v = dx+eδ̃ for d, e ∈ Z.
The definition of the integer k implies that k divides d and by the above we therefore have
that dx ∈ kΛS ⊂ Γ̃. Hence v − dx = eδ̃ is an element of Γ̃ orthogonal to kΛS . By definition
of the integer s we have that s divides e and so v ∈ kΛS ⊕ sZδ̃.
The minimality assumption of a yields that the integers k and s do not have a common

divisor. On the other hand, we know that kα̃ ∈ Γ̃ and Bδ(kα̃) = kα̃+ kδ̃ + k(1− n)β. This
implies that kδ̃ ∈ Γ̃ and therefore s = 1. Finally, one sees that Bδ(δ̃) = δ̃ + (2− 2n)β which
finishes the proof.

Remark B.8.5. Ideally, one would like to conclude in the above situation directly that k = 1
and therefore (up to scaling) Γ̃ must equal Λ. However, this is in general not true.
For example, let us consider the case of K3[10]-type hyper-Kähler manifolds. The lemma

below implies that for the lattice Γ̃ = 3ΛS⊕Zδ̃ ⊂ H̃(X,Q) there is an inclusion O(Λ) ⊂ O(Γ̃).
Moreover, the isometry Bδ/3 lies in O(Γ̃) but not in O(Λ). Therefore additional (geometric)
input is necessary for the proof of Theorem B.8.1.

We make some further reductions.

Lemma B.8.6. Let l ∈ Z>0 be the largest integer such that l2|(n − 1). For every lattice Γ̃
as in Lemma B.8.4 there is an inclusion

O(Γ̃) ⊂ O(Γ)

with Γ := lΛS ⊕ Zδ̃ ⊂ H̃(X,Q).

Proof. Write Γ̃ = kΛS ⊕Zδ̃ with k|(2n− 2). Let t be the greatest common divisor of l and k
and denote by Γt the lattice tΛS⊕Zδ̃ ⊂ H̃(X,Q). The proof consists of showing the following
two inclusions

O(Γ̃) ⊂ O(Γt) ⊂ O(Γ).

Let us prove the first inclusion. Take an isometry γ ∈ O(Γ̃) and write k = k′t. Since
γ(δ̃) ∈ Γ̃ ⊂ Γt as subsets of the extended Mukai lattice it suffices to show that for every
λ ∈ ΛS we have γ(tλ) ∈ Γt. By definition we have γ(kλ) ∈ Γ̃. Therefore we can write
γ(kλ) = akµ + bδ̃ for some integers a and b and µ ∈ ΛS . Dividing this equation by k′ we
obtain

γ(tλ) = atµ+ b

k′
δ̃.

As the self-pairing of tλ is an even integer, the same must hold true for γ(tλ). In particular,
we find that

2b2 1− n
k′2

∈ 2Z.
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The defining property of l together with the fact that l and k′ are coprime implies that k′
must divide b. This gives the first inclusion.
For the second inclusion consider an isometry γ ∈ O(Γt) and observe that for every λ ∈ ΛS

we have tγ(λ) ∈ Γt = tΛS ⊕ Zδ̃. This yields

lγ(λ) = (l/t)tγ(λ) ∈ lΛS ⊕ Zδ̃ = Γ.

It is left to show that γ(δ̃) ∈ Γ. This follows immediately from the fact that δ̃ as an element
in the lattice Γt has divisibility 2n− 2.

We therefore have an upper bound for the lattice from Lemma B.8.3, i.e. for Γ = lΛS ⊕Zδ̃
as above we have DMon(X) ⊂ O(Γ). In particular, if n − 1 is square-free, then we have
already obtained DMon(X) ⊂ O(Λ).

B.8.3. Conclusion of proof
Proof of Theorem B.8.1. From Lemma B.8.6 we know that for the lattice Γ = lΛS ⊕Zδ̃ with
l maximal such that l2|(n− 1) there is an inclusion DMon(X) ⊂ O(Γ).

Suppose there exists an isometry γ ∈ DMon(X) which does not lie in O(Λ). Consider the
composition

ϕ : ΛS
γ−→ H̃(X,Q) p−→ Qδ̃

where p is the orthogonal projection and denote K = Ker(ϕ). Let v be a generator of
K⊥ ⊂ ΛS and let us write k

l δ̃ for its image under γ. By assumption k
l is not an integer. Note

that there are two hyperbolic planes U1 ⊕ U2 contained in K.
Indeed, since O+(ΛS) acts transitively on primitive elements with the same square [82,

Prop. 3.3], one can send v into a hyperbolic plane U ⊂ U4 ⊕ E8(−1)2 ∼= ΛS . Since K = v⊥

we know there are two (in fact at least three) hyperbolic planes contained in K.
Changing v to w by adding an element of U1 we can assume that b̃(w,w) = −2 and the

image of w generates the image of ϕ. Moreover, we know that there is a primitive isotropic
element z ∈ U2 which is orthogonal to w and which under γ is mapped to a primitive element
u ∈ ΛS .

Let us write
γ(w) = x+ k

l
δ̃

with x ∈ ΛS and
γ(δ̃) = 2n− 2

l
y + sδ̃ (B.8.1)

for y ∈ ΛS and some s ∈ Z, because δ̃ ∈ Γ has divisibility 2n− 2. Recall u = γ(z) and note
that there exists a ∈ Z such that

x′ = x+ n− 1
l

y + au ∈ ΛS

is primitive since u ∈ ΛS is itself primitive. We define the element w′ = w + az ∈ ΛS which
is still primitive, has self-pairing −2 and its image generates the image of ϕ.
The group O+(ΛS) can be included into Ô+(Λ) ⊂ DMon(X) by letting isometries act

trivially on δ̃. Hence, there exists an element γ′ ∈ Ô+(Λ) which maps α̃ + β to w′ ∈ ΛS
and fixes δ̃, since O+(ΛS) acts transitively on the set of primitive vectors with prescribed
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self-pairing. Furthermore, there exists an isometry γ′′ ∈ Ô+(Λ) such that the primitive
element x′ is mapped to α̃+ bβ for some b ∈ Z and δ̃ to itself. Precomposing γ with γ′ and
postcomposing with γ′′ we therefore obtain an isometry in DMon(X) which satisfies

ṽ(OX) = α̃+ δ̃

2 + β 7→ h := α̃+
(
s

2 + k

l

)
δ̃ + bβ = α+

(
s− 1

2 + k

l

)
δ + cβ

for some c ∈ Q.
The extended Mukai vector of OX satisfies

T

(
ṽ(OX)n
n!

)
= v(OX) ∈ SH(X,Q) ⊂ H∗(X,Q)

which is in particular an element in the image of the Mukai vector morphism

v = ch(_)td1/2 : K0
top(X)→ SH(X,Q) ⊂ H∗(X,Q)

projected to SH(X,Q). Since parallel transport operators as well as derived equivalences
preserve the image of topological K-theory under the Mukai vector morphism in cohomology,
the same must hold true for γ′′ ◦ γ ◦ γ′, so in particular

T

(
hn

n!

)
∈ v(K0

top(X)).

Let us write
T

(
hn

n!

)
= 1 +

(
s− 1

2 + k

l

)
δ + µ

with µ ∈ SH>2(X,Q). Applying the quadratic form to the equality (B.8.1) we see that s
must be odd and therefore (s − 1)/2 is an integer. Note that the degree 2 component of
the image of elements of topological K-theory under the Mukai vector morphism always lies
inside H2(X,Z). This yields a contradiction and finishes the proof.

Corollary B.8.7. There is an inclusion

DMon(X) ⊂ O(Λg).

Proof. Take γ ∈ DMon(X) and recall that

Λ ⊂ Λg = ΛS ⊕ Z
δ̃

2 .

The inclusion DMon(X) ⊂ O(Λ) yields that every element of ΛS is mapped under γ again
to Λ ⊂ Λg. Moreover,

γ(δ̃) = (2n− 2)x+ sδ̃

for some s ∈ Z and x ∈ ΛS , because δ̃ ∈ Λ has divisibility 2n − 2. This implies γ(δ̃/2) ∈
Λg.

B.9. Derived equivalences of K3[n]-type hyper-Kähler manifolds
We will draw some consequences from the results of the previous sections.
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B.9.1. General results

Let X be a projective hyper-Kähler manifold of K3[n]-type. We denote by ΛX the Hodge
structure obtained from the inclusion Λ ⊂ H̃(X,Q) and by Aut(ΛX) the group of all Hodge
isometries of ΛX . Recall the representation

ρH̃ : Aut(Db(X))→ O(H̃(X,Q))

from Section B.2.3.

Corollary B.9.1. The representation ρH̃ of the group of auto-equivalences Aut(Db(X)) fac-
tors via a representation

ρH̃ : Aut(Db(X))→ Aut(ΛX) ⊂ O(H̃(X,Q)).

One can also formulate the following more general version of the above statement.

Theorem B.9.2. Let X and Y be projective K3[n]-type hyper-Kähler manifolds and
Φ: Db(X) ∼= Db(Y ) a derived equivalence. Then ΦH̃ restricts to a Hodge isometry

ΦH̃ : ΛX ∼= ΛY .

Proof. Since X and Y are deformation-equivalent, there exists a parallel transport isometry
γ : H̃(Y,Q) ∼= H̃(X,Q). The composition ΦH̃ ◦ γ lies in DMon(Y ) and, therefore, satisfies
ΦH̃◦γ(Λ) = Λ by Theorem B.8.1. Now γ(Λ) ⊂ H̃(X,Q) is a lattice invariant under DMon(X).
Indeed, let γ2 ◦ F ◦ γ1 be one of the generators of DMon(X) as in Definition B.6.1. Then

γ−1 ◦ γ2 ◦ F ◦ γ1 ◦ γ ∈ DMon(Y ), so Theorem B.8.1 gives

γ−1 ◦ γ2 ◦ F ◦ γ1 ◦ γ(Λ) = Λ

which yields
γ2 ◦ F ◦ γ1(γ(Λ)) = γ(Λ).

Using Lemma B.8.4 and that γ is an isometry we see that the subset γ(Λ) ⊂ H̃(X,Q) is
equal to Λ ⊂ H̃(X,Q). Combining everything yields the assertion.

We can use Lemma B.5.7 to obtain the following form of Theorem B.9.2.

Corollary B.9.3. Let X,Y and Φ be as above. Then ΦH̃ restricts to a Hodge isometry

ΦH̃ : H2(X,Z)tr ∼= H2(Y,Z)tr

between the transcendental lattices of X and Y .

An immediate consequence is the following.

Theorem B.9.4. For a fixed projective K3[n]-type hyper-Kähler manifold X the number of
projective K3[n]-type manifolds Y up to isomorphism with Db(X) ∼= Db(Y ) is finite.
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Proof. The proof is similar in flavour to [43, Prop. 5.3].
Corollary B.9.3 implies that for any Y as in the assertion its transcendental lattice

H2(Y,Z)tr is Hodge isometric to H2(X,Z)tr. As abstract lattices the number of embeddings

H2(Y,Z)tr ↪→ H2(Y,Z)

is finite up to isometries of H2(Y,Z), see [123, Satz 30.2]. Therefore, the set of lattices
appearing as NS(Y ) for any such Y is as well finite.
As in [43, Prop. 5.3] we conclude that there are only finitely many Hodge structures on the

lattice H2(Y,Z) being realized by K3[n]-type hyper-Kähler manifolds Y derived equivalent to
our fixed X. Since the monodromy group Mon2(Y ) is a finite index subgroup of O(H2(Y,Z))
[136, Cor. 1.8] the Global Torelli Theorem [211] shows that up to birational equivalence there
are only finitely many hyper-Kähler manifolds realizing a given Hodge structure on H2(Y,Z).
The assertion now follows from [141, Cor. 1.5].

We also have the following structural result.

Corollary B.9.5. Let X,Y and Φ be as in Theorem B.9.2 and let E be the Fourier–Mukai
kernel of Φ. Then the rank of E is of the form n!an for a ∈ Z and the smallest non-zero
cohomological degree of the Mukai vector of the image of k(x) under Φ for all x ∈ X is 0, 2n
or 4n. In the second case Y admits a rational Lagrangian fibration.

Proof. The first statements follow from Lemma B.4.13 and Theorem B.9.2.
For the last assertion, we know that β ∈ ΛX is mapped to λ + cβ ∈ ΛY for c ∈ Z and

λ ∈ H1,1(Y,Z) satisfying b(λ, λ) = 0. Let CY ⊂ H2(Y,R) the the positive cone of Y . Then
λ⊥ ∩ CY 6= 0. By [137] there exist an isometry mapping λ into the closure of the birational
Kähler cone. The result now follows from [143, Cor. 1.1].

This yields strong restrictions on Fourier–Mukai kernels of derived equivalences between
hyper-Kähler manifolds of K3[n]-type. Note that all three cases 0, 2n and 4n occur, see
Proposition B.7.2 and Section B.10.2. Furthermore, Lemma B.4.13 implies that if E if of
rank zero, then for all x ∈ X all Chern classes of Ex are isotropic as in Lemma B.4.13.

B.9.2. Moduli spaces

We demonstrate consequences for smooth moduli spaces of stable objects, see [100, Ch. 10]
and [17] for the necessary background and notation.

Corollary B.9.6. Let MS
σ (v) be a smooth moduli space of stable objects on a projective

K3 surface S and X a projective K3[n]-type hyper-Kähler manifold such that Db(X) ∼=
Db(MS

σ (v)). Then X is itself a moduli space of stable objects on S.

Proof. For a K3 surface S and a primitive Mukai vector v with generic stability condition
σ ∈ Stab†(S) one has a Hodge isometry

H2(MS
σ (v),Z) ∼= v⊥ ⊂ H̃(S,Z),
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see [217], [18, Thm. 6.10] and [38, Thm. 1.1 (2)]. Since v is in the algebraic part of the Mukai
lattice of the K3 surface the restriction of the above Hodge isometry yields

H2(MS
σ (v),Z)tr ∼= H2(S,Z)tr.

Corollary B.9.3 together with [3, Prop. 4] and [17, Thm. 1.2(c)] imply that X is a moduli
space MS′

σ′ (v′) of stable objects on a K3 surface S′ such that

H2(S,Z)tr ∼= H2(S′,Z)tr.

From [175, Thm. 3.3] we infer that S and S′ are derived equivalent. Choosing one such
equivalence Φ: Db(S′) ∼= Db(S) yields an isomorphism

Φ: MS′
σ′ (v′) ∼= MS

Φ.σ′(ΦH(v′))

where the latter variety is a moduli space of stable objects on S.

The proof of the corollary also shows the following.

Corollary B.9.7. For two smooth moduli spaces MS
σ (v) and MS′

σ′ (v′) of stable objects on
projective K3 surfaces S and S′ with Db(MS

σ (v)) ∼= Db(MS′
σ′ (v′)) we have Db(S) ∼= Db(S′).

Furthermore, S and S′ are derived equivalent if and only if their Hilbert schemes S[n] and
S′[n] are derived equivalent.

Proof. The first part follows from the above and that derived equivalent K3 surfaces have
derived equivalent Hilbert schemes was proven in [185, Prop. 8].

B.9.3. Hilbert schemes
We specialize to elliptic K3 surfaces S with a section and their Hilbert schemes. Recall
that an elliptic K3 surface S has a section if and only if U ⊂ NS(S) [100, Rem. 11.1.4].
Theorem B.7.4 allows us to determine in this situation the image of the representation ρH̃

up to finite index.

Theorem B.9.8. For the Hilbert scheme S[n] of a K3 surface with U ⊂ NS(S) the image
Im(ρH̃) of the representation ρH̃ satisfies

Âut+(ΛS[n]) ⊂ Im(ρH̃) ⊂ Aut(ΛS[n]).

The group Âut+(ΛS[n]) is the group of all Hodge isometries with real spinor norm one
which act via ±id on the discriminant group.

Proof. Let γ ∈ Aut+(ΛS[n]) be a Hodge isometry with real spinor norm one which acts
trivially on the discriminant group. We want to show γ ∈ (Im)(ρH̃).

For line bundles L ∈ Pic(S[n]) the auto-equivalence ML given by tensoring with L as well
as the equivalence φ[n](STOS ) from Proposition B.7.2 are contained in Aut(Db(S[n])). The
assumption U ⊂ NS(S) implies that ΛS[n],alg contains two copies of the hyperbolic plane U .
The elements δ̃ and γ(δ̃) are both contained in ΛS[n],alg and have the same self-pairing as well
as divisibility. As explained in the proof of Proposition B.8.2 using [82, Sec. 3] we conclude
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that there exists a derived equivalence Φ ∈ Aut(Db(S[n])) whose induced action ΦH̃ is trivial
on the discriminant group, has real spinor norm one and sends γ(δ̃) to δ̃, i.e.

ΦH̃ ◦ γ(δ̃) = δ̃.

In particular, the isometry ΦH̃ ◦ γ restricts to a Hodge isometry of

δ̃⊥ = B−δ/2(H2(S,Z)) ⊂ ΛS[n]

with real spinor norm one. Using [105, Cor. 3] there is an auto-equivalence η ∈ Aut(Db(S))
such that

B−δ/2 ◦ ΦH̃ ◦ γ ◦Bδ/2

restricted to a Hodge isometry of H̃(S,Z) agrees with ηH̃. Theorem B.7.4 implies that ΦH̃◦γ or
−(ΦH̃◦γ) lies in Im(ρH̃). As the shift functor [1] acts as −id, we conclude that ΦH̃◦γ ∈ Im(ρH̃)
and, therefore, γ ∈ Im(ρH̃).

Hence, we have proven that all Hodge isometries with real spinor norm one which act
trivially on the discriminant lattice are contained in Im(ρH̃). The assertion now follows from
Proposition B.7.1 which yields an isometry acting as −id on the discriminant group.

Proposition B.9.9. Let X be a projective K3[n]-type hyper-Kähler manifold such that
Db(X) ∼= Db(S[n]) for a K3 surface S with U ⊂ NS(S). Then X and S[n] are birational.

Proof. The derived equivalence yields a Hodge isometry

ϕ : ΛX ∼= ΛS[n]

which by [82, Prop. 3.3] and U ⊂ NS(S) we can postcompose by a Hodge isometry to assume
ϕ(β) = β. Therefore the preimage of δ̃ ∈ ΛS[n],alg under the isometry ϕ must be of the form

γ + c(2n− 2)β ∈ ΛX,alg

for some c ∈ Z and γ ∈ H1,1(X,Z) of divisibility 2n− 2 with b(γ, γ) = 2− 2n. We can choose
the isometry (B.5.1) for X in such a way that γ maps to δ. With this choice the image of α̃
under ϕ is of the form Bµ(α̃) for µ ∈ H2(S[n],Z)alg.

Indeed, since b̃(α̃, β) = −1 we must have

b̃(ϕ(α̃), ϕ(β)) = b̃(ϕ(α̃), β) = −1

and similarly b̃(ϕ(α̃), δ̃) = 0. Using the orthogonal decomposition

ΛS[n] ∼= (Zα̃⊕ Zβ)⊕⊥ Zδ̃ ⊕⊥ H2(S,Z)

we see that ϕ(α̃) is of the form
ϕ(α̃) = α̃+ µ+ dβ

for some µ ∈ H2(S,Z) and d ∈ Z. As ϕ is a Hodge isometry, we furthermore have µ ∈
H2(S,Z)alg and b(µ, µ) = 2d which implies ϕ(α̃) = Bµ(α̃). Postcomposing ϕ with B−µ and
using (B.5.2) we obtain a Hodge isometry

H2(X,Z) ∼= H2(S[n],Z). (B.9.1)
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Corollary B.9.6 implies that X is a moduli space MS
σ (v) of stable objects on S. Moreover,

from (B.9.1) and the lemma further below we infer that MS
σ (v) is a fine moduli space, i.e.

there exists w ∈ H̃(S,Z)alg such that b(v, w) = 1. Invoking again [82, Prop. 3.3] we see that
there exists a Hodge isometry γ ∈ O+(H̃(S,Z)) such that γ(v) = (1, 0, 1− n). The assertion
follows now from [137, Cor. 9.9].

In [4, Thm. B] the authors found an example of derived equivalent hyper-Kähler manifolds
such that their second integral cohomology is not Hodge isometric. In particular, the above
proposition does not always hold. As granted by Theorem B.9.2 their K3[n] lattices are Hodge
isometric, see also Remark B.10.5.
Summarising and using [86] we have for a projective K3[n]-type hyper-Kähler manifold X

and an elliptic K3 surface S with section: X and S[n] are birational if and only if H2(X,Z)
is Hodge isometric to H2(S[n],Z) if and only if Db(X) ∼= Db(S[n]).

We finish the section with the following result used in the above proof. We will need some
lattice theory and refer once more to [100, Sec. 14] for notations and results. Recall that a
moduli space MS

σ (v) of stable sheaves or objects on a K3 surface S is fine if there exists a
universal family E on MS

σ (v)× S. This is equivalent to the existence of some w ∈ H̃(S,Z)alg
such that b̃(v, w) = 1, see [100, Sec. 10.2.2].

Lemma B.9.10. Let M and M ′ be smooth moduli spaces of stable objects on a projective
K3 surface S such that NS(M) and NS(M ′) are isometric with respect to the BBF pairing.
Then M is a fine moduli space if and only if M ′ is.

Proof. Let N ⊂ L be a saturated sublattice of an even lattice (L, (_,_)), i.e. L/N is torsion-
free. Consider the diagram

0 N⊥ N⊥ 0

0 N ⊕N⊥ L K 0

0 N N∨ A(N) 0

0 P P 0.

(B.9.2)

Here, N∨ := HomZ(N,Z) is the dual lattice, N → N∨ and L→ N∨ denote the natural maps
v 7→ (x 7→ (x, v)), A(N) is the discriminant group of N , and K and P denote the cokernel of
the corresponding morphisms.
As recalled above, for a moduli space M = MS

σ (v) we have

H2(M,Z) ∼= v⊥ ⊂ H̃(S,Z).

In particular,
NS(M)⊕ Zv ⊂ H̃(S,Z)alg

is an orthogonal decomposition of a finite index sublattice of H̃(S,Z)alg.
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Let us assume that M = MS
σ (v) is fine and apply diagram (B.9.2) for L = H̃(S,Z)alg and

N = Zv. The moduli space M being fine is equivalent to surjectivity of the map

H̃(S,Z)alg → (Zv)∨, x 7→ (kv 7→ b̃(x, kv)).

Hence, in our situation we have P ∼= 0 and, therefore, K ∼= A(N) ∼= Z/(2n− 2)Z for 2n the
dimension of M . Using [100, Eq. (0.2)] we find

disc(NS(M)) = |K|2 · disc(H̃(S,Z)alg)/disc(Zv) = (2n− 2) · disc(H̃(S,Z)alg) (B.9.3)

Let us now consider M ′ = MS
σ′(v′) and inspect diagram (B.9.2) for L = H̃(S,Z)alg and

N = Zv′ such that K = L/(N ⊕N⊥). We employ again [100, Eq. (0.2) in Ch. 14] and find

disc(NS(M ′)) = |K|2 · disc(H̃(S,Z)alg)/(2n− 2). (B.9.4)

By assumption, NS(M) and NS(M ′) are isometric, thus disc(NS(M)) = disc(NS(M ′)). Com-
bining (B.9.3) and (B.9.4) we find |K| = 2n−2. In particular, in the situation L = H̃(S,Z)alg
and N = Zv′ we find that K ∼= A(N) and, therefore, P ∼= 0 in (B.9.2). This implies that

H̃(S,Z)alg → (Zv′)∨, x 7→ (kv′ 7→ b̃(x, kv′))

is surjective which shows that M ′ is a fine moduli space as well.

We remark that the proof also applies for non-fine moduli spaces M and M ′. That is,
in general, there always exists Brauer classes α, α′ ∈ Br(S) such that α respectively α′

twisted universal families exist over M × S respectively M ′ × S. The proof then shows that
ord(α) = ord(α′) if NS(M) ∼= NS(M ′).

B.10. Further examples of derived equivalences

We complement the previous sections by integrating some derived equivalences of hyper-
Kähler manifolds into the framework of the extended Mukai lattice.

B.10.1. Dimension four

We come back to Example B.4.19. Addington [2] as well as Markman–Mehrotra [140] con-
sidered the sheaf

E1 := Ext1π13(π∗12(I), π∗23(I)) ∈ Coh(S[2] × S[2])

which is reflexive, of rank 2 and locally free away from the diagonal. Here, I is the universal
ideal sheaf on S × S[2] and πij are the projections from S[2] × S × S[2]. The Fourier–Mukai
transform FME1 with kernel E1 was shown to yield an auto-equivalence FME1 ∈ Aut(Db(S[2])).
More conceptually, the functor FMI is shown to be a spherical functor with E1[1] the corre-
sponding twist auto-equivalence.

Proposition B.10.1. The equivalence FME1 acts on the extended Mukai lattice via −sv,
where v is the vector α̃+ β.
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Proof. One way to prove the assertion is to use general results on the action of the twist
equivalence associated to a spherical functor [2, Sec. 1.4]. Instead, we will calculate directly
the images of line bundles using the definition of the twist auto-equivalence associated to a
spherical functor.
The relative Ext complex

E := Ext•π13(π∗12(I), π∗23(I)) = π13∗(π∗12(I∨)⊗ π∗23(I)) ∈ Db(S[2] × S[2])

describes (up to the shift [2]) the composition of the right adjoint of

FMI : Db(S[2])→ Db(S)

with FMI and sits in a distinguished triangle

E1[−1]→ E → O∆[−2]

in Db(S[2] × S[2]). This yields the identity

[FME1(L2)] = [L2]− [FME(L2)] = [L2]− [FMI(FMI∨(L2))]

in topological K-theory for all topological line bundles L on S.
There is a natural short exact sequence

0→ I → OS×S[2] → OZ → 0

on S × S[2], where Z ⊂ S × S[2] is the universal subscheme, which we can dualize to obtain
the distinguished triangle

ωZ [−2]→ OS×S[2] → I∨

in Db(S × S[2]). From these sequences we obtain the identities

[FMI∨(L2)] = χ(L2)[OS ]− χ(L)[L],
[FMI(OS)] = 2[OS[2] ]− [OS[2] ]− [OS[2](−δ)],

[FMI(L)] = χ(L)[OS[2] ]− [L[2]]

in topological K-theory, where L[2] = FMOZ (L) is the tautological rank 2 bundle associated
to L and the second identity is a special case of the third one using O[2]

S
∼= OS[2] ⊕OS[2](−δ).

The class of a point p is sent to a sheaf of rank 2. By an analogous argument to Lemma B.4.2
using the object k(x) one concludes ε(FMH̃

E1) = 1.
To finish the proof we need to use the above to calculate how FME1 acts on the extended

Mukai lattice H̃(S[2],Q). We have [FME1(OS[2])] = [OS[2](−δ)] as well as [FME1(OS[2](−δ))] =
[OS[2] ], since spherical functors always induce involutions on cohomology. Applying extended
Mukai vectors to this equality we find FMH̃

E1(ṽ(OS[2])) = ṽ(OS[2](−δ)) and vice versa.
For a general topological line bundle L we find

[FME1(L2)] = [L2]− χ(L2)([OS[2] ]− [OS[2](−δ)])− χ(L)2[OS[2] ] + χ(L)[L[2]].

If b(c1(L), c1(L)) = `, then χ(L) = `/2 + 2 and χ(L2) = `2/8 + 5`/2 + 3, see [68, Lem. 5.1].
Moreover, L[2] is a bundle of rank two and c1(L[2]) = c1(L) − δ. Taking extended Mukai
vectors an explicit calculation shows that FMH̃

E1 agrees with −sv for v = α̃+ β.
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Thus, the functors FME1 and φ[2](STOS ) induce the same isometry on the extended Mukai
lattice and therefore also on the whole cohomology.
For S[2] there are other auto-equivalences given as the twist of a spherical functor. One

example is Horja’s EZ-spherical twist [92]. The exceptional divisor i : P(Ω1
S) ∼= E ↪→ S[2]

fibres over the K3 surface π : E → S. One obtains the spherical functor i∗(π∗(_)) : Db(S)→
Db(S[2]) and an auto-equivalence Ti∗π∗ ∈ Aut(Db(S[2])) characterized for F ∈ Db(S[2]) by
the distinguished triangle

i∗π
∗π∗i

!(F)→ F → Ti∗π∗(F).

Proposition B.10.2. The auto-equivalence Ti∗π∗ acts on the extended Mukai lattice via the
isometry −sv for the vector v = δ̃ + β.

Proof. We employ [2, Sec. 2.4]. Lemma B.4.2 gives once more ε(T H̃
i∗π∗) = 1. For L a line

bundle on S one easily obtains
i∗π
∗(L⊗2) ∼= L2|E .

This means that the classes [L2] − [L2 ⊗ OS[2](−E)] in K0
top(S[2]) are being multiplied by

−1 under the action of Ti∗π∗ and their orthogonal complement is left invariant. We have an
equality

2(v(L2)− v(L2 ⊗OS[2](−E)) = T (ṽ(L2)2 − ṽ(L2 ⊗OS[2](−E))2)
in SH(S[2],Q). A computation finishes the proof.

Alternatively, one could have proven the proposition using [126, Thm. 4.26] and Proposi-
tion B.7.1.

Remark B.10.3. All cohomological involutions we encountered (Proposition B.7.1, Pro-
position B.7.2, Proposition B.10.1 and Proposition B.10.2) had an extra −id in the case n
even which is due to the sign convention from Section B.2.3.

B.10.2. Relative Poincaré
In [4] the authors study derived equivalences between certain moduli spaces of stable sheaves
on K3 surfaces. Let S be a very general projective K3 surface with polarization H of degree
2g − 2 and consider the moduli spaces of stable sheaves

MS
H(0, 1, d+ 1− g).

One can equivalently consider these varieties as the relative compactified Jacobians Picd :=
Picd(C/Pg) of degree d of the universal curve

C → Pg = |H|.

In [4, Prop. 3.1] following Arinkin [9] the authors construct a relative (twisted) Poincaré
sheaf Pdd′ on

Picd ×Pg Picd
′

inducing a (twisted) derived equivalence. For simplicity we will consider the untwisted case
d = d′ = 0 and denote P := P00, M := MS

H(0, 1, 1−g) together with the Lagrangian fibration

π : M → Pg.
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We have the well-known Hodge isometry

H2(M,Z) ∼= (0, 1, 1− g)⊥ ⊂ H̃(S,Z)

and the algebraic part of H2(M,Z) has a basis λ, f with intersection form(
2g − 2 2

2 0

)

where f is the first Chern class of OPg(1) pulled back to M .
Let us determine the action of P on the extended Mukai lattice. We will consider the

case g even, the case g even is similar. The skyscraper sheaf k(x) of a point x ∈ A ⊂ M
contained in a smooth fibre A of the Lagrangian fibration is by definition sent under FMP
to a degree 0 line bundle L on the abelian variety A whose Mukai vector is of the form
v(L) = fg ∈ SH(X,Q). The duality property of the Poincaré sheaf [9, Sec. 6.2] implies that
L is sent under FMP to the object k(x∨)[−g], where x∨ ∈ A parametrizes L∨. This gives

β 7→ f, f 7→ β.

Moreover, the Lagrangian fibration M → Pg admits a section Pg ↪→M given by the trivial
line bundle on each fibre. Using Remark B.7.3 and

∫
X [A][Pg] = 1 we see that the Mukai

vector of OPg ∈ Db(M) satisfies

v(OPg) = T

(
(1

2λ−
g+1

2 f + g+1
2 β)g

g!

)
∈ SH(M,Q).

The definition of P [4, Eq. (3.1)] yields that FMP sends OPg to a line bundleM ∈ Pic(M).
The duality property of P for families of curves [9, Eq. (7.8)] implies thatM is mapped under
FMP to OPg [−g] ⊗ K. Here, K is the line bundle π∗ det(R1π∗OM ) which, using [142, Thm.
1.3], has first Chern class −(g + 1)f . Let us denote

h = −λ2 + g − 1
4 f + g + 1

2 β ∈ H̃(M,Q)

and note that f and −h span a rational hyperbolic plane. Summarizing the above discussion
and using the extended Mukai vector we have the following.

Proposition B.10.4. The equivalence FMP acts on the extended Mukai lattice via

α 7→ h, h 7→ α, β 7→ f, f 7→ β.

Expressed differently, the derived equivalence FMP exchanges the two rational hyperbolic
planes given by α, β and f, h.

Remark B.10.5. In [4] it was observed that the case d = 0 and d′ = g − 1 yields an
example of derived equivalent hyper-Kähler manifolds M and M ′ such that their second
integral cohomology groups are not isometric [4, Thm. B]. The intersection form on NS(M)
has discriminant −4 whereas the lattice NS(M ′) is isometric to the hyperbolic plane. Let
us denote the generators of NS(M ′) inside H2(M ′,Z) by e′, f ′ such that b(e′, f ′) = 1 and f ′
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denotes again the fibre class. As above one can show that the derived equivalence induces
an isometry H̃(M,Q) ∼= H̃(M ′,Q) given by

β 7→ f ′, f 7→ β, α 7→ −e′ + g + 1
2 β, h 7→ α.

This is compatible with the K3[n] lattices, i.e. the above induces a Hodge isometry

ΛM ∼= ΛM ′

in accordance with Theorem B.9.2. Geometrically the variety M admits a section whereas
the variety M ′ admits a line bundle with first Chern class e′ which restricts to a principal
polarization on each fibre. The derived equivalence P0g−1 relates these different geometric
properties.
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C. Atomic objects on hyper-Kähler manifolds

ABSTRACT. We introduce and study the notion of atomic sheaves and
complexes on higher-dimensional hyper-Kähler manifolds and show that
they share many of the intriguing properties of simple sheaves on K3
surfaces. For example, we prove formality of the dg algebra of derived
endomorphisms for stable atomic bundles. We further demonstrate the
characteristics of atomic objects by studying atomic Lagrangian sub-
manifolds. In the appendix, we prove non-existence results for spherical
objects on hyper-Kähler manifolds.

C.1. Introduction

C.1.1. K3 surfaces and Mukai vectors

Since the seminal work of Mukai [155], simple bundles on a K3 surface X and, more generally,
simple complexes in its bounded derived category Db(X) := Db(Coh(X)) have been studied
intensively. One is therefore led to look for an analogue of these objects on higher-dimensional
compact hyper-Kähler manifolds.
Again motivated by the case of K3 surfaces, we introduced in [25] the notion of an (ex-

tended) Mukai vector taking values in the (extended) Mukai lattice

H̃(X,Q) := H2(X,Q)⊕Q⊕2

for certain objects E ∈ Db(X) on hyper-Kähler manifolds X. In this paper, we consider
a natural refinement of this construction which leads to the notion of atomic sheaves and
complexes. It turns out that these objects possess many of the properties of simple sheaves
and complexes on K3 surfaces.

C.1.2. Cohomology and LLV algebra

From now on, X will denote a compact irreducible hyper-Kähler manifold of dimension 2n.
The second cohomology H2(X,Q) of a hyper-Kähler manifold is endowed with the Beauville–
Bogomolov–Fujiki (BBF) form q = qX making it into a quadratic space. Moreover, the full
cohomology H∗(X,Q) is naturally a module for the Looijenga–Lunts–Verbitsky (LLV) Lie
algebra g(X) ∼= so(H̃(X,Q)) generated by all sl2-triples for all elements in H2(X,Q) having
the Hard Lefschetz property, see [81, 130, 207] for more details. This leads naturally to a
decomposition

H∗(X,Q) ∼=
⊕
λ

Vλ (C.1.1)

The author is supported by the International Max–Planck Research School on Moduli Spaces of the Max–
Planck Society.
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of the cohomology into irreducible g(X)-representations. The most prominent irreducible
representation is the Verbitsky component SH(X,Q) ⊂ H∗(X,Q) which is the subalgebra
generated by H2(X,Q).

C.1.3. Atomic objects
Recall the definition of the Mukai vector

v(E) = ch(E)td1/2 ∈ H∗(X,Q)

for a sheaf E ∈ Coh(X) or an object E ∈ Db(X), where td1/2 =
√

td is the formal root of the
Todd class td := tdX of X. The idea in [25, Sec. 4] was to compare the projection v(E)SH of
the Mukai vector v(E) of an object E ∈ Db(X) to the Verbitsky component

(_)SH : H∗(X,Q)→ SH(X,Q)

with some vector ṽ ∈ H̃(X,Q) by means of the short exact sequence

0→ SH(X,Q)→ Symn(H̃(X,Q))→ Symn−2(H̃(X,Q))→ 0.

This definition has the disadvantage that it only concerns the Verbitsky component and ig-
nores all other irreducible representations of the LLV algebra g(X), but for many applications,
such as in [25], this is sufficient.
Instead of only focusing on the projection to the Verbitsky component, one can consider

more generally the decomposition

v(E) =
∑
λ

v(E)λ (C.1.2)

obtained from the decomposition (C.1.1). In particular, one may demand a compatibility
of the Mukai vector v(E) of E not only with its projection to the Verbitsky component, but
with respect to the entire decomposition (C.1.2). This leads naturally to the central notion
of this paper.

Definition C.1.1. A sheaf E ∈ Coh(X) or an object E ∈ Db(X) is called atomic if there ex-
ists a non-zero vector ṽ ∈ H̃(X,Q) such that the annihilator Lie subalgebra Ann(v(E)) ⊂ g(X)
of the representation of g(X) on H∗(X,Q) equals the annihilator Lie subalgebra Ann(ṽ) ⊂
g(X) ∼= so(H̃(X,Q)) of the representation of g(X) on H̃(X,Q).

Let us comment on the definition. First, every non-zero sheaf on a K3 surface is atomic.
Moreover, a sheaf E being atomic is equivalent to Ann(E) having the largest possible di-
mension, see Proposition C.3.1 and Lemma C.3.7. This should be interpreted as its Mukai
vector behaving just as in the case of K3 surfaces. As demonstrated in Proposition C.3.10
the property of being atomic is invariant under derived equivalences as well as deformations.
Furthermore, Definition C.1.1 recovers [25, Def. 4.16] when restricted to the Verbitsky

component. That is, denoting by T the orthogonal projection to the isometric embedding
SH(X,Q) ↪→ Symn(H̃(X,Q)), the condition

v(E)SH ∈ Q〈T (ṽn)〉
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is by Proposition C.3.3 equivalent to the equality

Ann(v(E)SH) = Ann(ṽ) ⊂ g(X).

In particular, as discussed in Section C.3.2, these objects possess a Mukai vector in H̃(X,Q)
which for a torsion-free atomic sheaf E is of the form rk(E)α+c1(E)+sβ for some s ∈ Q. Let
us also remark that we show in Section C.3.1 that many summands in (C.1.2) must vanish
for atomic objects. See Section C.3 for a thorough discussion of the definition.

C.1.4. Obstruction maps
One of the key results exploited throughout the whole paper is the relation and interplay
for a sheaf or an object E between the (a priori topological) property of being atomic, (non-
commutative) deformations parametrized by Hochschild cohomology HH∗(X) respectively
polyvector fields HT∗(X), and its extension groups Ext∗(E , E). This relationship is estab-
lished through the use of two so called obstruction maps, which we now elaborate on. The
name obstruction maps refers to their appearance and application in deformation theory, see
also Remark C.4.5.
We recall here

HT2(X) := H2(X,OX)⊕H1(X, TX)⊕H0(X,Λ2TX)

and refer to Section C.2.1 for a thorough definition of the ring of polyvector fields. To every
object E ∈ Db(X) we associate a natural morphism

obsE : HT2(X)→ H∗(X,Ω∗X), µ 7→ µyv(E)

defined by contraction of vector fields. We call it the cohomological obstruction map for E .
We have the first result.

Theorem C.1.2. Let X be a hyper-Kähler manifold and E ∈ Db(X). Then E is atomic if
and only if the cohomological obstruction map obsE has a one-dimensional image.

This result enables us to freely intertwine the representation theory of the LLV algebra
with the (symplectic) geometry of vector fields on hyper-Kähler manifolds. We remark that
Markman has obtained the if direction in the above theorem in [139, Thm. 6.13] under the
extra assumption that v(E)SH 6= 0.
Next, to any E ∈ Db(X) we can associate the natural homomorphism

χE : HH2(X)→ Ext2(E , E)

via evaluation at the natural transformation called the obstruction map. See Section C.2.1
for a brief recollection on the notions of Hochschild (co)homology. The map χE parametrizes
the obstruction to lifting the complex E to first order along the (noncommutative) first-order
deformations given by HH2(X) [204, Prop. 6.1]. For an element γ ∈ HH2(X) we will often
denote its image χE(γ) as γE . By [94] the following diagram

HH∗(X) Ext∗(E , E)

HT∗(X)

χE

IHKR
y exp(AtE)

(C.1.3)
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commutes, where exp(AtE) is the exponential of the Atiyah class AtE ∈ Ext1(E , E ⊗Ω1
X) of E

and IHKR : HH∗(X) ∼= HT∗(X) is the Hochschild–Konstant–Rosenberg (HKR) isomorphism.
Markman [139] recently studied objects for which the obstruction map has a one-dimensional
image. We will call such objects 1-obstructed. The following result is a strengthening of
[139, Thm. 6.13 (1)].

Theorem C.1.3. If E ∈ Db(X) is a 1-obstructed object such that v(E) is not annihilated by
the LLV algebra g(X), then E is atomic. In particular, 1-obstructed sheaves are atomic.

We note that if E satisfies the conclusion of the theorem, i.e. if E is atomic, then its Mukai
vector v(E) satisfies the assumption in the theorem of not being annihilated by the LLV
algebra, see Section C.4.2. Under a certain non-degeneracy condition for the Serre duality
trace map, the implication that 1-obstructed objects are atomic holds unconditionally, see
Conjecture E.
It is, however, not true that the converse implication always holds. As shown by Exam-

ple C.4.4, there are vector bundles on K3 surfaces which are not 1-obstructed. However, for
K3 surfaces, 1-obstructedness and atomicity are equivalent for simple sheaves and complexes.
We show that under the above alluded to non-degeneracy condition of the Serre duality trace
morphism restricted to the image of the obstruction map, this statement remains valid for
simple atomic objects on higher-dimensional hyper-Kähler manifolds.

Theorem C.1.4. If E ∈ Db(X) is a simple object satisfying Conjecture E, then E is 1-
obstructed if and only if E is atomic.

We want to emphasize that we view the property of being 1-obstructed as a (conjectural)
feature of simple atomic objects and not vice versa.

C.1.5. Modular & projectively hyperholomorphic bundles and deformations

Stable vector bundles are the easiest examples of simple objects on K3 surfaces. On higher-
dimensional hyper-Kähler manifolds, there exists the notion of (projectively) hyperholomor-
phic bundles due to Verbitsky [208]. Recently, O’Grady proposed the notion of modular
sheaves and bundles in [172].
We discuss their relation and, in particular, how atomic sheaves and bundles fit into the

picture. The discussion can be summarized by the following two results.

Proposition C.1.5. Let E be a torsion-free atomic sheaf. Then E is modular.

In particular, for torsion-free atomic sheaves the ample cone admits a wall and chamber
decomposition similar to the case of K3 surfaces as proven in [172, Prop. 3.4].
In [139, Thm. 1.2], the author obtained a weaker form of the above result, where it is

also assumed that the sheaf is reflexive as well as slope stable for ample classes in an open
subcone of the ample cone. Our result does not require these assumptions and our proof is
independent and shorter.

Proposition C.1.6. Let E be a slope polystable atomic vector bundle. Then E is projectively
hyperholomorphic.
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We will recall the relevant details on (projectively) hyperholomorphic bundles in Sec-
tion C.5. However, quite intriguingly, the tangent bundle TX on higher-dimensional hyper-
Kähler manifolds, which is hyperholomorphic as well as modular, fails to be atomic, see
Proposition C.8.3.
One remarkable property of stable bundles on K3 surfaces is their deformation behavior.

We investigate the deformation theory of (poly)stable atomic bundles.
We obtain two results. From Theorem C.1.6 one can deduce that for stable atomic bundle
E the associated projective bundle P(E) deforms over the whole moduli space which is the
content of Proposition C.5.5. The other result is the following.

Theorem C.1.7. Let E be an atomic slope stable vector bundle. Then the dg algebra
RHom(E⊕k, E⊕k) is formal for any k > 0.

More precisely, in Theorem C.6.1 we prove formality of the dg algebra of derived endo-
morphisms for the bigger class of projectively hyperholomorphic bundles. The above result
then follows immediately from Proposition C.1.6. One consequence of this is that the local
Kuranishi space of infinitesimal deformations is cut out by quadrics. For the details and
further consequences for moduli spaces of stable sheaves we refer to Section C.6.

C.1.6. Lagrangians
It follows easily from the definitions that atomic sheaves E which are torsion must be
skyscraper sheaves or supported on Lagrangian subvarieties. This raises the question which
Lagrangian submanifolds ι : L ⊂ X can support atomic sheaves.

Theorem C.1.8. Let ι : L ⊂ X be a connected Lagrangian submanifold. Then ι∗OL is
atomic if and only if the restriction map ι∗ : H2(X,Q) → H2(L,Q) has a one-dimensional
image and c1(L) = c1(TL) ∈ Im(ι∗) ⊂ H2(L,Q).

If one uses the interplay of (obstructions to) deformations and atomicity derived from
Theorem C.1.2, the first condition in the above theorem controls the behaviour with respect
to geometric deformations parametrized by H1(X, TX) and the second condition controls
Poisson deformations parametrized by H0(X,Λ2TX). For the special case of K3[2]-type hyper-
Kähler manifolds, where only the Verbitsky component is present, this result was obtained
in [139, Lem. 7.3].
We call submanifolds which satisfy one of the equivalent conditions from Theorem C.1.8

atomic Lagrangians. Since being atomic is stable under derived equivalences, we get many
examples of atomic sheaves supported on atomic Lagrangians.
Theorem C.1.8 displays once more that atomic objects behave similarly to those on K3

surface. Namely, smooth Lagrangian submanifolds of K3 surfaces correspond to Riemann
surfaces and are therefore either Fano, of Kodaira dimension zero, or have ample canonical
bundle. This conclusion remains true for atomic Lagrangians, that is the canonical bundle
ωL of an atomic Lagrangian L ⊂ X is also (anti-)ample or numerically trivial.
We also discuss the question of formality of the derived endomorphisms for the sheaf ι∗OL

in Section C.7.4. Moreover, it follows from recent results of Mladenov [147] that for many
simple sheaves on atomic Lagrangians the Ext algebra is of topological nature, that is, there
is a ring isomorphism

Ext∗(ι∗OL, ι∗OL) ∼= H∗(L,C).
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This implies, in particular, that the Ext algebra is graded-commutative. As is shown in
Proposition C.7.7, this compares nicely with the case of simple objects E ∈ Db(S) on K3
surfaces S, where we always have

Ext∗(E , E) ∼= H∗(C,C)

for some Riemann surface C. We expect this topological nature to remain true for simple
atomic objects on higher dimensional hyper-Kähler manifolds, see also Conjecture F for a
weaker version of this statement.

C.1.7. Spherical sheaves and objects

To study the interplay between the different obstruction maps alluded to in Section C.1.4,
we study how the Mukai vector v(E) of an object E forces restrictions on the Ext algebra
Ext∗(E , E). We refine this study in the appendix, which is logically independent from the
rest of the paper. The general structural result is Theorem C.A.2.
Recall that a sheaf or an object E is called spherical, if there is a ring isomorphism

Ext∗(E , E) ∼= H∗(SdimX ,C).

One of the consequences of the above result is the following, which has been expected, but a
proof has been missing in the literature.

Theorem C.1.9. There exist no spherical sheaves on a hyper-Kähler manifold X of dimen-
sion greater than two. Moreover, if X is of K3[n] with n > 1 or OG10-type, then Db(X)
contains no spherical objects.

In general, we show that spherical objects on hyper-Kähler manifolds, if existent, are
severely restricted. For example, their Mukai vectors must be contained in a subspace of the
subspace annihilated by the LLV algebra, see Remark C.A.6.

C.1.8. Organization of results

We provide in the next section results about Hochschild (co)homology, polyvector fields and
the LLV algebra that we will employ throughout the paper.
In Section C.3 we deduce consequences and properties from Definition C.1.1 for atomic

objects. The relation between atomic objects and the different obstruction maps is discussed
in Section C.4.
The next two sections are devoted to the study of vector bundles on hyper-Kähler manifolds

and their deformation theory. Section C.7 discusses the structure of atomic Lagrangians such
as formality aspects, obstruction maps and Yoneda multiplication.
The last section discusses examples of atomic sheaves and complexes. We also discuss

further properties of atomic objects such as an sl2-action on its extension groups. In the
appendix, we establish the above mentioned restriction results for spherical objects on higher-
dimensional hyper-Kähler manifolds.
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C.1.9. Relation to other work

We independently obtained the notion of atomic sheaves and complexes naturally from a
thorough inspection of our work [25, Sec. 4].
In [139], Markman studies sheaves and complexes on hyper-Kähler manifolds whose ob-

struction map or cohomological obstruction map has a one-dimensional image. The notion
of atomicity appears implicitely in [139, Thm. 6.13] and is related to the obstruction maps
under the extra assumption v(E)SH 6= 0.
However, in [139] being atomic is seen as a consequence of (cohomologically) 1-obstructed

objects. On the other hand, we see atomicity as the central notion. We show in Theorem C.1.2
that being atomic and having a one-dimensional cohomological obstruction map is equivalent,
which, a posteriori, also strengthens some results of [139]. Nevertheless, we remark that [139]
helped us in shaping our exposition and directing our attention.
As has been mentioned at a few places in the introduction, a few of our results have ap-

peared in weaker forms in [139] for (cohomologically) 1-obstructed objects. It is the notion
of atomicity and making use of the full force of the LLV algebra in combination with Theo-
rem C.1.2 which allows us to give independent proofs of our stronger results which are more
general and need less assumptions.
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Conventions

We will work throughout over the complex numbers.

C.2. Recollections

C.2.1. Hochschild (co)homology

We briefly recall the notions of Hochschild homology and cohomology and related results
relevant for our purposes. For more details we refer to [58–60].
Let X be a smooth projective variety of dimension n. The Hochschild cohomology HH∗(X)

and Hochschild homology HH∗(X) of X are defined as

HH∗(X) := Ext∗X×X(∆∗OX ,∆∗OX), HH∗(X) := Ext∗X×X(∆∗ω−1
X [−n],∆∗OX)

with ∆: X ↪→ X × X the diagonal embedding. Composition of morphisms turns HH∗(X)
into a graded ring and HH∗(X) into a module over HH∗(X). Elements in the Hochschild
(co)homology can be interpreted as natural transformations and, therefore, be evaluated at
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elements E ∈ Db(X). The Hochschild–Konstant–Rosenberg (HKR) isomorphisms identify
the Hochschild cohomology of X with the ring of polyvector fields

IHKR : HH∗(X) ∼= HT∗(X) :=
⊕
p+q=∗

Hq(X,ΛpTX)

as well as the Hochschild homology of X with the de Rham cohomology

IHKR : HH∗(X) ∼= HΩ∗(X) :=
⊕
q−p=∗

Hq(X,Ωp
X),

see [58, Cor. 4.2]. If these are twisted by the square root of the Todd class td1/2, the graded
isomorphisms

IK : HH∗(X) IHKR
−−−→ HT∗(X) td−1/2y_−−−−−−→ HT∗(X)

IK : HH∗(X) IHKR−−−→ HΩ∗(X) td1/2∧_−−−−−→ HΩ∗(X)

respect the ring and module structure [47]. We will often use implicitly the degeneration
of the Hodge–de Rham spectral sequence to identify non gradedly HΩ∗(X) ∼= H∗(X,Ω∗X) ∼=
H∗(X,C).
Let now X be a hyper-Kähler manifold of dimension 2n. The choice of a non-degenerate

symplectic form σ ∈ H0(X,Ω2
X) yields a generator σn ∈ HΩ−2n(X) realizing HH∗(X) as a

free HH∗(X)-module of rank one [201, Lem. 2.5]. Moreover, the symplectic form induces an
isomorphism σ : Ω1

X
∼= TX such that the composite isomorphism

HH∗(X) IK
−→ HT∗(X) σ−→ HΩ∗(X)

∼=−→ H∗(X,C) (C.2.1)

is a graded ring isomorphism, where the last isomorphism comes from the degeneration of
the Hodge–de Rham spectral sequence.
For an object E ∈ Db(X) Căldăraru [59] introduced the Hochschild Chern character

chHH(E) ∈ HH0(X). It is uniquely defined by satisfying the equality

TrX×X(µ ◦ chHH(E)) = TrX(µE) (C.2.2)

for all µ ∈ HH∗(X), where TrX×X and TrX are the trace morphisms onX×X andX obtained
from the Serre duality pairing. It is shown in [58, Thm. 4.5] that the HKR isomorphism identi-
fies the Hochschild Chern character with the classical Chern character, i.e. IHKR(chHH(E)) =
ch(E) ∈ H∗(X,C). Therefore, we also have IK(chHH(E)) = v(E) ∈ H∗(X,C).

C.2.2. Hyper-Kähler cohomology and LLV algebra
Let X be a hyper-Kähler manifold of complex dimension 2n, i.e. a simply connected com-
pact Kähler manifold such that H0(X,Ω2

X) is generated by an everywhere non-degenerate
holomorphic two-form. The second cohomology H2(X,Z) possesses an integral primitive
quadratic form q = qX called the Beauville–Bogomolov–Fujiki (BBF) form and has rank
b2(X). We associate to X its Mukai lattice

(H̃(X,Q) := Qα⊕H2(X,Q)⊕Qβ, q̃)
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which is a quadratic space with a grading and Hodge structure. More precisely, the quadratic
form q̃ restricts on H2(X,Q) to the BBF form q and α and β are isotropic elements orthogonal
to H2(X,Q) and satisfy q̃(α, β) = −1. The elements α and β are of degree −2 and 2
respectively and carry the trivial rational Hodge structure. The space H2(X,Q) has degree
zero and carries the corresponding Tate twist of its usual Hodge structure. See [25, Sec. 2.2]
for more details.
Looijenga–Lunts [130] and Verbitsky [207] introduced the Looijenga–Lunts–Verbitsky

(LLV) algebra g(X) naturally associated to the cohomology H∗(X,Q) of a hyper-Kähler
manifold. For another account, see [81].
We denote by h ∈ End(H∗(X,Q)) the cohomological grading operator acting on Hk(X,Q)

via (k − 2n)id. To an element ω ∈ H2(X,Q) we associate the operator eω = ω ∪ _ ∈
End(H∗(X,Q)) of cupping with ω. We say that ω has the Hard Lefschetz property if there
exists an operator Λω ∈ End(H∗(X,Q)) such that (eω, h,Λω) forms an sl2-triple.
The LLV algebra g(X) ⊂ End(H∗(X,Q)) is the Lie subalgebra generated by all such sl2-

triples for all ω having the Hard Lefschetz property. The main result of Looijenga–Lunts and
Verbitsky is then the Lie algebra isomorphism

g(X) ∼= so(H̃(X,Q)).

The g(X)-structure of H̃(X,Q) is defined by the conditions eω(α) = ω, eω(µ) = q(ω, µ)β and
eω(β) = 0 for all classes ω, µ ∈ H2(X,Q).
Let SH(X,Q) be the Verbitsky component, i.e. the graded subalgebra of H∗(X,Q) generated

by H2(X,Q). Verbitsky [34,207] proved the existence of a graded morphism ψ : SH(X,Q)→
Symn(H̃(X,Q)) sitting in a short exact sequence

0→ SH(X,Q) ψ−→ Symn(H̃(X,Q)) ∆−→ Symn−2(H̃(X,Q))→ 0. (C.2.3)

Here, the map ∆ is the Laplacian operator defined on pure tensors via

v1 · · · vn 7→
∑
i<j

q̃(vi, vj)v1 · · · v̂i · · · v̂j · · · vn.

The map ψ is uniquely determined (up to scaling) by the condition that it is a morphism of
g(X)-modules.
The n-th symmetric power Symn(H̃(X,Q)) inherits the structure of a g(X)-module by

letting g(X) act by derivations. The inclusion realizes SH(X,Q) as an irreducible Lefschetz
module [207]. We fix once and for all a choice of ψ by setting ψ(1) = αn/n!. The orthogonal
projection onto the subspace SH(X,Q) will be denoted by

T : Symn(H̃(X,Q))→ SH(X,Q).

C.2.3. Hochschild LLV algebra

The two previous subsections have a common ground which will be frequently used.
Let us consider the Hodge grading operator h′ ∈ End(H∗(X,C)) defined via

h′|Hp,q(X) = (q − p)id,
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i.e. the graded pieces of H∗(X,C) induced from the grading given by h′ agree with the columns
of the Hodge diamond. We will say that an element x is of Hodge type if h′(x) = 0, i.e. if

x ∈
⊕
p

Hp,p(X).

An element µ ∈ HT2(X) induces an operator eµ := µy_ ∈ End(H∗(X,C)) by contraction.
As before, we say that µ has the Hard Lefschetz property, if there exists an operator Λµ such
that (eµ, h′,Λµ) forms a complex sl2-triple.
Analogously to the previous case, we can consider the complex Lie subalgebra g′(X) ⊂

End(H∗(X,C)) generated by all sl2-triples for all µ having the Hard Lefschetz property. The
following is [201, Prop. 2.8], see also [209, Sec. 9] for an earlier account, where the result is
essentially already proved.

Theorem C.2.1 (Taelman, Verbitsky). There is an equality

g(X)C = g′(X) ⊂ End(H∗(X,C))

of complex Lie subalgebras.

This result sheds new light on the LLV algebra. For example, the operators in g(X)C
having degree two for the grading given by h′ are exactly given by contraction with elements
in HT2(X). Throughout the paper, we will frequently use the above identification and switch
between the gradings h and h′.

C.3. Atomic objects
We discuss Definition C.1.1 and general results about atomic objects. We fix a hyper-Kähler
manifold X of dimension 2n > 2.

C.3.1. Lie theoretic properties
Let E be a sheaf on X or an object in Db(X). Recall that the property of E being atomic is
a condition on the Lie subalgebra Ann(v(E)).

Proposition C.3.1. An object E ∈ Db(X) is atomic if and only if Ann(v(E)) ⊂ g(X) is a
Lie subalgebra of codimension b2(X) + 1 which is the smallest positive codimension possible.

Proof. If E is atomic, then Ann(v(E)) = Ann(ṽ) for some non-zero ṽ ∈ H̃(X,Q). Recall that
g(X)C ∼= so(b2(X) + 2). If q̃(ṽ) 6= 0, we immediately get that Ann(ṽ) ∼= so(b2(X) + 1). It
follows from a straightforward calculation that the condition on the codimension remains
valid also in the case q̃(ṽ) = 0, see also the proof of the lemma below.

Let us now assume that Ann(v(E)) ⊂ g(X) has codimension b2(X) + 1. We will study the
cohomological obstruction map

obsE : HT2(X)→ H∗(X,Ω∗X), µ 7→ µyv(E).

Since v(E) is of Hodge type, we have h′ ∈ Ann(v(E)). If obsE would vanish identically, i.e.
Ker(obsE) = HT2(X), we would know from Theorem C.2.1 that for all µ ∈ HT2(X) we have
eµ ∈ Ann(v(E))C.
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In particular, for any such µ having the Hard Lefschetz property with respect to h′, we
would have

0 = h′(v(E)) = [eµ,Λµ](v(E)) = eµ(Λµ(v(E)))− Λµ(eµ(v(E))) = eµ(Λµ(v(E))). (C.3.1)

Since eµ is injective when restricted to HΩ−2(X), we deduce that Λµ(v(E)) = 0 for all
such µ ∈ HT2(X). However, as by Theorem C.2.1 g(X)C is generated by all sl2-triples
associated to all µ ∈ HT2(X) having the Hard Lefschetz property, we would deduce that
Ann(v(E))C = g(X)C which contradicts our assumption.

Hence, the cohomological obstruction map obsE does not vanish identically. If W =
Ker(obsE) ⊂ HT2(X) has codimension one, then the arguments above imply that for all
Hard Lefschetz elements µ ∈ W we have that eµ,Λµ ∈ Ann(v(E))C. The Lie subalgebra
h ⊂ g(X)C generated by h′ and all eµ,Λµ for all µ ∈ W having the Hard Lefschetz property
has dimension (b2(X)2 + b2(X))/2 as follows from [81, Thm. 2.7]. Moreover, from (C.3.1) we
infer the inclusion h ⊂ Ann(v(E))C of Lie algebras. The assumption on the codimension of
Ann(v(E))C ⊂ g(X)C yields that the inclusion h ⊂ Ann(v(E))C must already be an equality.
Furthermore, let us consider the pairing

HT2(X)×
(
Cα⊕ H̃1,1(X,C)⊕ Cβ

)
→ Cσ̄, (µ, x) 7→ µyx

obtained from considering H̃(X,C) as a g(X)C-module. Since this pairing is non-degenerate,
see for example [139, Lem. 6.3], we obtain that there is an element ṽ ∈ Cα⊕ H̃1,1(X,C)⊕Cβ
unique up to scaling with the property that it pairs trivially with the subspace W . Since
h′(ṽ) = 0, the above discussion shows Ann(v(E))C = h ⊂ Ann(ṽ). We claim that the inclusion
is an equality.
Indeed, we know by assumption that there exists an element µ ∈ HT2(X) having the

Hard Lefschetz property such that eµ is not contained in Ann(v(E))C. Moreover, the dual
operator Λµ to eµ satisfying [eµ,Λµ] = h′ is by (C.3.1) as well not contained in Ann(v(E))C.
Furthermore, the b2(X) − 1-dimensional subspace of operators generated as a vector space
by [eτ ,Λµ] for all τ ∈W intersects the subspace Ann(v(E))C ⊂ g(X)C trivially. This implies
that the inclusion

Ann(ṽ) ⊂ g(X)C
has codimension at least b2(X) + 1, which is exactly the codimension of the inclusion
Ann(v(E))C ⊂ g(X). This yields the assertion.

From Lemma C.3.2 we can now deduce that ṽ is already defined over Q and E is, therefore,
atomic.
The case of Ker(obsE) ⊂ HT2(X) having higher codimension can be excluded using the

same line of arguments. We leave the details to the reader.

Lemma C.3.2. If h ⊂ g(X) is a Lie subalgebra and ṽ ∈ H̃(X,C) is such that hC = Ann(ṽ) ⊂
g(X)C, then ṽ ∈ H̃(X,Q).

Proof. We extend the beautiful argument from the proof of [139, Lem. 6.9].
Consider the natural map

ϕ : P(H̃(X,C))→ Gr
((

b2(X) + 1
2

)
, g(X)C

)
, ` 7→ Ann(`) ⊂ g(X)C.
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This morphism is well-defined, i.e. for each 0 6= ` ∈ H̃(X,C) the Lie subalgebra Ann(`) ⊂
g(X)C has codimension b2(X)+1. Indeed, if q̃(`) 6= 0, then we have the natural isomorphism

Ann(`) ∼= so(`⊥) ∼= so(b2(X) + 1).

In the case q̃(`) = 0, the natural map of Lie groups

Fix(`)� SO(`⊥/〈`〉) ∼= SO(b2(X))

reveals that the Lie subgroup Fix(`) ⊂ SO(b2(X) + 2) splits as a semidirect product. A
straightforward calculation shows that the other factor consists of unipotent matrices acting
trivially on `⊥/〈`〉 and ` and is of dimension b2(X).

Since ϕ is injective as well as defined over Q, we obtain the assertion.

As shown in the proof of Proposition C.3.1, if E is atomic, then its annihilator Ann(v(E)) ⊂
g(X) is the largest non-trivial proper Lie subalgebra of the LLV algebra of the form Ann(v)
for an element v ∈ H∗(X,Q) with h′(v) = 0.
The annihilator Ann(v(E)) measures, in some sense, the complexity of the Mukai vector

v(E). For example, if E is atomic, to its Mukai vector one can associate a vector ṽ ∈ H̃(X,Q)
inside the much smaller vector space H̃(X,Q) still encoding most information about the
vector. In that sense, the annihilator Ann(v(E)) ⊂ g(X) having low codimension corresponds
to the Mukai vector of E having low complexity.
However, it is not in general true that one can recover (theQ-line spanned by) v(E) from the

knowledge of Ann(v(E)) even if E is atomic. The naive idea would be to consider H∗(X,Q)
as a representation of Ann(v(E)) and study its trivial representations. However, viewing
H∗(X,Q) as a module over the larger Lie algebra g(X), there can already be (many) trivial
representations.
On the positive side, the Mukai vector of an atomic object is still severely restricted, as

we will demonstrate now. As alluded to in the introduction, if we restrict for E atomic
the action of Ann(v(E)) to the Verbitsky component, there exists a unique one-dimensional
trivial representation.

Proposition C.3.3. Let E be an atomic object and ṽ ∈ H̃(X,Q) an element such that
Ann(v(E)) = Ann(ṽ). Consider the Verbitsky component SH(X,Q) as an Ann(v(E))-module.
This representation has a unique trivial subrepresentation, which is spanned by T (ṽn) ∈
SH(X,Q) and v(E)SH ∈ Q〈T (ṽn)〉.

Proof. It is easy to see that 0 6= T (ṽn) ∈ SH(X,Q) is annihilated by Ann(ṽ) = Ann(v(E)).
Moreover, the first part of the assertion then also gives v(E)SH ∈ Q〈T (ṽn)〉, because v(E) is
annihilated by Ann(v(E)).
Hence, let us prove that there is a unique trivial subrepresentation. This statement is

independent of the complex structure for which v(E) remains algebraic. Furthermore, it is
invariant under an integrated automorphism of g(X) acting on SH(X,Q) and respecting the
Hodge structure. We can therefore assume that ṽ in Definition C.1.1 is of the form

ṽ = α+ kβ

for k ∈ Q.
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Let x ∈ SH(X,Q) be an element being annihilated by Ann(v(E)). Since h′ ∈ Ann(ṽ) =
Ann(v(E)), we know that h′(x) = 0. Moreover, for any element µ ∈ H1(X, TX) we have

µyṽ = 0

by bidegree reasons and, therefore, applying Theorem C.2.1 we have µyx = 0. In particular,
the element x is of Hodge type for all possible complex structures of X. By [130, Prop. 2.14],
the subalgebra of elements satisfying these properties is generated by powers q2

i of the dual
of the BBF form q2 ∈ SH4(X,Q).
It remains to determine the coefficients in front of each q2

i. For ω ∈ H2(X,Q) having the
Hard Lefschetz property for the grading operator h we have

Λω(β) = 2
q(ω)ω ∈ H̃(X,Q).

This implies that 2keω− q(ω)Λω ∈ Ann(ṽ) = Ann(v(E)). Moreover, using that td1/2 projects
non-trivially to the Verbitsky component and [113, Cor. 3.20] we deduce

0 6= Λωq2
i+1 ∈ Q〈q2

i ∧ ω〉

which immediately yields that up to scaling x = T (ṽn).

Remark C.3.4. In [25, Sec. 4] we assigned to certain coherent sheaves E or, more generally,
certain objects E ∈ Db(X) a so-called extended Mukai vector ṽ(E) ∈ H̃(X,Q). More precisely,
we asked for the existence of a non-zero rational number a such that

v(E)SH = aT (ṽ(E)n) ∈ SH(X,Q). (C.3.2)

The proposition shows that atomic objects fulfill this definition.
The proof and, therefore, conclusion of the proposition remains true for all irreducible

representations Vλ ⊂ H∗(X,Q) of the LLV algebra of the form Vλ = V(k) = Vkε1 where we
use the notation of [81, App. A].
We note that the branching rules discussed in [81, App. B.2] immediately yield the same

result for atomic objects E ∈ Db(X) such that the associated elemet ṽ ∈ H̃(X,Q) satisfies
q̃(ṽ) 6= 0. The branching rules also imply the following.
Proposition C.3.5. Let E be an atomic object with q̃(ṽ) 6= 0. Then v(E) projects trivially
to all irreducible representations which are not of the form V(k) with k ∈ Z≥0.

We expect the conclusion of the proposition to remain true for all atomic complexes.
The last two propositions imply that for an atomic object with q̃(ṽ) 6= 0 the number of triv-

ial Ann(v(E)) representations of H∗(X,Q) is the number of irreducible g(X)-representations
of the form V(k) for k ∈ Z≥0. This shows that the Mukai vector v(E) of an atomic object is
severly restricted.
Remark C.3.6. The definition of the extended Mukai vector in [25] was inspired by the
commutativity of the diagram

Db(S) Db(S′)

H∗(S,Z) H∗(S′,Z)

Φ

v v

ΦH

(C.3.3)
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for derived equivalences between K3 surfaces. That is, we wanted to study complexes for
which this diagram had a higher-dimensional counterpart. For this, restricting to the Ver-
bitsky component was sufficient.

Inspecting the decomposition (C.1.2) leads naturally to Definition C.1.1, i.e. of atomic
sheaves and complexes. While studying atomic complexes and their properties we came to
the conclusion that these are complexes on higher dimensional hyper-Kähler manifolds which
behave much like stable respectively simple sheaves on K3 surfaces. In what follows, we want
to convey the reader this intuition.

C.3.2. Mukai vector and general properties of atomic objects

In this subsection we discuss general properties of atomic objects that follow easily from [25].

Lemma C.3.7. Let E be a non-zero sheaf. Then 0 6= v(E)SH ∈ SH(X,Q).

Proof. The Verbitsky component exhausts the subspaces of degree 0, 2, 4n − 2 and 4n of
the cohomology H∗(X,Q). Therefore, if the Mukai vector does not project trivially to these
subspaces, the assertion is proven.
In general, let us consider the decomposition of the support

supp(E) =
⋃
i

Zi

of the sheaf E into irreducible components. Let j be an index such that Vj has maximal
dimension k in the above decomposition. For a Kähler class ω ∈ H1,1(X) we have∫

X
[Zi]ω2n−k ≥ 0,

∫
X

[Zj ]ω2n−k > 0.

In particular, 0 6= v(E)ω2n−k ∈ H4n(X,R) which proves the assertion.

We believe that all simple atomic objects E ∈ Db(X) satisfy v(E)SH 6= 0.

Proposition C.3.8. Let E be an atomic object such that rk(E) 6= 0 or c1(E) 6= 0. Then there
exists s ∈ Q such that ṽ from Definition C.1.1 can be assumed to be

ṽ = rk(E)α+ c1(E) + sβ ∈ H̃(X,Q).

Proof. The assumptions imply that in particular v(E)SH 6= 0. This is then the same compu-
tation as in the proof of [25, Lem. 4.8(v)].

Hence, there is a particular element in the line spanned by ṽ which gives the following.

Definition C.3.9. Let E ∈ Db(X) be an atomic object such that rk(E) 6= 0. Then its Mukai
vector ṽ(E) ∈ H̃(X,Q) is defined as

ṽ(E) = rk(E)α+ c1(E) + sβ ∈ H̃(X,Q)

for the unique s ∈ Q such that Ann(v(E)) = Ann(ṽ(E)) ⊂ g(X).
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If E is an atomic sheaf, we know by Lemma C.3.7 that v(E)SH 6= 0. From Proposition C.3.11
below, we know that if rk(E) = 0, then the support of E is a union of Lagrangian subvarieties
or points. In the former case, taking ṽ ∈ H̃(X,Q) associated to E from Definition C.1.1, its
projection λ ∈ H2(X,Q) to the component in H2(X,Q) ⊂ H̃(X,Q) is non-zero. Normalize λ
in such a way that q(λ, ω) > 0 for a Kähler class ω and such that λ ∈ H2(X,Z)∨ ⊂ H2(X,Q)
is a primitive element in the dual lattice of H2(X,Z). We define the corresponding multiple
of ṽ to be the Mukai vector ṽ(E) ∈ H̃(X,Q) of E .
We note that in the rest of the text, the precise multiple of ṽ in Definition C.1.1 will not

play a role. See [25, Sec. 4] for another discussion of the question which element of the line
Q〈ṽ〉 is a candidate for the Mukai vector ṽ(E) of an atomic sheaf or complex E when its rank
and determinant are zero.

Proposition C.3.10. Let Φ: Db(X) ∼= Db(Y ) be a derived equivalence between projective
hyper-Kähler manifolds and E ∈ Db(X). Then E is atomic if and only if Φ(E) is. Similarly,
for X → B a family of hyper-Kähler and E a B-perfect complex on X we have for two points
b, b′ ∈ B that Eb is atomic if and only if Eb′ is.

Proof. This is immediate from the definitions.

To finish this section let us mention one more property of atomic sheaves and complexes
similar to [25, Lem. 4.13(v)].

Proposition C.3.11. Let E be an atomic object with v(E)SH 6= 0, e.g. E is a sheaf, such that
rk(E) = 0 or c1(E) = 0. Then all Chern classes of E are isotropic, that is ci(E)σ = 0 for all
i and σ a symplectic form.

Proof. This follows already from the definition of atomicity, see also [25, Sec. 4.4]. The
vector ṽ as in Definition C.1.1 projects by assumption trivially onto the subspace spanned by
α ∈ H̃(X,Q). But for all such elements we have eσ(ṽ) = 0. This means that eσ ∈ Ann(v(E))
from which the assertion immediately follows.

We recall here that for E as in the proposition ch0(E) = 0 or ch1(E) = 0 already implies
that chi(E) = 0 for i < n, see [25, Lem. 4.8(v)]. If, moreover, chn(E) = 0, then we have that
chi(E) = 0 for i < 2n.

C.4. Obstruction Maps
In this section we will discuss the implications between the various obstruction maps from the
introduction and atomicity. In particular, we will prove Theorem C.1.2 and Theorem C.1.3.

C.4.1. Cohomological Obstruction map and Atomicity

We show here that being atomic is equivalent to having a cohomological obstruction map
with kernel of codimension one.

Proof of Theorem C.1.2. Let us assume first that E is atomic. We know that

Ann(v(E)) = Ann(ṽ) ⊂ g(X)
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for some ṽ ∈ H̃(X,Q). Since v(E) is algebraic and, therefore, h′(v(E)) = 0 we conclude
h′ ∈ Ann(ṽ). Thus, we find that h′(ṽ) = 0 which implies ṽ ∈ H̃1,1(X,Q).
An element µ ∈ HT2(X) induces the operator eµ ∈ g(X)C which has degree two for the

grading operator h′. Moreover, we have the perfect pairing

HT2(X)×
(
Cα⊕H1,1(X,C)⊕ Cβ

)
→ H0,2(X), (µ, x) 7→ eµ(x) = µyx

obtained from viewing H̃(X,C) as a g(X)C-module. In particular, restricting the perfect
pairing to ṽ ∈ H̃(X,C) we see that under the embedding

HT2(X) ↪→ g(X)C, µ 7→ eµ

the intersection Ann(ṽ)C ∩ HT2(X) ⊂ g(X)C is b2(X)− 1-dimensional. Since Ann(v(E))C ∩
HT2(X) equals the kernel Ker(obsE) of the cohomological obstruction map, the equality
Ann(ṽ) = Ann(v(E)) shows that obsE has a one-dimensional image.
For the converse implication let us reinspect the proof of Proposition C.3.1. There, we

studied the codimension of Ann(v(E)) ⊂ g(X) in terms of the kernel of the cohomological
obstruction map. In particular, in the case of interest of us, that is, the kernel having
codimension one, we already deduced that E must be atomic, which finishes the proof.

Remark C.4.1. The statement and the proof of the above theorem are purely cohomological.
That is, we actually proved the following for an element x ∈ H∗(X,Q) of Hodge type, i.e.
h′(x) = 0:

The annihilator Lie subalgebra Ann(x) ⊂ g(X) is equal to Ann(ṽ) ⊂ g(X) for a non-zero
element ṽ ∈ H̃(X,Q) if and only if the morphism

HT2(X)→ H∗(X,C), µ 7→ µyx

has a one-dimensional image.

In [107, Prop. 2.6] the authors have shown that for µ ∈ H1(X, TX) ⊕ H2(X,OX) the
vanishing

µyv(E) = 0

is equivalent to the vanishing
µych(E) = 0.

However, this does not remain true for the total space HT2(X), i.e. the cohomological ob-
struction map having a one-dimensional image is not equivalent to the map

HT2(X)→ HΩ2(X), µ 7→ µych(E)

having a one-dimensional image. An example for this phenomenon is any complex E ∈
Db(S[2]) in the derived category of the second Hilbert scheme S[2] for S a K3 surface such
that ch(E) ∈ Q〈v(OS[2])〉.
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C.4.2. Obstruction Map and Atomicity

Let us recall the observation [94, Lem. 3.2] which relates the obstruction and the cohomo-
logical obstruction map for E .

Lemma C.4.2. Let E ∈ Db(X) be an object and γ ∈ HH2(X). Then 0 = χE(γ) = γE ∈
Ext2(E , E) implies 0 = γ ◦ chHH(E) ∈ HH2(X). In particular,

IK(Ker(χE)) ⊂ Ker(obsE).

The proof is an application of the defining property of the Hochschild Chern character and
the non-degeneracy of the Serre duality trace. We can use this and the relation between the
cohomological obstruction map and atomicity to give a proof of Theorem C.1.3.
Recall that Theorem C.1.3 asserts a relationship between obstructions to first-order (non-

commutative) deformations of E and atomicity of E when the object E is 1-obstructed. Em-
ploying Theorem C.1.2 this is equivalent to establishing a relationship between obstructions
to first-order (noncommutative) deformations of E and obstructions to the Mukay vector
v(E) of E staying of Hodge type.

Proof of Theorem C.1.3. As recalled above we need to relate (the dimensions of the vector
spaces) Ker(χE) and Ker(obsE) for E 1-obstructed. This is done using Theorem C.1.2 and
Lemma C.4.2.
More precisely, Lemma C.4.2 gives

IK(Ker(χE)) ⊂ Ker(obsE)

which implies that the cohomological obstruction map obsE must have one or zero-dimension-
al image. If it is one-dimensional, Theorem C.1.2 gives that E is atomic.
To conclude, it is left to show that the image of obsE is not zero-dimensional. This follows

from the lemma below.

Lemma C.4.3. The radical W ⊂ HΩ0(X) of the pairing

HT2(X)×HΩ0(X)→ HΩ2(X)

corresponds under the isomorphism H∗(X,Ω∗X) ∼= H∗(X,C) to the subspace spanned by trivial
representations of the LLV algebra.

Proof. Since by Theorem C.2.1 the operator eµ for µ ∈ HT2(X) is contained in g(X)C it is
immediate that elements in the subspace spanned by trivial representations lie in W .
For the converse inclusion, note that HΩ0(X) is by definition the subspace of elements

x satisfying h′(x) = 0. If x is contained in the radical W , we infer from (C.3.1) that for
all elements µ ∈ HT2(X) having the Hard Lefschetz property the operators Λµ also satisfy
Λµ(x) = 0. As the set of all these operators generate g(X)C, we conclude that x is annihilated
by the LLV algebra.

We now discuss the converse implication of whether atomic sheaves and complexes are
1-obstructed. The following shows that it does not always hold.
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Example C.4.4. Consider a K3 surface X and a non-trivial line bundle L ∈ Pic(X). The
bundle E = OX ⊕ L is atomic, but not 1-obstructed.
Indeed, any non-zero sheaf on a K3 surface is atomic. The Atiyah class AtE decomposes

AtE = AtOX + AtL ∈ Ext1(OX ,OX ⊗ Ω1
X)⊕ Ext1(L,L ⊗ Ω1

X) ⊂ Ext1(E , E ⊗ Ω1
X)

which can be simplified using AtOX = 0. Since L is non-trivial, there exists µ ∈ H1(X, TX)
such that µyc1(L) 6= 0. In particular, the element

x := µyAtE ∈ Ext2(E , E)

projects non-trivially to the subspace Ext2(L,L) ⊂ Ext2(E , E), but trivially to the subspace
Ext2(OX ,OX) ⊂ Ext2(E , E). Moreover, any non-trivial µ′ ∈ H2(X,OX) induces a non-trivial
element

y := µ′yAt0
E ∈ Ext2(E , E)

which projects non-trivially to Ext2(OX ,OX) ⊂ Ext2(E , E) (more precisely, after identifying
Ext2(OX ,OX) ∼= H2(X,OX) we have that the projection of y equals 2µ′). This shows that
x and y must be linearly independent.

Note, however, that every simple sheaf or complex on a K3 surface with non-zero Mukai
vector is 1-obstructed. A natural question therefore is whether this also holds true in higher
dimensions.
We state here the following.

Conjecture E. Let X be a hyper-Kähler manifold and E a simple atomic object. For each
γ ∈ HH2(X) with 0 6= χE(γ) = γE ∈ Ext2(E , E) there exists µ ∈ HH2n−2(X) such that the
composition 0 6= µE ◦ γE ∈ Ext2n(E , E).

Since E is assumed to be simple, this is equivalent to asking TrX(µE ◦ γE) 6= 0. One could
formulate an even stronger conjecture by asking that for each γ ∈ HHk(X) with 0 6= χE(γ) =
γE ∈ Extk(E , E) there exists µ ∈ HH2n−k(X) such that TrX(µE ◦ γE) 6= 0. Using that X is
Calabi–Yau and, therefore, Ext∗(E , E) is via Serre duality equipped with a non-degenerate
pairing, this could be rephrased by saying that the this non-degenerate pairing on Ext∗(E , E)
restricts to a non-degenerate pairing on the image subalgebra Im(χE) ⊂ Ext∗(E , E).

The following concerns the reverse implication in Theorem C.1.3 assuming Conjecture E
and establishes a complete relationship between the notion of 1-obstructedness and atomicity.

Proof of Theorem C.1.4. Recall the defining property of the Hochschild Chern character
chHH(E) ∈ HH0(X)

TrX×X(δ ◦ chHH(E)) = TrX(δE)

for all δ ∈ HH∗(X). For µ ∈ HT2(X) we have that

µyv(E) = 0

is equivalent to

(IK)−1(µ) ◦ (IK)−1(v(E)) = (IK)−1(µ) ◦ chHH(E) = 0.
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If we denote γ := (IK)−1(µ) ∈ HH2(X), then the above vanishing implies for arbitrary
γ′ ∈ HH2n−2(X)

0 = TrX×X(γ′ ◦ γ ◦ chHH(E)) = TrX((γ′ ◦ γ)E) = TrX(γ′E ◦ γE).

Conjecture E now gives that we can deduce from this the vanishing γE = 0. This gives

Ker(obsE) ⊂ IK(Ker(χE)).

Combined with Lemma C.4.2 we therefore obtain the equality

IK(Ker(χE)) = Ker(obsE) (C.4.1)

which, together with Theorem C.1.2 yields the assertion.

Note that the above also strengthens Theorem C.1.3. Namely, assuming that an object E
satisfies Conjecture E, one concludes that E is atomic without the condition on its Mukai
vector not lying in the subspace generated by trivial representations of the LLV algebra.
That is, Conjecture E implies that Mukai vectors of 1-obstructed objects cannot cannot be
annihilated by the LLV algebra as the equality (C.4.1) forces a non-trivial radical.

Remark C.4.5. The obstruction map

χE : HH2(X)→ Ext2(E , E)

measures the obstruction to deform E to first order along the first order deformation corre-
sponding to the element in HH2(X).
On the other hand, the cohomological obstruction map

obsE : HT2(X)→ HΩ2(X)

concerns only the Mukai vector of the corresponding object and measures whether the Mukai
vector stays of Hodge-type along the given first order deformation.
From this viewpoint, Theorem C.1.4 says that under a certain condition, if the Mukai

vector stays algebraic along a given first order deformation direction, then the object can be
lifted to this first order deformation.

The following is evidence supporting Conjecture E.

Proposition C.4.6. Let E ∈ Db(X) be a simple 1-obstructed object such that its Mukai vector
is not annihilated by the LLV algebra, e.g. E is a sheaf. Then E satisfies the conclusion of
Conjecture E.

Proof. Since E is 1-obstructed we only need to show Conjecture E for one non-zero repre-
sentative of the image of χE in Ext2(E , E). This means we need to find one element in the
image of

χE : HH2n−2(X)→ Ext2n−2(E , E)

which pairs non trivially with the one-dimensional subspace of Ext2(E , E) given by the image
of χE .
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By assumption, v(E) is not annihilated by the LLV algebra g(X). As demonstrated
in the proof of Proposition C.3.1 this means that there exists µ ∈ HT2(X) such that
eµ(v(E)) = µyv(E) 6= 0. Using (C.2.1), [201, Lem. 2.5] and the fact that the intersection
pairing on H∗(X,C) is non-degenerate, we see that there exists γ ∈ HT2n−2(X) such that
0 6= γyeµ(v(E)) = (γ ∧ µ)yv(E) ∈ H2n(X,OX).
Defining τ = (IK)−1(γ ∧ µ) and employing the defining property of the Hochschild Chern

character we obtain

0 6= TrX×X(τ ◦ chHH(E)) = TrX(τE) = TrX((IK)−1(γ)E ◦ (IK)−1(µ)E).

This proves the proposition.

Thus, 1-obstructed sheaves satisfy Conjecture E by Lemma C.3.7. Moreover, if the 1-
obstructed object E satisfies the conclusion of Conjecture E, then by Theorem C.1.4 its
Mukai vector v(E) does not lie inside the subspace of trivial representations of the LLV
algebra.

We get the following consequence.
Corollary C.4.7. Let E ∈ Db(X) be a simple atomic object. Then E is 1-obstructed if and
only if it satisfies the conclusion of Conjecture E.
In particular, for a simple object E consider the three properties: E is atomic, E is 1-

obstructed, E satisfies Conjecture E. Then any two of these properties imply the remaining
one.

C.5. Vector bundles and torsion-free sheaves
We will recall the notion and relevant results of Verbitsky concerning (projectively) hyper-
holomorphic bundles. This will be applied in the next section to study the deformation
theory of slope (poly)stable bundles. We will compare this notion as well as the notion of a
modular sheaf of O’Grady with being atomic.

C.5.1. Hyperholomorphicity
Let E be a vector bundle on a hyper-Kähler manifold X. For every Kähler class ω in the
Kähler cone KX there exists by Yau’s solution to Calabi’s conjecture [83, Thm. 23.5] a
unique hyper-Kähler metric g on the underlying real manifold such that ω = [ωI ], where
ωI = g(I(_),_). We denote the complex structures corresponding to the hyper-Kähler
metric g by I, J,K. We denote the resulting twistor deformation by π : X → P1

ω.
Definition C.5.1. A Hermitian connection ∇ on E is called (ω)-hyperholomorphic, if ∇ is
integrable with respect to each complex structure induced by the hyper-Kähler metric g.
The three complex structures I, J,K induce naturally an SU(2)-action on the cohomology

H∗(X,C). Note that the associated Lie algebra su(2) is contained in the LLV algebra g(X)C
and its action has degree zero with respect to the grading given by h. A cohomology class
x ∈ H∗(X,C) is SU(2)-invariant if and only if it is of type (p, p) for all Hodge structures
induced by all complex structures obtained from the hyper-Kähler metric g (for more see
[208, Sec. 1]). Here are several results related to hyperholomorphic bundles which we will
need later on:
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• Every ω-hyperholomorphic bundle E is ω-slope polystable1 [208, Thm. 2.3]. For the
induced curvature Θ we have Λω(Θ) = 0.

• A Hermitian connection ∇ on a holomorphic bundle E is ω-hyperholomorphic if and
only if its curvature Θ is SU(2)-invariant. Furthermore, a polystable bundle E is hy-
perholomorphic if and only if c1(E) and c2(E) are SU(2)-invariant [210, Thm. 3.9].

• The pullback of a hyperholomorphic bundle E to the associated twistor line admits a
holomorphic structure over the twistor space π : X → P1

ω [117, Lem. 1.1]. A bundle E
is hyperholomorphic if and only if there exists a holomorphic bundle F on the twistor
space X such that the restriction to X of F is E , see [108, Def. 2.2] and the paragraph
afterwards.

Definition C.5.2. A bundle E is called (ω-)projectively hyperholomorphic, if the traceless
curvature Θtl is SU(2)-invariant for the induced hyper-Kähler structure.

Equivalently, E is projectively hyperholomorphic if and only if End(E) is hyperholomorphic
[208, Prop. 11.1].

C.5.2. Comparison of notions for bundles on hyper-Kähler manifolds

We recall here the element

κ(E) := ch(E) exp
(
−c1(E)

r

)
∈ H∗(X,Q)

for a torsion-free sheaf E of rank rk(E) = r and its discriminant

∆(E) := −2rch2(E) + ch1(E)2.

In [172], O’Grady proposed a notion of modular sheaves.

Definition C.5.3. A torsion-free sheaf E ismodular if the projection of ∆(E) to the Verbitsky
component is a multiple of the dual of the BBF form q2 ∈ SH4(X,Q).

Let us compare the notions of atomicity, (projective) hyperholomorphicity and modularity
for a bundle E .

Lemma C.5.4. Let E be a torsion-free atomic sheaf. Then κ(E) and ∆(E) remain of Hodge
type for all Kähler deformations of X. If E is a vector bundle, the same is true for ch(E⊗E∨).

Proof. The sheaf E is atomic and by Proposition C.3.8 there exists ṽ(E) ∈ H̃(X,Q) such that

Ann(v(E)) = Ann(ṽ(E)) ⊂ g(X).

Note that κ(E) is of type Hodge type if and only if the class

κ̃(E) := ch(E)td1/2 exp
(
−c1(E)

r

)
= v(E) exp

(
−c1(E)

r

)
∈ H∗(X,Q)

1Sum of slope stable bundles with the same slope.
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is of Hodge type. The isometry given by multiplication with exp(−c1(E)/r) is the integrated
action of the operator e−c1(E)/r given by cup product with the class −c1(E)/r ∈ H1,1(X,Q).
We therefore obtain the equality

Ann(κ̃(E)) = Ann
(
v(E) exp

(
−c1(E)

r

))
= Ann

(
ṽ(E) exp

(
−c1(E)

r

))
.

From Proposition C.3.8 we infer

ṽ := ṽ(E) exp
(
−c1(E)

r

)
= rα+ tβ ∈ H̃(X,Q)

for some t ∈ Q. In particular, for every possible complex structure I and associated Weil
operator WI we have WI ∈ Ann(ṽ) = Ann(κ̃(E)). This proves that κ(E) remains of Hodge
type. The assertion for ∆(E) follows from the identity

−2rκ(E)4 = ∆(E),

where κ(E)4 ∈ H4(X,Q) is the degree four component of κ(E).
If E is a vector bundle, we use

ch(E ⊗ E∨) = ch(E)ch(E∨) =
(

ch(E) exp
(
−c1(E)

r

))(
ch(E∨) exp

(c1(E)
r

))
.

By what we have already proven, the right hand side is the product of two classes which are
of Hodge type for all Kähler deformations. This finishes the proof.

For an object E ∈ Db(X) which is atomic the proof also shows that the class ch(E ⊗L

RHom(E ,OX)) stays algebraic for all possible complex structures.
The lemma immediately implies Proposition C.1.5 which is a strengthening of [139, Thm.

3.4]. We can also now proof the relationship with projectively hyperholomorphic bundles
alluded to in the introduction.

Proof of Proposition C.1.6. Since E is ω-polystable so is the bundle End(E), i.e. End(E) de-
composes into the direct sum of indecomposable ω-slope stable bundles of the same slope.
Now E is ω-projectively hyperholomorphic if and only if End(E) is ω-hyperholomorphic
[208, Prop. 11.1]. By [208, Thm. 2.5] we know that End(E) is hyperholomorphic if and
only if c1(End(E)) and c2(End(E)) remain of Hodge type (p, p) for all complex structures
induced by the twistor space associated to ω. This follows from Lemma C.5.4.

The converse in the above statements does not hold. A counterexample is given by the
tangent bundle TX on higher-dimensional hyper-Kähler manifolds X, see Proposition C.8.3.
We obtain also the following which is similar to [139, Thm. 3.4] where the statement is

also essentially proved under stronger assumptions.

Proposition C.5.5. Let E be a slope stable atomic bundle. Then P(E) deforms over the
whole moduli space of Kähler deformations of X.
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Proof. From what has just been proven we know that E is also modular as well as projectively
hyperholomorphic. By [172, Sec. 3] we know that there is an open subcone of the ample
cone for which E remains slope stable and projectively hyperholomorphic. Moreover, from
Lemma C.5.4 we know that the traceless curvature Θtl is of type (2, 2) for all possible complex
structures. The result follows now from [108, Prop. 2.3] and the fact that each two points in
the moduli space are connected by twistor lines, see [207, Thm. 3.2].

We note that in the proof of Proposition C.1.6 we did not use the condition of E being
atomic explicitly, but only the consequence that all Chern classes (we only needed c2) of
End(E) stay of Hodge type. This leads to the following.

Proposition C.5.6. A modular vector bundle E is ω-projectively hyperholomorphic if and
only if E is ω-slope polystable and the projection of c2(E) to the complement SH(X,Q)⊥ of the
Verbitsky component stays of type (2, 2) for all induced complex structures of the hyper-Kähler
structure.

For example if E is a ω-slope polystable modular vector bundle such that c2(E) ∈ SH(X,Q),
then E is ω-projectively hyperholomorphic.

C.6. Deformation theory of stable atomic vector bundles
Let X be a hyper-Kähler manifold of dimension 2n. Throughout this section we fix an H-
projectively hyperholomorphic vector bundle E on X which is slope stable for some ample
line bundle H. In particular, E is simple, i.e. Hom(E , E) = Cid. In this section we want to
study the deformation theory of the bundle E on X.

C.6.1. Deformation theory

We introduce the functor and notions we want to study. For more details we refer to [197].
The deformation functor we consider is the covariant functor

DefE : Art/C→ Sets

from Artinian local C-algebras with residue field C to sets which assigns to A ∈ Art/C the
isomorphism classes of pairs (F , t), where F is a coherent sheaf on X × Spec(A) flat over
Spec(A) and t is an isomorphism between the restriction of F to X × Spec(C) and E . The
deformation functor DefE has a tangent-obstruction theory given by T 1 = Ext1(E , E) and
T 2 = Ext2(E , E)0, where Ext2(E , E)0 denotes the kernel of the natural trace morphism

Tr: Ext2(E , E)→ H2(X,OX).

One can define a formal map

κ = κ2 + κ3 + . . . : ̂Ext1(E , E)→ Ext2(E , E)0,

called Kuranishi map, whose scheme-theoretic fibre κ−1(0) is the base space of the formal
semiuniversal deformation of E . The quadratic part κ2 is the usual Yoneda pairing.
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C.6.2. Formality

The main result of this section is the following, which will also imply Theorem C.6.1 from
the introduction.

Theorem C.6.1. Let E be an H-projectively hyperholomorphic vector bundle on a hyper-
Kähler manifold which is H-slope stable. Then the dg algebra RHom(E⊕k, E⊕k) is formal for
all k > 0.

Recall that a dg algebra is formal if it is quasi-isomorphic to its cohomology algebra.
For K3 surfaces, the study of formality of the endomorphism algebra goes back to work of

Kaledin–Lehn [115] and Kaledin–Lehn–Sorger [116]. They proved the result for direct sums
of ideal sheaves of zero-dimensional subvarieties. Zhang [220] and later Budur–Zhang [46]
extended it to all slope polystable sheaves on K3 surfaces. The main ingredient in all of the
proofs is the following result of Kaledin [114, Thm. 4.2].

Theorem C.6.2. Let A• be a dg algebra of quasi-coherent and flat sheaves on an integral
scheme X and denote by B• its cohomology algebra. Assume that the sheaves B• are coherent
and flat on X and that for all i, l ∈ Z the degree l component HHil(B•) of the i-th Hochschild
cohomology sheaf HHi(B•) is also coherent and flat.

(i) For X affine, formality of A•x over a generic point x ∈ X implies formality for all
points x ∈ X.

(ii) If HH2
l (B•) has no global sections for all l ≤ −1, then the dg algebra A•x is formal for

all x ∈ X.

We will also apply this statement to prove the main result. Our proof follows roughly the
arguments of [115, Prop. 3.1] and [220, Thm. 1.3] with the necessary modifications.

Proof of Theorem C.6.1. We consider the induced hyper-Kähler metric onX and the induced
twistor line π : X → P1. We can lift the bundle End(E⊕k, E⊕k) to a holomorphic bundle F
on X [117, Thm. 5.12]. Consider the sheaf of dg algebras

RHomX/P1(OX ,F) = Rπ∗RHom(OX ,F)

on P1 and the sheaf of algebras B• = Ext•X/P1(OX ,F) associated to the dg algebra by taking
cohomology.
Verbitsky [210, Prop. 6.3] proved that

Riπ∗(F) ∼= OP1(i)⊗C Hi(X,F) (C.6.1)

for all i ∈ Z. Since Bi = Riπ∗(F), we conclude that the sheaves of algebras B• are coherent
and flat. Moreover, (C.6.1) shows that B• is locally constant as a sheaf of algebras. This
implies that its Hochschild cohomology sheaves HH•(B•) are locally trivial and we can apply
Theorem C.6.2. The proof proceeds now as the proof of [115, Prop. 3.1].

Using Proposition C.1.6 we see that Theorem C.6.1 also proves Theorem C.1.7 from the
introduction.

154



C.6.3. Moduli spaces
For a slope stable projectively hyperholomorphic vector bundle E Verbitsky showed that E
satisfies the quadraticity property [208, Thm. 6.2, 11.2]. That is, the scheme-theoretic fibre
κ−1(0) of the Kuranishi map is isomorphic to the fibre κ−1

2 of its quadratic part.
Note that formality for the dg algebra RHom(E , E) implies formality of the dg Lie algebra

associated to RHom(E , E). If a dg Lie Algebra has trivial differential d = 0, then it is
well-known that the equations defining the versal deformation space are quadratic [79]. In
particular, if RHom(E , E) is formal, then its versal deformation space is cut out by quadrics.
Hence, we recover the above result of Verbitsky.

Corollary C.6.3. Let E be a slope stable projectively hyperholomorphic vector bundle. Then
its associated versal deformation space κ−1(0) is isomorphic to κ−1

2 (0) and has at most
quadratic singularities.

Thus, to study (locally) the moduli space of slope stable atomic vector bundles E one is
lead to the study of the pairing

Ext1(E , E)× Ext1(E , E)→ Ext2(E , E)

whose induced quadratic map Ext1(E , E)→ Ext2(E , E) yields κ2. We state here the following.

Conjecture F. Let E be a slope stable atomic vector bundle. Then the pairing

Ext1(E , E)× Ext1(E , E)→ Ext2(E , E)

is skew-symmetric.

Conjecture F implies that the moduli space of slope stable torsion-free sheaves with Mukai
vector v = v(E) is smooth at the point [E] ∈M(v) corresponding to the stable atomic bundle
E .

We could prove formality using the concept of (projective) hyperholomorphicity. Consider-
ing Conjecture E we see that the bundle E in Conjecture F is speculated to be 1-obstructed.
We believe that this property could enable one to prove smoothness at the point [E ] of the
moduli space corresponding to the stable atomic bundle.
We note here the following.

Corollary C.6.4. Let X be a hyper-Kähler manifold and E a projectively hyperholomorphic
bundle such that Ext2(E , E) ∼= C. Then E satisfies Conjecture F.

Proof. By assumption the trace morphism

TrE : Ext2(E , E)→ H2(X,OX)

is an isomorphism in this case and the composition

Exti(E , E)× Extj(E , E) ◦−→ Exti+j(E , E) TrE−−→ Hi+j(X,OX)

is well-known to be graded-commutative.

For more evidence for Conjecture F see Proposition C.7.6.
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C.7. Atomic Lagrangian
Lagrangian submanifolds inside hyper-Kähler manifolds are an active part of current research.
We recommend [106] for an account of some of the known results and questions. We want
to discuss in this section Lagrangian submanifolds with a view towards atomicity.

C.7.1. Definition and structural result

We make the following definition.

Definition C.7.1. We call a connected Lagrangian submanifold ι : L ⊂ X atomic if ι∗OL is
an atomic sheaf.

The main goal of this section is to prove Theorem C.1.8 from the introduction which
completely determines when a Lagrangian submanifold is atomic.
In what follows, we will frequently implicitly use a result due to Voisin [212, Lem. 1.5]. It

says that the kernel Ker(ι∗) ⊂ H2(X,Q) of the pullback morphism

ι∗ : H2(X,Q)→ H2(L,Q)

is equal to the kernel of the composition

ι∗[L] ∧_: H2(X,Q) ι∗−→ H2(L,Q) ι∗−→ H2n+2(X,Q)

given by cupping with the fundamental class ι∗[L] ∈ H2n(X,Q) for a Lagrangian submanifold
L ⊂ X.

Proposition C.7.2. Let ι : L ⊂ X be a connected Lagrangian submanifold and denote by
W ⊂ HT2(X) the kernel of the contraction morphism

HT2(X)→ H∗(X,C), µ 7→ µyι∗[L]

acting on the fundamental class ι∗[L] ∈ H2n(X,Q). Then, there is an isomorphism

W ∼= Ker(ι∗)

of vector spaces with the kernel Ker(ι∗) ⊂ H2(X,C) of the pullback morphism

ι∗ : H2(X,C)→ H2(L,C).

Proof. First, observe that the subspace H2(X,OX) is naturally contained in HT2(X) as well
as H2(X,C) and the action given by contraction agrees with the cup product. Since L is
Lagrangian, we therefore have

W ⊃ H2(X,OX) ⊂ Ker(ι∗).

Moreover, for a symplectic form σ ∈ H0(X,Ω2
X) there is an sl2-triple

(eσ, hσ,Λσ) ⊂ g(X)C,
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where eσ = σ ∧ _ is the operator given by cupping with σ and hσ |Hp,q = (p − n)id, see [75]
and [201, Sec. 2]. The action of H0(X,∧2TX) on H∗(X,C) via contraction agrees with the
action of Λσ up to a constant.
Indeed, both operators are contained in the LLV algebra g(X)C and the subspace of the

LLV algebra consisting of operators sending Hp,q(X) to Hp−2,q(X) is one-dimensional. That
is, up to scaling, there exists a unique operator having degree −2 for the grading given by h
and degree 2 for the grading given by h′.

Since L ⊂ X is Lagrangian we have eσ(ι∗[L]) = 0. This yields

0 = hσ(ι∗[L]) = [eσ,Λσ](ι∗[L]) = eσ(Λσ(ι∗[L]))− Λσ(eσ(ι∗[L])) = eσ(Λσ(ι∗[L])). (C.7.1)

As eσ has the Hard Lefschetz property for the grading given by hσ, we conclude that
eσ(Λσ(ι∗[L])) = 0 is equivalent to Λσ(ι∗[L]) = 0.

It remains to identify H1(X,Ω1
X)∩Ker(ι∗) and H1(X, TX)∩W . The image of the contraction

map
H1(X, TX)→ H2n(X,C), µ 7→ µyι∗[L]

is contained in Hn−1,n+1(X). As recalled above, the operator eσ is injective when restricted
to the subspace Hn−1,n+1(X). Hence, the subspace H1(X, TX) ∩W is equal to the kernel of
the morphism

H1(X, TX)→ Hn+1,n+1(X), µ 7→ eσ(eµ(ι∗[L])) (C.7.2)
where as before eµ ∈ g(X)C denotes the operator given by contraction with µ. Since L is
Lagrangian we have that

[eσ, eµ](ι∗[L]) = eσ(eµ(ι∗[L]))
which means that the kernel of (C.7.2) is equal to the kernel of the morphism

H1(X, TX)→ Hn+1,n+1(X), µ 7→ [eσ, eµ](ι∗[L]). (C.7.3)

Lemma C.7.3 below shows that the symplectic form σ induces the isomorphism

[eσ,_]: H1(X, TX) ∼= H1(X,Ω1
X), µ 7→ −µyσ, (C.7.4)

where we identified the spaces H1(X, TX) and H1(X,Ω1
X) with the operators they induce

inside g(X)C.
In particular, this implies that the kernel of (C.7.3), which is equal to W ∩ H1(X, TX), is

via (C.7.4) identified with the kernel of

H1(X,Ω1
X)→ Hn+1,n+1(X), ω 7→ ω ∧ ι∗[L].

Recalling the result due to Voisin alluded to above finishes the proof.

Lemma C.7.3. Consider a symplectic form σ ∈ H0(X,Ω2
X) and let us identify the subspaces

H1(X, TX) and H1(X,Ω1
X) with the subspaces

H1(X, TX) ↪→ g(X)C, µ 7→ eµ and H1(X,Ω1
X) ↪→ g(X)C, ω 7→ eω

via the corresponding operators they induce. Then, the morphism

[eσ,_] : g(X)C → g(X)C, f 7→ [eσ, f ]

induces the isomorphism

H1(X, TX) ∼= H1(X,Ω1
X), µ 7→ −µyσ.
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Proof. Note first that the morphism is well-defined, as the operator [eσ, eµ] has degree 2 for
the grading given by h and degree 0 for the grading given by h′ and is, therefore, contained
in H1(X,Ω1

X) ⊂ g(X)C. Moreover, this subspace acts faithfully on the fundamental class
1 ∈ H0(X,C). Thus, we can compute

[eσ, eµ](1) = eσ(eµ(1))− eµ(eσ(1)) = −µyσ ∈ H1(X,Ω1
X)

which yields the assertion.

With these preparations we are now ready to give the promised proof of the main result
of this section.

Proof of Theorem C.1.8. Step 1. Let us first show that the conditions in the theorem are
sufficient for a connected Lagrangian submanifold to be atomic.
By Proposition C.3.1 the sheaf ι∗OL is atomic if and only if Ann(v(ι∗OL)) has the right

dimension. An element ω ∈ H1,1(X,Q) yields an operator eω ∈ g(X) which can be in-
tegrated to the isomorphism exp(ω). Moreover, the Lie subalgebras Ann(v(ι∗OL)) and
Ann(v(ι∗OL) exp(ω)) are adjoint to each other and have, therefore, the same dimension.
By assumption, there exists ω ∈ H1,1(X,Q) with the property that ι∗(ω) = −c1(L)/2.

From Lemma C.7.4 below we infer

v(ι∗OL) exp(ω) = ι∗[L].

Using Theorem C.1.2 and Remark C.4.1 the above discussion shows that E is atomic if and
only if the map

HT2(X)→ HΩ2(X), µ 7→ µyι∗[L]

has a one-dimensional image. This follows by assumption employing Proposition C.7.2.
Step 2. Conversely, let us assume that ι∗OL is atomic. The degree 2n component of

v(ι∗OL) is equal to ι∗[L]. Therefore, as ι∗OL is atomic, the b2(X)− 1-dimensional kernel of
the cohomological obstruction map obsι∗OL is contained in the kernel of

ϕ : HT2(X)→ HΩ2(X), µ 7→ µyι∗[L].

Note that the kernel Ker(ϕ) ⊂ HT2(X) of ϕ has codimension at least one, because

ϕ|H1(X,TX) : H1(X, TX)→ H2n(X,C), µ 7→ µyι∗[L]

is non-trivial by Lemma C.7.5 below. Using Proposition C.7.2 we see that the image Im(ι∗)
of the pullback morphism is one-dimensional.
Step 3. It remains to show that c1(L) ∈ H2(L,Q) is contained in the image of ι∗. This

uses a variant of the proof of [198, Prop. B.2]. We first consider the case that ι∗c1(L) = 0,
which is a guideline for the general case.
Since L is Lagrangian, the operator eσ acts trivially on v(ι∗OL). Using that ι∗OL is

atomic, we know from Theorem C.1.2 that there exists µ ∈ H1(X, TX) such that Λσ − eµ ∈
Ker(obsι∗OL) ⊂ HT2(X), where we used again that for a symplectic form σ the action of the
operator Λσ agrees up to a constant with the action of H0(X,Λ2TX). By Lemma C.7.4 this
yields

Λσ(ι∗c1(L)2/8) = eµ(ι∗c1(L)/2.) = µyι∗c1(L)/2 ∈ Hn,n+2(X).
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Since Λσ is injective when restricted to Hn+2,n+2(X) it immediately follows that also ι∗c1(L)2

vanishes, because we assumed ι∗c1(L) = 0.
Consider now a Kähler class ω ∈ H1,1(X) which restricts to a Kähler class on L. The

projection formula yields

ι∗(c1(L) · ι∗ωn−1) = ι∗c1(L) · ωn−1 = 0

which, as ι∗ is injective restricted to H2n(L,C), implies that c1(L) is ι∗ω-primitive. Applying
once more the projection formula

ι∗(c1(L)2 · ι∗ωn−2) = ι∗c1(L)2 · ωn−2 = 0

together with the injectivity of ι∗ on top degree and the Hodge–Riemann bilinear relations
yields that c1(L) = 0 ∈ H2(X,Q).
Step 4. Let us now consider the case ι∗c1(L) 6= 0. The degree 2n + 2-component of

the Mukai vector v(ι∗OL) of ι∗OL is by Lemma C.7.4 equal to ι∗c1(L)/2. Since ι∗OL is
atomic, by Theorem C.1.2 to a given symplectic form σ ∈ H0(X,Ω2

X) there exists as above
µ ∈ H1(X, TX) such that eµ − Λσ ∈ Ker(obsι∗OL) ⊂ HT2(X). This implies

eµ(ι∗[L]) = Λσ(ι∗c1(L)/2) 6= 0.

Applying eσ to this equality and noting once more that this operator has trivial kernel
restricted to Hn−1,n+1(X) we obtain the equality

eσ(eµ(ι∗[L])) = eσ(Λσ(ι∗c1(L)/2)).

Since L is Lagrangian, we know eσ(ι∗c1(L)/2) = eσ(ι∗[L]) = 0. The above equality can,
therefore, be written as

[eσ, eµ](ι∗[L]) = [eσ,Λσ](ι∗c1(L)/2) = hσ(ι∗c1(L)/2) = ι∗c1(L)/2.

Lemma C.7.3 shows that [eσ, eµ] is equal to eω for some ω ∈ H1(X,Ω1
X).

Step 5. We claim that we can assume that ±ω is a Kähler class.
Indeed, we have already proven that the image of the restriction morphism

ι∗ : H1(X,Ω1
X)→ H1(L,Ω1

L)

is one-dimensional. Hence, there exists a Kähler class ω̃ ∈ H1(X,Ω1
X) whose image ι∗ω̃ is a

Kähler class and generates Im(ι∗). Thus, there exists k ∈ C such that ι∗ω = kι∗ω̃ for ω from
above. Moreover, Lemma C.7.3 shows that there exists µ̃ ∈ H1(X, TX) such that

−µ̃yσ = −eµ̃(σ) = kω̃.

In particular, using once more Lemma C.7.3 we obtain

[eσ, eµ](ι∗[L]) = eω(ι∗[L]) = ω ∧ ι∗[L] = kω̃ ∧ ι∗[L] = [eσ, eµ̃](ι∗[L]).

This shows that the element µ− µ̃ ∈ H1(X, TX) is contained in the kernel of obsι∗OL and all
the above arguments remain valid replacing µ with µ̃.
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Step 6. Summing up the above discussion, we obtain the equality

eω(ι∗[L]) = ι∗[L] ∧ ω = ι∗([L] ∧ ι∗ω) = ι∗c1(L)/2 (C.7.5)

for ω = −µyσ ∈ H1(X,Ω1
X) a (possibly negative) multiple of a Kähler class and µ ∈

H1(X, TX) such that Λσ − eµ ∈ Ker(obsι∗OL) ⊂ HT2(X).
Repeating this argument with the same ω and µ we get again by Lemma C.7.4

Λσ(ι∗c1(L)2/8) = eµ(ι∗c1(L)/2).

As before, applying eσ we deduce

ι∗c1(L)2/4 = eω(ι∗c1(L)/2). (C.7.6)

One now concludes the proof as in the case ι∗c1(L) = 0. We sketch the argument. First,
c1(L)/2− ι∗ω is ι∗ω-primitive using (C.7.5). Moreover

(c1(L)/2− ι∗ω)2ι∗ωn−2 = (c1(L)2/4− ι∗ω ∧ c1(L) + ι∗ω2)ι∗ωn−2

vanishes by employing (C.7.6). Invoking the Hodge–Riemann bilinear relations yields
c1(L)/2 = ι∗ω. This finishes the proof.

It remains to prove the two lemmata used in the above proof.

Lemma C.7.4. Let X be a smooth symplectic projective manifold and ι : L ⊂ X a smooth
Lagrangian submanifold. Then v(ι∗OL) = ι∗ exp(c1(L)/2).

Proof. It is well-known that the normal bundle sequence

0→ TL → TX |L → NL|X → 0

combined with the isomorphism σ : TX ∼= ΩX , the short exact sequence

0→ N∨L|X → ΩX |L → ΩL → 0

and the fact that L is Lagrangian yield NL|X ∼= ΩL.
Using the Grothendieck–Riemann–Roch theorem we get

ch(ι∗(OL))td(X) = ι∗(ch(OL)td(L)) = ι∗td(L).

Multiplying the above equation by td(X)−1/2 we obtain

v(ι∗OL) = ι∗(td(L) · ι∗td(X)−1/2).

The previous paragraph yields

ι∗td(X) = td(TX |L) = td(L) · td(ΩL).

From this we obtain

v(ι∗OL) = ι∗(td(L) · td(L)−1/2 · td(ΩL)−1/2) = ι∗(td(L)1/2 · td(ΩL)−1/2). (C.7.7)
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Recall that given the formal Chern roots ei of a bundle E its Todd class is the product

td(E) =
∏
i

Q(ei)

where
Q(x) = x

1− e−x .

The assertion is now a consequence from the identity

x

1− e−x ·
( −x

1− ex
)−1

= x

1− e−x ·
ex − 1
x

= ex − 1
1− e−x = ex

applied to (C.7.7).

Lemma C.7.5. Let X be a hyper-Kähler manifold and ι : L ⊂ X a Lagrangian subvariety.
Then the morphism

H1(X, TX)→ H∗(X,C), µ 7→ µyι∗[L]

is non-trivial.

Proof. The assertion can be deduced from results of Voisin [212, Sec. 1]. We want to give
another proof using the LLV algebra.
By assumption, as ι : L ⊂ X is Lagrangian, we know that

σ ∧ ι∗[L] = 0 = σ̄ ∧ ι∗[L] ∈ H∗(X,C)

for σ, σ̄ the (anti-)holomorphic two-form. Using again (C.7.1) we see that Λσ(ι∗[L]) = 0.
Hence, assuming

H1(X, TX)→ H∗(X,C), µ 7→ µyι∗[L]

to be trivial implies that

HT2(X)→ H∗(X,C), µ 7→ µyι∗[L]

is also trivial. As demonstrated in the proof of Proposition C.3.1 this would imply that ι∗[L]
is annihilated by the LLV algebra. We obtain a contradiction, as there exists a Kähler class
ω ∈ H2(X,C) which restricts non-trivially to L and, therefore, eω(ι∗[L]) 6= 0.

The statement of the lemma can be interpreted by saying that no Lagrangian subvariety
can be deformed (cohomologically) along with to all Kähler deformations of X.

C.7.2. 1-Obstructedness
Atomic Lagrangians ι : L ⊂ X and the sheaves ι∗L for L ∈ Pic0(L) are a good testing ground
for Conjecture E. By Corollary C.4.7 it is equivalent to study whether these sheaves are
1-obstructed. In this section, we discuss the obstruction map for atomic Lagrangians. See
also [139, Sec. 3.1] for a related discussion.
Recall that by adjunction the group Ext2(ι∗OL, ι∗OL) decomposes into

Ext2(ι∗OL, ι∗OL) ∼= H2(L,OL)⊕H1(L,Ω1
L)⊕H0(L,Ω2

L).
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Similarly, the degree two polyvector fields HT2(X) decompose by definition as

HT2(X) = H2(X,OX)⊕H1(X, TX)⊕H0(X,Λ2TX).

Using these decompositions we want to refine the study of the obstruction map

_y
(
At0

ι∗OL + Atι∗OL + At2
ι∗OL/2

)
: HT2(X)→ Ext2(ι∗OL, ι∗OL).

The fact that L is Lagrangian implies immediately that At0
ι∗OLyσ̄ vanishes for σ̄ ∈ H2(X,OX).

The induced map
H1(X, TX)→ H1(L,Ω1

L)
is induced by the morphism TX → NL|X together with the isomorphism NL|X ∼= Ω1

L. Under
the isomorphism Ω1

X
∼= TX the composition

H1(X,Ω1
X)→ H1(L,Ω1

L)

agrees (up to a constant) with the pullback map on cohomology.
The most difficult piece is to study the induced map

ψ : H0(X,Λ2TX)→ H2(L,OL)⊕H1(L,Ω1
L)⊕H0(L,Ω2

L).

The morphism H0(X,Λ2TX)→ H0(L,Ω2
L) is again zero due to L being Lagrangian. However,

the map ψ is not equal to the projection to this component.
Indeed, Lemma C.7.4 and Theorem C.1.8 show that as soon as c1(ωL) ∈ H2(X,Q) is non-

trivial, then the degree 4n component of v(ι∗OL) is non-trivial. In particular, the operator
Λσ, whose action agrees with H0(X,Λ2TX) up to multiples, acts non-trivially on v(ι∗OL).
Lemma C.4.2 then shows that ψ must also be non-zero.
From the proof of Theorem C.1.8 we deduce that the image of the morphism ψ projected

onto the component H1(L,Ω1
L) should be a multiple of c1(L). This then would prove that the

atomic sheaf ι∗OL is indeed 1-obstructed and, by Corollary C.4.7, would satisfy Conjecture E.
Note that in [139, Rem. 3.10] it is speculated that the map ψ is the zero morphism for

the atomic sheaf ι∗ω1/2
L . From Lemma C.7.4 we conclude that the Mukai vector of ι∗ω1/2

L is
just ι∗[L] ∈ H2n(X,Q). In particular, the cohomological obstruction map obs

ι∗ω
1/2
L

vanishes

when restricted to H0(X,Λ2TX). This shows that ψ is zero if and only if ι∗ω1/2
L satisfies

Conjecture E. This seems to be suggested from [61] as discussed in [139, Rem. 3.10].

C.7.3. Graded Commutativity
The results from [147] imply that for an atomic Lagrangian ι : L ⊂ X we have a graded
multiplicative isomorphism

Ext∗(ι∗OL, ι∗OL) ∼= H∗(L,C).

In particular, for all line bundles L ∈ Pic(X) the above isomorphism remains valid for the
atomic sheaf ι∗ι∗L. This leads to the following immediate consequence.

Proposition C.7.6. Let ι : L ⊂ X be an atomic Lagrangian and L ∈ Pic(X). The algebra
structure of Ext∗(ι∗ι∗L, ι∗ι∗L) is graded-commutative. If X is of dimension at most four,
then for allM∈ Pic(L) the algebra Ext∗(ι∗M, ι∗M) is graded-commutative.
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Proof. The first part follows from the above discussion. For the second part we employ
[147, Thm. 0.1.1] and the vanishing of H3(L,OL) which implies that in the situation of loc.
cit.

d1,1
2 : H1(L,Ω1

L)→ H3(L,OL)

is the zero map.

We have stated Conjecture F only for vector bundles. The proposition shows that (a
stronger form of) its conclusion holds true for line bundles supported on atomic Lagrangians.
Moreover, we see the above as evidence for Conjecture F. Let us elaborate how one might

be able to prove the conjecture employing the above in the case of K3 surfaces.

Proposition C.7.7. Let S be a K3 surface with a hyperbolic plane U ⊂ Pic(S) and [E ] ∈
MH(v) a generic point of a smooth moduli space corresponding to an H-slope stable bundle.
Then there exists a smooth curve C ⊂ S, a line bundle L ∈ Pic(C) and a derived equivalence
Φ ∈ Aut(Db(S)) such that Φ(E) ∼= ι∗L.

Proof. The assumption on the Picard group of S implies that there exists an isometry of
H̃(S,Z) with real spinor norm one sending v = v(E) to the class (0, [C], 0) for C ⊂ S a
smooth connected curve.
Indeed, we can write

H̃(S,Z)alg = U ⊕ U ⊕ L0

where the first hyperbolic plane is spanned by α = 1 and β = p. Using [82, Prop. 3.3] we
can modify the part of v which lies in the first two hyperbolic planes as desired to have no
contribution from the classes α and β.

From [109] we know that there exists an auto-equivalence Φ ∈ Aut(Db(S)) such that the
induced action on cohomology agrees with the above isometry. This yields the isomorphism

Φ: MH(v) ∼= Mσ(0, [C], 0)

for some stability condition σ ∈ Stab†(S).
We consider now two cases. If v2 = −2, where we use the usual convention on K3 surfaces

that we multiply the generalized Mukai pairing with −1, then MH(v) = [E ] for the spherical
bundle E . We apply [17, Prop. 6.8] as explained in [15, Rem. 6.10] to obtain a derived
equivalence Ψ acting trivially on cohomology and sending σ into the Gieseker chamber. The
composition therefore satisfies

Ψ ◦ Φ(E) ∼= OC(−1)

for the smooth rational curve C.
If v2 ≥ 0 we can employ [17, Thm. 1.1] to find an equivalence Ψ sending σ into the

Gieseker chamber such that the composition Ψ ◦Φ induces a birational map between MH(v)
and MH(0, [C], 0). In particular, for a generic stable bundle [E ] ∈ MH(v) the composition
Ψ ◦ Φ sends [E ] to a generic stable sheaf in MH(0, [C], 0), which is a line bundle supported
on a curve with class [C].

The algebra structure of the Yoneda Ext algebra is invariant under derived equivalences.
Using Proposition C.7.6 we get the multiplicative isomorphism

Ext∗(E , E) ∼= Ext∗(ι∗L, ι∗L) ∼= H∗(C,C).
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This gives another argument for the (well-known) fact that Ext∗(E , E) is graded-commutative.
In particular, this reproves Conjecture F for the bundle E . Note that if we start with a stable
bundle E on an arbitrary projective K3 surface, we can always deform the surface together
with E via twistor lines such that a hyperbolic plane is contained in its Picard group.

We expect that a similar approach could be pursued for higher-dimensional hyper-Kähler
manifolds. A promising candidate would be the case of the Hilbert scheme of n points S[n]

of a K3 surface using the results of [25].
Here is how this could be pursued. Using twistor lines and [210, Prop. 6.3] one can deform

a stable atomic bundle E on S[n] to a bundle E ′ on S′[n] such that U ⊂ Pic(S′) without
modifying the Ext algebra structure. Employing [25, Prop. 9.8] we find a derived equivalence
Φ mapping the Mukai vector ṽ(E ′) = rk(E ′) + c1(E ′) + sβ of E ′ in the Mukai lattice H̃(X,Q)
to one of the form 0α + λ + kβ for λ ∈ H2(X,Q) the dual of a smooth curve C ⊂ S′[n] and
some k ∈ Q. However, the image Φ(E ′) might be a priori an arbitrary complex. In the case
of K3 surfaces, a solid knowledge of the stability manifold was employed to conclude. In
higher-dimensions, a further study of the equivalences involved to construct Φ via [25, Prop.
9.8] could potentially shed more light on the situation.

C.7.4. Formality
We want to finish this section by discussing formality for atomic Lagrangians.
Employing [148, Thm. 0.1.2] and [46, Prop. 1.4] we get the following result.

Proposition C.7.8. Let ι : L ⊂ X be an atomic Lagrangian and L ∈ Pic(X). Assume that
ωL admits a square root. Then RHom(ι∗(ω1/2

L ⊗ ι∗L), ι∗(ω1/2
L ⊗ ι∗L)) is formal.

Note that for a Lagrangian projective space Pn ⊂ X we know that by [91, Thm. A]
RHom(ι∗L, ι∗L) is formal for all line bundles L ∈ Pic(Pn). See Section C.8 for further cases
of line bundles on atomic Lagrangian whose associated derived endomorphism dg algebra is
formal.

C.8. Examples and further properties
In this section, we discuss some example and further properties that are shared by atomic
sheaves and complexes.

C.8.1. Examples of atomic objects
We will study some examples of atomic objects together with their properties. Recall that by
Proposition C.3.10 being atomic is stable under derived equivalences as well as deformations.
Therefore, every example produces via these two operations many more examples.

C.8.1.1. Pn-objects

For the definition and properties of Pn-objects, see [110].
From Theorem C.1.2 and Theorem C.1.3 we deduce.

Proposition C.8.1. If E ∈ Db(X) is a Pn-object, then E is atomic except if v(E) is annihi-
lated by the LLV algebra.
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Again, if Conjecture E holds, the above implication that Pn-objects E are atomic holds
unconditionally and their Mukai vectors v(E) cannot be annihilated by g(X).
Moreover, Pn-objects E are simple by definition and the associated derived endomorphism

dg algebra RHom(E , E) is formal as shown in [91, Thm. A]. Moreover, they give further
evidence for Conjecture E.

Corollary C.8.2. Let E be an atomic Pn-object. Then E is 1-obstructed and satisfies the
conclusion of Conjecture E.

Proof. As Ext2(E , E) ∼= C, the kernel of the obstruction map Ker(χE) has at least dimension
b2(X)−1. Lemma C.4.2 shows that this kernel is contained under the modified HKR isomor-
phism in the kernel Ker(obsE) of the cohomological obstruction map. By Theorem C.1.2, this
space is b2(X) − 1-dimensional, which implies that E is 1-obstructed. The second assertion
now follows from Corollary C.4.7.

In particular, given an H-slope stable torsion free atomic sheaf E which is also a Pn-object
the connected component of the moduli space MH(v(E)) containing [E ] is a smooth point.
In [172], it is shown that in some examples such moduli spaces are connected.
Examples of atomic Pn-objects are line bundles and the sheaves ι∗OPn(k) for ι : Pn ⊂ X.

See also [172, Thm. 1.4] for many slope stable vector bundles on K3[2]-type hyper-Kähler
manifolds which are Pn-objects.

C.8.1.2. k(x)-orbit

Skyscraper sheaves of points k(x) for x ∈ X are also examples of atomic sheaves. They have
the property

Ext∗(k(x), k(x)) ∼=
∗∧

Ext1(k(x), k(x))

and, therefore, the Yoneda multiplication is again graded-commutative.
Another example of this kind are Lagrangian tori in hyper-Kähler manifolds. Assume

we are given a Lagrangian fibration π : X → Pn. A numerically trivial line bundle L on a
generic fibre ι : A = π−1(p) ⊂ X induces the atomic sheaf ι∗L ∈ Db(X). In [4] an example
of a derived equivalence is being discussed, which extends the fibrewise Poincaré Fourier–
Mukai transform. As explained in [25, Sec. 10.2] the generic skyscraper sheaf k(x) for x ∈ X
is being mapped to ι∗L. In particular, in this situation the results of [147,148] as discussed in
Section C.7 extend to all numerically trivial line bundles L on generic fibres A ⊂ X. That is,
in these cases the local-to-global Ext spectral sequence degenerates multiplicatively and the
associated derived endomorphism dg algebra is formal. Therefore, the irreducible component
of the moduli space M of slope stable sheaves containing ι∗L is in these cases generically
smooth and an open subset of M possesses a non-degenerate symplectic form.
For examples of sheaves with positive rank being derived equivalent to skyscraper sheaves

see [25, Prop. 10.1] or [139, Thm. 1.6].

C.8.1.3. Fano variety of lines on cubics

The Fano variety of lines F (Y ) of a smooth cubic fourfold Y ⊂ P5 admits for every smooth
hyperplane section Y ∩H a Lagrangian surface ι : F (Y ∩H) ⊂ F (Y ). Powers Li ∈ Pic(F (Y ∩
H)) of the Plücker polarization yield atomic sheaves ι∗Li ∈ Db(F (Y )).
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Indeed, the cohomology H∗(F (Y ),Q) agrees with the Verbitsky component in this case and
applying Remark C.3.4 and the Grothendieck–Riemann–Roch Theorem, the claim follows
from a straightforward Chern character computation. See also [139, Sec. 13] for images of
these atomic sheaves under derived equivalences for special cubic fourfolds. Note that in this
case we again have an isomorphism

Ext∗(ι∗Li, ι∗Li) ∼=
∗∧

Ext1(ι∗Li, ι∗Li) ∼= H∗(F (Y ∩H),C).

C.8.1.4. Lagrangian plane in double EPW sextics

In the case of K3 surfaces, the structure of the Ext algebra of simple atomic objects only
depends on one numerical value, namely the self-intersection of the Mukai vector or, equiva-
lently, the dimension of the first extension group. The examples of atomic objects discussed
above could convey the impression that Ext algebras of atomic objects on higher-dimensional
hyper-Kähler manifolds may be as well easy to understand. We therefore want to give one
more example where the Ext groups have interesting dimensions.
Let X be a double EPW sextic, see [72] for an overview of these varieties. The natural

antisymplectic involution has a connected Lagrangian surface ι : Z ⊂ X as fixed locus, which
is of general type [72, Cor. 2.9]. The relevant Hodge numbers are

h1,0 = 0, h2,0 = 45, h1,1 = 100,

see [72, Sec. 3.3]. In the proof of [72, Prop. 4.22] the following equalities

ι∗[Z] = 5h2 − c2(X)
3 , c3(ι∗ωZ) = 9h · ι∗[Z], c4(ι∗ωZ) = ι∗[Z]2 − 63h2 · ι∗[Z]

in H∗(X,Q) are obtained, where h is the canonical polarization on X obtained from the
description as a double cover. Using c1(Z) = −3ι∗h ∈ H2(Z,Q), it is straightforward to verify
that the cohomological obstruction map has one-dimensional image using Remark C.3.4.
In particular, we have that ι : Z ⊂ X is an atomic Lagrangian and ι∗OZ is an atomic sheaf.

Via adjunction, we therefore have

Ext0(ι∗OZ , ι∗OZ) ∼= C, Ext1(ι∗OZ , ι∗OZ) = 0, Ext2(ι∗OZ , ι∗OZ) ∼= C190.

From [72, Sec. 3.3] we know that c1(Z) = −3ι∗h + τ ∈ H2(Z,Z) for a two-torsion class τ .
Especially, in this example we have that c1(Z) is not contained in the image of the restriction
map

ι∗ : H2(X,Z)→ H2(Z,Z)

with integer coefficients, whereas this holds true with rational coefficients by Theorem C.1.8.

C.8.2. Tangent bundle

The following is the most prominent example of a bundle which is modular, slope stable and
hyperholomorphic, but not atomic as soon as the dimension of the manifold is greater than
two.
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Proposition C.8.3. Let TX be the tangent bundle of a hyper-Kähler manifold X of di-
mension 2n > 2 which is of K3[n],Kumn,OG6 or OG10-type, or an arbitrary hyper-Kähler
manifold of dimension four. Then TX is not atomic.

Proof. Let us assume that TX is atomic. The projection v(TX)SH ∈ SH(X,Q) is non-zero
and using Remark C.3.4 we must have

v(TX)SH =
(

2n+ 2n− 24
24 c2(X) + 120 + 7n

2880 c2(X)2 − 120 + n

720 c4(X) + . . .

)
SH

= 2n
n! T (α+ kβ)n

(C.8.1)

for some k ∈ Q. From [25, Prop. 3.4] we know that there exists rX ∈ Q such that

v(OX)SH = 1
n!T (α+ rXβ)n. (C.8.2)

From equations (C.8.1) and (C.8.2) we infer that

k = 2n− 24
2n rX (C.8.3)

by comparing coefficients in degree four.
If now n = 2, we compare the coefficients in front of T (β2) in (C.8.1) and (C.8.2) to obtain

the following equality in degree eight

100td1/2
4 =

( 35
288c2(X)2 − 5

72c4(X)
)

=
( 67

1440c2(X)2 − 61
360c4(X)

)
= v(TX)4 ∈ H8(X,Q).

Together with the relation
∫
X td = 3 involving c2(X)2 and c4(X) we obtain the unique

solution ∫
X

c2(X)2 = 576,
∫
X

c4(X) = −432

which violates the known bounds of Guan [84].
In the known examples, we proceed analogously making use of the fact that we know the

generalized Fujiki constants C(c2(X)2) and C(c4(X)) through knowing the Riemann–Roch
polynomial [30, Cor. 2.7]. Recall that the knowledge of the generalized Fujiki constant C(γ)
of a class γ ∈ H4s(X,Q) is precisely knowing the projection γSH ∈ SH4s(X,Q) for a class γ
which stays of type (2s, 2s) on all deformations.
From (C.8.2) we infer

C(td1/2
4 )q4 = 1

n!

(
n

2

)
r2
xT (αn−2β2),

where q4 ∈ SH8(X,Q) is defined by the property∫
X
λ2n−4q4 = q(λ)n−2
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for all λ ∈ H2(X,Q). Analogously to the four-dimensional case, using (C.8.1) and (C.8.3) we
get

C(v(TX)4)q4 = 2n
n!

(
n

2

)(2n− 24
2n

)2
r2
XT (αn−2β2).

Combining these two equations, we obtain an equation involving C(c2(X)2) and C(c4(X))
which is violated in all the known examples, see [30, Sec. 4].

Remark C.8.4. In particular, in all of the above cases the tangent bundle is not 1-obstruc-
ted. We know that the tangent bundle does deform along to all geometric deformations
coming from H1(X, TX). Together with Lemma C.4.2 we infer that the two noncommutative
first order deformation directions, namely the gerby and the Poisson deformations, yield
different obstructions in Ext2(TX , TX).

C.8.3. Hard Lefschetz
We discuss here a possible sl2-structure on the Ext algebra Ext∗(E , E) for simple atomic
sheaves and complexes.
Recall the following result due to Verbitsky [208, Thm. 4.2A].

Theorem C.8.5. Let E be a slope stable (projectively) hyperholomorphic bundle. The image
of σ̄ ∈ H2(X,OX) under the obstruction map yields an element f ∈ Ext2(E , E) which has the
Hard Lefschetz property for the algebra Ext∗(E , E).

The Hard Lefschetz property means that

f i ◦_: Extn−i(E , E)→ Extn+i(E , E)

is an isomorphism for all i > 0. Note that Ext∗(E , E) ∼= H∗(End(E , E)) and

End(E , E) ∼= OX ⊕ End(E , E)0

via the trace morphism, where End(E , E)0 is the bundle of traceless endomorphisms. The
image of the subalgebra generated by the Hard Lefschetz element f corresponds under this
isomorphism to H∗(OX).

Using Proposition C.1.6 we obtain.

Corollary C.8.6. For a slope stable atomic bundle E there exists an element f ∈ Im(χE) of
degree two which has the Hard Lefschetz property.

Assuming Conjecture E we have that the image of the obstruction map in degree two is
spanned by a Hard Lefschetz element.
Similarly, for atomic Lagrangians ι : L ⊂ X we can consider the multiplicative isomorphism

Ext∗(ι∗OL, ι∗OL) ∼= H∗(L,C) (C.8.4)

alluded to in Section C.7.3. By Theorem C.1.8 and the discussion in Section C.7.2, there
exists an element µ ∈ H1(X, TX) whose image under the obstruction map χι∗OL followed by
the isomorphism (C.8.4) and projected to H1(L,Ω1

L) yields an ample class. From this we
deduce.
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Proposition C.8.7. For an atomic Lagrangian ι : L ⊂ X the image of H1(X, TX) under the
obstruction map is spanned by an element f ∈ Ext2(ι∗OL, ι∗OL) having the Hard Lefschetz
property.

Again one can use auto-equivalences to obtain the same conclusion for a wider range of
atomic objects.
Let E be a simple atomic object. The Hard Lefschetz property for an element χE(µ) =

µE = f ∈ Ext2(E , E) in the image of χE in degree two in particular implies that 0 6= µnE =
fn ∈ Ext2n(E , E). Using once more the defining property of the Hochschild Chern character
we get

TrX×X(µn ◦ chHH(E)) = TrX(µnE) 6= 0.

Thus, there must exist an element γ ∈ HT2(X) such that γnyv(E) 6= 0. This implies that the
projection v(E)SH of v(E) to the Verbitsky component SH(X,Q) is non-zero, as the Verbitsky
component is the irreducible representation exhausting H0,2n(X) which contains γnyv(E). In
all examples of simple atomic objects E we are aware of, the condition v(E)SH 6= 0 is satisfied.
For example, if E is a sheaf or derived equivalent to an object with non-zero rank, we know
this holds true by Lemma C.3.7.
Assuming Conjecture E, we expect that the generator of the image of χE in degree two for a

simple atomic object always has the Hard Lefschetz property when v(E) projects non-trivially
to the Verbitsky component.

C.A. Spherical objects on hyper-Kähler manifolds
In Section C.4 we studied the interplay of the obstruction map and the cohomological obstruc-
tion map. In the appendix, we want to further use the relationship between topological prop-
erties of the Mukai vector v(E) of an object E ∈ Db(X) and its extension groups Ext∗(E , E).
Throughout this section X is a fixed projective hyper-Kähler manifold of dimension 2n.

Let us define the subalgebras
Ri ⊂ HH∗(X)

generated by all elements of degree at most i for 2 ≤ i ≤ 2n. Since the modified HKR
isomorphism is graded as well as multiplicative there are analogous subalgebras

Wi := IK(Ri) ⊂ HT∗(X).

Recall that HΩ∗(X) is a free HT∗(X)-module of rank one with generator σn leading to the
isomorphism

ϕ : HT∗(X) ∼= HΩ∗(X), µ 7→ µyσn.

We denote Ui := ϕ(Wi). One can check that this equals the subalgebra of the de Rham
algebra H∗(X,Ω∗X) generated by elements of degree at most i. To illustrate the above, for
i = 2 we have

ϕ(W2) = U2 = SH(X,C) ⊂ H∗(X,Ω∗X) ∼= H∗(X,C).

Similar comparisons can be made for larger i.

Proposition C.A.1. Let E ∈ Db(X) be an object and µ ∈ Ri such that µ ◦ chHH(E) 6= 0.
Then there exists 2 ≤ j ≤ i such that 0 6= Extj(E , E).

169



Proof. The defining property of the Hochschild Chern character together with the non-
degeneracy of the Serre duality trace shows that there exists γ ∈ HH∗(X) such that

0 6= TrX×X(γ ◦ µ ◦ chHH(E)) = TrX(γE ◦ µE).

In particular, 0 6= µE ∈ Ext∗(E , E).
Since µ ∈ Ri, we can write

µ =
∑
k

γ1
k ◦ · · · ◦ γrk

and each γlk is contained in HHs(X) for 2 ≤ s ≤ i. Now, µE 6= 0 implies that there must
exist k such that

0 6= (γ1
k)E ◦ · · · ◦ (γrk)E ∈ Ext∗(E , E)

which implies that 0 6= (γlk)E ∈ Exts(E , E).

We note that HT∗(X) is equipped with a non-degenerate pairing 〈_,_〉 given by

〈v, w〉 := prHT4n(X)(v ∧ w) ∈ HT4n(X) ∼= C,

i.e. one takes the normal product of two elements and projects it to the top degree component
HT4n(X). Note that under the multiplicative isomorphism

HT∗(X) ∼= H∗(X,C)

from (C.2.1) induced by the isomorphism TX ∼= Ω1
X coming from a symplectic form (which

is different than the isomorphism ϕ), the non-degenerate pairing 〈_,_〉 corresponds to

(v, w) 7→
∫
X
vw

up to scaling. From Hard Lefschetz and the Hodge–Riemann bilinear relations we deduce
that for each i we have a orthogonal decomposition

Wi ⊕W⊥i = HT∗(X) (C.A.1)

with respect to 〈_,_〉 and, therefore, similarly

Ui ⊕ U⊥i = HΩ∗(X), (C.A.2)

where we define U⊥i := ϕ(W⊥i ).

Theorem C.A.2. Let E ∈ Db(X) be an object such that v(E) projects non-trivially to Ui.
Then there exists 2 ≤ j ≤ i such that Extj(E , E) 6= 0.

Proof. Since the pairing 〈_,_〉 is non-degenerate when restricted to Wi there exists by as-
sumption an element µ ∈ Wi such that µyv(E) 6= 0. Using the modified HKR isomorphism
we know there exists γ = (IK)−1(µ) ∈ Ri such that

γ ◦ ch(E) 6= 0.

Proposition C.A.1 yields now the assertion.
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This result is already sufficient to prove one part of Theorem C.1.9.
Corollary C.A.3. Let X be a hyper-Kähler manifold of dimension greater than two and E
a non-zero sheaf. Then Ext2(E , E) 6= 0 and, in particular, E is not spherical.

Proof. We know from Lemma C.3.7 that v(E)SH is non-zero. Theorem C.A.5 then implies
that Ext2(E , E) 6= 0.

Remark C.A.4. We want to remark that there do exist non-zero objects in the bounded
derived category of a hyper-Kähler manifold satisfying Exti(E , E) = 0 for all 0 < i < 2n. For
example, on a four-dimensional hyper-Kähler manifold X the object E defined as the cone of
the natural morphism

OX → OX [2]
satisfies ch(E) = 0 and Exti(E , E) = 0 for 0 < i < 4. In this example E is also simple, but
not spherical, since Ext−1(E , E) 6= 0.
An important class of auto-equivalences of a K3 surface S is given by spherical twists STE

along spherical objects E ∈ Db(S). Recall that an object F ∈ Db(Y ) is spherical, if its Ext
algebra Ext∗(F ,F) is isomorphic to the complex cohomology H∗(SdimY ,C) of a sphere of
dimension dim(Y ).

It is notoriously hard to construct examples of interesting derived equivalences of higher-
dimensional hyper-Kähler manifolds, see [2] for an account of some of the known construc-
tions. The following is a partial explanation for this difficulty.
Theorem C.A.5. Let X be a projective hyper-Kähler manifold of dimension 2n such that
its cohomology is generated by elements of degree less than 2n− 1. Then Db(X) contains no
spherical objects.

Proof. If E ∈ Db(X) is a spherical object, then Exti(E , E) = 0 for 0 < i < 2n. Theorem C.A.2
implies therefore that v(E) must project trivially to U2n−1.
Our assumptions imply that we have U2n−1 = H∗(X,Ω∗X) and therefore v(E) = 0. This

contradicts the equality

〈v(E), v(E)〉 = χ(E , E) =
∑
i

(−1)iexti(E , E) = 2,

where 〈_,_〉 denotes the generalized Mukai pairing on H∗(X,Ω∗X), see [60].

Proof of Theorem C.1.9. The first part is proven in Corollary C.A.3. The second part of the
assertion is implied by Theorem C.A.5 and the fact that for these manifolds the cohomology
is generated by classes of degree less than 2n, see [136, Lem. 3.16] for the case of K3[n]-type
and [81, Thm. 1.2] for the case of OG10-type hyper-Kähler manifolds.

Remark C.A.6. (i) The proof of Theorem C.A.5 does not exclude the existence of spherical
objects on hyper-Kähler manifolds in total generality. Still, the proof shows that for a
potential spherical object E ∈ Db(X) one has that its Mukai vector v(E) must be contained in
the subspace U⊥2n−1 ⊂ H∗(X,Q), i.e. the orthogonal complement of the subalgebra generated
by elements of degree 2n−1. In particular, this subspace is a subspace of Hn,n(X). Moreover,
the LLV algebra g(X) acts trivially on the subspace U⊥2n−1. Thus, the induced derived
equivalence of a potential spherical object would act trivially on all non-trivial representations
of the LLV algebra such as the Verbitsky component.
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(ii) Note that one can prove that if E is a spherical object, then its Mukai vector v(E) must
be contained in SH(X,Q)⊥ ⊂ H∗(X,Q) without using Hochschild (co)homology. Indeed,
the induced action of STE on SH(X,Q) would be the reflection along the vector v(E)SH ∈
SH(X,Q). However, there is no isometry in O(H̃(X,Q)) inducing the reflection along a
one-dimensional subspace via [25, Eq. (2.2)].

Motivated by the above, we finish with the following.

Conjecture G. Let X be a projective hyper-Kähler manifold of dimension greater than two.
Then Db(X) contains no spherical objects.
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D. Second Chern class and Fujiki constants of
hyperkähler manifolds

ABSTRACT. We study characteristic classes on hyperkähler manifolds
with a view towards the Verbitsky component. The case of the second
Chern class leads to a conditional upper bound on the second Betti
number in terms of the Riemann–Roch polynomial, which is also valid
for singular examples. We discuss the general structure of characteristic
classes and the Riemann–Roch polynomial on hyperkähler manifolds
using among other things Rozansky–Witten theory.

D.1. Introduction

In the study of smooth projective varieties with trivial canonical bundle, irreducible compact
hyperkähler manifolds take up a prominent place, partly due to the scarcity of examples. It
is therefore natural to study a priori topological restrictions that such varieties must obey.
There are several results in this direction, for example [84,113,122,191,193,194].
Given an irreducible hyperkähler manifold X of dimension 2n, its cohomology H∗(X,R)

is equipped with the Beauville–Bogomolov–Fujiki form qX . Moreover, H∗(X,R) is naturally
a module under the Looijenga–Lunts–Verbitsky (LLV) Lie algebra g(X)R [81,130,207]. This
leads to a decomposition of H∗(X,R) into irreducible representations. Arguably, the most
important one is the Verbitsky component SH(X,R) ⊂ H∗(X,R), which is the subalgebra
generated by H2(X,R).
A natural question that arises is how much information this subalgebra encodes on the full

cohomology. For example, one could ask which Chern classes of sheaves and, in particular,
characteristic classes are contained inside the Verbitsky component.
One case we consider here is that of the second Chern class c2 := c2(X) ∈ H4(X,R).

Maybe a priori counter-intuitively, it is not always contained in the Verbitsky component,
see for example [138, Lem. 1.5] for the case of the Hilbert scheme of n points on a K3 surface
with n > 3. Note that c2 lies in the Verbitsky component if and only if it is a multiple of the
class q ∈ H4(X,Q), the dual of the Beauville–Bogomolov–Fujiki form.
We answer completely the question when c2 lies inside the Verbitsky component using the

Riemann–Roch polynomial of X. Recall that for a class α ∈ H4k(X,R) which remains of type
(2k, 2k) on all small deformations of X, there exists a number C(α), called the generalized
Fujiki constant of α, such that

∀β ∈ H2(X,R) C(α) · qX(β)n−k =
∫
X
α · β2n−2k. (D.1.1)

Let td be the Todd class of X and let td2k be its degree 2k part. The Riemann–Roch
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polynomial of X is defined as

RRX(q) :=
n∑
i=0

C(td2n−2i)
(2i)! qi = C(1)

(2n)!q
n + C(td2)

(2n− 2)!q
n−1 + · · ·+ C(td2n)

1
=: A0q

n +A1q
n−1 +A2q

n−2 + · · ·+An.

The Hirzebruch–Riemann–Roch theorem, whence the name, together with the property of
the generalized Fujiki constants assert that this polynomial satisfies

RRX(qX(c1(L))) = χ(X,L)

for all line bundles L ∈ Pic(X). In particular, we have An = n+ 1.
The following is the main result which, additionally, yields an upper bound on the second

Betti number b2(X) under some conditions.

Theorem D.1.1. Let X be a hyperkähler manifold of dimension 2n with second Betti number
b2(X) and consider its Riemann–Roch polynomial

RRX(q) = A0q
n +A1q

n−1 +A2q
n−2 + · · · .

If the first three coefficients satisfy the condition

2nA0A2 < (n− 1)A2
1, (D.1.2)

then we have the inequality

b2(X) ≤ 1

1− 2nA0A2
(n− 1)A2

1

− (2n− 2), (D.1.3)

and equality holds if and only if c2 ∈ Sym2H2(X,R). If the condition (D.1.2) does not hold,
then c2 is not contained in the Verbitsky component.

The theorem can also be phrased using generalized Fujiki constants of (products of) Chern
classes. Namely, inequality (D.1.2) is equivalent to the condition that the generalized Fujiki
constant C(ch4) is positive or, expressed differently, that

C(c2
2) > 2C(c4). (D.1.4)

This is satisfied if the polynomial RRX(q) has n distinct real roots, see Remark D.2.9. In
the case n = 2 we always have C(ch4) > 0, see [169, Lem. 4.6]. Writing C(c2

2) = µC(c4)
condition (D.1.2) is equivalent to µ > 2 and the bound (D.1.3) becomes

b2(X) ≤ 9− 2n+ 10
µ− 2 . (D.1.5)

We show in Corollary D.2.11 that the above conditions are also necessary and sufficient
for td1/2

2n−2 ∈ H4n−4(X,R), i.e. the degree 2n − 2 component of the square root of the Todd
class, to be contained in the Verbitsky component.
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Among known smooth hyperkähler manifolds, there are only two types of Riemann–Roch
polynomials: the K3[n]-type and the Kumn-type (OG6 and OG10 fall into these two types,
see [190]). On the other hand, Theorem D.1.1 can be generalized to singular symplectic
varieties of dimension 4 and this gives rise to many more examples. We check that the
inequality (D.1.4) is satisfied for all known smooth examples, as well as for many singular
examples, in Sections D.2 and D.3 respectively.
In Section D.4, we give an account of all generalized Fujiki constants for the known ex-

amples of smooth hyperkähler manifolds. In particular, we prove that when X is of OG6 or
OG10-deformation type, all Chern classes c2i satisfy

c2i ∈ SH(X,R)

and, thus, all characteristic classes of X lie in the Verbitsky component. This easily leads
to the determination of the generalized Fujiki constants for all characteristic classes on these
manifolds.
In the final section, we further discuss generalized Fujiki constants and Riemann–Roch

polynomials using Rozansky–Witten theory. We present a conceptual proof for the fact that
the polynomial

RRX,1/2(q) :=
n∑
i=0

C(td1/2
2n−2i)

(2i)! qi

factorizes as an n-th power using the Wheeling Theorem and discuss how this method could
be used in general to analyze the Riemann–Roch polynomial. This leads to conjectural
relations between the generalized Fujiki constants. We mention here the degree four case
which yields a precise value of C(ch4). For another instance of these conjectural relations,
see Conjecture J.

Conjecture H. Let X be a hyperkähler manifold of dimension 2n > 2. We have

C(ch4)
C(1) = 5(n+ 1)

(2n− 1)(2n− 3) .

Note that, in particular, Conjecture H would imply (D.1.4). We prove in Proposition D.5.3
that the conjecture holds true if the Riemann–Roch polynomial satisfies certain expectations
on its shape such as [113, Conj. 1.3 (3)] or Conjecture I. We present a possible strategy
towards proving these conjectures.
We want to remark that we expect the inequality (D.1.4) to hold true pointwise on the

level of forms for the right representative of ch4 and therefore be of local nature. In contrast,
Conjecture H is of global nature. The distinction between these two expectations will occur
frequently in the paper.
If proven true, Conjecture H would imply that for hyperkähler fourfolds there are ex-

actly two possible sets of values that the generalized Fujiki constants can take, see Proposi-
tion D.5.4. As a consequence, we obtain the following.

Corollary D.1.2. Assuming Conjecture H in dimension 4, the Betti numbers of a hyper-
kähler fourfold X are one of the following:

• b2(X) = 5, b3(X) = 0, b4(X) = 96;
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• b2(X) = 6, b3(X) = 4, b4(X) = 102;

• b2(X) = 7, b3(X) = 8, b4(X) = 108;

• b2(X) = 23, b3(X) = 0, b4(X) = 276.

Hence, Conjecture H would reduce the number of possible Hodge diamonds and LLV
decompositions of hyperkähler fourfolds to four. The two known cases are the ones where c2
lies in the Verbitsky component. In the case b2(X) = 7, there are 80 trivial representations of
the LLV algebra in H2,2, whereas there are 81 trivial representations when the second Betti
number is smaller than seven.
In the recent work [64, Thm. 9.3], the authors obtained a similar result under a different

assumption. We remark that the condition in our Conjecture H is stronger but makes no
explicit assumption on the lattice H2(X,Z). It focuses only on numerical properties of the
Riemann–Roch polynomial.

Relation to other work
While working on further results related to the topic of the paper we learned about the recent
preprint of Justin Sawon [193] who independently obtained the same bound on the second
Betti number as in Theorem D.1.1. The pointwise conjectural relations in Section D.5 have
a similar flavor as the ones in [193, Sec. 2].
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D.2. The inequality
We prove Theorem D.1.1 in this section. Let X be a hyperkähler manifold of complex dimen-
sion 2n with n ≥ 2. We first recall the following result by Fujiki [75] and Huybrechts [95].

Theorem D.2.1 (Fujiki, Huybrechts). Let α ∈ H4k(X,R) be a class that remains of type
(2k, 2k) on all small deformations of X (for example, all characteristic classes satisfy this
condition). Then there exists a constant C(α) ∈ R, called the generalized Fujiki constant of
α, such that

∀β ∈ H2(X,R) C(α) · qX(β)n−k =
∫
X
α · β2n−2k.

Remark D.2.2. The term Fujiki constant is reserved for the value C(1) = C(1X). There is
also the notion of small Fujiki constant cX : it differs from C(1) by a constant multiple

C(1) = (2n)!
2nn! cX = (2n− 1)!! · cX .

For example, it is known that cK3[n] = 1 and cKumn = n+ 1.
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Denote by q ∈ Sym2H2(X,R) the dual of the Beauville–Bogomolov–Fujiki form, and
by SH(X,R) ⊂ H•(X,R) the Verbitsky component, which is the subalgebra generated by
H2(X,R). The key step to Theorem D.1.1 is the following result.

Proposition D.2.3. We have the following inequality

C(c2
2) ≥ C(c2)2

C(q)2 C(q2), (D.2.1)

where equality holds if and only if c2 ∈ Sym2H2(X,R).

Proof. We write
c2 = aq + z where a ∈ R, z ∈ SH(X,R)⊥.

In other words, we project c2 orthogonally to the Verbitsky component and let aq be its
image. Then we have

C(c2) = C(aq), so a = C(c2)
C(q) .

Now we consider the square c2
2 = a2q2 + 2aqz + z2 ∈ H8(X,R). Since the class z is in

SH(X,R)⊥, it is orthogonal to the image of Sym2n−2H2(X,R), so the class qz is orthogonal
to the image of Sym2n−4H2(X,R) and also lies in SH(X,R)⊥.

On the other hand, for any Kähler class ω ∈ H2(X,R), since z lies SH(X,R)⊥, the class
z ·ω2n−3 ∈ H4n−2(X,R) is orthogonal to the entire H2(X,R) hence must vanish. So the class
z is primitive of type (2, 2) with respect to all Kähler classes on X. By the Hodge–Riemann
bilinear relations, for a Kähler class ω ∈ H2(X,R) we have∫

X
z2 · ω2n−4 ≥ 0, hence C(z2) ≥ 0,

where equality holds if and only if z = 0, i.e. c2 ∈ Sym2H2(X,R). In other words, the
projection of z2 to the Verbitsky component is non-trivial, unless z is itself trivial. Therefore
we obtain the desired inequality

C(c2
2) = a2C(q2) + C(z2) ≥ a2C(q2) = C(c2)2

C(q)2 C(q2),

where equality holds if and only if c2 ∈ Sym2H2(X,R).

We now study the values of the various generalized Fujiki constants that appear in (D.2.1).

Proposition D.2.4. Let X be a hyperkähler manifold of dimension 2n with second Betti
number b := b2(X). For any α ∈ H4k(X,R) that is of type (2k, 2k) on all small deformations
of X, we have

C(q · α) = b+ 2n− 2k − 2
2n− 2k − 1 C(α).

In particular, we get

C(qk) = b+ 2n− 2k
1 + 2n− 2kC(qk−1) =

k∏
i=1

b+ 2n− 2i
1 + 2n− 2i · C(1).
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Proof. Take a basis (e1, . . . , eb) of H2(X,R) such that

q = e2
1 + e2

2 + e2
3 − e2

4 − · · · − e2
b .

Writing si := qX(ei) ∈ {±1}, we have

C(q · α) =
∫
X
q · α · e2n−2k−2

1 =
∫
X
α · (e2n−2k

1 + e2n−2k−2
1 e2

2 + · · · − e2n−2k−2
1 e2

b)

= C(α) +
∑
i>1

si

∫
X
α · e2n−2k−2

1 e2
i .

For each term e2n−2k−2
1 e2

i , consider the function

t 7→
∫
X
α · (e1 + tei)2n−2k = C(α) · (1 + t2si)n−k,

which is a polynomial in t. Comparing the coefficients of t2, we get(
2n− 2k

2

)∫
X
α · e2n−2k−2

1 e2
i = C(α) · (n− k)si.

So we have

C(q · α) = C(α) +
∑
i>1

si
C(α)si

2n− 2k − 1 = C(α) + (b− 1) C(α)
2n− 2k − 1 = b+ 2n− 2k − 2

2n− 2k − 1 C(α),

where we used the fact that s2
i = 1.

We use the above description to replace C(q) and C(q2) in (D.2.1) and get

C(c2
2) ≥ (2n− 1)(b2(X) + 2n− 4)C(c2)2

(2n− 3)(b2(X) + 2n− 2)C(1) . (D.2.2)

On the other hand, we have the following result by Nieper-Wißkirchen [162], which gen-
eralizes the work of Hitchin–Sawon [90]. In particular, it produces linear relations among
certain generalized Fujiki constants. We will present a proof of the theorem in Section D.5.3.

Theorem D.2.5. Let X be a hyperkähler manifold of dimension 2n. Consider the following
polynomial

RRX,1/2(q) :=
n∑
i=0

C(td1/2
2n−2i)

(2i)! qi

= C(1)
(2n)!q

n +
C( 1

24c2)
(2n− 2)!q

n−1 +
C( 7

5760c
2
2 − 1

1440c4)
(2n− 4)! qn−2 + · · ·+ C(td1/2

2n )
1 .

There exists a constant rX such that this polynomial factorizes as

RRX,1/2(q) = C(td1/2
2n )

(
1 + 1

2rX
q

)n
.
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In [25, Sec. 3], by comparing the first two coefficients, it is shown that

rX = (2n− 1)C(c2)
24C(1) = (2n− 1)2nn!C(c2)

24(2n)!cX
,

and
C(td1/2

2n ) = C(1)(2rX)n
(2n)! = cX

rnX
n! ,

where cX is the small Fujiki constant. By comparing the third coefficients, we get the
following relation.
Corollary D.2.6. Let X be a hyperkähler manifold of dimension 2n > 2. Then

7C(c2
2)− 4C(c4) = 5(2n− 1)C(c2)2

(2n− 3)C(1) .

Combining Corollary D.2.6 and (D.2.2) we obtain

C(c2
2) ≥ b2(X) + 2n− 4

5(b2(X) + 2n− 2)(7C(c2
2)− 4C(c4)) (D.2.3)

which is equivalent to

(C(c2
2)− 2C(c4))(b2(X) + 2n− 9) ≤ 10C(c4). (D.2.4)

The last missing ingredient for proving Theorem D.1.1 is the connection of the above with
the Riemann–Roch polynomial.
Corollary D.2.7. All generalized Fujiki constants for characteristic classes of degree ≤ 4 are
determined by the Riemann–Roch polynomial, or more precisely, by its first three coefficients

RRX(q) =
n∑
i=0

C(td2n−2i)
(2i)! qi = C(1)

(2n)!q
n +

C( 1
12c2)

(2n− 2)!q
n−1 +

C( 1
240c

2
2 − 1

720c4)
(2n− 4)! qn−2 + · · ·

= A0q
n +A1q

n−1 +A2q
n−2 + · · ·

Proof. Clearly C(1) and C(c2) appear as coefficients of the Riemann–Roch polynomial so we
have

C(1) = (2n)!A0, C(c2) = 12(2n− 2)!A1.

For C(c2
2) and C(c4), we already have one linear relation

7C(c2
2)− 4C(c4) = 5(2n− 1)C(c2)2

(2n− 3)C(1) = 720(2n− 4)!(n− 1)A2
1

nA0
.

The third coefficient gives another one

3C(c2
2)− C(c4) = 720(2n− 4)!A2,

which allows us to uniquely determine their values

C(c2
2) = 144(2n− 4)!

(
4A2 −

(n− 1)A2
1

nA0

)
,

C(c4) = 144(2n− 4)!
(

7A2 −
3(n− 1)A2

1
nA0

)
.

Hence we get all four generalized Fujiki constants of degree ≤ 4.
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Proof of Theorem D.1.1. We replace all generalized Fujiki constants in (D.2.3) by the coef-
ficients of the Riemann–Roch polynomial. After some simplifications we get

4A2 ≥
(n− 1)A2

1
nA0

(
1 + b+ 2n− 4

b+ 2n− 2

)
= (n− 1)A2

1
nA0

(
2− 2

b+ 2n− 2

)
,

(D.2.5)

or equivalently,
1

b2(X) + 2n− 2 ≥ 1− 2nA0A2
(n− 1)A2

1
.

This yields the desired inequality provided

1− 2nA0A2
(n− 1)A2

1
> 0

which is exactly condition (D.1.2).
From Proposition D.2.3 we know that c2 ∈ SH4(X,R) if and only if the inequality (D.1.3)

is in fact an equality. We claim that in this case (D.1.2) must be satisfied. Indeed, if we
assume

1− 2nA0A2
(n− 1)A2

1
≤ 0

we obtain
1

b2(X) + 2n− 2 ≤ 0

which is absurd.

Remark D.2.8. As mentioned in the introduction we can use (D.2.4) to state Theorem D.1.1
in terms of the generalized Fujiki constants C(c2

2) and C(c4). Condition (D.1.2) then becomes

C(c2
2) > 2C(c4)

and writing C(c2
2) = µC(c4) for some µ > 2 the bound (D.1.3) becomes

b2(X) ≤ 9− 2n+ 10
µ− 2 .

So we still get a bound on b2(X) without knowing the values for C(1) and C(c2).
Remark D.2.9. Suppose that the Riemann–Roch polynomial factorizes as a product of
linear factors

RRX(q) = A0
∏
i

(q + λi).

It was shown in [113] that all the coefficients of RRX(q) are positive. Hence the λi must all
be positive. If, moreover, we assume that the λi are not all equal, then condition (D.1.2) is
satisfied by Cauchy–Schwarz, and the inequality (D.1.3) can be written as

b2(X) ≤ n− 1
n
∑
λ2
i

(∑λi)2 − 1
− (2n− 2).

This is homogeneous with respect to the λi and measures in a certain sense the dispersion of
the roots.
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The condition for c2 to be contained inside the Verbitsky component actually also gives
an equivalent condition for td1/2

2n−2 to lie inside SH(X,R), by the following result.

Proposition D.2.10. For a hyperkähler manifold X of dimension 2n, we have td1/2
2k ∈

SH(X,R) if and only if td1/2
2n−2k ∈ SH(X,R). Moreover, td1/2

2k ∈ SH(X,R) implies td1/2
2k′ ∈

SH(X,R) for k′ < k < n.

Proof. For a class α ∈ H2(X,C), denote by eα ∈ g(X)C the operator x 7→ x ·α. Define hp to
be the holomorphic grading operator that acts on Hp,q(X) as (n−p) Id (which is denoted by
Π in [113]), and similarly the antiholomorphic grading operator hq which acts on Hp,q(X) as
(n− q) Id. Recall that for the class σ of a symplectic form, the operator eσ has the Lefschetz
property with respect to the grading given by hp: there exists a dual Lefschetz operator
Λσ ∈ g(X)C, such that together with the operator hp, we get an sl2-triple (eσ, hp,Λσ) in the
LLV algebra. The same result holds if we consider eσ and hq.

Jiang [113, Cor. 3.19] showed that there exists a constant rσ ∈ R>0 such that

Λσ(td1/2
2k ) = rσtd1/2

2k−2 ∧ σ. (D.2.6)

Furthermore, the operators eσ and Λσ commute for degree reasons. Applying (D.2.6) repeat-
edly, we see that the following holds for all k < n/2

Λn−2k
σ (td1/2

2n−2k) = rn−2k
σ td1/2

2k ∧ σ
n−2k. (D.2.7)

On the other hand, Fujiki [75] showed that the operators eσ and Λσ yield isomorphisms

esσ : H l,n−s(X) ∼= H l,n+s(X), Λsσ : Hn+s,l(X) ∼= Hn−s,l(X).

Moreover, these isomorphisms are compatible with the decomposition of H∗(X,C) into ir-
reducible g(X)C-representations, i.e. for each irreducible representation V ⊂ H∗(X,C), the
isomorphism esσ restricts to an isomorphism

esσ : H l,n−s(X) ∩ V ∼= H l,n+s(X) ∩ V,

and similar for Λsσ. Combining this with (D.2.7) yields the first assertion. The second
statement also follows from (D.2.7) using the same line of arguments.

Corollary D.2.11. For a hyperkähler manifold X of dimension 2n, the class td1/2
2n−2 lies

in the Verbitsky component if and only if the condition (D.1.2) is satisfied and the equality
in (D.1.3) holds.

We now examine the bound (D.1.3) for the known deformation types of smooth hyperkähler
manifolds. There are only two types of Riemann–Roch polynomials

RRK3[n](q) =
(
q/2 + n+ 1

n

)
, RRKumn(q) = (n+ 1)

(
q/2 + n

n

)
,

see [68, Lem. 5.1] and [162, Lem. 5.2]. Ríos Ortiz showed that O’Grady’s sporadic examples
satisfy RROG10(q) = RRK3[5](q) and RROG6(q) = RRKum3(q) in [190].
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Example D.2.12 (K3[n]-type). We compute the first three coefficients

RRK3[n](q) =
(
q/2 + n+ 1

n

)

= 1
2nn!q

n + n+ 3
2n(n− 1)!q

n−1 + 3n2 + 17n+ 26
3 · 2n+1(n− 2)!q

n−2 + · · ·

Then by inserting the values A0, A1, A2 into (D.1.3), we get the following upper bound

b2(X) ≤ n+ 17 + 12
n+ 1 .

Alternatively, we could also have used Remark (D.2.9) to obtain the expression. When n = 2
or n = 3, it evaluates to 23 and is attained by K3[n]; when n = 5, it evaluates to 24 and is
attained by OG10. In particular, these are exactly the three known deformation types with
this Riemann–Roch polynomial for which we have c2 ∈ Sym2H2(X,R).
Example D.2.13 (Kumn-type). We compute similarly the first three coefficients

RRKumn(q) = (n+ 1)
(
q/2 + n

n

)

= n+ 1
2nn! q

n + (n+ 1)2

2n(n− 1)!q
n−1 + (n+ 1)2(3n+ 2)

3 · 2n+1(n− 2)! q
n−2 + · · ·

and insert these three coefficients into (D.1.3). In this case, the upper bound we get is

b2(X) ≤ n+ 5.

When n = 2, it is attained by Kum2; when n = 3 it is attained by OG6. Again, for these
two types, we have c2 ∈ Sym2H2(X,R).
Note also that for n = 2, the bound b2(X) ≤ 7 is much stronger than the general bound

b2(X) ≤ 23 by Guan.
Another consequence of the inequality is the positivity of the generalized Fujiki constants

C(c2
2) and C(c4).

Proposition D.2.14. Let X be a hyperkähler manifold of dimension 2n. The generalized
Fujiki constant C(c2

2) is always positive, and C(c4) is positive except possibly when n = 2 and
b2(X) = 3, 4, 5 or when n = 3 and b2(X) = 3.
Proof. From the inequality (D.2.2), it is clear that C(c2

2) is positive. For C(c4) to be positive,
it is equivalent to have

nA0A2
(n− 1)A2

1
>

3
7 .

By (D.2.5), we have
nA0A2

(n− 1)A2
1
≥ 1

4

(
2− 2

b2(X) + 2n− 2

)
.

So we want the inequality
1
4

(
2− 2

b2(X) + 2n− 2

)
>

3
7

which is equivalent to b2(X) + 2n > 9, and is satisfied except when n = 2 and b2(X) ≤ 5 or
n = 3 and b2(X) = 3.
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Remark D.2.15. When n = 2, these two generalized Fujiki constants are just Chern num-
bers, and this is already known by the results of Guan [84].

D.3. Orbifold examples
Theorem D.1.1 can also be generalized to the singular case, at least when n = 2. The proof
is exactly the same as in Section D.2, so we only indicate the key ingredients. We follow the
paper by Fu–Menet [73] and the notation therein.

• We consider primitively symplectic orbifolds [73, Def. 3.1]. In dimension 4, such orb-
ifolds only contain isolated singular points.

• Generalized Fujiki constants still exist, as proved by Menet in [146, Lem. 4.6]. Hence we
may still define the Riemman–Roch polynomial using the generalized Fujiki constants
of the Todd class

RRX(q) :=
n∑
i=0

C(td2n−2i)
(2i)! qi = A0q

n + · · ·+An.

• Orbifold versions of the Gauss–Bonnet theorem and the Hirzebruch–Riemann–Roch
theorem exist in dimension 4 (or more generally, for orbifolds with only isolated singu-
larities), as proved by Blache in [32] (see [73, Thm. 2.12 and Thm. 2.13]): we have

χtop(X) =
∫
X
c4 +

∑
x∈Sing(X)

(
1− 1
|Gx|

)
,

and for all L ∈ Pic(X),

χ(X,L) =
∫
X

ch(L) · td(X) +
∑

x∈Sing(X)

1
|Gx|

∑
g∈Gx\{e}

1
det(Id−ρx,TX (g)) .

Beware that the Riemann–Roch polynomial as defined above no longer gives the correct
Euler characteristic, due to the contribution from singular points: instead we have

∀L ∈ Pic(X) χ(X,L) = RRX(qX(L)) + (3− C(td4)).

• An orbifold version of the Hitchin–Sawon formula exists: this is [73, Prop. 4.2]. In
particular, when n = 2, this gives the orbifold version of Corollary D.2.6. One would
expect that the more general result of Nieper-Wißkirchen should also hold for the
singular case.

Using these ingredients and repeating the proof in Section D.2, we obtain Theorem D.1.1 for
primitively symplectic orbifolds in dimension 4. We apply it to examine the examples listed
in [73, Sec. 5]. We will use am to denote the number of isolated cyclic quotient singularities
of order m.

Remark D.3.1. The conceptual reason why Theorem D.1.1 remains valid also in the singular
case is that this type of result holds pointwise and, therefore, generalizes to orbifolds.
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Example D.3.2. Let M ′ be the irreducible symplectic orbifold of dimension 4 with second
Betti number b2(M ′) = 16, also known as a Nikulin orbifold (see [73, Sec. 5.11] and [48]). It
has 28 isolated quotient singularities of order 2, i.e., a2 = 28. The orbifoldM ′ has topological
Euler characteristic χtop(M ′) = 212 and Fujiki constant C(1) = 6.

Using the orbifold Riemann–Roch and Gauss–Bonnet theorems, we get∫
M ′

td4 =
∫
M ′

3c2
2 − c4
720 = χ(M ′,OM ′)−

∑
x∈Sing(M ′)

1
|Gx|

∑
g∈Gx\{e}

1
det(Id−ρx,TM′ (g))

= 3− 28 · 1
2 ·

1
16

= 17
8 ,

and ∫
M ′
c4 = χtop(M ′)−

∑
x∈Sing(M ′)

(
1− 1
|Gx|

)
= 198.

Therefore we may compute
C(c2

2) = 576, C(c4) = 198.
The orbifold Hitchin–Sawon formula gives the relation in Corollary D.2.6, from which we
deduce that C(c2) = 36. Hence we have obtained the Riemann–Roch polynomial of M ′:

RRM ′(q) = 1
4q

2 + 3
2q + 17

8 .

Note that this polynomial was also computed directly from the geometry of M ′ by Camere–
Garbagnati–Kaputska–Kaputska [48, Thm. 1.3].
Now if we insert the values into (D.1.3), we get

b2(X) ≤ 16,

for any primitively symplectic orbifold X with the same Riemann–Roch polynomial as M ′.
The Nikulin orbifold M ′ attains the upper bound, and we have c2(M ′) ∈ Sym2H2(M ′,R).
Note that the two roots of RRM ′(q) are −3±

√
2

2 , so they are not integers.
Example D.3.3. Let K ′ be the orbifold example in [73, Sec. 5.6] with second Betti number
b2(K ′) = 8 and a2 = 36: we have χtop(K ′) = 108 and C(1) = 8. Similarly, we compute

C(c2) = 40, C(c2
2) = 480, C(c4) = 90,

and
RRK′(q) = 1

3q
2 + 5

3q + 15
8 .

Using (D.1.3), we get the bound
b2(X) ≤ 8,

which again holds for any primitively symplectic orbifold with the same Riemann–Roch
polynomial. So the example K ′ also attains the upper bound. The two roots are −10±

√
10

4 .
Note that surprisingly, the Beauville–Bogomolov-Fujiki form of K ′ is odd and represents

the value 1. If we take a line bundle H with q(c1(H)) = 1, after adding the correction term,
the Riemann–Roch formula tells us that χ(K ′, H) = 5, so one could expect that the linear
system |H| gives a (rational) finite cover of P4.
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Example D.3.4. The following examples are obtained as cyclic quotients of smooth hyper-
kähler manifolds of K3[2]-type [73, Sec. 5.2, 5.3, and 5.9], so they are primitively symplectic
but not irreducible.

• Case b2(M i
11) = 3 for i = 1, 2 with a11 = 5: we have χtop(M i

11) = 34 and C(1) = 33 for
both i = 1, 2, so

C(c2) = 30, C(c2
2) = 828

11 , C(c4) = 324
11 ,

and
RRM i

11
(q) = 11

8 q
2 + 5

4q + 3
11 = 1

11RRK3[2](11q).

• Case b2(M7) = 5 with a7 = 9: we have χtop(M7) = 54 and C(1) = 21, so

C(c2) = 30, C(c2
2) = 828

7 , C(c4) = 324
7 ,

and
RRM7(q) = 7

8q
2 + 5

4q + 3
7 = 1

7RRK3[2](7q).

• Case b2(M3) = 11 with a3 = 27: we have χtop(M3) = 126 and C(1) = 9, so

C(c2) = 30, C(c2
2) = 276, C(c4) = 108,

and
RRM3(q) = 3

8q
2 + 5

4q + 1 = 1
3RRK3[2](3q).

In all these cases, the bound we get is b2(X) ≤ 23, which is not attained. These are all equal
to the bound for K3[2], due to the fact that the expression in (D.1.3) is homogeneous in terms
of the roots of RRX(q), hence will remain invariant after a change of variables.
In some sense, taking cyclic quotient does not produce genuinely “new” examples or

Riemann–Roch polynomials.

Example D.3.5. For the following examples, we could not find the values of the Fujiki
constant C(1) in the literature. But a bound on b2 can still be given, due to the observation
in Remark D.2.8. We will simply write the upper bound obtained as b2(X) ≤ B, where X is
understood as a primitively symplectic orbifold with the same Riemann–Roch polynomial.

• Case b2(K ′4) = 6 with a2 = 45, a4 = 2 and χtop(K ′4) = 69 [73, Sec. 5.4]: we have

C(c2) =
√

142C(1), C(c2
2) = 330, C(c4) = 45,

and
b2(X) ≤ 55

8 = 6.875.

So b2(K ′4) = 6 is the maximal possible but does not attain the bound.
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• Case b2(K ′3) = 7 with a3 = 12 and χtop(K ′3) = 108 [73, Sec. 5.5]: we have

C(c2) = 26
√
C(1)/3, C(c2

2) = 540, C(c4) = 100,

and
b2(X) ≤ 135

17 ≈ 7.94

So b2(K ′3) = 7 is the maximal possible but does not attain the bound.

• Case b2(YK3(D3)) = 9: the description of this example in [73] appears to be incorrect.1

• Case b2(YK3(Z/4Z)) = 10 with a2 = 10, a4 = 6 and χtop = 140 [74, Table 1]: we have

C(c2) = 8
√

3C(1), C(c2
2) = 486, C(c4) = 261

2 ,

and
b2(X) ≤ 54

5 = 10.8.

So b2(YK3(Z/4Z)) = 10 is the maximal possible but does not attain the bound.

• Case b2
(
YK3

(
(Z/2Z)2)) = 14 with a2 = 36 and χtop = 180 [74, Table 1]: we have

C(c2) = 8
√

3C(1), C(c2
2) = 504, C(c4) = 162,

and
b2(X) ≤ 14.

So the bound is attained in this example.

Example D.3.6 (Kim). This example was studied by Kim in [121, Sec. 7]: let X be a
hyperkähler fourfold of Kum2-type admitting a Lagrangian fibration. We consider its dual
Lagrangian fibration X̌. It is a singular hyperkähler orbifold with only isolated quotient
singularities.
However, the analysis in loc. cit. of the singularities of X̌ contains an error: the group ac-

tion admits 108 fixed points on X, and every other 3 of them are identified after the quotient.
So one should have a3 = 36, that is, X̌ admits 36 isolated cyclic quotient singularities of or-
der 3, instead of just 18 of them as claimed in loc. cit. Since χtop(X) = 108, we may conclude
that χ(X̌) = 108/3 = 36, which is consistent with the description of the cohomology.
We compute the numerical invariants. By the orbifold Gauss–Bonnet theorem, we have

C(c4) = χtop − a3 · 2
3 = 12. Then by the orbifold Riemann–Roch theorem, we have

1
720
(
3C(c2

2) − C(c4)
)

= 3 − a3 · 1
3 ·

2
9 = 1

3 , hence C(c2
2) = 84. This already gives us the

bound on the second Betti number

b2(X̌) ≤ 10
84
12 − 2

− 2 · 2 + 9 = 7,

which is attained by the dual Lagrangian fibration X̌.
1Namely, the orbifold is described as the quotient of an S[2] by some symplectic automorphisms forming the
dihedral group D3. But such a quotient would necessarily contain singularities in codimension 2.
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Kim showed that the small Fujiki constant cX̌ of the dual Lagrangian fibration X̌ is 1/cX ,
so C(1X̌) = 1

3 · 3 = 1 in the dual Kum2 case. Then by the orbifold Hitchin–Sawon formula,
we may compute that C(c2) = 6. Hence the Riemann–Roch polynomial is given by

RR ˇKum2
(q) = 1

24q
2 + 1

4q + 1
3 = 1

9RRKum2(q).

In particular, for a line bundle H with square q(c1(H)) = 6, we can use the Riemann–Roch
formula with the correction term to compute χ(X̌,H) = 6. So one could expect that the
linear system |H| gives a hypersurface (or a cover thereof) in P5.

D.4. Generalized Fujiki constants for known smooth examples

In this section, we give an account for the generalized Fujiki constants C(cλ) of characteristic
classes cλ := cλ2

2 cλ4
4 · · · c

λ2n
2n for all known deformation types of hyperkähler manifolds.

D.4.1. K3[n] and Kumn

The results are classical for the two infinite families. In the K3[n]-case, the method in
Ellingsrud–Göttsche–Lehn [68] can be used to compute all the generalized Fujiki constants
using a computer for small n. A similar algorithmic method can be used to treat the Kumn-
case, with some slight modifications based on the work of Nieper-Wißkirchen [163, Sec. 4.2.3].
An implementation for these algorithms in Sage can be found on the second-named author’s
webpage. Closed formulae for the values C(c2k) for both families were recently established
in [50, Thm. 4.2].

D.4.2. OG6

By Corollary D.2.7, the generalized Fujiki constants for characteristic classes of degree ≤ 4 for
OG6 are the same as those for Kum3, since they share the same Riemann–Roch polynomial.
Since the Chern numbers of OG6 are also known [152, Prop. 6.8], we can obtain all of them:

α 1 c2 c4 c2
2 c6 c4c2 c3

2

C(α) 60 288 480 1920 1920 7680 30720

Alternatively, since for OG6-type the second Chern class c2 lies in the Verbitsky component
(namely, c2(OG6) = 2q), Corollary D.2.11 shows that the class td1/2

4 also lies in SH(X,R).
Now td1/2

4 is a linear combination of c2
2 and c4, so the same may be said for the class c4. Then

we can use Proposition D.2.4 to determine that c4(OG6) = q2, which then allows us to also
compute C(c4c2) and C(c3

2). Finally we can use C(td6) = 4 to solve the Euler characteristic
C(c6).

Proposition D.4.1. For hyperkähler manifolds of OG6-type, all Chern classes c2, c4, c6 lie
in the Verbitsky component. We have

c2(OG6) = 2q, c4(OG6) = q2, c6(OG6) = 1
2q

3.
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D.4.3. OG10

The question for OG10 might seem difficult at first, as there are many more unknown Fujiki
constants to determine. It turns out to be quite easy, due to the following observation.

Proposition D.4.2. For hyperkähler manifolds of OG10-type, all Chern classes c2, . . . , c10
lie in the Verbitsky component. We have

c2(OG10) = 3
2q, c4(OG10) = 15

16q
2, c6(OG10) = 21

64q
3,

c8(OG10) = 237
3328q

4, c10(OG10) = 27
2560q

5.

Proof. We use the LLV decomposition of the cohomology obtained in [81, Thm 3.26]

H∗(OG10,Q) = V(5) ⊕ V(2,2) as so(4, 22)-modules.

We are interested in the second component, which only contributes to cohomological degree
k for k ∈ {6, 8, 10, 12, 14}.
For a generic X in the moduli space, the (special) Mumford–Tate algebra is the maximal

possible and is isomorphic to so(3, 21). Using the branching rules, we get the following de-
compositions of so(3, 21)-modules/Hodge structures (H12 and H14 are omitted by symmetry)

H6(X,Q) = SH6(X,Q)⊕ V(2),

H8(X,Q) = SH8(X,Q)⊕ V(2,1) ⊕ V(1),

H10(X,Q) = SH10(X,Q)⊕ V(2,2) ⊕ V(2) ⊕ V(1,1) ⊕Q.

In other words, up to multiplying by a non-zero scalar, there is only one Hodge class η ∈
H10(X,Q) that lies in SH(X,Q)⊥ for a generic X. In particular, this means that all the
Chern classes c2, . . . , c10 lie in the Verbitsky component.
For a generic X, the only Hodge classes in the Verbitsky components are multiples of

powers of q, so each Chern class c2k is a multiple of qk. We explain how to determine the
scalars, starting from smaller k: we use Corollary D.2.7 to determine C(c2) and C(c4). Since
the values of C(qk) are known by Proposition D.2.4, we have determined c2 and c4. Once all
c2i for i < k are known, we study the class td1/2

2k , whose generalized Fujiki constant C(td1/2
2k ) is

known by Theorem D.2.5 and whose only unknown term is a given multiple of c2k. Therefore
we will be able to uniquely determine C(c2k) and thus c2k itself.

It is then straightforward to compute the generalized Fujiki constants, which we include
for the reader’s convenience.

α 1 c2 c4 c2
2 c6 c4c2 c3

2 c8 c6c2 c2
4 c4c

2
2 c4

2

C(α) 945 5040 13500 32400 26460 113400 272160 49770 343980 614250 1474200 3538080

c10 c8c2 c6c4 c6c
2
2 c2

4c2 c4c
3
2 c5

2

176904 1791720 5159700 12383280 22113000 53071200 127370880

Note that the Chern numbers for OG10 have already been computed by Cao–Jiang in the
appendix of [190].
It is remarkable that the knowledge of the Riemann–Roch polynomial together with the

assumption that all Chern classes lie in the Verbitsky component allow us to completely
determine the second Betti number as well as all the generalized Fujiki constants, in particular
all the Chern numbers including the Euler characteristic C(c2n) =

∫
X c2n.
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D.5. Further discussions
We see that the Riemann–Roch polynomial RRX(q) of a hyperkähler manifold X is a very
important notion: it puts strong topological restriction on X, namely an upper bound for the
second Betti number. We now formulate some conjectures on the shape of such polynomials
and discuss some possible ways of studying them.
Recall from Theorem D.2.5 that the polynomial RRX,1/2(q) factors as a n-th power. The

proof by Nieper-Wißkirchen [162] uses the machinery of Rozansky–Witten invariants. We
will briefly explain the proof, and discuss the possibility of using this method to study the
Riemann–Roch polynomial RRX(q).

D.5.1. Conjectural form of the Riemann–Roch polynomial
Motivated by the above discussions, we speculate about the general shape of the Riemann–
Roch polynomial of certain symplectic varieties.
We make the following conjecture. Similar conjectures have already been formulated by

Ríos Ortiz and Jiang in [113, Conj. 1.3].

Conjecture I. Let X be a primitively symplectic orbifold of dimension 2n.

(i) The Riemann–Roch polynomial RRX(q) has n distinct negative real roots forming an
arithmetic sequence.

(ii) If X is smooth, then its Riemann–Roch polynomial RRX(q) has even negative integer
roots λ1, . . . , λn satisfying λi − λi−1 = 2.

The second point is a slight strengthening of [113, Conj. 1.3(3)]. Note that it fails already in
the case of four-dimensional orbifolds as demonstrated in Section D.3 and should necessarily
involve the smoothness assumption.
By Remark D.2.9, Conjecture I (i) would imply the inequality (D.1.2) and therefore yield

the bound on the second Betti number.

D.5.2. Rozansky–Witten invariants
We give a very rough overview of parts of Rozansky–Witten theory that we want to employ.
For proofs, details and a general overview we refer mainly to the book [163]. See also [90,
113,194].
After choosing a symplectic form σ ∈ H0(X,Ω2

X), the Rozansky–Witten weight system
RWσ is a ring homomorphism

RWσ : B → H∗(X,C), (D.5.1)

where B denotes the graph homology space, i.e., the C-algebra spanned by all unitrivalent
graphs modulo the antisymmetry and IHX relation. Important graphs are `, the unique
univalent graph with two vertices, Θ, the trivalent graph 	 with two vertices, and the 2k-
wheels w2k which, for example, looks like

.
for k = 4.
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Using the 2k-wheels, we can define the wheeling element

Ω := exp
( ∞∑
k=1

b2kw2k

)

contained in the completion B̂ of B with b2k the modified Bernoulli numbers. We have

• RWσ(`) = 2σ,

• RWσ(Θ) = bΘ
[

2σ
q(σ+σ)

]
, where bΘ = 48 rX = 2(2n−1)C(c2)

C(1) [162, Prop. 7],

• RWσ(w2k) = −(2k)! ch2k,

• RWσ(Ω) = td1/2.

There is a bilinear product 〈−,−〉 on the graph homology space defined by summing over all
possible ways of gluing all univalent vertices of the graphs under consideration, see [163, Def.
2.39] for a precise account. One form of the Wheeling Theorem is the following [163, Cor.
2.3].

Theorem D.5.1. The map
〈Ω,−〉 : x 7→ 〈Ω, x〉

respects the ring structure on B given by disjoint union.

There is also a bilinear product 〈−,−〉σ defined on the cohomology [163, Def. 3.9], which
depends on the symplectic form σ chosen. We use the subscript σ to emphasize this depen-
dence. The map RWσ respects the two bilinear products [163, Prop. 3.4]

RWσ(〈x, y〉) = 〈RWσ(x),RWσ(y)〉σ.

This is the crucial result which allows us to transport relations present inside the graph
homology space to the cohomology of X.

Generalized Fujiki constants naturally appear in the study of Rozansky–Witten invariants,
which can already be seen in the above formula for RWσ(Θ). The key idea for the formula is
that RWσ(Θ) is a class in H0,2(X), which is generated by [σ]. So we can uniquely determine
the class just by a scalar. To determine this number, one could cup the two classes with
exp(σ + σ) and compare the integral.

To illustrate this method, we determine the value of RWσ(Θ2), where Θ2 is the necklace
graph with two beads.

Proposition D.5.2. We have

RWσ(Θ2) = −4
∫

(c2
2 − 2c4) exp(σ + σ)

5n(n− 1)
∫

exp(σ + σ) [σ]2

= −4(2n− 1)(2n− 3)C(c2
2 − 2c4)

5C(1)

[ 2σ
q(σ + σ)

]2
.
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Proof. Using the definition of the pairing 〈−,−〉 on the graph homology space, one can verify
that 〈

w4, `
2
〉

= 20Θ2.

Hence

RWσ(Θ2) = RWσ

( 1
20
〈
w4, `

2
〉)

= 1
20
〈

RWσ(w4),RWσ(`2)
〉
σ

= 1
20
〈
−24

(
1
12c

2
2 − 1

6c4
)
, 4σ2

〉
σ

= −2
5
〈
c2

2 − 2c4, σ
2
〉
σ

= −4
5
〈
c2

2 − 2c4, expσ
〉
σ
.

Cupping it with exp(σ + σ) and comparing the integral, we get

RWσ(Θ2) = −
4
∫ 〈
c2

2 − 2c4, expσ
〉
σ exp(σ + σ)

5
∫
σ2 exp(σ + σ) [σ]2.

For the denominator, we can simplify it as∫
X
σ2 exp(σ + σ) =

∫
X
σ2 1

(2n− 2)!(σ + σ)2n−2

=
∫
X

1
n!(n− 2)!(σσ)n

= n(n− 1)
∫
X

exp(σ + σ).

For the numerator, we use the following equality [163, Lem. 3.4]∫
X
〈α, expσ〉σ exp(σ + σ) =

∫
X
α exp(σ + σ).

This shows the first equality that we want to prove.
For the second equality, we note that for a class of type (2j, 2j), the Fujiki relations give∫

X
α exp(σ + σ) =

∫
X
α · 1

(2n− 2j)! (σ + σ)2n−2j = C(α)
(2n− 2j)!q(σ + σ)n−j .

Taking α to be 1X and c2
2 − 2c4 respectively, we get the desired equality.

In general, for a trivalent graph Γ with 2k vertices, there is a number bΓ independent of
the symplectic form σ chosen, such that we have

RWσ(Γ) = bΓ

[ 2σ
q(σ + σ)

]k
∈ H0,2k(X).

For example, we have obtained that

bΘ = 2(2n− 1)C(c2)
C(1) , bΘ2 = −4(2n− 1)(2n− 3)C(c2

2 − 2c4)
5C(1) .

This is the same notation used by Sawon in [193, 194], although he only used the letter bΓ
for graphs with exactly 2n vertices and referred to those as the Rozansky–Witten invariants
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of X. By the properties of the map RWσ, the values bΓ are multiplicative with respect to
disjoint union.

There is another way to obtain the value of RWσ(Θ2). Namely

RWσ(2Θ2) = RWσ(〈w2, w2〉) = 4〈c2, c2〉σ

where we used the relation RWσ(w2) = 2c2. We therefore obtain from Proposition D.5.2 the
equality

〈c2, c2〉σ = bΘ2

2

[ 2σ
q(σ + σ)

]2
∈ H4(X,OX).

We expect that this equality is equivalent to the equality obtained in Corollary D.2.6, but
have not pursued this further.

D.5.3. Proof of Theorem D.2.5

Using the map RWσ and the Wheeling Theorem, we can obtain a very conceptual proof and
see why the polynomial RRX,1/2(q) factorizes as an n-th power.

Proof of Theorem D.2.5. For a class α of degree (2k, 2k) admitting a generalized Fujiki con-
stant, we follow the same method as in the proof of Proposition D.5.2 to compute〈

α, (2σ)k
〉
σ

= 2kk!〈α, expσ〉σ

= 2kk!
∫
〈α, expσ〉σ exp(σ + σ)

n(n− 1) · · · (n− (k − 1))
∫

exp(σ + σ) [σ]k

= 2k(n
k

) ∫ α exp(σ + σ)∫
exp(σ + σ) [σ]k

= 2k(n
k

) C(α)
(2n−2k)!q(σ + σ)n−k

C(1)
(2n)!q(σ + σ)n

[σ]k

= 1(n
k

)C(1)
(2n)!

C(α)
(2n− 2k)!

[ 2σ
q(σ + σ)

]k
.

(D.5.2)

We can take α to be td1/2
2k , which gives us

C(1)
(2n)!

〈
td1/2, (1 + 2σ)n

〉
σ

= C(1)
(2n)!

〈
td1/2,

n∑
k=0

(
n

k

)
(2σ)k

〉
σ

=
n∑
k=0

(
n

k

)
C(1)
(2n)!

〈
td1/2

2k , (2σ)k
〉
σ

=
n∑
k=0

C(td1/2
2k )

(2n− 2k)!

[ 2σ
q(σ + σ)

]k
= RR′X,1/2

([ 2σ
q(σ + σ)

])
.
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Here RR′X,1/2(q) := qnRRX,1/2(1/q) is the polynomial obtained by reversing the coefficients.
The polynomial evaluated at the class

[
2σ

q(σ+σ)

]
is an element in the cohomology ring, with

terms in various degrees.
On the graph homology side, the Wheeling Theorem provides the relation

〈Ω, (1 + `)n〉 = 〈Ω, 1 + `〉n.

Since the Rozansky–Witten invariant RWσ is a ring homomorphism respecting the bilinear
form 〈−,−〉, we get 〈

td1/2, (1 + 2σ)n
〉
σ

=
〈
td1/2, 1 + 2σ

〉n
σ
.

Hence the polynomial RRX,1/2(q) must indeed factorize as an n-th power.

D.5.4. Riemann–Roch polynomial via RW invariants
Following the idea of the proof of Theorem D.2.5, if we want to study the Riemann–Roch
polynomial RRX(q), we should replace α with td2k in (D.5.2): summing over all k we get
similarly

C(1)
(2n)!〈td, (1 + 2σ)n〉σ = RR′X

([ 2σ
q(σ + σ)

])
.

So for the same strategy to work, we need to study how the graph homology element〈
Ω2, (1 + `)n

〉
might potentially factorize into linear terms. Since the multiplication for the graph homology
classes is the disjoint union, this would unfortunately not be possible in general. Below we
compute its value for n ≤ 4:〈

Ω2, 1 + `
〉

= 1 + 1
12Θ,〈

Ω2, (1 + `)2
〉

= 1 + 1
122Θ + 1

122 (Θ2 + Θ2),〈
Ω2, (1 + `)3

〉
= 1 + 1

123Θ + 1
122 3(Θ2 + Θ2) + 1

123 (Θ3 + 3ΘΘ2),〈
Ω2, (1 + `)4

〉
= 1 + 1

124Θ + 1
122 6(Θ2 + Θ2) + 1

123 4(Θ3 + 3ΘΘ2)

+ 1
124 (Θ4 + 6Θ2Θ2 + 3Θ2

2 + 144
25 Ξ− 162

25 Θ4),

where Ξ is the extra graph for n = 4. We study the implications on the Riemann–Roch
polynomial.

• When n = 2, we get

RRX(q) = C(1)
(2 · 2)!

(
q2 + 1

122bΘq + 1
122 (b2Θ + bΘ2)

)
.

For the polynomial to admit two real roots, the value bΘ2 needs to be negative, or
equivalently, the integral C(ch4) =

∫
X ch4 needs to be positive. For smooth hyperkähler

fourfolds, this indeed holds by the bound of Guan (see [169, Lem. 4.6] or [193, Thm.
7]).
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• When n = 3, the graph homology class admits a factor 1 + 1
12Θ, so we also get a

factorization for the Riemann–Roch polynomial

RRX(q) = C(1)
(2 · 3)!

(
q + 1

12bΘ
)(

q2 + 1
122bΘq + 1

122 (b2Θ + 3bΘ2)
)
.

So if bΘ2 is negative, the polynomial will indeed admit three real roots forming an
arithmetic sequence, with difference 1

12
√
−3bΘ2 .

• When n = 4, the graph homology class becomes more complicated due to the extra
graph Ξ. If we expect the Riemann–Roch polynomial to admit four real roots forming
an arithmetic sequence, this would lead to the following conjectural relations among
certain generalized Fujiki constants.

Conjecture J. If X is of dimension 2n ≥ 8, then

C(ch2
4 + 120ch8) · C(1)
C(ch4)2 = (5n+ 7)(2n− 1)(2n− 3)

5(n+ 1)(2n− 5)(2n− 7) .

Admitting this relation, we would then get〈
ch2

4 + 120ch8, (2σ)4
〉
σ

=
( 5

3(n+1) + 25
6
)
RWσ(Θ2

2).

On the other hand, based on the computation of Sawon [194], we have

1
384

〈
w2

4, `
4
〉

= 24Ξ + 48Θ4 + 25
4 Θ2

2,

1
384

〈
w8, `

4
〉

= 7Ξ + 287
8 Θ4.

Taking a suitable linear combination and applying RWσ, we get〈
ch2

4 + 120ch8, (2σ)4
〉
σ

= RWσ(8Ξ− 9Θ4 + 25
6 Θ2

2),

so
RWσ(8Ξ− 9Θ4) = 5

3(n+1)RWσ(Θ2
2).

Hence we can express the Rozansky–Witten invariant of 144
25 Ξ− 162

25 Θ4 = 18
25(8Ξ− 9Θ4)

in terms of bΘ2 , so the Riemann–Roch polynomial has the following form

RRX(q) =
C(1)

(2 · 4)!
(
q2 + 1

122bΘq + 1
122 (b2Θ + 3

5bΘ2)
) (
q2 + 1

122bΘq + 1
122 (b2Θ + 27

5 bΘ2)
)
.

If bΘ2 is negative, then it indeed admits four roots forming an arithmetic progression
with difference 1

6

√
−3

5bΘ2 .
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D.5.5. Conjectural value for generalized Fujiki constants
In the above examples we see that the value bΘ2 or equivalently C(ch4) governs the differences
between the roots of the Riemann–Roch polynomial. We speculate that the roots always form
an arithmetic progression with difference 2. This is our main motivation for Conjecture H.
Note that the conjectural value for C(ch4) also predicts that one should always have bΘ2 =
−48(n+ 1) by Proposition D.5.2. It can also be seen as a weaker version of Conjecture I (ii),
for purely algebraic reasons.

Proposition D.5.3. Conjecture I (ii) implies Conjecture H.

Proof. By assumption, the roots of RRX(q) form an arithmetic progression with difference
2, so we have

RRX(q) = C(1)
(2n)! (q + a)(q + a+ 2) · · · (q + a+ 2n− 2)

= C(1)
(2n)!

(
qn + (na+ n(n− 1))qn−1

+
(
n(n−1)

2 a2 + (n− 1)2na+ (3n−1)n(n−1)(n−2)
6

)
qn−2 + . . .

)
Then by the result of Corollary D.2.7, we may deduce the values for C(c2

2) and C(c4), and
consequently C(ch4), which turns out to depend only on C(1) and n, and not on a.

We also explore some consequences of Conjecture H.

Proposition D.5.4. Assuming Conjecture H, for n = 2 the following are the only possibili-
ties for the generalized Fujiki constants of a hyperkähler fourfold.

C(1) C(c2) C(c2
2) C(c4)

3 30 828 324
9 54 756 108

Proof. We have the following three relations

7C(c2
2)− 4C(c4) = 15C(c2)2

C(1) ,

C(c2
2)− 2C(c4) = 60C(1),

3C(c2
2)− C(c4) = 2160,

from which we may deduce that

C(c2) = 2
√
C(1)2 + 72C(1),

C(c2
2) = −12C(1) + 864,

C(c4) = −36C(1) + 432.

The top-degree ones are just Chern numbers, and using the relations on Betti numbers by
Salamon, we have

c2
2 = 736 + 4b2(X)− b3(X), c4 = 48 + 12b2(X)− 3b3(X).
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Since b3(X) is a multiple of 4, the Chern number c2
2 must also be a multiple of 4, so we have

C(1) ∈ 1
3Z. By the bounds of Guan, we have −120 ≤ c4 ≤ 324, hence 46

3 ≥ C(1) ≥ 3, so we
only have a finite number of possibilities left.
By definition, the generalized Fujiki constant C(c2) should be rational. Using this property

we may verify that only the listed two cases are possible, which are realized by K3[2] and
Kum2 respectively.

This further reduces the number of possibilities for Betti numbers to 4, as stated in the
introduction.

Proof of Corollary D.1.2. From Salamon’s relations [191] one obtains the formula

c4 = 48 + 12b2(X)− 3b3(X).

By Proposition D.5.4 there are only two possible values for c4 which together with previously
obtained bounds from Guan yield the assertion.

Finally, motivated by the degree 4 case, we conjecture the following behavior to be true
for arbitrary dimensions. The question was also asked independently in [50].

Conjecture K. For k1, . . . , kr ∈ Z>0 with k := ∑
i ki ≤ n we have

(−1)kC(ch2k1 · · · ch2kr) > 0 as well as C(c2k1 · · · c2kr) > 0.

This in particular generalizes the conjectures in [169, Questions 4.7 and 4.8] to products
which do not necessarily live in top degree.
The conjectured alternating behaviour of products of Chern characters together with the

positivity of products of Chern classes would yield in combination many restrictions and
inequalities between these characteristic values. We expect the above positivity to hold
pointwise and to be of local nature.
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E. Equivariant categories of symplectic
surfaces and fixed loci of Bridgeland
moduli spaces

ABSTRACT. Given an action of a finite group G on the derived category
of a smooth projective variety X we relate the fixed loci of the induced
G-action on moduli spaces of stable objects in Db(Coh(X)) with moduli
spaces of stable objects in the equivariant category Db(Coh(X))G. As
an application we obtain a criterion for the equivariant category of a
symplectic action on the derived category of a symplectic surface to
be equivalent to the derived category of a surface. This generalizes
the derived McKay correspondence, and yields a general framework for
describing fixed loci of symplectic group actions on moduli spaces of
stable objects on symplectic surfaces.

E.1. Introduction

E.1.1. Equivariant categories

Let S be a smooth complex projective surface which is symplectic, hence either a K3 or
abelian surface. Whenever a finite group G acts symplectically on S, the derived McKay
correspondence provides an equivalence between the category Db(S)G of G-equivariant ob-
jects in the derived category Db(S), and the derived category of the minimal resolution of
the quotient S/G. The equivariant category Db(S)G depends only on the action of G on
the derived category and not on the underlying surface. Hence we may ask whether a sim-
ilar correspondence can be formulated for group actions on the derived category which do
not come from an action on the surface. Our first result considers this question under the
following assumptions:
Let ρ be the action of a finite group G on Db(S) satisfying the following conditions:

(i) For every g ∈ G the equivalence ρg : Db(S)→ Db(S) is symplectic.

(ii) There exists a stability condition σ ∈ Stab†(S) which is fixed by every ρg.

(iii) The group G acts faithfully, i.e. the equivariant category is indecomposable.

Here an equivalence is symplectic if the induced action on singular cohomology H∗(S,Z)
preserves the class of the symplectic form. We let Stab†(S) be the distinguished connected
component of the space of Bridgeland stability conditions of Db(S) introduced in [41]. The
action ρ is faithful, if ρg 6∼= id for all g 6= 1. Also no generality is lost by assuming (iii) since
for non-faithful actions the equivariant category decomposes as an orthogonal sum where
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each summand is determined by a faithful action on Db(S), see [29]. By the derived Torelli
theorem for symplectic surfaces [101, Thm. 0.1], group actions satisfying these conditions
can be constructed using lattice methods. In particular, there are many such group actions
which do not arise from automorphisms of the surface even after deformation.
Write Λ = H2∗(S,Z) for the even cohomology lattice and let ΛGalg be the invariant sublattice

of the induced G-action on its algebraic part

Λalg = Λ ∩ (H0(S,C)⊕H1,1(S,C)⊕H4(S,C)).

Let Mσ(v) be a moduli space of σ-semistable objects of Mukai vector v ∈ ΛGalg. For the
induced G-action on Mσ(v) we prove the following:

Theorem E.1.1. Assume that Mσ(v) is a fine moduli space and that the fixed locus Mσ(v)G
has a 2-dimensional G-linearizable connected component F . Then there exists a subgroup
H ⊂ G∨ = Hom(G,C∗), a connected H-torsor S′ → F and an equivalence

Db(S′)
∼=−→ Db(S)G.

We say here that a connected component of Mσ(v)G is G-linearizable if for some (or
equivalently any) point on it the corresponding G-invariant object in Db(S) admits a G-
linearization. By a result of Ploog [185] the obstruction to such a linearization is an element in
the second group cohomology H2(G,C∗). Hence for groups where this cohomology vanishes,
such as cyclic groups, the condition on F to be G-linearizable is automatically satisfied.

Recall from [18, 103] that every fine moduli space Mσ(v) is smooth and inherits a sym-
plectic form from the surface S. By assumption (i) the G-action preserves this symplectic
form. Hence, its fixed locus is smooth and symplectic, so S′ is a symplectic surface. If the
action of G is induced by an action on the surface S, then Theorem E.1.1 recovers the usual
derived McKay correspondence by taking the moduli space to be the Hilbert scheme of points
Hilb|G|(S) (the component F is the closure of the locus of free orbits).
Theorem E.1.1 applies also to coarse moduli spaces Mσ(v) of stable objects with the only

difference that Db(S′) has to be replaced by the derived category of α-twisted coherent
sheaves Db(S′, α), where α ∈ Br(S′) is the Brauer class obtain from the universal family of
Mσ(v) by restriction. For a more general version of the theorem which applies also to moduli
spaces containing strictly semistable points, see Section E.5.4.

E.1.2. Fixed loci
The result above relies on a general relationship between fixed loci of moduli spaces of
(semi)stable objects and the equivariant category.
Let X be a smooth projective variety and let

Stab∗(X) ⊂ Stab(X)

be a connected component of the space of stability conditions satisfying the technical con-
dition (†) of Section E.3.6. The existence of components Stab∗(X) satisfying (†) is known
for arbitrary curves and surfaces, as well as for certain threefolds, see [16, Rem. 26.4] and
references therein. Moreover, as shown in [6] there exists good moduli spaces of semistable
objects with respect to any stability condition in Stab∗(X).
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Consider an action on Db(X) by a finite group G. Any G-invariant stability condition
σ ∈ Stab(X) yields an induced stability condition σG on the equivariant category [133]. If
moreover σ ∈ Stab∗(X), then we will prove that there exists proper good moduli spaces
MσG(v′) of σG-semistable objects in Db(X)G, see Theorem E.3.22.

Theorem E.1.2. Let σ ∈ Stab∗(X) be G-invariant and let M be a smooth good moduli space
of σ-stable objects in Db(X) of class v ∈ K(Db(X))G. Then the natural morphism⊔

v′ 7→v
MσG(v′) → MG (E.1.1)

is a G∨-torsor over the union of all G-linearizable connected components of MG. Here v′
runs over all classes in K(Db(X)G) mapping to v under the forgetful functor.
Furthermore, (E.1.1) is surjective if H2(G,C∗) = 0 or, more generally, if the G-action

on Db(X) factors through the action of a quotient G � Q, such that G is a Schur covering
group of Q.

The notion of a Schur covering group will be reviewed in Section E.2.1.
Theorem E.1.2 serves as a bridge between the geometry of the fixed locus MG and the

formal properties of the equivariant category. Information can flow in both ways: It can be
used to describe moduli spaces of stable objects in the equivariant category in terms of the
fixed loci, for example showing projectivity. This generalizes an approach of Nuer towards
the moduli space of stable objects on an Enrique surface [165]. In the case of Theorem E.1.1
it is used to determine the equivariant category. In the opposite direction, if one knows
that the equivariant category is equivalent to the derived category of a variety whose moduli
spaces are well-understood (e.g. a curve, P2 or a symplectic surface1), then the left hand side
of (E.1.1) determines the G-linearizable part of the fixed locus up to an étale cover.

E.1.3. Back to symplectic surfaces
Consider again a G-action on the derived category of a symplectic surface S satisfying (i)-(iii).
Assume that we have an equivalence

Db(S′, α)
∼=−→ Db(S)G

for a symplectic surface S′ with Brauer class α ∈ Br(S′). Let v ∈ ΛGalg and define

Rv = {v′ ∈ Λ(S′,α),alg | v′ 7→ v},

where the algebraic part Λ(S′,α),alg of the lattice H2∗(S′,Z) is taken with respect to α [109].
If Mσ(v) is a moduli space of stable objects, then Theorem E.1.2 shows that⊔

v′∈Rv
MσG(v′)→Mσ(v)G

is a G∨-torsor over the union of all G-linearizable components.
1Strictly speaking, for symplectic surfaces one also needs to know that the induced stability condition σG
lies in the distinguished component. This is proven in Section E.6.3 if the equivalence is induced by a
Fourier–Mukai kernel as in Theorem E.1.1.
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In a special case we can be more precise. Consider a set of representatives

Rv ⊂ Λ(S′,α),alg

for the coset Rv/G∨ where the G∨-action is induced by the action on the equivariant category
by twisting the linearization, see Section E.2.1.

Theorem E.1.3. Suppose that G is cyclic and that S′ is a K3 surface. If Mσ(v) is a moduli
space of stable objects, then we have an isomorphism

Mσ(v)G ∼=
⊔

v′∈Rv

MσG(v′). (E.1.2)

Our description of fixed loci can be applied whenever a group action on a moduli space
of stable objects is induced by a group action on the derived category. Fortunately, it is an
immediate consequence of work of Mongardi [151], Huybrechts [101], and Bayer–Macrí [18]
that for K3 surfaces every symplectic group action is of this type. One has the following:

Proposition E.1.4. Let S be a K3 surface and let σ′ ∈ Stab†(S) be a stability condition. Let
G be a finite group which acts faithfully and symplectically on a moduli space M = Mσ′(v)
of σ′-stable objects. Then the following holds:

(a) There exists a surjection G′ → G from a finite group G′ and an action of G′ on Db(S)
satisfying (i), (ii) of Section E.1.1 which induces the given G-action on M .

(b) If G is cyclic, then we can take G′ = G in part (a).

The results presented above yield a general framework to determine the fixed loci of any
symplectic group action on a moduli space M of stable objects on a symplectic surface S.
There are three steps that have to be taken:

Step 1. Find the group action on the derived category which induces the action on M (Propo-
sition E.1.4).

Step 2. Determine the equivariant category2, i.e. express it in terms of derived categories of
symplectic surfaces (Theorem E.1.1).

Step 3. Apply Theorem E.1.2.

In other words, we have reduced the problem of describing fixed loci of such symplectic
actions to determining the equivariant category. An example where the above process is
applied in a non-trivial case can be found in Section E.7.4 below.

E.1.4. Related work
Kamenova, Mongardi, and Oblomkov determined in [118] the fixed loci of symplectic in-
volutions of holomorphic symplectic varieties of K3[n]-type. Their argument proceeds by
deforming to an involution of the Hilbert scheme of points of a K3 surface which is induced
by an involution on the surface. For these actions a description of the fixed locus can be

2In the non-cyclic case with respect to a Schur cover of the group
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obtained by a local analysis near the fixed points. Our work here grew out of the desire to
also describe fixed loci of more general (e.g. non-natural) automorphisms.
By work of Huybrechts [101] and Gaberdiel, Hohenegger, and Volpato [77] there is a bijec-

tion between finite groups of symplectic auto-equivalences of a K3 surface fixing a stability
condition and subgroups of the Conway group with invariant lattice of rank at least four. The
bijection generalizes classical work of Mukai [156] relating symplectic automorphism groups
of a K3 surface with subgroups of the Mathieu group. Similar results for abelian surfaces
have been obtained by Volpato [216]. In particular, the derived Torelli theorem in [101, Prop.
1.4] provides a large reservoir of symplectic group actions on the derived category, and thus
a good testing ground for our ideas. We refer to Section E.7 for a series of examples. The
auto-equivalences obtained in this way are described lattice-theoretically, but a concrete ge-
ometric description is often missing. By a criterion of Huybrechts [101] and Mongardi [151]
some of these auto-equivalences induce an action on a moduli space of stable objects, but
not all of them do (it is still an open question whether that criterion is sharp).
Group actions on the derived category also play an important role in the string theory

of K3 surfaces. In physics the pair (S, σ) of a symplectic surface and a distinguished sta-
bility condition corresponds to a non-singular sigma model on S. Symplectic σ-preserving
actions on the derived category correspond to supersymmetry-preserving discrete symme-
tries. The equivariant categories are the orbifold sigma models. Based partially on counting
BPS states/dyons, string theory predicts that the orbifold models should be again either K3
or torus (i.e. abelian surface) models [181]. The relationship between auto-equivalences and
the Conway group cited above provides the key link between BPS counting in equivariant
sigma models and moonshine phenomena for the Conway group, see [178] and [77] for an
introduction on the physical and mathematical side respectively.

E.1.5. Open questions

The equivariant categories Db(S)G we have considered above are 2-Calabi–Yau categories.
Moduli spaces of stable objects in them are holomorphic-symplectic varieties of yet unknown
type, and hence provide potentially new examples of (irreducible) holomorphic symplectic
varieties. The most pressing question is therefore the following:

Question E.1.5. Is the set of derived categories of (twisted) coherent sheaves on K3 and
abelian surfaces closed under the operation of taking equivariant categories with respect to
finite group actions satisfying (i)-(iii)?

In this set we should also include deformations of these categories in the sense of [16] such as
the Kuznetsov category of a cubic fourfold. All evidence so far (as well as the expectation of
physics) points to a positive answer. The parallel question in dimension 1 has an affirmative
answer, see [29, Sec. 7].

E.1.6. Plan of the paper

The paper consists of two parts. The first part can be read independently and deals with
the construction of moduli spaces of objects in the equivariant category. Section E.2 recalls
basic properties of equivariant categories. In Section E.3 we consider the relation between
fixed stacks and the equivariant category and prove Theorem E.1.2.
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For the proof we first use Orlov’s result on Fourier–Mukai functors [175] to construct a
G-action on Lieblich’s stack M of universally gluable objects in Db(X) (Section E.3.3). The
associated fixed stack MG defined in the categorical sense of Romagny is precisely the stack
of objects in the equivariant category Db(X)G (Proposition E.3.8). By transferring geometric
properties from M to its fixed stack this yields a well-behaved moduli theory for objects in
the equivariant category (Section E.3.5). Theorem E.1.2 follows then simply by comparing
the fixed stack of a Gm-gerbe with the fixed locus of the underlying coarse moduli space.

The second part concerns equivariant categories of symplectic surfaces. In Section E.4 we
first discuss Serre functors of equivariant categories and define equivariant Fourier–Mukai
transforms. In Section E.5 we prove Theorem E.1.1 (including its more general form) and
Theorem E.1.3. In Section E.6 we show that in good cases the induced stability condition
lies again in the distinguished component and prove Proposition E.1.4. In Section E.7 we
discuss a series of examples illustrating the general theory.
In Appendix E.A we prove that for every distinguished stability condition on a K3 surface

after a shift the heart generates the derived category. In Appendix E.B we prove a formula
for the topological Euler characteristic of the fixed locus of moduli spaces of stable objects
on K3 surfaces under cyclic groups actions.

E.1.7. Conventions
We always work over C. A variety is connected unless specified otherwise. All functors
are derived unless mentioned otherwise. The K-group K(D) of a triangulated category
D with finite-dimensional Hom-spaces is always taken numerically, i.e. modulo the ideal
generated by the kernel of the Euler pairing. Given a smooth projective variety X we let
Db(X) = Db(Coh(X)) denote the bounded derived category of coherent sheaves on X. If
π : X → T is a smooth projective morphism with geometrically connected fibers to a C-
scheme T , then D(X) or D(X/T ) will stand for the full triangulated subcategory of T -perfect
complexes of the unbounded derived category of OX -modules. We refer to Sections 2 and
8.1 of [16] for definitions and further references. If T = Spec(C), then D(X) is the bounded
derived category of coherent sheaves as before.

E.1.8. Acknowledgements
We thank Daniel Huybrechts for many discussions on derived categories and K3 surfaces and
suggestions on a preliminary version. We also thank Jochen Heinloth for useful comments.
We drew a lot of inspiration for the paper from the string theory of K3 non-linear sigma
models. We thank Albrecht Klemm, Roberto Volpato, and Max Zimet for fruitful discussions
and patiently answering our questions.
T.B. was funded by the IMPRS program of the Max–Planck Society. G.O. was funded by

the Deutsche Forschungsgemeinschaft (DFG) – OB 512/1-1.

202



Part 1. Moduli spaces for the equivariant category

E.2. Equivariant categories
E.2.1. Categorical actions
An action (ρ, θ) of a finite group G on an additive C-linear category D consists of

• for every g ∈ G an auto-equivalence ρg : D → D,

• for every pair g, h ∈ G an isomorphism of functors θg,h : ρg ◦ ρh → ρgh

such that for all g, h, k ∈ G the following diagram commutes

ρgρhρk ρgρhk

ρghρk ρghk.

ρgθh,k

θg,hρk θg,hk
θgh,k

(E.2.1)

A G-functor (f, σ) : (D, ρ, θ) → (D′, ρ′, θ′) between categories with G-actions is a pair of
a functor f : D → D′ together with 2-isomorphisms σg : f ◦ ρg → ρ′g ◦ f such that (f, σ)
intertwines the associativity relations on both sides, i.e. such that the following diagram
commutes:

fρgρh ρ′gfρh ρ′gρ
′
hf

fρgh ρ′ghf.

fθg,h

σgρh ρ′gσh

θ′g,hf

σgh

A 2-morphism of G-functors (f, σ) → (f̃ , σ̃) is a 2-morphism t : f → f ′ that intertwines the
σg, i.e. σ̃g ◦ tρg = ρ′gt ◦ σg.

Definition E.2.1. Given a G-action (ρ, θ) on the category D the equivariant category DG
is defined as follows:

• Objects of DG are pairs (E, φ) where E is an object in D and φ = (φg : E → ρgE)g∈G
is a family of isomorphisms such that

E ρgE ρgρhE ρghE

φgh

φg ρgφh θEg,h (E.2.2)

commutes for all g, h ∈ G.

• A morphism from (E, φ) to (E′, φ′) is a morphism f : E → E′ in D which commutes
with linearizations, i.e. such that

E E′

ρgE ρgE
′

f

φg φ′g

ρgf
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commutes for every g ∈ G.

For all objects (E, φ) and (E′, φ′) in DG the group G acts on HomD(E,E′) via f 7→
(φ′g)−1 ◦ ρg(f) ◦ φg. By definition,

HomDG((E, φ), (E, φ′)) = HomD(E,E′)G.

The equivariant category comes equipped with a forgetful functor

p : DG → D, (E,ψ) 7→ E

and a linearization functor

q : D → DG, E 7→ (⊕g∈GρgE, φ) (E.2.3)

where the linearization φ is given by considering θ−1
h,h−1g : ρgE → ρhρh−1gE and then taking

the direct sum over all g,

φh = ⊕gθ−1
h,h−1g : ⊕g ρgE → ρh

(
⊕gρh−1gE

)
= ρh (⊕gρgE) . (E.2.4)

By [67, Lem. 3.8], p is both left and right adjoint to q.
We discuss several properties of equivariant categories. We will often write g for ρg.

Example E.2.2. The trivial G-action on D is defined by ρg = id and θg,h = id for all
g, h ∈ G. In this case the objects of DG are pairs of an object x ∈ D and a homomorphism
φ : G→ Aut(x).

Remark E.2.3. Consider the 2-category G-Cats whose objects are categories with a G-action
and whose morphisms are G-functors. The equivariant category DG satisfies the universal
property that for all categories A we have the equivalence

HomCats (A,DG) ∼= HomG-Cats (ι(A),D)

where ι(A) is the category A endowed with the trivial G-action. Hence, any G-functor from
ι(A) to D factors over the forgetful functor p, see [78, Prop. 4.4] for more details.

If a triangulated category has a dg-enhancement, then the equivariant category is again
triangulated [67, Cor. 6.10]. This is implied also more directly as follows.

Proposition E.2.4. Let D be a triangulated category with an action of a group G. Suppose
there is a full abelian subcategory A ⊂ D such that Db(A) = D and G preserves A, i.e.
ρgE ∈ A for all E ∈ A. Then the following holds.

(i) There exist a dg-enhancement Ddg of D together with an action of G on Ddg which lifts
the action of G on D.

(ii) The equivariant category DG is triangulated.
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Proof. By [49, Sec. 1.2] the dg-quotient category

Ddg(A) = Cdg(A)/Acyclicdg(A)

of the dg-category of bounded complexes in A by the dg-category of acyclic bounded com-
plexes in A defines a dg-enhancement of Db(A). By hypothesis Db(A) ∼= D hence Ddg(A) is
a dg-enhancement. Moreover, the G-action on D induces a G-action on A. Since G preserves
acyclic complexes we obtain a G-action on Ddg(A) with the desired properties. This proves
the first part. For the second part we apply [54], see also [67, Thm. 7.1], to get

DG = Db(A)G ∼= Db(AG)

and as a derived category the latter is naturally triangulated.

Remark E.2.5. If X is a smooth projective variety, then Db(X) has (up to equivalence) a
unique dg-enhancement [132].

The group of characters G∨ = {χ : G → C∗ | χ homomorphism} acts on the equivariant
category DG by the identity on morphisms and by

χ · (E, φ) = (E,χφ)

on objects, where we let χφ denote the linearization χ(g)φg : E → ρgE.
An object E ∈ D is called G-invariant if for all g ∈ G there exists an isomorphism

ρgE ∼= E. A G-linearization of E is an element Ẽ ∈ DG such that pẼ ∼= E. There is
the following obstruction for a G-invariant simple object to be G-linearizable (which, since
H2(Zn,C∗) = 0 for all n, is trivial for cyclic groups).

Lemma E.2.6 ([185, Lem. 1]). Given a G-invariant simple object E ∈ D, there exists a
class in H2(G,C∗) which vanishes if and only if there exists a G-linearization of E. The set
of (isomorphism classes) of G-linearizations of E is a torsor under G∨.

Example E.3.15 below shows that this obstruction is effective.
Recall that an extension of groups 1 → K → E → G → 1 is stem if K is contained both

in the commutator subgroup and the center of E. Any maximal stem extension G̃ � G is
called a Schur covering group of G. It has the property that the restriction morphism

H2(G,C∗)→ H2(G̃,C∗)

vanishes. Hence, by Lemma E.2.6 if we let G̃ act on D via the quotient map to G, then every
invariant simple object admits a G̃-linearization.

Let AutD be the group of equivalences of D. Every group action on D yields a subgroup of
AutD. For the converse one has the following obstruction (which because ofH3(Zn,C∗) = Zn
is non-trivial even for cyclic groups).

Lemma E.2.7. ([29, Sec. 2.2]) Assume that Hom(idD, idD) = Cid and let G ⊂ AutD be a
finite subgroup.

(a) There exists a class in H3(G,C∗) which vanishes if and only if there exists an action
of G on D whose image in AutD is G. Moreover, the set of isomorphism classes of
such actions is a torsor under H2(G,C∗).
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(b) There exits a finite group G′ and a surjection G′ → G such that G′ acts on D and the
induced map G′ → AutD is the given quotient map to G.

(c) If G = Zn, then we can take Zn2 → Zn in (b).

E.2.2. Stability conditions
A (Bridgeland) stability condition on a triangulated category D is a pair (A, Z) consisting of

• the heart A ⊂ D of a bounded t-structure on D and

• a stability function Z : K(A)→ C

satisfying several conditions, see [40]. Given an equivalence Φ: D → D′ of triangulated
categories the image of σ under Φ is defined by

Φσ = (ΦA, Z ◦ Φ−1
∗ )

where Φ∗ : K(D) → K(D′) is the induced map on K-groups. If Φ: D → D is an auto-
equivalence, we say that Φ preserves (or fixes) σ if Φσ = σ.
Let X be a smooth projective variety together with an action of a finite group G on

Db(X) which fixes a stability condition σ = (A, Z). By [133, Lem. 2.16] σ induces a stability
condition on Db(X)G defined by

σG = (AG, ZG), ZG := Z ◦ p∗ : K(AG)→ C.

Lemma E.2.8. Let (E, φ) ∈ AG. Then (E, φ) is σG-semistable if and only if E is σ-
semistable. If E is σ-stable, then (E, φ) is σG-stable.

Proof. If an element (E, φ) ∈ AG is destabilized by (F,ψ), then p(E, φ) is destabilized by
p(F,ψ). Conversely, if p(E, φ) is destabilized by F ′ ∈ A, then the image of the adjoint
morphism qF ′ → (E, φ) destabilizes (E, φ). This shows the first claim. A subobject of (E, φ)
is given by a subobject F ⊂ E such that φ restricts to a linearization of F . Hence any
destabilizing subobject of (E, φ) yields a destabilizing subobject of E. This shows the second
claim.

Definition E.2.9. A class v ∈ K(A)G is (G, σ)-generic if it is primitive and for every
splitting v = v0 + v1 with vi ∈ K(A)G \ Zv the summands have different slopes.
Lemma E.2.10. Let (E, φ) ∈ AG such that E is σ-semistable and its class [E] ∈ K(A)G is
(G, σ)-generic. Then (E, φ) is σG-stable. In particular,

HomAG((E, φ), (E, φ)) = Cid.

Proof. As explained above the object (E, φ) is σG-semistable. If it is not stable, then there
exists a short exact sequence in AG

0→ (F1, φ)→ (E, φ)→ (F2, φ)→ 0

with F1, F2 of the same phase as E. Applying the forgetful functor we obtain

0→ F1 → E → F2 → 0

in A with Fi semistable of the same phase as E. However, the classes [Fi] are G-invariant
which shows that [E] = [F1] + [F2] is not (G, σ)-generic.
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E.2.3. Fourier–Mukai actions

Let π : X → T be a smooth projective morphism to a C-scheme T with geometrically con-
nected fibers. Let

p, q : X ×T X → X

be the projections to the factors. The Fourier–Mukai transform FME : D(X) → D(X) with
kernel E ∈ D(X ×T X) is defined by

FME(A) = q∗(p∗(A)⊗ E).

Using a push-pull argument we have isomorphisms

FME(A⊗ π∗B) ∼= FME(A)⊗ π∗B (E.2.5)

for all A ∈ D(X) and B ∈ D(T ), functorial in both A and B.

Definition E.2.11. A Fourier–Mukai action of G on D(X) consists of3

• for every g ∈ G a Fourier–Mukai kernel Eg ∈ D(X ×T X),

• for every pair g, h ∈ G an isomorphism θg,h : Eg ◦ Eh → Egh

such that for all g, h, k the diagram (E.2.1) commutes with ρg replaced by Eg.

For smooth projective varieties we have not defined anything new:

Lemma E.2.12. ([29, Sec. 2.3]) Let X be smooth projective variety and let G be a finite
group. Then any G-action on Db(X) is induced by a unique Fourier–Mukai action.

Given a Fourier–Mukai action on the derived category of X/T our next goal is to define
natural operations on the equivariant category. If G is induced by an action on X, this is
discussed in [42, Sec. 4]. Since our G-action does not have to preserve the tensor product or
the structure sheaf, some care is needed in the general case.

E.2.3.1. Pushforward and pullback

Consider a fiber product diagram
X ′ X

T ′ T.

α

π′ π

β

(E.2.6)

The pullback of the kernels of the G-action on X,

(α× α)∗Eg ∈ D(X ′ ×T ′ X ′),

together with the pullback of the θg,h define a Fourier–Mukai G-action on D(X ′). We say
that the morphism α is G-equivariant.

3We write E ◦ F to indicate the composition of correspondences E ,F .
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Given an equivariant object (F, φ) in D(X)G we define its pullback by

α∗(F, φ) = (α∗F, φ′) ∈ D(X ′)G

where the G-linearization φ′g is the composition

α∗F
α∗φg−−−→ α∗(gF ) = α∗q∗(p∗(F )⊗ Eg) ∼= q′∗(α× α)∗(p∗(F )⊗ Eg)

∼= q′∗(p′∗(α∗F )⊗ (α× α)∗Eg) = gα∗(F )

with p′, q′ : X ′ ×T ′ X ′ → X ′ the projections. The pullback α∗ of an equivariant morphism
is the pullback of the morphism in D(X) (one checks that the pullback morphism is G-
invariant). Taken together this yields a functor

α∗ : D(X)G → D(X ′)G.

Similarly if β is proper and flat and (E, φ) ∈ D(X ′)G, we define the pushforward functor by

α∗(E, φ) := (α∗E, φ′)

where the G-linearization φ′ is obtained as the composition

α∗E
α∗φg−−−→ α∗gE = α∗q

′
∗(p′∗(E)⊗ (α× α)∗(Eg))

∼= q∗(α× α)∗(p′∗(E)⊗ (α× α)∗(Eg)) ∼= q∗(p∗(α∗E)⊗ Eg) = gα∗(E).

The pushforward of an equivariant morphism is the pushforward of the underlying morphism.
The pullback functor α∗ is left adjoint to α∗.

E.2.3.2. Hom and tensor product

Given a T -perfect object B ∈ D(T ) and an equivariant object (E, φ) ∈ D(X)G we define the
tensor product by

(E, φ)⊗ π∗B := (π∗B ⊗ E, φ′)
where the linearization φ′ is the composition

E ⊗ π∗(B) φg⊗id−−−−→ FMEg(E)⊗ π∗(B)
(E.2.5)∼= FMEg(E ⊗ π∗(B)) = g(E ⊗ π∗(B)).

More generally, if D(T ) is equipped with the trivial G-action and (B,χ) ∈ D(T )G, we let

(B,χ)⊗ (E, φ) := (π∗B ⊗ E,χφ′)

Similarly, given two equivariant objects (E, φ) and (F,ψ) in D(X)G and an open subset
U ⊂ T the group G acts on HomD(XU )(E|U , F |U ) by f 7→ φg|U ◦FMEg |U (f) ◦ψ−1

g |U where we
use again that Fourier–Mukai actions induce actions after base change. Since this action is
compatible with restrictions to smaller open subsets we obtain a G-action on Homπ(E,F ) :=
π∗Hom(E,F ) and thus a bifunctor

Homπ : D(X)G ×D(X)G → D(T )G.

It satisfies the usual adjunctions with respect to the tensor product.
For any (closed or non-closed) point t ∈ T let ιt : Xt → X be the inclusion of the fiber of

X over t. Given (E, φ) ∈ D(X)G we write (E, φ)t for the equivariant pullback ι∗t (E, φ).
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Lemma E.2.13. Let (E, φ), (F,ψ) be objects in D(X)G. Then

t 7→ χ((E, φ)t, (F,ψ)t) :=
∑
i

dim ExtiD(Xt)G ((E, φ)t, (F,ψ)t)

is locally constant in t.

Proof. By a push-pull argument we have that

χ((E, φ)t, (F,ψ)t) = χ(k(t),Homπ(E,F )G ⊗ k(t)).

Since Homπ(E,F ) is perfect, the same holds for its invariant part which implies the claim.

E.3. Moduli spaces
E.3.1. Group actions on stacks
Following [189] an action of a finite group G on a stackM over C consists of

• for every g ∈ G an automorphism of stacks ρg : M→M

• for every pair g, h ∈ G an isomorphism of functors θg,h : ρgρh → ρgh

such that for all g, h, k ∈ G the diagram (E.2.1) commutes. In other words, if we viewM as
a category fibered in groupoids, then a G-action onM is precisely a G-action on the category
M in the sense of Section E.2.1 with the additional assumption that every ρg is a morphism
of stacks. A morphism of stacks with G-actions (also called a G-equivariant morphism) is a
G-functor (f, σ) such that f is a morphism of stacks. A 2-morphism of such morphisms is a
2-morphism of G-functors.

Let St and G-St denote the 2-categories of stacks and stacks with a G-action respectively.
There is a functor ι : St → G-St which equips a stack with the trivial G-action. Let Grpds
be the category of groupoids.

Definition E.3.1 ([189, Def. 2.3]). Let G be a finite group acting on a stackM. The fixed
stack is the functorMG : St→ Grpds defined by the condition that for all stacks T we have
the equivalence

HomSt(T,MG) ∼= HomG-St(ι(T ),M).

Hence there is a G-equivariant morphism ε : ι(MG)→M satisfying the following universal
property: For any stack T and for any G-equivariant morphism f : ι(T )→M there exists a
unique morphism f̃ : T →MG such that ε ◦ f̃ = f .

Remark E.3.2. As explained in [189, Proof of Prop. 2.5] the objects of MG are pairs
(x, {αg}g∈G) of an element x ∈M and maps αg : x→ g.x such that θxg,h ◦ gαh ◦αg = αgh for
all g, h ∈ G. Morphisms are the morphisms in M which respect the linearizations. Hence,
viewed as a category, the fixed stackMG is the equivariant categoryMG of the action (ρ, θ)
in the sense of Definition E.2.1. This can be seen also more conceptually: By the universal
property of the equivariant category (Remark E.2.3) we have a functorMG →MG, but by
the universal property of the fixed stack we also have an inverse.
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Remark E.3.3. By the universal property, if (f, σ) : N →M is a G-equivariant morphism
which is a monomorphism (e.g. an open or closed immersion), then we have a fiber diagram

NG MG

N M.

ε ε

f

Proposition E.3.4. [189, Thm. 3.3, Prop. 3.7] Let G be a finite group acting on an Artin
stackM (locally) of finite type over C. ThenMG is an Artin stack (locally) of finite type over
C and the classifying morphism ε : MG →M is representable, separated and quasi-compact.
IfM has affine diagonal, then so doesMG.
Furthermore, consider any property of morphisms of schemes that is satisfied by closed

immersions and is stable under composition. Then, if the diagonal of M has this property,
then ε has this property.

Proof. We prove that MG has affine diagonal if M has. Everything else can be found in
[189]. Assume thatM has affine diagonal and consider the commutative diagram

MG MG ×MG

M×M.

∆MG

∆M◦ε
ε×ε

Since ∆M is affine, ε is affine by the second part, hence so is the composition ∆M ◦ ε. Since
ε × ε is separated, its diagonal is a closed immersion and hence affine. By the cancellation
lemma it follows that ∆MG is affine.

If G acts on a separated scheme, then the fixed stack is a closed subscheme and equal to
the fixed locus defined in the usual way. However, in general the map ε : MG → M may
behave quite subtle. For example, taking fixed stacks usually does not commute with passing
to the good or coarse moduli space (if it exists).

E.3.2. The fixed stack of a Gm-gerbe

Consider a G-action (ρ, θ) on the stack BGm such that ρg = id for all g ∈ G but we allow
the 2-isomorphisms θ to be arbitrary. According to Lemma E.2.7 there is an associated class

α(θ) ∈ H2(G,C∗)

where we let the trivial action correspond to the trivial class.4 By a direct check using the
universal property and Lemma E.2.6 one has that

(BGm)G =
{⊔

χ∈G∨ BGm if α(θ) = 0,
∅ if α(θ) 6= 0.

4We have stated Lemma E.2.7 only for additive C-linear category, but since Aut(idBGm ) = C∗id on which G
acts trivially by conjugation, the result applies verbatim also in this case.
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In this section we consider the following generalization: Let M be a complete variety, and
consider the trivial Gm-gerbe

M = M ×BGm.

The projections to the factors and the section of the gerbe are denoted by

p1 : M→M, p2 : M→ BGm, s = (idM , t) : M →M

where t : M → BGm corresponds to the trivial line bundle. We refer to [174, Def. 12.2.2] for
a definition of gerbes and morphisms of gerbes.

Lemma E.3.5. There is a natural bijection between the set of morphisms of Gm-gerbes
f : M → M and the set of pairs (F,L) where F : M → M is an automorphism and L ∈
Pic(M). If the morphism f corresponds to (F,L) and g corresponds to (G,L′), then f ◦ g
corresponds to (F ◦G,L ⊗ F ∗(L′)).

Proof. For a more general statement of the lemma as an equivalence of categories see [89].
Let f : M → M be a morphism of gerbes. Define F = p1 ◦ f ◦ s and let L ∈ Pic(M)

be the line bundle corresponding to p2 ◦ f ◦ s : M → BGm. By [174, Lem. 12.2.4] F is an
automorphism.
Conversely, let Luniv be the universal line bundle on BGm, and let L̃univ = p∗2(Luniv). Since

f is a morphism of gerbes, the restriction of f∗L̃univ to x × BGm for every C-valued point
x ∈M is isomorphic to Luniv. Hence we have f∗L̃univ = p∗1(L′)⊗ L̃univ for some L′ ∈ Pic(M).
Restricting this equality to M shows L′ = L and hence

f∗p∗2(Luniv) = p∗1(L)⊗ p∗2(Luniv).

Hence given (F,L) we can recover f as the product of F ◦ p1 and the morphism associated
to p∗1(L)⊗ p∗2(Luniv). This yields the 1-to-1 correspondence.

For the last claim, we have that

g∗L̃univ = p∗1(L′)⊗ L̃univ

hence
f∗g∗L̃univ = p∗1F

∗(L′)⊗ f∗L̃univ = p∗1F
∗(L′)⊗ p∗1(L)⊗ L̃univ

which gives the claim by restriction to M .

Let (ρ, θ) be a G-action onM such that for all g ∈ G:

• the morphism ρg is a morphism of Gm-gerbes, and

• if (Fg,Lg) is the pair associated to ρg, then Fg = id.5

For a C-point p ∈M the G-action (ρ, θ) induces an action (ρp, θp) on p×BGm such that
for all g ∈ G we have ρpg ∼= idBGm (since ρg acts by gerbe morphisms). Hence as before we
have an associated class

α(θp) ∈ H2(G,C∗).
5One can always reduce to this case by replacingM withM×M F for an irreducible component F of MG.
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The class α(θp) vanishes if and only if (p × BGm)G is non-empty. In this case we say that
p ∈M is G-linearizable.

By Remark E.3.3 the fixed stack MG is non-empty if and only if M contains a G-
linearizable point. Hence let p ∈M be G-linearizable. The 2-isomorphisms θg,h : ρgρh → ρgh
induce isomorphisms

θg,h : Lg ⊗ Lh
∼=−→ Lgh (E.3.1)

which satisfy the associativity relations (E.2.1). In particular, up to isomorphism the line
bundles Lg only depend on the conjugacy class ḡ of g and we obtain a group homomorphism

Gab → Pic(M), ḡ 7→ [Lg]

where Gab is the abelianization of G, and [L] stands for the isomorphism class of a line bundle
L.
Claim. The G-action onM is isomorphic to an action which factors through Gab and such
that the isomorphisms (E.3.1) are commutative, i.e. θg,h = θh,g where we identify Lg ⊗ Lh
with Lh ⊗ Lg by swapping the factors.

Proof of Claim. Let H = [G,G] and choose representatives {g1, . . . , gr} for the cosets G/H
where we take the identity element for the unit coset. Given any element g ∈ giH we set
ρ′g = ρgi . The isomorphisms Lg ∼= Lgi induced by (E.3.1) yield isomorphisms tg : ρg ∼= ρgi =
ρ′g. Consider the action (ρ′g, θ′) onM where θ′ is determined by the commutative diagram

ρgρh ρgh

ρ′gρ
′
h ρ′gh.

tgth

θg,h

tgh

θ′g,h

By construction, ρ′g only depends on the image of g in G/H. We need to show that we can
further modify θ′ such that it also only depends on the image in G/H, and is commutative.
The key idea is that since M is a complete variety, Hom(Lg,Lg) = C, and hence we may
find and check all the required relations by restricting to the point p ∈ M where the action
is trivial. Concretely, we may first choose an identification Lg|p ∼= Cp for every g. Since
α(θp) = 0 we may then modify θ′ (i.e. replace θ′g,h by λg,hθ′g,h for some λg,h ∈ C∗ which is
the derivative of a 1-cycle) such that the restrictions

θ′g,h|p : Lg|p ⊗ Lh|p → Lgh|p

are the identity maps under the given identification. Since Lg only depends on G/H it follows
that θg,g′ only depends on the image of g and g′ in G/H. (To spell this out: for any g ∈ giH,
g′ ∈ gjH and h, h′ ∈ H we have that θg,g′ and θgh,g′h′ are both morphisms Lgi ⊗ Lgj → Lgk
where gigj ∈ gkH; they agree after restriction to p hence they must agree.) Similarly, the
commutativity θ′g,g′ = θ′g′,g follows by restriction.

After replacing (ρ, θ) with an isomorphic action as in the Claim, we obtain a commutative
OM -algebra

A =
⊕
g∈Gab

Lg,

212



where the multiplication is induced by θ. Consider the étale cover

π : Y →M, Y = Spec(A).

For every g ∈ G the natural inclusion Lg → A yields a natural isomorphism

φg : π∗(Lg)
∼=−→ OY . (E.3.2)

The composition
π∗(Lg ⊗ Lh)

φg⊗idLh−−−−−→ π∗(Lh) φh−→ OY

is induced by Lg ⊗ Lh → A⊗A → A and hence isomorphic to

π∗(Lg ⊗ Lh) π∗θg,h−−−−→ π∗Lgh
φgh−−→ OY .

We see that φg gives s ◦ π : Y →M the structure of a G-equivariant morphism with respect
to the trivial action on Y . This yields a morphism Y →MG.

Define the product
Y = Y ×BGm

and consider the morphism
f = π × idBGm : Y →M.

As before, the tensor product of φg with the identity on the universal bundle makes f
equivariant with respect to the trivial action on Y. We obtain a morphism Y →MG. This
yields the following description of the fixed stack.

Proposition E.3.6. In the setting above, if M contains a G-linearizable point, then f : Y →
M is the fixed stack of the G-action onM.

Proof. We have seen above that there is a natural morphism Y → MG. Conversely, giving
an equivariant morphism h : T →M×BGm, where the scheme T carries the trivial G-action,
is equivalent to a line bundle L on T , a morphism h′ = p1 ◦h : T →M and maps h′∗Lg → OT
satisfying the cocycle condition. The cocycle condition implies that the induced map

h′∗(⊕g∈GabLg)→ OT

is an algebra homomorphism with respect to the algebra structure on ⊕gLg defined by θ.
Hence the map T →M factors through Y and thus h factors through Y ×BGm. This yields
the inverseMG → Y.

Remark E.3.7. Parallel results hold for a non-trivial Gm-gerbe π : M → M with Brauer
class α ∈ Br(M): There exists a π∗(α)-twisted line bundle Luniv on M (playing the role
of L̃univ as before) such that for every morphism f : X → M and every f∗(α)-twisted line
bundle L on X there exists a unique map F : X →M such that F ∗(Luniv) = L and f = π◦F .
A morphism F : M→M of Gm-gerbes is then equivalent to the pair of an (untwisted) line
bundle L on M and a morphism f : M →M such that f∗(α) = α. See also [89, Sec. 5]. The
formulation of the analogue of Proposition E.3.6 is similar.
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E.3.3. Moduli spaces of equivariant objects

Let X be a smooth projective variety over C. Recall from [129] the stack

M : Sch/C→ Grpds

which associates to each scheme T the groupoid of T -perfect universally gluable objects in
D(X ×T ). As proven in loc. cit. M is a quasi-separated algebraic stack locally of finite type
over C with affine diagonal, see also [200, 0DPV] and [16, Sec. 8].
Let G be a finite group which acts on Db(X). By Lemma E.2.12 the action is given

by Fourier–Mukai transforms. The pullback of the Fourier–Mukai kernels define a Fourier–
Mukai action D(X × T ) such that the pullback morphisms are G-equivariant. This defines
an action of G on M in the sense of Section E.3.1,

(ρ, θ) : G×M→M.

Remark E.3.2 yields the following description of the fixed stack:

Proposition E.3.8. The fixed stack MG is the stack of G-equivariant universally gluable
perfect complexes in D(X), i.e. for every scheme T we have

MG(T ) = {(E , φ) ∈ D(X × T )G×1 | E is universally gluable, T -perfect}.

The isomorphisms in MG(T ) are the isomorphisms of objects in D(X×T )G×1. The pullback
is the equivariant pullback. The morphism ε : MG → M is the map that forgets the G-
linearization.

From now on let σ be a stability condition on Db(X) which is preserved by the G-action.
LetMσ(v) be the moduli stack of σ-semistable objects of class v ∈ K(A), i.e. for any scheme
T we let

Mσ(v)(T ) = {E ∈ D(X × T ) | ∀t ∈ T : Et is σ-semistable with [Et] = v}.

Since G preserves σ-semistability, for any G-invariant v ∈ K(A) we have an action

G×Mσ(v)→Mσ(v).

The following result follows immediately from Proposition E.3.8 and Lemma E.2.8.

Proposition E.3.9. We have

Mσ(v)G =
⊔

v′∈K(AG)
p∗(v′)=v

MσG(v′),

whereMσG(v′) is the substack of MG defined by

MσG(v′)(T ) = {E ∈ D(X × T )G×1 | ∀t ∈ T : Et is σG-semistable, [Et] = v′}.
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E.3.4. The fixed stack of a fine moduli space

In the setting of Section E.3.3, let v ∈ K(Db(X)) be a G-invariant class such that Mσ(v)
has a fine moduli space Mσ(v) which is smooth. The goal of this section is to determine the
fixed stackMσ(v)G.

WriteM =Mσ(v) and M = Mσ(v). By assumption there is a universal family

E ∈ D(M ×X),

unique up to tensoring with a line bundle pulled back from the first factor. By the universal
property ofM this yields a section sE : M →M of the Gm-gerbeM→M . Hence sE defines
a trivialization

M∼= M ×BGm. (E.3.3)

The universal family EM ∈ D(M×X) is identified under (E.3.3) with

(p1 × idX)∗(E)⊗ p∗2(Luniv)

where p1, p2 are the projections to the factors.
Let f : M→M be a morphism of Gm-gerbes and let

F = p1 ◦ f ◦ sE , L = (p2 ◦ f ◦ sE)∗Luniv

be the associated automorphism and line bundle as in Lemma E.3.5. We consider the differ-
ence of the pullbacks of the universal families under F and f .

Lemma E.3.10. In the situation above, we have

((f × idX)∗EM)|M = (F × idX)∗(E)⊗ L.

Proof. Under the identification (E.3.3) we have EM = (p1 × idX)∗(E)⊗ p∗2(Luniv). Hence

(f × idX)∗(EM) = (f × idX)∗((p1 × idX)∗(E))⊗ (f × idX)∗p∗2(Luniv)
= (p1 × idX)∗((F × idX)∗(E))⊗ ((p1 × idX)∗(L)⊗ p∗2(Luniv))
= (p1 × idX)∗((F × idX)∗(E)⊗ L)⊗ p∗2(Luniv).

Restricting to M completes the claim.

Consider the action of G on M. For every g ∈ G the morphism ρg : M→M commutes
with the inclusion of the automorphism groups (in the derived category, we have g(λid) =
λg(id) = λid) and hence is a morphism of Gm-gerbes. Let

Fg : M →M, Lg ∈ Pic(M)

be the associated pair constructed in Lemma E.3.5. By Lemma E.3.10 the line bundle Lg
can also be described by

(1× g)(E) = ((1× g)EM)|M = ((ρg × idX)∗EM)|M = (Fg × idX)∗(E)⊗ Lg. (E.3.4)
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Let F be a connected component of the fixed locusMG ⊂M and let Lg = Lg|F which only
depends on the conjugacy class of g, see the discussion in Section E.3.1. Consider further
the associated étale cover

Y = Spec

 ⊕
g∈Gab

Lg

 , π : Y → F (E.3.5)

and define
Y = Y ×BGm, ε : Y π×idBGm−−−−−−→ F ×BGm →M.

Proposition E.3.11. In the setting above, if F contains a G-linearizable point, then Y is the
union of the connected components ofMG which map to F and ε : Y →M is the restriction
of the classifying map MG →M to Y. The universal linearization of ε∗(EM) is pulled back
from the canonical linearization of (π × idX)∗(E|F×X).

By Proposition E.3.8, a point p ∈ F is G-linearizable if and only if the corresponding
G-invariant object Ep is G-linearizable. Using Proposition E.3.11 we see that there exists a
G-linearizable point p ∈ F if and only if every point on F is G-linearizable. In this case we
say that the connected component F of MG is G-linearizable.

Proof. The first statement is Proposition E.3.6. The second part follows since the lineariza-
tion on Y is the pullback of the linearization on Y given by (E.3.2).

Remark E.3.12. The action of G∨ on Db(X)G by twisting the linearization preserves the
stability condition σG. Moreover, for every χ ∈ G∨ we have p∗χv′ = p∗v

′. Hence we have an
induced action of G∨ on

Mσ(v)G =
⊔

p∗(v′)=v
MσG(v′).

By Lemma E.2.6 the action is free ifMσ(v) is a moduli space of stable objects.
In the setting of Proposition E.3.11, the G∨-action can be described by letting a character

χ ∈ G∨ act on the line bundle Lg by multiplication by χ(g). In particular, Y/G∨ = F and
the projection π : Y → F is a G∨-torsor (in the étale topology).

Remark E.3.13. The results of this section can be generalized to the case when π : Mσ(v)→
Mσ(v) is a non-trivial Gm-gerbe (if E ∈ D(M ×X,−α) is the twisted universal object, then
the universal family EM on the stackM×X is given by π∗(E)⊗Luniv, see also Remark E.3.7).

Example E.3.14. Let E be an elliptic curve and let ta : E → E be the translation by a
2-torsion point a ∈ E. The group G = Z2 acts on Coh(E) by t∗a. Let E′ = E/ta. The
equivariant category is Coh(E)G = Coh(E′). Consider the moduli stack M = M(1, 0) of
Gieseker stable sheaves with Chern characters v = (1, 0) ∈ H2∗(E) or equivalently the moduli
stack of degree 0 line bundles. It admits the fine moduli space M ∼= E with universal family
the Poincaré bundle P on E × E. HenceM ∼= E × BGm. Since every degree 0 line bundle
is translation invariant, the group G induces the trivial action on M . However, because of

(1× t∗a)(P) = (id× ta)∗P = P ⊗ p∗1Pa,

the bundle P can not be linearized over M . Indeed by Proposition E.3.11 (with Lg = Pa)
one hasMG = Ẽ ×BGm where Ẽ is the cover of E defined by Pa.
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An alternative description of the fixed stack is also given by Proposition E.3.9 as follows:

MG =ME′(1, 0) ∼= E′ ×BGm.

Since E′ ∼= Ẽ these two presentations agree with each other.

Example E.3.15. We give an example of a component which is not G-linearizable.
Let G = Z2 × Z2 be the subgroup of 2-torsion points of E acting by translation. Let
M =M(1, 2) be the moduli stack of degree 2 line bundles and let M ∼= E be its fine moduli
space. ThenMG = M butMG = ∅, soM is not G-linearizable. Indeed, any G-linearization
of a degree 2 line bundle L is a descent datum for the quotient map π : E → E/G. Hence
there would exists a line bundle L′ on E/G with π∗L′ = L which would imply that the degree
of L is divisible by 4.

E.3.5. The Artin–Zhang functor

As before we consider an action of a finite group G on Db(X) which preserves a stability
condition σ = (A, Z). In this section we further assume the following properties:

• A is Noetherian,

• A satisfies the generic flatness property of [1, Prop. 3.5.1].

The second condition implies that the subfunctor MA ⊂ M of objects, such that every
geometric fiber lies in A, is open. By Remark E.3.3 the open immersion MA ⊂M yields the
fiber diagram

(MA)G MG

MA M.

ε (E.3.6)

By base change this shows that also (MA)G ⊂MG is an open immersion.
Given a cocomplete6, locally noetherian, k-linear abelian category C, let NC be the stack

of finitely presented objects in C as introduced by Artin and Zhang [11], see also [6, Def. 7.8].
Concretely, for a commutative ring R let CR be the category of pairs (E, φ) with E an object
in C and φ : R → EndC(E) a morphism of k-algebras. Then NC(SpecR) is the groupoid of
flat and finitely presented objects in CR,

As discussed in [6, Ex. 7.20] our assumptions on A imply that the stacks MA and NInd(A)
are equivalent, where Ind(A) is the Ind-completion of A. Our first goal is to prove the parallel
result for the equivariant abelian category AG:

Proposition E.3.16. (MA)G ∼= NInd(AG).

We begin with two technical lemmata.

Lemma E.3.17. If A is a Noetherian abelian C-linear category, then every object in Ind(A)
can be written as a union of objects in A.

6i.e. C has all small filtered colimits
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Proof. 7 Given objects E ∈ A and F ∈ Ind(A) and an inclusion F ⊂ E in Ind(A) we first
claim that F ∈ A. Indeed, write F = limi Fi where the Fi lie in A. Then since F → E is
a monomorphism we have F ′i := Im(Fi → F ) = Im(Fi → E) and thus this image lies in A.
Therefore, F is a union of objects in A (namely the F ′i ) which are subjects of E. Since E is
Noetherian, this union has to stabilize and since abelian categories contain finite colomits,
F ∈ A as desired. Now, if E → F is a quotient in Ind(A) with E ∈ A and F ∈ Ind(A)
then by the above the kernel lies in A and hence so does F . Therefore A is closed under
quotients in Ind(A). We conclude, that if E = limiEi with Ei ∈ A, then E is the union of
the Fi = Im(Ei → E).

Lemma E.3.18. Let A be a Noetherian abelian C-linear category and G a finite group. Then
there exists a canonical isomorphism Ind(AG) ∼= Ind(A)G.

We refer to [179, Lem. 3.6] for a parallel result for ∞-categories.

Proof. If A is cocomplete and (Ei, φi) is a direct system in AG, then the φi define a canonical
G-linearization on E = limEi. Hence AG is also cocomplete.
Let A now be Noetherian. Applying the above argument to Ind(A) we see that Ind(A)G

is cocomplete. Hence by the universal property of Ind-completion, the inclusion AG →
Ind(A)G lifts to a functor Ind(AG) → Ind(A)G. By composing with the forgetful functor
Ind(A)G → Ind(A) one sees the functor is faithful. We check that the functor is essentially
surjective and full: Let (E, φ) ∈ Ind(A)G where E = ⋃

iEi is a union of objects Ei in A.
By replacing Ei by

⋃
g∈G φ

−1
g (gEi) if necessary we get that the restrictions φg|Ei : Ei → gEi

define G-linearizations on Ei. Moreover, after replacing the Ei and Fi suitably, any morphism
(E, φ)→ (F,ψ) is the limit of a morphism (Ei, φi)→ (Fi, ψi).

Proof of Proposition E.3.16. Since MA = NInd(A) we have that MG
A(SpecR) is the groupoid

of pairs of x ∈ NA(R) together with linearizations φg : x → gx satisfying the cocycle condi-
tion. Spelling this out this is the groupoid of triples of objects E ∈ Ind(A), homomorphisms
σ : R→ End(E) and linearizations φg : E → gE satisfying

φg ◦ σr = gσr ◦ φg,

or equivalently, the groupoid of pairs (E, φ) ∈ Ind(A)G and σ : R→ EndInd(A)G(E, φ). How-
ever, G finite implies that Ind(A)G = Ind(AG) (see Lemma E.3.18) and hence this is precisely
the groupoid NInd(AG)(SpecR).

A stability condition σ = (A, Z) is called algebraic if Z(K(A)) ⊂ Q + iQ.

Theorem E.3.19. In the above situation assume moreover that σ is algebraic and that
Mσ(v) is bounded for every v ∈ K(D(X)). Then for every v′ ∈ K(Db(X)G) the moduli
stack MσG(v′) is an universally closed Artin stack of finite type over C which has a proper
good moduli space. The inclusionMσG(v′)→MG is an open embedding.

Proof. Let v = p∗v
′ and let MA,v ⊂ MA be the open and closed substack parametrizing

objects of class v. Invoking [6, Ex. 7.27], the stack MA,v has a Θ-stratification whose open
7We thank Eugen Hellman for providing this argument.
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piece isMσ(v). This yields the fiber diagram

Mσ(v)G (MA,v)G

Mσ(v) MA,v,

ε ε

where the horizontal maps are open immersions. Since MA,v ⊂ M is open and M is an
Artin stack locally of finite type with affine diagonal over C, applying Proposition E.3.4 the
same holds for (MA,v)G. Moreover, by Proposition E.3.4 again both vertical morphisms ε
are affine. SinceMσ(v) is of finite type, so isMσ(v)G.

By [6, Sec. 7] the stackMσ(v) is Θ-reductive and S-complete. By [6, Prop. 3.20(1)] affine
morphisms are Θ-reductive and by [6, Prop. 3.42(1)] they are S-complete. Since both these
properties are stable under composition,Mσ(v)G is Θ-reductive and S-complete and hence
by [6, Thm. A] admits a separated good moduli space.
It remains to show that Mσ(v)G is universally closed.8 For this recall from Proposi-

tion E.3.16 the isomorphism (MA)G ∼= NInd(AG). It follows from [6, Lem. 7.17] that MG
A

satisfies the existence part of the valuative criterion of properness. Since ε : (MA,v)G →MA,v
is affine, by [85, Prop. 1.19] the preimage of the Θ-stratification of MA,v defines a Θ-
stratification of (MA,v)G. By definition its open piece is the preimage of the stack of σ-
semistable objets, which, is precisely the stack of σG-semistable objects.9 By semistable
reduction [6, Thm. B/C] we conclude thatMσ(v)G is universally closed and therefore that
its good moduli space is proper. By Proposition E.3.9 the stack MσG(v′) is a closed and
open substack ofMσ(v)G, hence it satisfies the same conclusion.

We consider the deformation-obstruction theory of the functor MG
A.

Proposition E.3.20. Suppose that A is Noetherian, satisfies the generic flatness property
and we have Db(A) ∼= Db(X).
Let 0 → I → A′ → A → 0 be a square zero extension of rings and let ι : X × SpecA →

X × SpecA′ be the natural inclusion. Let (E, φ) ∈ MG
A(SpecA). Then there exists an

obstruction class
ω(E, φ) ∈ Ext2(E,E ⊗ I)G0

which vanishes if and only if there exists a complex (E′, φ′) ∈MG
A(A′) such that ι∗(E′, φ′) ∼=

(E, φ). Moreover, in this case the set of extensions is a torsor over Ext1(E,E ⊗ I)G.

Here the subscript 0 stands for the traceless part defined by

Ext2(E,E)0 = Ker
(
Tr: Ext2(E,E)→ H2(X,OX)

)
.

8Since ε is not proper in general (see Section E.7.2 for an example where this fails) this does not follow
directly from the fact thatMσ(v) is universally closed. Instead we have to use the alternative description
of the bigger stack (MA)G.

9The Θ-stratification of MA,v corresponds to the Harder–Narasimhan filtration in A. Given an equivariant
object (E, φ) and a Harder–Narasimhan filtration Ei of E with respect to σ the restrictions (Ei, φ|Ei )
define a Harder–Narasimhan filtration of (E, φ) which corresponds to the ’preimage’ Θ-stratification of
(MA)G.
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Proof. By Proposition E.3.16 we can use the deformation theory of the Artin–Zhang functor
NInd(A). Since Db(A) = Db(X) for any (E, φ) ∈ AG we have

ExtiDb(AG)((E, φ), (E, φ)) = ExtiDb(X)G((E, φ), (E, φ)) = ExtiDb(X)(E,E)G.

Hence the existence of the obstruction class ω(E, φ) ∈ Ext2(E,E ⊗ I)G follows from [131].
The (G-invariant) trace map is the derivative to the determinant map on S. Since the
Picard stack is smooth, all obstructions to deforming det(E) vanishes. This shows that the
obstruction class lies in the kernel of

Ext2(E,E)G p∗−→ Ext2(E,E) Tr−→ C.

E.3.6. Conclusion
Let X be a smooth projective variety and let Stab∗(X) ⊂ Stab(X) be a connected component
of the stability manifold satisfying the following condition:

(†) There exists an algebraic stability conditions σ = (A, Z) ∈ Stab∗(X) such that
• A satisfies the generic flatness property and
• for all v ∈ K(A) the stackMσ(v) is bounded.

Then by [182, Prop. 4.12] the same holds for all algebraic stability conditions in Stab∗(X).
Moreover, as explained in [6, Ex. 7.27], for any v ∈ K(Db(X)) and stability condition σ ∈
Stab∗(X) one can find an algebraic stability condition σ′ such thatMσ(v) andMσ′(v) define
the same moduli functor.
Assume as before that we have aG-action onDb(X). We will need the followingG-invariant

version of the argument in [6, Ex. 7.27].

Lemma E.3.21. Let v ∈ K(Db(X))G and σ ∈ Stab∗(X)G. Then there exists an algebraic
stability condition σ′ ∈ Stab∗(X)G, such that Mσ(v) and Mσ′(v) define the same moduli
functor.

Proof. We follow the arguments and notations from [6, Ex. 7.27]. Note also that the argu-
ments from [133, Lem. 2.15] apply in our setting. We restrict the decomposition of [6]

CS′ =

 ⋃
γ′∈S′

Wγ′

 \ ⋃
γ′ 6∈S′

Wγ′

associated to v and σ to the set of invariant stability conditions Stab∗(X)G. Since we have
σ ∈ CS′ , we conclude for all γ′ 6∈ S′ that the connected component of the submanifold
Stab∗(X)G containing σ is not entirely contained in Wγ′ . Then arguing as in [6, Ex. 7.27]
for CS′ ∩ Stab∗(X)G completes the proof.

This yields the following existence result.

Theorem E.3.22. Let σ ∈ Stab∗(X) be a G-fixed stability condition. Then for every v′ ∈
K(Db(X)G) the stackMσG(v′) is a universally closed Artin stack of finite type over C which
has a proper good moduli space.
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Proof. By Lemma E.3.21 we may assume that σ is algebraic and apply Theorem E.3.19.

We are ready to give a proof of Theorem E.1.2.

Proof of Theorem E.1.2. We will assume for simplicity that M is a fine moduli space. The
case of a coarse moduli space of stable objects works parallel by using a twisted universal
object instead, see Remark E.3.13. By Proposition E.3.9 we have the decomposition

Mσ(v)G =
⊔

p∗v′=v
MσG(v′). (E.3.7)

The map (E.1.1) is induced from ε : Mσ(v)G → Mσ(v) by passing to good moduli spaces.
For every G-linearizable connected component F ⊂ MG, the scheme Y = Spec (⊕g∈GabLg)
as defined in (E.3.5) is a G∨-torsor over F , see Remark E.3.12. By Proposition E.3.11 the
gerbe Y × BGm is the union of all connected components of (E.3.7) mapping to F . Since
every connected component maps to some F this shows the first claim.
If G factors through a Schur cover G→ Q, then we have MG = MQ. Moreover for every

connected component F and point p ∈ F the obstruction of being G-linearizable (as given by
Lemma E.2.6) is the pullback of a class in H2(Q,C∗) and hence vanishes. This shows that
every connected component of MG is G-linearizable and so (E.1.1) is surjective.

Part 2. Equivariant categories of symplectic
surfaces

E.4. More on equivariant categories
E.4.1. Calabi–Yau categories
The main reference for this section is [29].
Let D be a C-linear triangulated category with finite-dimensional Hom spaces. A Serre

functor for D is an equivalence S : D → D together with bifunctorial isomorphisms

ηA,B : Hom(A,B)
∼=−→ Hom(B,SA)∨

for all objects A,B ∈ D. By [29, Sec. 5] if we are given an action by a finite group G on D
the Serre functor S lifts to a Serre functor

S̃ : DG → DG

which is of the form S̃(A, φ) = (SA, φ′) for a certain linearization φ′. Moreover, for any
objects (A, φ) and (B,ψ) in DG the restriction of ηA,B to the G-invariant part defines bifunc-
torial isomorphisms

ηA,B : Hom(A,B)G
∼=−→ (Hom(B,SA)G)∨

where the G-action on the left is defined by the linearizations φ, ψ and the G-action on the
right is defined by the linearizations ψ and φ′
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We say that the category D is Calabi–Yau if there exists a 2-isomorphism

idD
∼=−→ S[−n]

for some integer n, called the dimension of D.

Remark E.4.1. The derived category Db(X) of a smooth projective n-dimensional variety
X has the Serre functor S = (−) ⊗ ωX [n]. In this case we will usually denote the lifted
functor S̃ also by (−)⊗ωX [n] where the action on the linearization is implicitly understood.
So

(A, φ)⊗ ωX [n]

will stand for S̃(A, φ) = (A⊗ ωX [n], φ′).

Remark E.4.2. The results discussed above work also in the relative case of a smooth
projective morphism π : X → T with geometrically connected fibers as in Section E.2.3.
Given a Fourier–Mukai G-action on D(X), the π-relative Serre functor lifts to a π-relative
Serre functor of the equivariant category D(X)G.

We have the following criterion for the equivariant category of a Calabi–Yau variety to be
Calabi–Yau.

Proposition E.4.3. ([29, Sec. 6.3, 6.4]) Let X be a smooth projective variety which is Calabi–
Yau, i.e. ωX ∼= OX . Consider the action of a finite group G on Db(X) which lifts to an action
on the dg-enhancement Ddg(X).

(i) If the induced action of G on singular cohomology preserves the class of the Calabi–Yau
form [ωX ] ∈ H0(X,Ωn

X), then Db(X)G is Calabi–Yau of dimension n.

(ii) Suppose that, moreover, we have an equivalence Db(X)G ∼= Db(X ′) for a variety X ′.
The induced action of G∨ on H∗(X ′,C) preserves the class of ωX′.

E.4.2. Equivariant Fourier–Mukai transforms
Let X and Y be smooth projective varieties and let G be a finite group which acts on Db(X).
By Lemma E.2.12 this action is given by Fourier–Mukai transforms and hence defines an
action by Fourier–Mukai transforms on Db(X × Y ), see Section E.2.3.1.10 Since this action
is pulled back from X, we often write G× 1 for the group which acts on Db(X × Y ).
Consider the projections X ρ←− X × Y π−→ Y . The (equivariant) Fourier–Mukai transform

FE : Db(Y )→ Db(X)G with kernel E ∈ Db(X × Y )G×1 is defined by

FEA = ρ∗(π∗(A)⊗ E)

where the tensor product takes values in Db(X × Y )G×1 and ρ∗ is the equivariant pushfor-
ward. Similarly, the (reverse) equivariant Fourier–Mukai transform GE : Db(X)G → Db(Y )
is defined by

GE(E, φ) = Homπ (E , ρ∗(E, φ))G

where we used equivariant pullback and the π-relative Hom of Section E.2.3.2.
10Take β to be Y → Spec(C).
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Lemma E.4.4. For any E ∈ Db(X × Y )G×1 let

EL = E ⊗ ρ∗ω∨X [−dimX], ER = E ⊗ π∗ω∨Y [−dimY ].

Then GEL and GER is the left and right adjoint of FE respectively.

Here we followed Remark E.4.1 and have written E ⊗ ρ∗ω∨X [−dimX] for the application
of the inverse of the π-relative Serre functor of Db(X × Y )G×1.

Proof of Lemma E.4.4. For any (A, φ) ∈ Db(X) and B ∈ Db(Y ) we have

HomDb(X)G((A, φ),FEB)
∼= HomDb(X×Y )G×1(ρ∗(A, φ), π∗(B)⊗ E)
∼= HomDb(X×Y )(ρ∗A, π∗(B)⊗ E)G

∼=
(
HomDb(X×Y )(π∗(B)⊗ E , ρ∗(A)⊗ ωX×Y [dimX + dim Y ])∨

)G
∼=
(
HomDb(Y )(B,Homπ(E , ρ∗(A)⊗ ωX×Y [dimX + dim Y ]))∨

)G
∼= HomDb(Y )(Homπ(E , ρ∗(A)⊗ ρ∗ωX [dimX]), B)G

∼= HomDb(Y )(GE⊗ρ∗ω∨X [− dimX](A), B).

The other case is similar.

We have the following criterion when a Fourier–Mukai transform FE : Db(Y )→ Db(X)G is
an equivalence.

Proposition E.4.5. Let E ∈ Db(X × Y )G×1. Assume that

(i) HomDb(X)G(Ex, Ey[i]) = HomDb(Y )(Cx,Cy[i]) for all x, y ∈ Y .

(ii) Db(X)G is indecomposable.

(iii) The functor FE commutes on objects with Serre functors, i.e. S̃FE(A) ∼= FES(A) for all
A ∈ Db(Y ).

Then FE is an equivalence.

Proof. By Lemma E.4.4 the functor FE : Db(Y )→ Db(X)G has both right and left adjoints.
The assertion then follows from [42, Thm. 2.3].

E.5. Proof of results

Let S be a symplectic surface with a G-action on Db(S) satisfying conditions (i)-(iii) of
Section E.1.1 and let σ ∈ Stab†(S) be a G-fixed stability condition.
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E.5.1. Preliminaries
We have the following structure result.

Proposition E.5.1. The equivariant category Db(S)G is triangulated, indecomposable and
Calabi–Yau of dimension 2.

Proof. Write σ = (A, Z). Since the actions of G̃L+(2,R) and G on the stability manifold
commute, by Proposition E.A.1 we may assume that Db(A) ∼= Db(S). Applying Proposi-
tion E.2.4 we see that Db(S)G is triangulated and that the G-action on Db(S) lifts to an
action on the dg-enhancement. Hence by Proposition E.4.3 and assumption (i) the category
Db(S)G is Calabi–Yau. Since G acts faithfully, the indecomposability of Db(S)G holds by
definition.

E.5.2. Moduli spaces
By work of Toda [203] the distinguished component Stab†(S) satisfies condition (†) of Sec-
tion E.3.6. Hence by Theorem E.3.22 we have the following.

Proposition E.5.2. Let v′ ∈ K(Db(S)G). ThenMσG(v′) is a universally closed Artin stack
of finite type over C which admits a proper good moduli space.

Recall the notion of a (G, σ)-generic class from Definition E.2.9.

Proposition E.5.3. If v ∈ ΛG is (G, σ)-generic, then Mσ(v)G has a good moduli space N
which is smooth, symplectic and proper. The map π : Mσ(v)G → N is a Gm-gerbe.

Proof. By arguing as in the proof of Lemma E.3.21 we can deform σ inside Stab†(S)G to an
algebraic stability condition, without modifying the moduli functor Mσ(v). Together with
Remark E.A.5 we hence can assume that σ is algebraic and that Db(A) ∼= Db(S).
Let π : Mσ(v)G → N be the good moduli space ofMσ(v)G. For every x ∈Mσ(v)G(T ) over

a scheme T corresponding to an equivariant object (E, φ) we have an inclusion Gm(T ) ↪→
Aut(x) by sending f ∈ Gm(T ) to f · idE . Moreover, for every C-point p ∈ Mσ(v)G by
Lemma E.2.10 we have

AutMσ(v)G(p) = AutMσG
(v′)(p) = AutAG(E, φ) = C∗ · id.

This shows that π is a Gm-gerbe.
Let p ∈ Mσ(v)G be a C-valued point corresponding to some object (E, φ) ∈ AG. Let

v′ ∈ K(AG) be the class of (E, φ). Applying Lemma E.2.10 again we have

HomAG((E, φ), (E, φ)) = C.

Since Db(S)G is Calabi–Yau of dimension 2, we find that

Ext2
AG((E, φ), (E, φ)) = HomAG((E, φ), (E, φ))∨ ∼= C.

By Lemma E.2.13 the Euler characteristic χ((E, φ), (E, φ)) is locally constant and hence
depends only on v′. We write χ(v′, v′) for its value. By Proposition E.3.20 we conclude that
the dimension of the tangent space of N at p is

dimTN,p = dim Ext1
AG((E, φ), (E, φ)) = −χ(v′, v′) + 2.
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In particular, the dimension is locally constant in p. Moreover, from the G-invariant inclusion
C · id ⊂ Hom(E,E) we obtain via Serre duality a G-invariant surjection Ext2(E,E) → C
which is precisely the trace map. This shows that the trace map is surjective on the G-
invariant part and thus that the trace-free part vanishes:

Ext2(E,E)G0 = 0.

Using Proposition E.3.20 again we find that all obstructions vanish and N is smooth.
The symplectic form on N can be constructed from the fact that it is a moduli space of

stable objects in a 2-CY category. It can be seen also directly:
Recall from [103, Sec. 10] the anti-symmetric Yoneda pairing onMσ(v),

E xt1ρ(E , E)× E xt1ρ(E , E)→ E xt2ρ(E , E), (E.5.1)

where E is the universal family on S ×Mσ(v) and ρ : S ×Mσ(v) → Mσ(v) is the projec-
tion to the second factor. Restricting to the G-invariant part and pulling back (E.5.1) via
ε : MσG(v′)→Mσ(v) yields a pairing

ε∗E xt1ρ(E , E)G × ε∗E xt1ρ(E , E)G → ε∗E xt2ρ(E , E). (E.5.2)

By Proposition E.3.20 the sheaf ε∗E xt1ρ(E , E)G is the tangent bundle of N . Since the sym-
plectic form is G-invariant, the image of (E.5.2) is the G-invariant part ε∗ρE xt2(E , E)G = ON .
Equivariant Serre duality implies that the pairing (E.5.2) is non-degenerate and hence a
symplectic form.

E.5.3. Proof of Theorem E.1.1

Consider the G∨-torsor given in (E.1.1),⊔
p∗v′=v

MσG(v′)→MG. (E.5.3)

Let F ⊂MG be a G-linearizable 2-dimensional component and let

S′ ⊂MσG(v′)

be a connected component which maps to F . The map S′ → F is a torsor for the subgroup
of G∨ that preserves this component.
By the second part of Proposition E.3.11 the moduli space MσG(v′) is fine, i.e. there is a

universal equivariant object on MσG(v′)× S. Let

E = (E, φ) ∈ Db(S′ × S)1×G.

be its restriction to S′ × S. We will check that the induced Fourier–Mukai transform

FE : Db(S′)→ Db(S)G

is an equivalence.
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For any x ∈ S′ we have

HomDb(S)G(Ex, Ex) = HomDb(S)(Ex, Ex)G = C

Ext1
Db(S)G(Ex, Ex) = Ext1

Db(S)(Ex, Ex)G = TS′,x ∼= C2

Ext2
Db(S)G(Ex, Ex) = HomDb(S)G(Ex, Ex)∨ ∼= C.

The first line follows from the stability of Ex. The second line follows from Proposition E.3.20,
the smoothness of S′, and since F and hence S′ are 2-dimensional. The third line follows
since the equivariant category is Calabi–Yau. In particular, we have χ(Ex, Ex) = 0, and using
Lemma E.2.13 this yields

χ(Ex, Ey) = 0 for all x, y ∈ S′.

Further for all distinct x, y ∈ S′ by the stability of Ex and Ey we have

HomDb(S)G(Ex, Ey) = 0
Ext2

Db(S)G(Ex, Ey) = HomDb(S)G(Ey, Ex)∨ = 0.

Hence from the Euler characteristic calculation we also get Ext1(Ex, Ey) = 0. We have
therefore proven that for all x, y ∈ S′ we have

HomDb(S′)(Cx,Cy[i]) = HomDb(S)G(Ex, Ey[i]).

By Proposition E.5.1 the category Db(S)G is indecomposable and Calabi–Yau of dimen-
sion 2. Applying Proposition E.4.5 we conclude that FE is an equivalence.

E.5.4. A stronger version of Theorem E.1.1
We state a version of Theorem E.1.1 where we drop the condition on the moduli space to
parametrize only stable objects. This is useful since not every group action on Db(S) induces
an action on such a moduli space.

Theorem E.5.4. Let v ∈ ΛGalg be (G, σ)-generic and let N be the good moduli space of
Mσ(v)G. If N has a 2-dimensional connected component S′, then we have an equivalence

Db(S′, α)
∼=−→ Db(S)G

where α ∈ Br(S′) is the Brauer class of the gerbe π : Mσ(v)G → N restricted to S′.

Proof. Since π (restricted to π−1(S′)) is a Gm-gerbe with Brauer class α, the universal
equivariant object onMσG(v)G × S restricted to π−1(S′) × S descends to an α × 1-twisted
1×G-equivariant universal family E on S′×S. Arguing as in Theorem E.1.1 shows that the
associated Fourier–Mukai transform FE : Db(S′, α)→ Db(S)G is an equivalence.

E.5.5. Proof of Theorem E.1.3
For every v′ ∈ Rv consider the natural morphism

MσG(v′)→MG. (E.5.4)
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By Theorem E.1.2 this is a H-torsor over a connected component of MG, where H is the
stabilizer of v′ under the G∨-action on Λ(S′,α). In particular, H acts freely on MσG(v′).
Assume first that the induced stability condition σG lies in the distinguished component

Stab†(S′). Since S′ is a K3 surface, this implies that MσG(v′) is an irreducible holomorphic
symplectic variety. By the second part of Proposition E.4.3 the group H acts symplectically
on MσG(v′) and thus by the holomorphic Lefschetz fixed point formula every non-trivial
element must have a fixed point. This shows that H = 1 and that (E.5.4) is an isomorphism
onto its image. In the general case, the main result of [135] implies that ⊕iH0,i(MσG(v′))
is generated by (the conjugate of) the class of a symplectic form, so by the holomorphic
Lefschetz fixed point formula we again obtain H = 1. In any case, the morphism (E.5.3) is a
trivial G∨-torsor over its image. Since G is cyclic, every point of MG is G-linearizable hence
(E.5.3) is also surjective. This shows the claim.

E.6. Existence and properties of auto-equivalences
Let S be a symplectic surface. In this section we tie up some loose ends in order to make the
theorems we proved in the last section effective in practice. After some preliminary notation,
we will consider the following topics:

(i) Given a G-fixed distinguished stability condition σ ∈ Stab†(S) we will show that the
induced stability condition is distinguished, at least if the equivalence arises from a
universal family. This is useful, because for distinguished stability conditions the moduli
spaces of objects are well-understood.

(ii) We will prove that any symplectic action on a moduli space of stable objects on a K3
surface is induced by an action on the derived category (Proposition E.1.4).

E.6.1. Mukai lattice
The even cohomology of the symplectic surface S,

Λ = H2∗(S,Z) = H0(S,Z)⊕H2(S,Z)⊕H4(S,Z),

admits a non-degenerate pairing, called the Mukai pairing, defined by

〈(r1, D1, n1), (r2, D2, n2)〉 = −r1n2 − r2n1 +
∫
S
D1 ∪D2.

We will also write α · β for 〈α, β〉. For any E,F ∈ Db(S) we have

v(E) · v(F ) = −χ(E,F )

where v(E) = ch(E)
√

td(S) is the Mukai vector of E.

E.6.2. Stability conditions
Given a stability condition σ = (A, Z) ∈ Stab†(S) in the distinguished component we will
identify the stability function

Z : Λalg → C
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with the corresponding element in Λalg ⊗ C under the Mukai pairing.
Let P(S) ⊂ Λalg⊗C be the open subset of elements whose real and imaginary part span a

positive-definite 2-plan, let P+(S) ⊂ P(S) be the connected component which contains eiω
for an ample class ω, and let

P+
0 (S) = P+(S) \

⋃
δ∈Λalg
δ·δ=−2

δ⊥.

Bridgeland [41] proved that

π : Stab†(S)→ P+
0 (S), σ = (A, Z) 7→ Z (E.6.1)

is a covering map. His results were generalized to the twisted case in [104].

E.6.3. Induced stability conditions

Let σ ∈ Stab†(S) be a stability condition and let G be a finite group which acts on Db(S).
We assume the conditions (i), (ii) and (iii) of Section E.1.1 are satisfied. Suppose we are
given an equivalence

FE : Db(S′, α)→ Db(S)G

induced from a universal family E as in Theorem E.1.1 or Theorem E.5.4.

Proposition E.6.1. We have F−1
E (σG) ∈ Stab†(S′).

We begin with a description how the Mukai lattices Λ and Λ′ of the surfaces S and
S′ interact. Consider the composition of the forgetful and linearization functors with the
equivalence FE :

FMp(E) = p ◦ FE , FMp(E)∨[2] = F−1
E ◦ q,

where we have also written p for the forgetful functor ofDb(S′×S)1×G. Passing to cohomology
this yields morphisms

p : Λ′ → Λ, q : Λ→ Λ′

which are both left and right adjoints of each other. The composition is pq = ⊕gg. Let

L ⊂ Λ′

denote the saturation of the sublattice q(Λ).
Given a lattice M we write M(n) for the lattice obtained by multiplying the intersection

form with the integer n.

Lemma E.6.2. We have the finite-index sublattices

ΛG ⊕ (ΛG)⊥ ⊂ Λ, L⊕ L⊥ ⊂ Λ′.

The map p vanishes on L⊥ and defines an embedding of lattices p : L(|G|) ↪→ ΛG. The map
q vanishes on (ΛG)⊥ and defines an embedding of lattices q : ΛG(|G|) ↪→ L.
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Proof. The isomorphism of correspondences

ρg ◦ p(E) = (id× ρg)(p(E)) ∼= p(E),

shows that the image of p : Λ′ → Λ lies in the invariant lattice ΛG. By adjunction it follows
that q vanishes on (ΛG)⊥. In particular, for all v′, w′ ∈ L we can write v′ = q(v) and
w′ = q(w) where v, w ∈ ΛG ⊗Q. We obtain

〈v′, w′〉Λ′ = 〈qv, qw〉Λ′ = 〈v, pqw〉Λ = |G|〈v, w〉Λ.

Since ΛG is non-degenerate, this shows that L is non-degenerate and we have the finite-index
sublattice L⊕L⊥ ⊂ Λ′. It also shows that q defines an embedding ΛG(|G|) ↪→ L. Moreover,
with the same notation as above we have

〈pv′, pw′〉Λ = 〈pqv, pqw〉Λ = |G|〈v, pqw〉Λ = |G|〈qv, qw〉Λ′ = |G|〈v′, w′〉Λ′ .

We find that p defines an embedding L(|G|) ↪→ ΛG. For every w′ ∈ L⊥ we have 〈pw′, v〉Λ =
〈w′, qv〉Λ′ = 0 for all v ∈ Λ, which shows that pw′ = 0.

If G is abelian, then one can show that L is the invariant lattice for the action of the dual
group on Db(S′), that is L = (Λ′)G∨ .

Proof of Proposition E.6.1. To ease the notation we assume that the Brauer class α vanishes
and hence that we work with the usual derived category Db(S′). The case with non-trivial
Brauer class works parallel.
Let τ = F−1

E (σG). By construction the functor FE is induced from a universal family
E ∈ Db(S′ × S)1×G of σG-stable objects. Since Ex is σG-stable for all x ∈ S′, the skyscraper
sheaves Cx are τ -stable for all x ∈ S′.
Let us consider the central charge Zτ of the stability condition τ . By definition, it is given

by the composition
Zτ : Λ′ p−→ ΛGalg ⊂ Λalg

Z−→ C.

By Lemma E.6.2 the central charge Zτ factors over L and the real and imaginary part of Zτ
span a positive-definite 2-plane, because <(Z) and =(Z) do so.
We want to apply now the reasoning of the proof of [41, Prop. 10.3]. As in [41, Sec. 10],

there is a unique g ∈ G̃L+(2,R) such that the central charge of gτ is of the form exp(β+ iω)
for some β, ω ∈ NS(S′) with ω2 > 0, and such that the sheaves Cx have phase 1. Then as
in the first step in [41, Prop. 10.3] we apply [41, Lem. 10.1] to conclude that for any curve
C ⊂ S′ and torsion sheaf E supported on C we have =Zτ (E) > 0 which implies ω · [C] > 0.
Combining this with ω2 > 0 we find that the class ω is ample.
Invoking again [41, Lem. 10.1] we find further that the heart B of gτ is the tilt of the torsion

pair (T ,F), where T = Coh(S′) ∩ P(0, 1] and F = Coh(S′) ∩ P(−1, 0] and P is the slicing
corresponding to gτ (for more on tilting we refer to Appendix E.A or [87]). Arguing as in the
second step of the proof of [41, Prop. 10.3] we deduce that the torsion pair (T ,F) coincides
with the torsion pair (Tω,β,Fω,β) associated with the classes ω, β which is constructed in
[41, Sec. 6]. With the notation of loc. cit. this yields that B = A(ω, β) and therefore
gτ = σω,β. In particular, τ ∈ Stab†(S′) and the proof is finished.
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E.6.4. Proof of Proposition E.1.4
Let S be a K3 surface with a stability condition σ′ = (A′, Z ′) ∈ Stab†(S). Let M be a fine11

moduli space of σ′-stable objects of Mukai vector v ∈ Λ and let G be a finite group which
acts symplectically on M . Consider the Hodge isometry

Λ ⊃ v⊥ ∼= H2(M,Z).
By [151, Thm. 26] the induced action of G on H2(M,Z) acts trivially on the discriminant
lattice. Hence, the action lifts to an action on Λ which fixes the vector v and acts by Hodge
isometries. Since G acts symplectically on M , the action on Λ preserves the class of the
symplectic form.
Let H ∈ H2(M,Z) be a G-invariant ample class (obtained for example by averaging any

ample class over its images under G). Recall the wall and chamber decomposition of Stab†(S)
associated to v [41, Sec. 9] and denote by C the chamber which contains σ′. From [17, Thm.
1.2] we infer that there exists a stability condition σ = (A, Z) ∈ C such that the associated
divisor class `σ equals the class H (for the construction and properties of the divisor classes
`σ we refer to [18]). By definition the central charge Z is contained in the C-vector space
SpanC〈H, v〉 ⊂ Λ⊗C and hence fixed by G. Moreover, since σ and σ′ lie in the same chamber,
the moduli functorsMσ(v) andMσ′(v) agree. This proves M = Mσ(v).

Hence we have obtained a subgroup G ⊂ O(Λ) which acts by Hodge isometries, preserves
the class of the symplectic form and Z. An application of [101, Prop. 1.4] shows that
this action on Λ is induced by a subgroup G ⊂ AutDb(S) which preserves σ and acts
symplectically. Using part (b) of Lemma E.2.7 there is a surjection G̃ → G from a finite
group G̃ which acts on Db(S) with image G in AutDb(S). By construction the action of G̃
preserves σ and v and hence induces an action on M = Mσ(v). Since the restriction map
Aut(M)→ O(H2(M,Z)) is injective [150, Lem. 7.1.3], the action of G̃ on M factors through
the given action by G. This proves the first part.

For the second part, assume that G ⊂ AutM is cyclic. Then the action of Zn on M has at
least one fixed point which corresponds to a Zn-invariant simple object F . Hence the claim
follows from [29, Sec. 4.8].

E.7. Examples
We consider a series of examples to illustrate our methods. For simplicity we restrict ourselves
mostly to cyclic groups acting on the derived category of a K3 surface.

E.7.1. Classification
Given a varietyX and an element g ∈ AutH∗(X,C) of finite order n we define the frameshape
of g as the formal symbol

πg =
∏
a|n
am(a)

that encodes the characteristic polynomial of g via
det(t · id− g) =

∏
a|n

(ta − 1)m(a).

11The case of a coarse moduli space works similarly.
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Symplectic auto-equivalences of K3 surfaces of finite order preserving a stability condition
are neatly classified in terms of the frameshape of their action on cohomology. There are 42
frameshapes and at most 82 O+(Λ)-conjugacy classes which can occur [56]. The invariant
lattices can be found in [181, App. C]. For example, in order 2 there are three cases: 1828,
1−8216, and 212, each in a unique conjugacy class. Symplectic involutions of K3 surfaces have
frameshape 1828, while the others are strictly of derived nature.

E.7.2. The dual action of a geometric involution
Let ι : S → S be a symplectic involution of a symplectic surface with at least one fixed point
and let G = Z2 be the group generated by ι. Hence we are in one of the following two cases:

(i) S is an abelian surface and ι is multiplication by (−1), or

(ii) S is a K3 surface and ι is a Nikulin involution [192].

The number r of fixed points of G is 16 and 8 respectively, and in both cases the minimal
resolution S′ of S/Z2 is a K3 surface. In the fiber diagram

Z S′

S S/Z2

α

β

the map β is the blowup at the fixed points and α identifies S′ with the fixed locus Hilb2(S)G.
By [42] (or Theorem E.1.1) we have the equivalence Φ = β∗α

∗ : Db(S′)→ Db(S)G.
Let Q : Db(S′) → Db(S′) be the involution given by the action of the dual group G∨. By

applying both sides to skyscraper sheaves one finds12

Q = TOS(−δ) ◦
r∏
i=1

STOEi (−2)

where we let STE(F ) = Cone(Hom•(E,F ) ⊗ E → F ) denote the spherical twist by the
spherical object E, and TL(E) = E ⊗ L is the twist by a line bundle L. The Ei are the
exceptional divisors of the resolution S′ and δ = 1

2
∑r
i=1Ei.

The involution Q fixes skyscraper sheaves of points not on the exceptional divisor and
sends OS′ to OS′(δ) as well as OEi(−1) to OEi(−2)[1]. For x ∈ Ei the action exchanges the
two distinguished triangles

OEi(−1)→ Cx → OEi(−2)[1]
OEi(−2)[1]→ Q(Cx)→ OEi(−1).

(E.7.1)

The frameshape of Q is 1−8216 if S is an abelian surface, and 1828 if S is a K3 surface.13

12See also [125] for a related discussion of this involution.
13On the Mukai lattice the involution Q acts by

(1, 0, 0) 7→ (1, δ,−r/4), (0, Ei, 0) 7→ (0,−Ei, 1), (0, 0, 1) 7→ (0, 0, 1).
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As an example of a fixed stack computation, consider the moduli space

M =MσG(0, 0, 1)

where σG is induced by a G-fixed stability condition on Db(S) which is equivalent to Gieseker
stability for the Mukai vector v = (0, 0, 1). The C-points ofM correspond to the objects

Cx for all x ∈ S′, Q(Cx) for all x ∈ Ei, OEi(−1)⊕OEi(−2)[1].

In this list the Cx for all x /∈ Ei and the OEi(−1)⊕OEi(−2)[1] are invariant under Q. Every
Cx for x /∈ Ei admits two distinct G∨-linearizations, while OEi(−1) ⊕ OEi(−2)[1] admits
only one. We find that the good moduli space of M is the quotient S/Z2, and that the
good moduli space of the fixed stackMG∨ is S. Moreover, the forgetful map ε : MG∨ →M
induces the quotient map S → S/Z2 on good moduli spaces. Applying Theorem E.5.4 we
obtain the equivalence

Db(S)
∼=−→ Db(S′)G∨ (E.7.2)

where the Brauer class α is trivial since S/Z2 is a fine moduli space away from the singular-
ities. (The equivalence (E.7.2) also follows by a result of Elagin [67, Thm. 1.3].)
Among other things this example shows that while the good moduli space of M may be

singular, its fixed stack has a smooth proper good moduli space (as guaranteed by Propo-
sition E.5.3). We also see that ε is not proper, because it does not satisfy the valuative
criterion of properness.

E.7.3. Involutions on a genus 2 K3 surface

Let π : S → P2 be a K3 surface obtained as the double cover of a sextic plane curve, and let
g : S → S be a symplectic involution which fixes the hyperplane class H ∈ Pic(S). In this
section we will determine the fixed locus of the moduli spaces of Gieseker semistable sheaves
with Mukai vector (0, H, 0) and (0, 2H, 0). As an application we describe the fixed locus of
the induced symplectic birational involution of the resolution of Mσ(0, 2H, 0) of O’Grady 10
type.
Recall that the involution g descends to an involution gP2 of P2 which can be choosen to

act by (x, y, z) 7→ (−x, y, z), see [192, Sec. 3.2]. The fixed locus of gP2 is p = (1, 0, 0) and the
line x = 0. Let C0 be the preimage under π of the line x = 0 and let C1 be the preimage of
a generic line of the form λy + µz. Let also C ∈ |O(2H)| be a curve that is preserved under
g but disjoint from the fixed points pi. These curves are preserved by g and contain 6, 2 and
0 fixed points respectively. Consider the quotients

C ′0 = C0/Z2, C ′1 = C1/Z2 and C ′ = C/Z2

which are rational, elliptic, and of genus 3 respectively. After reordering the exceptional
divisors one has in Pic(S′) the relations14

C ′0 = 1
2C
′ − 1

2(E3 + . . .+ E8), C ′1 = 1
2C
′ − 1

2(E1 + E2).

14We denote the class in the Picard group with the same symbol as the underlying curve.
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Suppose that S is of minimal Picard rank 9. Then by [192, Lem. 1.10] the Picard group of
S′ has the Z-basis C ′1, δ, E2, . . . , E8. The map on cohomology H∗(S′,Z)→ H∗(S,Z) induced
by the composition Db(S′) Φ−→ Db(S)G → Db(S) is given by

1 7→ 1− p, p 7→ 2p, Ei 7→ p, δ 7→ 4p, C ′ 7→ 2H, C ′1 7→ H − p

where we let p denote the class of a point on both S and S′.
Let σ be a generic G-fixed stability condition on S which for vectors (0, kH, 0) is equivalent

to Gieseker stability. We consider the moduli spaces Mσ(0, kH, 0) for k = 1, 2 and their fixed
loci: Since H is irreducible on S, the coarse moduli space Mσ(0, H, 0) is smooth. Hence by
Theorem E.1.3 (and using the notation given there) we have

Mσ(0, H, 0)G =
⊔

v′∈RH

MσG(v′).

A direct calculation shows that there is a unique vector in RH of square 0 given by C ′1 +E1,
and 28 vectors of square −2. Therefore,

Mσ(0, H, 0)G = S̃ t (28 points)

where S̃ = MσG(0, C ′1 + E1, 0) is a smooth K3 surface. This matches the results of [118].
We turn to Mσ(0, 2H, 0). Since the moduli space contains strictly semistable objects, we

can not apply Theorem E.1.2 directly, but have to account for the semistable locus. We begin
by describing the set R2H . It is given by vectors of the form

v′ = C ′ +
8∑
i=1

aiEi + cp

where all the ai are either integers or half-integers,
∑
i ai is even and c = −∑i ai/2. Moreover,

only vectors satisfying

• (v′)2 ≥ −2 (equivalently ∑i a
2
i ≤ 3), or

• v′ = v1 + v2 with vi ∈ RH

contribute to R2H . One finds that R2H (i.e. modulo Q) consists of the following:

(i) The vector C ′ of square 4. It can be decomposed in 28 different ways as a sum v1 + v2
with v1, v2 ∈ RH both of square −2, and in a unique way as v1 + v2 with v1, v2 ∈ RH
both of square 0 (given as C ′1 +Ei). The moduli space MσG(C ′) is of dimension 6. Its
singular locus is the disjoint union of the product variety S̃× S̃ and 28 isolated points.

(ii) 63 vectors of square 0. Each vector can be written in 6 different ways as a sum of two
(−2)-vectors in RH . The moduli space in each case is a K3 surface with 6 singularities
of type A1.

(iii) 56 vectors of square 0, each written uniquely as v1 + v2 where v1 is of square 0 (equal
to C ′1 + E1) and v2 is of square −2. In each case we have MσG(v′) = MσG(v1) = S̃.

(iv) 1 vector of square 0 obtained as 2v1, where v1 = C ′1 + E1 ∈ RH is of square 0. The
good moduli space MσG(2v1) is Sym2MσG(v1) = Sym2S̃.
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(v) 378 vectors of square −4 written uniquely as v1 + v2 where v1, v2 ∈ RH are both of
square −2. The good moduli space is a point.

(vi) 28 vectors of square −8 obtained as 2v, where v ∈ RH is of square −2. The good
moduli space is a point.

By considering the possible types of semistable points in Mσ(0, 2H, 0) and using that G
is cyclic one finds that the image of ⊔v′∈R2H

MσG(v′) in Mσ(0, 2H, 0) is precisely the fixed
locus we are interested in. A basic sublocus of the fixed locus is

Sym2
(
Mσ(0, H, 0)G

)
⊂Mσ(0, 2H, 0)G.

The scheme Sym2
(
Mσ(0, H, 0)G

)
consists of

(a) 1 copy of Sym2(S̃),

(b) 28 copies of S̃ corresponding to sheaves E⊕F with E ∈ S̃ and F corresponding to one
of the 28 fixed points and

(c) Sym2(28 points) consisting of 378+28 points corresponding to the direct sum of distinct
and identical stable sheaves respectively.

Given distinct G-invariant stable sheaves E,F of the same slope, the direct sum E⊕F admits
precisely |G∨|2 many G-linearizations. Moreover, if distinct E,F ∈ Mσ(0, H, 0) are isolated
points of the fixed locus, then no equivariant lift of E ⊕ F has class C ′ (since otherwise
(E, φ) = Q(F, φ), so E = F ). We see that the 378 points in (c) are the image of the points
(v), but also of the 6 · 63 singular points on the K3 surfaces in (ii).
Similarly, the 28 K3 surfaces in (b) are the image of the 56 K3 surfaces in (iii). Since

there are precisely 4 linearizations, these K3 surfaces can not appear in the image of other
components, and so yield connected components of Mσ(0, 2H, 0)G. A direct sum E ⊕E of a
stable object E admits precisely |Sym2(G∨)| =

(|G∨|+1
2

)
many linearizations (here 3). Hence

the 28 remaining points in (c) are the image of the 28 points in (vi) and the 28 isolated
singularities in (i). Moreover, if v1 ∈ RH of square 0, then MσG(2v1) = Sym2MσG(v1) maps
to the same locus as the inclusion

MσG(v1)×MσG(Qv1) ⊂MσG(0, C ′, 0). (E.7.3)

Hence the image of MσG(2v1) lies in the image of the main component MσG(0, C ′, 0). The 63
moduli spaces in (ii) contain stable points and since we have already taken the coset modulo
Q, they must embed into Mσ(0, 2H, 0)G as isolated components. We conclude that

Mσ(0, 2H, 0)G = Y t (28 smooth K3s) t (63 K3s with 6 nodes)

where Y is the image ofMσG(0, C ′, 0) and hence 6-dimensional.
Rcall that the singular moduli space M(0, 2H, 0) admits an irreducible holomorphic sym-

plectic resolution X → Mσ(0, 2H, 0) of O’Grady 10 type [8, 170]. Recall from [192] that
Pic(S) = ZH ⊕ E8(−2). Hence there exists 240 vectors α ∈ E8(−2) of square −4. The
involution g acts on these vectors by gα = −α. Let A ⊂ E8(−2) be a list of representatives
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of the orbits of the (−4)-vectors under this action. The singular locus of Mσ(0, 2H, 0) is the
locus of polystable sheaves, and therefore given by

Mσ(0, 2H, 0)sing = Sym2Mσ(0, H, 0) t
⊔
α∈A

(Mσ(H + α)×Mσ(H − α)) .

The resolution X is obtained by a blowup of Mσ(0, 2H, 0) along Sym2Mσ(0, H, 0), followed
by a resolution of the 120 isolated points. The fiber of X over each of these 120 points is
a P5. The automorphism g : Mσ(0, 2H, 0) → Mσ(0, 2H, 0) natural lifts to the blowup (by
universal property), but it is not clear a priori whether it lifts along the resolution of the
120 points. Hence we only obtain a birational involution g′ : X 99K X defined away from 120
disjoint copies of P5. We will show the following:

Proposition E.7.1. The closure of the fixed locus of the birational symplectic involution
g : X 99K X is smooth and the disjoint union of one connected component of dimension 6
containing 120 copies of P5, and 119 K3 surfaces of which 88 are derived equivalent to S′.

Proof. The claim follows from our discussion above and a local analysis of g along

Mσ(0, 2H, 0)sing ∩Mσ(0, 2H, 0)G

using the local description of the moduli spaces given in [116, Sec. 2] and [8, Sec. 3]. This is
straightforward and we just highlight the main points:

• The 120 isolated singular points of Mσ(0, 2H, 0) lie in Y . They are the images of the
stable points of MσG(C ′) corresponding to q(Eα) where Eα is the unique stable object
in class H + α. The map g′ does not extend to the resolution and the closure of the
fixed locus of g′ contains the whole exceptional P5.

• The 63 K3 surfaces with 6 nodes described in (ii) meet the singular locus ofMσ(0, 2H, 0)
at the singularities. The corresponding component in the fixed locus of g′ is the proper
transform and smooth.

• The 28 smooth K3 surfaces in Mσ(0, 2H, 0)G corresponding to (iii) lie completely in
the singular locus Mσ(0, 2H, 0)sing. The corresponding component in the fixed locus of
g′ is a trivial 2 : 1 cover of this locus and hence given by 56 K3 surfaces.

• The K3 surfaces in (iii) and precisely 32 of the K3 surfaces in (ii) arise as moduli spaces
of semistable objects on S′ for a Mukai vector w which satisfies 〈w,Λ′〉 = Z. Hence all
of them are derived equivalent to S′.

E.7.4. An order 3 equivalence
Let E,F be elliptic curves defined by cubic equations f, g respectively and consider the cubic
fourfold X ⊂ P5 defined by the equation f(x0, x1, x2) + g(x3, x4, x5) = 0. Let ζ be a non-
trivial third root of unity. As in [158, Ex. 1.7(iv)] we define a G = Z3-action on X by letting
the generator act by

(x0, . . . , x5) 7→ (x0, x1, x2, ζx3, ζx4, ζx5).
The induced action of G on the Fano variety of lines on X has fixed locus F (X)G = E × F .
Since F (X) is a moduli space of stable objects in the Kuznetsov component A of Db(X),
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and the Kuznetsov component A is equivalent to the derived category of a K3 surface by a
result of Ouchi [177], Theorem E.1.1 shows that AG ∼= Db(A) for some connected étale cover
A → E × F of degree 1 or 2. In particular, A is an abelian surface. Theorem E.1.2 then
determines the fixed loci of the induced action on any smooth Mσ(v) (with v ∈ K(A)Z3).

E.7.5. Frameshape 212

We give an example which shows that the equivariant category can behave rather strange.
Consider a symplectic automorphism τ : S → S of a K3 surface of order 4, and let S′ be the
resolution of the quotient S/〈τ2〉. Since we have taken the quotient only by τ2, we have a
residual involution τ̄ : S′ → S′. The equivalences τ̄∗ and the dual action Q of Section E.7.2
commute and are symplectic. One checks that the composition g = τ̄∗ ◦ Q is an involution
of Db(S′) of frameshape 212. Then, as a special case of [29, Sec. 4.9] the involution g does
not define an action of Z2 on the category, but defines instead a faithful(!) action of Z4.
Moreover one has the equivalence:

Db(S′)Z4
∼= Db(S′).

In other words, the equivariant category under this action is equivalent to the category we
started with. In particular, there does not exist a stable object which is G-invariant and G
does not act on any fine moduli space of S.15

E.7.6. Order 11 equivalences

Let g : Db(S) → Db(S) be a symplectic auto-equivalence of a K3 surface S of order 11
fixing a stability condition σ ∈ Stab†(S). The associated action on cohomology is one of
three possible conjugacy classes, each with invariant lattice of rank 4 [181, App. C]. This
implies that the pairs (S, g) are isolated points in their moduli space. Using the Huybrechts–
Mongardi criterion [101, 151] each such g induces an automorphism of a moduli spaces M
of stable objects in Db(S). If we want to determine the equivariant category Db(S)Z11

through Theorem E.1.1, we would need to find a 2-dimensional component of the fixed locus
in some M . This seems difficult in this case without studying the concrete geometry. By
Appendix E.B we can at least read off the Euler characteristic of the fixed locus: If M is of
dimension 2n, then e(Mg) is the coefficient of qn−1 of the series

1
η(q)2η(q11)2 = 1

q
+ 2 + 5q + 10q2 + 20q3 + 36q4 + 65q5 + 110q6 +O(q7).

We hence should expect 2-dimensional fixed components only in cases where dimM ≥ 10.

E.A. Hearts on symplectic surfaces
Let S be a smooth projective symplectic surface and recall the notation from Section E.6.2.
The goal of this section is to prove the following result:
15This example first appeared in [56, Sec. 4.2] as a symmetry of K3 non-linear sigma models. We expect

that the behaviour Db(S)G ∼= Db(S) is typical of the case where we have a ’failure of the level-matching
condition’, i.e. λ > 1 in [181, App. C].
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Proposition E.A.1. Let σ ∈ Stab†(S) be a stability condition. Then there exists an element
g ∈ G̃L+(2,R) such that gσ = (A, Z) satisfies

Db(A) ∼= Db(S).

Let us first recall from [41] how the component Stab†(S) is built up. First one considers
the set V (S) of stability conditions σω,β = (Aω,β, Zω,β) with central charge Zω,β = 〈exp(β +
iω),_〉 where β, ω ∈ NS(S)⊗ R with ω ample. The heart Aω,β is obtained from the torsion
pair (Tω,β,Fω,β) of Coh(S) by tilting, see [41, Sec. 6]. Next, let U(S) be the orbit of V (S)
under the free action of G̃L+(2,R) on Stab†(S). Elements in U(S) are characterized as
those stability conditions in Stab†(S) such that all skyscraper sheaves are stable of the same
phase. Finally, a detailed analysis of the boundary ∂U(S) [41, Thm. 12.1] yields that any
σ ∈ Stab†(S) can be mapped into U(S) using (squares of) spherical twists. If S is an abelian
surface, then we even have U(S) = Stab†(S) [41, Thm. 15.2].
We start the proof by considering the set of geometric stability conditions V (S).

Lemma E.A.2. For all σ = (A, Z) ∈ V (S) we have Db(A) ∼= Db(S).

Proof. Recall that a torsion pair (T ,F) of an abelian category C is called cotilting, if for all
E ∈ C there is a surjection F � E with F ∈ F . By [36, Prop. 5.4.3], which is a refined
version of [87], for any cotilting torsion pair (T ,F) one has Db(C′) ∼= Db(C), where C′ is the
tilt along (T ,F).
If σω,β ∈ V (S), then its heart Aω,β is obtained from Coh(S) by tilting along the torsion

pair (Tω,β,Fω,β). Huybrechts proved in [98, Prop. 1.2] that this torsion pair is cotilting.

Proposition E.A.3. Let σ ∈ V (S) and let P be the associated slicing. Then for all a ∈ R
there is a natural derived equivalence Db(P(a, a+ 1]) ∼= Db(S).

Since Lemma E.A.2 proves the assertion for a = 0 and the property is preserved by shifts,
we only need to consider the case a ∈ (0, 1). Write σ = (Aω,β, Zω,β) and A := P(a, a + 1].
Then

A ⊂ 〈Aω,β,Aω,β[1]〉

and A is a tilt of Aω,β for the torsion pair T = Aω,β ∩A = P(a, 1] and F = Aω,β ∩A[−1] =
P(0, a]. There is a natural exact functor

Φ: Db(A)→ Db(Aω,β) ∼= Db(S)

of triangulated categories [164, Sec. 7.3]. The proof given below shows that this functor
defines a derived equivalence.

Proof of Proposition E.A.3. The main idea in the proof is to show that Φ is essentially sur-
jective. For this we make first some observations.
Take a very ample line bundle O(1). The line bundle O(−i) will lie in Fω,β for i � 0.

Recall from [41, Sec. 6] that the central charge Zω,β of the stability condition σω,β sends an
object E ∈ Db(S) with Mukai vector v(E) = (r, l, s) to

Zω,β(E) = −s+ r

2(ω2 − β2) + lβ + i(lω − rωβ). (E.A.1)
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Thus there exists an i0 such that for all i ≥ i0 the object O(−i)[1] lies in P(0, a]. Let us
assume (after relabelling) that already i0 = 1 is sufficient.
Consider a morphism of sheaves

O(−i)⊕m α−→ O(−j)⊕n.

Since Fω,β is the free part of a torsion pair and hence closed under subobjects, the kernel
K = Ker(α) lies in Fω,β. Similarly, R = Image(α) is a subsheaf of O(−j)⊕n and lies in Fω,β.
Therefore the distinguished triangle

K[1]→ O(−i)⊕m[1]→ R[1]

in Db(S) yields a short exact sequence in P(0, 1]. In particular, K[1] ∈ P(0, a].
Let E ∈ Db(S) be an object. Using the line bundles O(−i) we can find a quasi-isomorphism

OE
'−→ E in the homotopy categoryK(S) = K(Coh(S)), where OE = (. . . Oi−1

E → OiE → . . . )
is a (possibly only bounded above) complex whose components are all direct sums of the
line bundles O(−i) for i > 0. Let c be the smallest integer such that the cohomology
Hc(E) ∈ Coh(S) is not isomorphic to zero. Define a new complex

FE = (. . . 0→ Ker(∂c−1)→ OcE → Oc+1
E → . . . ).

This is a subcomplex of OE which is bounded and the composition yields a quasi-isomorphism
FE

'−→ E.
From the above discussion we infer that FE [1] is a bounded complex whose components

all lie inside P(0, a]. In particular, the complex FE [2] viewed inside Kb(P(1, 1 + a]) is an
element in Db(A). This shows that the realization functor

Φ: Db(A)→ Db(P(0, 1]) ∼= Db(S)

is essentially surjective. Invoking [55, Thm. A] finishes the proof.

Corollary E.A.4. For all σ = (A, Z) ∈ U(S) we have Db(A) ∼= Db(S).

Proof. Any σ ∈ U(S) is a G̃L+(2,R)-translate of a unique τ ∈ V (S). Thus we have A =
P(a, a+ 1] for some a ∈ R, where P is the slicing corresponding to τ . The assertion follows
from Proposition E.A.3.

Proof of Proposition E.A.1. Corollary E.A.4 proves the assertion for abelian surfaces. Hence
we can assume that S is a K3 surface.
If Φ: Db(S) → Db(S) is a derived auto-equivalence and A ⊂ Db(S) is a heart, then the

restriction Φ|A : A → Φ(A) induces an equivalence Db(A) ∼= Db(Φ(A)). Hence Db(A) ∼=
Db(S) if and only of Db(Φ(A)) ∼= Db(S). Moreover any auto-equivalence commutes with
the G̃L+(2,R)-action. Since, as discussed earlier, any stability condition in Stab†(S) can
be mapped by an auto-equivalence into the closure of U(S), and we know the claim for
elements in the interior of U(S) by Corollary E.A.4, we may therefore assume that σ lies on
the boundary of U(S).

As σ is contained in U(S), all skyscraper sheaves Cx are semistable. After applying an
element of G̃L+(2,R) we may further assume that all skyscraper sheaves have phase 1 with
respect to σ.

238



Following ideas of [19] we will consider a stability condition σ′ = (A′, Z ′) ∈ U(S) such that
skyscraper sheaves have slope 1 and approach σ = (A, Z) ∈ ∂U(S) by first deforming only
the real part of Z ′ and afterwards the imaginary part of the central charge

Concretely, consider the covering map π : Stab†(S) → P+
0 (S) ⊂ ΛGalg ⊗ C and choose an

open ball B ⊂ P+
0 (S) of small radius containing Z. Choose a stability condition σ′ =

(A′, Z ′) ∈ U(S) such that skyscraper sheaves have slope 1 and such that the line from Z ′ to
<Z+=Z ′ and the line from <Z+=Z ′ to Z viewed in the vector space ΛGalg⊗C are contained
inside B. Let Z̃ be the stability function <Z + =Z ′ and let σ̃ = (Ã, Z̃) be the stability
condition obtained from the covering property of π. By construction all skyscraper sheaves
remain of phase 1 along this deformation from σ to σ′.

The crucial observation now is that the stability condition σ̃ is still contained in the open
subset U(S). Indeed, recall that the set U(S) can be characterized as the set of all stability
conditions for which all skyscraper sheaves Cx are stable of the same phase. Assume that a
skyscraper sheaf Cx becomes unstable along the line segment from Z ′ to Z̃. Since semistablity
is a closed property, there would have to exist a τ on this line segment where Cx becomes
semistable. Since the imaginary part of the central charges stays constant along the path, Cx
is still contained in the abelian category P(1), where P is the slicing associated to τ . As Cx
is semistable, there exists a stable object F ∈ P(1) and a non-zero morphism F → Cx which
is not an isomorphism. Since being stable is an open property [15, Prop. 2.10], the object F
was also stable for a stability condition on the line segment where Cx is stable. However, a
morphism between stable objects of the same phase is either an isomorphism or 0, yielding
a contradiction. We conclude that σ̃ ∈ U(S).

Let P̃ be the the slicing associated to σ̃. Then as argued in [19, Lem. 5.2] the abelian
category Ã = P̃(1/2, 3/2] is constant along a deformation that only changes the imaginary
part of the stability condition. This yields P(1/2, 3/2] = Ã, where P is the slicing associated
to σ. Let g ∈ G̃L+(2,R) denote the rotation by π/2. Then Ã is the heart of both gσ̃ and
gσ. Since G̃L+(2,R) preserves U(S), we have gσ̃ ∈ U(S) and therefore by Corollary E.A.4
we conclude that Db(Ã) ∼= Db(S).

Remark E.A.5. Given an algebraic stability condition σ = (A, Z) ∈ Stab†(S), the proof
above shows that in Proposition E.A.1 one can choose the element g such that gσ is algebraic
as well. Indeed, this is immediate for stability conditions which are mapped by some auto-
equivalence into U(S). For σ ∈ ∂U(S), we first applied an element from G̃L+(2,R) so that
skyscraper sheaves get mapped to −1 and then applied the rotation by π/2. If σ is algebraic,
both steps can be achieved by multiplying Z with elements from Q + iQ.

E.B. The Euler characteristic of fixed loci
We state a result which may be viewed as a numerical version of Theorems E.1.3:
Let M = Mσ(v) be a moduli space of stable objects of Mukai vector v on a K3 surface S

and let g : M →M be a symplectic automorphism of finite order. Let πg = ∏
a a

m(a) be the
frameshape of the induced action on the Mukai lattice Λ (obtained from lifting the action on
H2(M,Z) to Λ, see Section E.6.4). We define the modular form

fg(q) =
∏
a

η(qa)m(a) = q +O(q2),
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where η(q) = q1/24∏
m≥1(1− qm) is the Dedekind elliptic function.

Proposition E.B.1. e(Mσ(v)g) = Coefficient of qv·v/2 of fg(q)−1.

Here e(Z) denotes the topological Euler characteristic of a finite type scheme Z. If M is
the Hilbert scheme of points and the automorphism is induced by an automorphism of the
underlying surface, this follows by a local analysis, see [45] and also [44] for the extension to
non-cyclic groups. The general case is evidence for an affirmative answer to Question E.1.5.

Proof. We prove the claim by computing the trace of the induced automorphism

g∗ : H∗(M,Z)→ H∗(M,Z)

which by definition is a monodromy operator. Recall that the Zariski closure of the mon-
odromy group in O(H∗(M,C)) is canonically isomorphic to O(H2(M,C))×Z2, see [136, Lem.
4.11] and also [167, Sec. 1.2]. Let ψ : Λ→ Λ denote the unique lift of g∗|H2(M,Z) to an auto-
morphism of the Mukai lattice. By a result of Mongardi [151, Thm. 26] the lift ψ fixes v ∈ Λ.
Hence g∗ lies in fact in O(H2(M,C))× 1 under the above isomorphism.
It hence remains to prove that, given an element ϕ ∈ O(H2(M,C))×1 of finite order whose

extension ϕ̃ : Λ ⊗ C → Λ ⊗ C has frameshape ∏a a
m(a) (where we let ϕ̃ act by the identity

on H2(M,C)⊥), the trace of ϕ on H∗(M,C) has the desired form. Since this is a purely
topological question, we may assume M = Hilbn(S) where n = (v · v)/2 + 1. Moreover,
after conjugation by an element of SO(H2(M,C)) we may assume that ϕ̃ preserves the
decomposition by degree and acts as the identity on H0(S,C) ⊕H4(S,C). In particular, ϕ̃
induces an action on H∗(Hilbk(S)) for all k. As explained in [167, Sec. 1.3], the Nakajima
operators are equivariant with respect to the action of ϕ̃ on Λ ⊗ C and H∗(Hilbk(S)). If Vi
are the eigenspace of ϕ̃ on Λ⊗C with eigenvalue λi, this yields the equivariant decomposition
⊕k≥0H

∗(Hilbk(S)) ∼= ⊗24
i=1Sym•(Vi) and thus

∑
k≥0

Tr
(
ϕ̃|H∗(Hilbk(S))

)
qn =

∏
m≥1

24∏
i=1

1
(1− λiqm) =

∏
n≥1

∏
a≥1

( 1
1− qan

)m(a)

where the last equality follows from a direct computation.
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F. Integral Fourier transforms and the
integral Hodge conjecture for one-cycles

on abelian varieties

ABSTRACT. We prove the integral Hodge conjecture for one-cycles on
a principally polarized complex abelian variety whose minimal class is
algebraic. In particular, the Jacobian of a smooth projective curve over
the complex numbers satisfies the integral Hodge conjecture for one-
cycles. The main ingredient is a lift of the Fourier transform to integral
Chow groups. Similarly, we prove the integral Tate conjecture for one-
cycles on the Jacobian of a smooth projective curve over the separable
closure of a finitely generated field. Furthermore, abelian varieties sat-
isfying such a conjecture are dense in their moduli space.

F.1. Introduction
Let g be a positive integer and let A be an abelian variety of dimension g over a field k
with dual abelian variety Â. The correspondence attached to the Poincaré bundle PA on
A× Â defines a powerful duality between the derived categories, rational Chow groups and
cohomology of A and Â [20,97,154]. We shall refer to such morphisms as Fourier transforms.
On the level of cohomology, the Fourier transform preserves integral `-adic étale cohomol-

ogy when k = ks and integral Betti cohomology when k = C. It is thus natural to ask
whether the Fourier transform on rational Chow groups preserves integral cycles modulo
torsion or, more generally, lifts to a homomorphism between integral Chow groups. This
question was raised by Moonen–Polishchuk [153] and Totaro [206]. More precisely, Moonen
and Polishchuk gave a counterexample for abelian varieties over non-closed fields and asked
about the case of algebraically closed fields.
In this paper we further investigate this question with a view towards applications con-

cerning the integral Hodge conjecture for one-cycles when A is defined over C. To state our
main result, we recall that whenever ι : C ↪→ A is a smooth curve, the image of the fun-
damental class under the pushforward map ι∗ : H2(C,Z) → H2(A,Z) ∼= H2g−2(A,Z) defines
a cohomology class [C] ∈ H2g−2(A,Z). This construction extends to one-cycles and factors
modulo rational equivalence. As such, it induces a canonical homomorphism, called the cycle
class map,

cl : CH1(A)→ Hdg2g−2(A,Z),

which is a direct summand of a natural graded ring homomorphism cl : CH(A)→ H•(A,Z).
The liftability of the Fourier transform turns out to have important consequences for the

image of the cycle class map. Recall that an element α ∈ H•(A,Z) is called algebraic if it is
in the image of cl, and that A satisfies the integral Hodge conjecture for k-cycles if all Hodge
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classes in H2g−2k(A,Z) are algebraic. Although the integral Hodge conjecture fails in general
[12,14,205], it is an open question for abelian varieties. Our main result is as follows.

Theorem F.1.1. Let A be a complex abelian variety of dimension g with Poincaré bundle
PA. The following three statements are equivalent:

(i) The cohomology class c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A× Â,Z) is algebraic.

(ii) The Chern character ch(PA) = exp(c1(PA)) ∈ H•(A× Â,Z) is algebraic.

(iii) The integral Hodge conjecture for one-cycles holds for A× Â.

Any of these statements implies that

(iv) The integral Hodge conjecture for one-cycles holds for A and Â.

Suppose that A is principally polarized by θ ∈ Hdg2(A,Z) and consider the following state-
ments:

(v) The minimal cohomology class γθ := θg−1/(g − 1)! ∈ H2g−2(A,Z) is algebraic.

(vi) The cohomology class c1(PA)2g−2/(2g − 2)! ∈ H4g−4(A× Â,Z) is algebraic.

Then statements (i) – (vi) are equivalent. If they hold, then θi/i! ∈ H2i(A,Z) is algebraic for
i ≥ 1.

Remark that Condition (v) is stable under products, so a product of principally polarized
abelian varieties satisfies the integral Hodge conjecture for one-cycles if and only if each of
the factors does. More importantly, if J(C) is the Jacobian of a smooth projective curve C
of genus g, then every integral Hodge class of degree 2g−2 on J(C) is a Z-linear combination
of curves classes:

Theorem F.1.2. Let C1, . . . , Cn be smooth projective curves over C. Then the integral Hodge
conjecture for one-cycles holds for the product of Jacobians J(C1)× · · · × J(Cn).

See Remark F.4.2.(i) for another approach towards Theorem F.1.2 in the case n = 1. A
second consequence of Theorem F.1.1 is that the integral Hodge conjecture for one-cycles on
principally polarized complex abelian varieties is stable under specialization, see Corollary
F.4.3. An application of somewhat different nature is the following density result, proven in
Section F.4.2:

Theorem F.1.3. Let δ = (δ1, . . . , δg) be positive integers such that δi|δi+1 and let Ag,δ(C) be
the coarse moduli space of polarized abelian varieties over C with polarization type δ. There
is a countable union X ⊂ Ag,δ(C) of closed algebraic subvarieties of dimension at least g, that
satisfies the following property: X is dense in the analytic topology and the integral Hodge
conjecture for one-cycles holds for those polarized abelian varieties whose isomorphism class
lies in X.

Remark F.1.4. The lower bound that we obtain on the dimension of the components of
X actually depends on δ and is often greater than g. For instance, when δ = 1 and g ≥ 2,
there is a set X as in the theorem, whose elements are prime-power isogenous to products of
Jacobians of curves. Therefore, the components of X have dimension 3g− 3 in this case, c.f.
Remark F.4.7.

242



One could compare Theorem F.1.1 with the following statement, proven by Grabowski
[80]: if g is a positive integer such that the minimal cohomology class γθ = θg−1/(g − 1)!
of every principally polarized abelian variety of dimension g is algebraic, then every abelian
variety of dimension g satisfies the integral Hodge conjecture for one-cycles. In this way, he
proved the integral Hodge conjecture for abelian threefolds, a result which has been extended
to smooth projective threefolds X with KX = 0 by Voisin and Totaro [206,213]. For abelian
varieties of dimension greater than three, not many unconditional statements seem to have
been known.

The idea behind the proof of Theorem F.1.1 is the following. Let A be a complex abelian
variety of dimension g and let i ≥ 0 be an integer. Then Poincaré duality induces a canonical
isomorphism ϕ : H2i(A,Z) ∼= H2g−2i(A,Z)∨ ∼= H2g−2i(Â,Z). The map ϕ respects the Hodge
structures and thus induces an isomorphism Hdg2i(A,Z) ∼= Hdg2g−2i(Â,Z). However, it is
unclear a priori whether ϕ sends algebraic classes to algebraic classes. We prove that the alge-
braicity of c1(PA)2g−1/(2g−1)! forces ϕ to be algebraic, i.e. to be induced by a correspondence
Γ ∈ CH(A× Â). In particular, one then has Z2i(A) := Hdg2i(A,Z)/H2i(A,Z)alg ∼= Z2g−2i(Â).
To prove this, we lift the cohomological Fourier transform to a homomorphism between inte-
gral Chow groups whenever c1(PA)2g−1/(2g − 1)! is algebraic. For this we use a theorem of
Moonen–Polishchuk saying that the ideal of positive dimensional cycles in the Chow ring with
Pontryagin product of an abelian variety admits a divided power structure [153, Theorem 1.6].

In Section F.5, we consider an abelian variety A/C of dimension g and ask: if n ∈ Z≥1

is such that n · c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A × Â,Z)alg, can we bound the order of
Z2g−2(A) in terms of g and n? For a smooth complex projective d-dimensional variety X,
Z2d−2(X) is called the degree 2d− 2 Voisin group of X [180], is a stably birational invariant
[215, Lemma 2.20], and related to the unramified cohomology groups by Colliot-Thélène–
Voisin and Schreieder [57, 195]. We prove that if n · c1(PA)2g−1/(2g − 1)! is algebraic, then
gcd(n2, (2g − 2)!) · Z2g−2(A) = (0). In particular, (2g − 2)! · Z2g−2(A) = (0) for any g-
dimensional complex abelian variety A. Moreover, if A is principally polarized by θ ∈ NS(A)
and if n · γθ ∈ H2g−2(A,Z) is algebraic, then n · c1(PA)2g−1/(2g − 1)! is algebraic. Since it
is well known that for Prym varieties, the Hodge class 2 · γθ is algebraic, these observations
lead to the following result (see also Theorem F.5.3).

Theorem F.1.5. Let A be a g-dimensional Prym variety over C. Then 4 · Z2g−2(A) = (0).

For the study of the liftability of the Fourier transform, which was initiated by Moonen
and Polishchuk in [153], it is more natural to consider abelian varieties defined over arbitrary
fields. For this reason we define and study integral Fourier transforms in this generality, see
Section F.3. We provide, for an abelian variety principally polarized by a symmetric ample
line bundle, necessary and sufficient conditions for an integral Fourier transform to exist, see
Theorem F.3.8.
This generality also allows to obtain the analogue of Theorem F.1.1 over the separable

closure k of a finitely generated field. Recall that a smooth projective variety X of dimension
d over k satisfies the integral Tate conjecture for one-cycles over k if, for every prime number
` different from char(k) and for some finitely generated field of definition k0 ⊂ k of X, the
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cycle class map

cl : CH1(X)Z` = CH1(X)⊗Z Z` →
⋃
U

H2d−2
ét (X,Z`(d− 1))U (F.1.1)

is surjective, where U ranges over the open subgroups of Gal(k/k0).

Theorem F.1.6. Let A be an abelian variety of dimension g over the separable closure k of
a finitely generated field.

• The abelian variety A satisfies the integral Tate conjecture for one-cycles over k if the
cohomology class c1(PA)2g−1/(2g− 1)! ∈ H4g−2

ét (A× Â,Z`(2g− 1)) is the class of a one-cycle
with Z`-coefficients for every prime number ` < (2g − 1)! unequal to char(k).

• Suppose that A is principally polarized and let θ` ∈ H2
ét(A,Z`(1)) be the class of the

polarization. The map (F.1.1) is surjective if γθ` := θg−1
` /(g − 1)! ∈ H2g−2

ét (A,Z`(g − 1))
is in its image. In particular, if ` > (g − 1)!, then this always holds. Thus A satisfies the
integral Tate conjecture for one-cycles if γθ` is in the image of (F.1.1) for every prime number
` < (g − 1)! unequal to char(k).

Theorem F.1.6 implies in particular that products of Jacobians of smooth projective curves
over k satisfy the integral Tate conjecture for one-cycles over k. Moreover, for an abelian
variety AK over a number field K ⊂ C, the integral Hodge conjecture for one-cycles on AC
is equivalent to the integral Tate conjecture for one-cycles on AK̄ (Corollary F.6.2), which in
turn implies the integral Tate conjecture for one-cycles on the geometric special fiber Ak(p)
of the Néron model of AK over OK for any prime p ⊂ OK at which AK has good reduction
(Corollary F.6.3).
Finally, Theorem F.1.3 has an analogue in positive characteristic. The definition for a

smooth projective variety over the algebraic closure k of a finitely generated field to satisfy
the integral Tate conjecture for one-cycles over k is analogous to the definition above (see
e.g. [53]).

Theorem F.1.7. Let k be the algebraic closure of a finitely generated field of characteristic
p > 0. Let Ag be the coarse moduli space over k of principally polarized abelian varieties
of dimension g over k. The subset of Ag(k) of isomorphism classes of principally polarized
abelian varieties over k that satisfy the integral Tate conjecture for one-cycles over k is Zariski
dense in Ag.
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F.2. Notation

• We let k be a field with separable closure ks and ` a prime number different from the
characteristic of k. For a smooth projective variety X over k, we let CH(X) be the Chow
group of X and define CH(X)Q = CH(X) ⊗ Q, CH(X)Q` = CH(X) ⊗ Q` and CH(X)Z` =
CH(X)⊗Z`. We let Hi

ét(Xks ,Z`(a)) be the i-th degree étale cohomology group with coeffients
in Z`(a), a ∈ Z.

• Often, A will denote an abelian variety of dimension g over k, with dual abelian variety
Â and (normalized) Poincaré bundle PA on A × Â. The abelian group CH(A) will in that
case be equipped with two ring structures: the usual intersection product · as well as the
Pontryagin product ?. Recall that the latter is defined as follows:

? : CH(A)× CH(A)→ CH(A), x ? y = m∗(π∗1(x) · π∗2(y)).

Here, as well as in the rest of the paper, πi denotes the projection onto the i-th factor,
∆: A→ A×A the diagonal morphism, and m : A×A→ A the group law morphism of A.

• For any abelian group M and any element x ∈ M , we will denote by xQ ∈ M ⊗Z Q the
image of x in M ⊗Z Q under the canonical homomorphism M →M ⊗Z Q.

F.3. Integral Fourier transforms and one-cycles on abelian varieties

Our goal in this section is to provide necessary and sufficient conditions for the Fourier
transform on rational Chow groups or cohomology to lift to a motivic homomorphism between
integral Chow groups. We will relate such lifts to the integral Hodge conjecture when k = C.
In subsequent Section F.4 we will use the theory developed in this section to prove Theorem
F.1.1.

F.3.1. Integral Fourier transforms and integral Hodge classes

For abelian varieties A over k = ks, it is unknown whether the Fourier transform

FA : CH(A)Q → CH(Â)Q

preserves the subgroups of integral cycles modulo torsion. A sufficient condition for this to
hold is that FA lifts to a homomorphism CH(A)→ CH(Â). In this section we outline a sec-
ond consequence of such a lift CH(A)→ CH(Â) when A is defined over the complex numbers:
the existence of an integral lift of FA implies the integral Hodge conjecture for one-cycles on Â.
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Let A be an abelian variety over k. The Fourier transform on the level of Chow groups
is the group homomorphism

FA : CH(A)Q → CH(Â)Q
induced by the correspondence ch(PA) ∈ CH(A× Â)Q, where ch(PA) is the Chern character
of PA. Similarly, one defines the Fourier transform on the level of étale cohomology:

FA : H•ét(Aks ,Q`(•))→ H•ét(Âks ,Q`(•)).

In fact, FA preserves the integral cohomology classes and induces, for each integer j with
0 ≤ j ≤ 2g, an isomorphism [20, Proposition 1], [206, page 18]:

FA : Hj
ét(Aks ,Z`(a))→ H2g−j

ét (Âks ,Z`(a+ g − j)).

Similarly, if k = C, then ch(PA) induces, for each integer i with 0 ≤ i ≤ 2g, an isomorphism
of Hodge structures

FA : Hi(A,Z)→ H2g−i(Â,Z)(g − i). (F.3.1)

In [153], Moonen and Polishchuk consider an isomorphism φ : A ∼−→ Â, a positive inte-
ger d, and define the notion of motivic integral Fourier transform of (A, φ) up to factor
d. The definition goes as follows. Let M(k) be the category of effective Chow motives
over k with respect to ungraded correspondences, and let h(A) be the motive of A. Then
a morphism F : h(A) → h(A) in M(k) is a motivic integral Fourier transform of (A, φ)
up to factor d if the following three conditions are satisfied: (i) the induced morphism
h(A)Q → h(A)Q is the composition of the usual Fourier transform with the isomorphism
φ∗ : h(Â)Q ∼−→ h(A)Q, (ii) one has d · F ◦ F = d · (−1)g · [−1]∗ as morphisms from h(A) to
h(A), and (iii) d · F ◦m∗ = d ·∆∗ ◦ F ⊗ F : h(A)⊗ h(A)→ h(A).

For our purposes, we will consider similar homomorphisms CH(A) → CH(Â). However,
to make their existence easier to verify (c.f. Theorem F.3.8) we relax some of the above
conditions:

Definition F.3.1. Let A/k be an abelian variety and let F : CH(A) → CH(Â) be a group
homomorphism. We call F a weak integral Fourier transform if the following diagram com-
mutes:

CH(A)

��

F // CH(Â)

��

CH(A)Q
FA // CH(Â)Q.

(F.3.2)

We call a weak integral Fourier transform F motivic if it is induced by a cycle Γ ∈ CH(A×Â)
that satisfies ΓQ = ch(PA) ∈ CH(A× Â)Q. A group homomorphism F : CH(A)→ CH(Â) is
an integral Fourier transform up to homology if the following diagram commutes:

CH(A)

��

F // CH(Â)

��

⊕r≥0H2r
ét (Aks ,Z`(r))

FA // ⊕r≥0H2r
ét (Âks ,Z`(r)).

(F.3.3)
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Similarly, a Z`-module homomorphism F` : CH(A)Z` → CH(Â)Z` is called an `-adic integral
Fourier transform up to homology if F` is compatible with FA and the `-adic cycle class maps.
Finally, an integral Fourier transform up to homology F (resp. an `-adic integral Fourier
transform up to homology F`) is calledmotivic if it is induced by a cycle Γ ∈ CH(A×Â) (resp.
Γ` ∈ CH(A× Â)Z`) such that cl(Γ) (resp. cl(Γ`)) equals ch(PA) ∈ ⊕r≥0H2r

ét ((A× Â)ks ,Z`(r)).

Remark F.3.2. If F : CH(A) → CH(Â) is a weak integral Fourier transform, then F is an
integral Fourier transform up to homology, the Z`-module ⊕r≥0H2r

ét (Âks ,Z`(r)) being torsion-
free. If k = C, then F : CH(A)→ CH(Â) is an integral Fourier transform up to homology if
and only if F is compatible with the Fourier transform FA : H•(A,Z) → H•(Â,Z) on Betti
cohomology.

The relation between integral Fourier transforms and integral Hodge classes is as follows:

Lemma F.3.3. Let A be a complex abelian variety and F : CH(A) → CH(Â) an integral
Fourier transform up to homology. For each i ∈ Z≥0, the integral Hodge conjecture for degree
2i classes on A implies the integral Hodge conjecture for degree 2g − 2i classes on Â. If F
is motivic, then FA induces a group isomorphism Z2i(A) ∼−→ Z2g−2i(Â) and, therefore, the
integral Hodge conjectures for degree 2i classes on A and degree 2g − 2i classes on Â are
equivalent for all i.

Proof. We can extend Diagram (F.3.3) to the following commutative diagram:

CHi(A)

cli

��

// CH(A)

��

F // CH(Â)

��

// CHi(Â)

cli
��

H2i(A,Z) // H•(A,Z) FA // H•(Â,Z) // H2g−2i(Â,Z).

The composition H2i(A,Z) → H2g−2i(Â,Z) appearing on the bottom line agrees up to a
suitable Tate twist with the map FA of Equation (F.3.1). Therefore, we obtain a commutative
diagram:

CHi(A)

cli

��

// CHi(Â)

cli
��

Hdg2i(A,Z) ∼ // Hdg2g−2i(Â,Z).

(F.3.4)

Thus the surjectivity of cli implies the surjectivity of cli. Moreover, if F is motivic, then
replacing A by Â and Â by ̂̂

A in the argument above shows that the images of cli and
cli are identified under the isomorphism FA : Hdg2i(A,Z) ∼−→ Hdg2g−2i(Â,Z) in Diagram
(F.3.4).

F.3.2. Properties of the Fourier transform on rational Chow groups
The above suggests that to prove Theorem F.1.1, one would need to show that for a com-
plex abelian variety of dimension g whose minimal Poincaré class c1(PA)2g−1/(2g − 1)! ∈
H4g−2(A× Â,Z) is algebraic, all classes of the form c1(PA)i/i! ∈ H2i(A× Â,Z) are algebraic.
With this goal in mind we shall study Fourier transforms on rational Chow groups in Section
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F.3.2, and investigate how these relate to ch(PA) ∈ CH(A×Â)Q. In turns out that the cycles
c1(PA)i/i! ∈ CH(A × Â)Q satisfy several relations that are very similar to those proved by
Beauville for the cycles θi/i! ∈ CH(A)Q in case A is principally polarized, see [20]. Since we
will need these results in any characteristic in order to prove Theorem F.1.6, we will work
over our general field k, see Section F.2.

Let A be an abelian variety over k. Define cycles ` = c1(PA) ∈ CH1(A × Â)Q and RA =
c1(PA)2g−1/(2g − 1)! ∈ CH1(A × Â)Q. Dually, define ̂̀ = c1(P

Â
) ∈ CH1(Â × A)Q and

R
Â

= c1(P
Â

)2g−1/(2g − 1)! ∈ CH1(Â×A)Q. For a ∈ CH(A)Q, define E(a) ∈ CH(A)Q as the
?-exponential of a:

E(a) :=
∑
n≥0

a?n

n! ∈ CH(A)Q.

The key to Theorem F.1.1 will be the following:

Lemma F.3.4. We have ch(PA) = e` = (−1)g · E((−1)g ·RA) ∈ CH(A× Â)Q.

Proof. The most important ingredient in the proof is the following:

Claim (∗): With respect to the Fourier transform F
A×Â : CH(A × Â)Q → CH(Â × A)Q,

one has F
A×Â(e`) = (−1)g · e−̂̀∈ CH(Â×A)Q.

To prove Claim (∗), we lift the desired equality in the rational Chow group of Â × A to
an isomorphism in the derived category Db(Â × A) of Â × A. For X = A × Â the Poincaré
line bundle PX on X × X̂ ∼= A× Â× Â×A is isomorphic to π∗13PA ⊗ π∗24PÂ. Consider

ΦPX (PA) ∼= π34,∗
(
π∗13PA ⊗ π∗24PÂ ⊗ π

∗
12PA

)
∈ Db(Â×A) (F.3.5)

whose Chern character is exactly FX(e`). Applying the pushforward along the permutation
map

(123) : A× Â× Â×A ∼= Â×A× Â×A

the object (F.3.5) becomes

π14,∗
(
π∗12PÂ ⊗ π

∗
23PA ⊗ π∗34PÂ

)
which is isomorphic to the Fourier–Mukai kernel of the composition

ΦP
Â
◦ ΦPA ◦ ΦP

Â
.

Since ΦPA ◦ ΦP
Â
is isomorphic to [−1

Â
]∗ ◦ [−g] by [154, Theorem 2.2], we have

ΦP
Â
◦ ΦPA ◦ ΦP

Â

∼= ΦP
Â
◦ [−1

Â
]∗ ◦ [−g].

This is the Fourier–Mukai transform with kernel the object E = P∨
Â

[−g] ∈ Db(Â × A). By
uniqueness of the Fourier–Mukai kernel of an equivalence [175, Theorem 2.2] and the fact that
the Chern character of E equals (−1)g ·e−̂̀∈ CH(Â×A)Q, this finishes the proof of Claim (∗).
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Next, we claim that (−1)g · F
Â×A(−̂̀) = RA. To see this, recall that for each integer i

with 0 ≤ i ≤ g, there is a canonical Beauville decomposition CHi(A)Q = ⊕ij=i−gCHi,j(A)Q
[22]. Since the Poincaré bundle PA is symmetric, we have ` ∈ CH1,0(A × Â)Q and hence
`i ∈ CHi,0(A × Â)Q. In particular, we have RA ∈ CH2g−1,0(A × Â)Q. The fact that PA
is symmetric also implies - via Claim (∗) - that we have F

Â×A((−1)g · e−̂̀) = e`. Indeed,
F
Â×A ◦ FA×Â = [−1]∗ · (−1)2g = [−1]∗, see [66, Corollary 2.22]. Since F

Â×A identifies
CHi,0(Â×A)Q with CHg−i,0(A× Â) (see [66, Lemma 2.18]), we must indeed have

(−1)g · F
Â×A(−̂̀) = F

Â×A((−1)g+1 · ̂̀) = `2g−1

(2g − 1)! = RA. (F.3.6)

For a g-dimensional abelian variety X and any x, y ∈ CH(X)Q, one has FX(x · y) = (−1)g ·
FX(x) ? FX(y) ∈ CH(X̂)Q, see [20, Proposition 3]. This implies (see also [153, §3.7]) that if
a is a cycle on X such that FX(a) ∈ CH>0(X̂)Q, then FX(ea) = (−1)g · E((−1)g · FX(a)).
This allows us to conclude that

e` = F
Â×A((−1)g · e−̂̀) = (−1)g ·F

Â×A(e−̂̀) = (−1)g ·E(F
Â×A(−̂̀)) = (−1)g ·E((−1)g ·RA),

which finishes the proof.

Next, assume that A is equipped with a principal polarization λ : A ∼−→ Â, define ` =
c1(PA), and let

Θ = 1
2 · (id, λ)∗` ∈ CH1(A)Q (F.3.7)

be the symmetric ample class corresponding to the polarization. Here (id, λ) is the morphism
(id, λ) : A→ A× Â. One can understand the relation between

ΓΘ := Θg−1/(g − 1)! ∈ CH1(A)Q

and RA = `2g−1/(2g − 1)! ∈ CH1(A× Â)Q in the following way. Define j1 : A→ A× Â and
j2 : Â → A× Â by x 7→ (x, 0) and y 7→ (0, y) respectively. Let Θ̂ ∈ CH1(Â)Q be the dual of
Θ, and define a one-cycle τ on A× Â as follows:

τ := j1,∗(ΓΘ) + j2,∗(ΓΘ̂)− (id, λ)∗(ΓΘ) ∈ CH1(A× Â)Q.

Lemma F.3.5. One has τ = (−1)g+1 ·RA ∈ CH1(A× Â)Q.

Proof. Identify A and Â via λ. This gives ` = m∗(Θ) − π∗1(Θ) − π∗2(Θ), and the Fourier
transform becomes an endomorphism FA : CH(A)Q → CH(A)Q. We claim that τ = (−1)g ·
(∆∗FA(Θ)− j1,∗FA(Θ)− j2,∗FA(Θ)). For this, it suffices to show that FA(Θ) = (−1)g−1 ·
Θg−1/(g − 1)! ∈ CH1(A)Q. Now FA(eΘ) = e−Θ by Lemma F.3.6 below. Moreover, since Θ
is symmetric, we have Θ ∈ CH1,0(A)Q, hence Θi/i! ∈ CHi,0(A)Q for each i ≥ 0. Therefore,
FA

(
Θi/i!

)
∈ CHg−i,0(A)Q by [66, Lemma 2.18]. This implies that in fact, FA

(
Θi/i!

)
=

(−1)g−i ·Θg−i/(g − i)! ∈ CHg−i,0(A)Q for every i. In particular, the claim follows.

Next, recall that FA×A(`) = (−1)g+1 · RA, see Claim (∗). So at this point, it suffices to
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prove the identity FA×A(`) = (−1)g · (∆∗FA(Θ)− j1,∗FA(Θ)− j2,∗FA(Θ)). To prove this,
we use the following functoriality properties of the Fourier transform on the level of rational
Chow groups. Let X and Y be abelian varieties and let f : X → Y be a homomorphism with
dual homomorphism f̂ : Ŷ → X̂. We then have the following equalities [153, (3.7.1)]:

(f̂)∗ ◦ FX = FY ◦ f∗, FX ◦ f∗ = (−1)dimX−dimY · (f̂)∗ ◦ FY . (F.3.8)

Since ` = m∗Θ− π∗1Θ− π∗2Θ, it follows from Equation (F.3.8) that

FA×A(`) = FA×A (m∗Θ)−FA×A (π∗1Θ)−FA×A (π∗2Θ)
= (−1)g · (∆∗FA(Θ)− j1,∗FA(Θ)− j2,∗FA(Θ)) .

Lemma F.3.6 (Beauville). Let A be an abelian variety over k, principally polarized by
λ : A ∼−→ Â, and define Θ = 1

2 · (id, λ)∗c1(PA) ∈ CH1(A)Q. Identify A and Â via λ. With
respect to the Fourier transform FA : CH(A)Q ∼−→ CH(A)Q, one has FA(eΘ) = e−Θ.

Proof. Our proof follows the proof of [20, Lemme 1], but has to be adapted, since Θ does
not necessarily come from a symmetric ample line bundle on A. Since one still has ` =
m∗Θ− π∗1Θ− π∗2Θ, the argument can be made to work: one has

FA(eΘ) = π2,∗
(
e` · π∗1eΘ

)
= π2,∗

(
em
∗Θ−π∗2Θ

)
= e−Θπ2,∗(m∗eΘ) ∈ CH(A)Q.

For codimension reasons, one has π2,∗(m∗eΘ) = π2,∗m
∗(Θg/g!) = deg(Θg/g!) ∈ CH0(A)Q ∼=

Q. Pull back Θg/g! along Aks → A to see that deg(Θg/g!) = 1 ∈ CH0(A)Q ∼= CH0(Aks)Q,
since over ks the cycle Θ becomes the cycle class attached to a symmetric ample line bundle.

F.3.3. Divided powers and integral Fourier transforms
It was asked by Bruno Kahn whether there exists a PD-structure on the Chow ring of an
abelian variety over any field with respect to its usual (intersection) product. There are
counterexamples over non-closed fields: see [69], where Esnault constructs an abelian surface
X and a line bundle L on X such that c1(L) ·c1(L) is not divisible by 2 in CH0(X). However,
the case of algebraically closed fields remains open [153, Section 3.2]. What we do know, is
the following:

Theorem F.3.7 (Moonen–Polishchuk). Let A be an abelian variety over k. The ring
(CH(A), ?) admits a canonical PD-structure γ on the ideal CH>0(A) ⊂ CH(A). If k = k̄,
then γ extends to a PD-structure on the ideal generated by CH>0(A) and the zero cycles of
degree zero.

In particular, for each element x ∈ CH>0(A) and each n ∈ Z≥1, there is a canonical ele-
ment x[n] ∈ CH>0(A) such that n!x[n] = x?n, see [200, Tag 07GM]. For x ∈ CH>0(A), we
may then define E(x) = ∑

n≥0 x
[n] ∈ CH(A) as the ?-exponential of x in terms of its divided

powers.
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Together with the results of Section F.3.2, Theorem F.3.7 enables us to provide several
criteria for the existence of a motivic weak integral Fourier transform. We recall that for an
abelian variety A over k, principally polarized by λ : A ∼−→ Â, we defined Θ ∈ CH1(A)Q to be
the symmetric ample class attached to the polarization λ, see Equation (F.3.7).

Theorem F.3.8. Let A/k be an abelian variety of dimension g. The following are equivalent:

(i) The one-cycle RA = c1(PA)2g−1/(2g−1)! ∈ CH(A×Â)Q lifts to a one-cycle in CH(A×
Â).

(ii) The abelian variety A admits a motivic weak integral Fourier transform.

(iii) The abelian variety A× Â admits a motivic weak integral Fourier transform.

Moreover, if A carries a symmetric ample line bundle that induces a principal polarization
λ : A ∼−→ Â, then the above statements are equivalent to the following equivalent statements:

(iv) The two-cycle SA = c1(PA)2g−2/(2g−2)! ∈ CH(A× Â)Q lifts to a two-cycle in CH(A×
Â).

(v) The one-cycle ΓΘ = Θg−1/(g − 1)! ∈ CH(A)Q lifts to a one-cycle in CH(A).

(vi) The abelian variety A admits a weak integral Fourier transform.

(vii) The Fourier transform FA satisfies FA (CH(A)/torsion) ⊂ CH(Â)/torsion.

(viii) There exists a PD-structure on the ideal CH>0(A)/torsion ⊂ CH(A)/torsion.

Proof. Suppose that (i) holds, and let Γ ∈ CH1(A× Â) be a cycle such that ΓQ = RA. Then
consider the cycle (−1)g · E((−1)g · Γ) ∈ CH(A× Â). By Lemma F.3.4, we have

(−1)g ·E((−1)g ·Γ)Q = (−1)g ·E((−1)g ·ΓQ) = (−1)g ·E((−1)g ·RA) = ch(PA) ∈ CH(A×Â)Q.

Thus (ii) holds. We claim that (iii) holds as well. Indeed, consider the line bundle P
A×Â on

the abelian variety X = A× Â× Â×A; one has that P
A×Â

∼= π∗13PA⊗π∗24PÂ, which implies
that

R
A×Â

= 1
(4g − 1)! ·

(
π∗13c1(PA) + π∗24c1(P

Â
)
)4g−1

= 1
(2g)!(2g − 1)! ·

(
π∗13c1(PA)2g−1 · π∗24c1(P

Â
)2g + π∗13c1(PA)2g · π∗24c1(P

Â
)2g−1)

= 1
(2g)!(2g − 1)! ·

(
π∗13c1(PA)2g−1 · π∗24

(
(2g)! · [0]

A×Â

)
+ π∗13

(
(2g)! · [0]

Â×A

)
· π∗24c1(P

Â
)2g−1

)
= π∗13

(
c1(PA)2g−1

(2g − 1)!

)
· π∗24([0]

A×Â
) + π∗13([0]

Â×A
) · π∗24

(
c1(P

Â
)2g−1

(2g − 1)!

)
∈ CH1(X)Q.

(F.3.9)

We conclude that R
A×Â lifts to CH1(X) which, by the implication [(i) =⇒ (ii)] (that has

already been proved), implies that A× Â admits a motivic weak integral Fourier transform.
On the other hand, the implication [(iii) =⇒ (i)] follows from the fact that (−1)g ·F

Â×A(−̂̀) =
RA (see Equation (F.3.6)) and the fact that an abelian variety admits a motivic weak integral
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Fourier transform if and only if its dual abelian variety does. Therefore, we have [(i) ⇐⇒
(ii)⇐⇒ (iii)].

Let us from now on assume that A is principally polarized by λ : A ∼−→ A, where λ is the
polarization attached to a symmetric ample line bundle L on A. Moreover, in what follows
we shall identify Â and A via λ.
Suppose that (iv) holds and let SA ∈ CH2(A×A) = CH2g−2(A×A) be such that (SA)Q =

SA ∈ CH2(A × A)Q. Define CH1,0(A) := Picsym(A) to be the group of isomorphism classes
of symmetric line bundes on A. Then SA induces a homomorphism F : CH1,0(A)→ CH1(A)
defined as the composition

F : CH1,0(A)
π∗1−→ CH1(A×A) ·SA−−→ CH2g−1(A×A) = CH1(A×A) π2,∗−−→ CH1(A).

Since FA
(
CH1,0(A)Q

)
⊂ CH1(A)Q (see [66, Lemma 2.18]) we see that the diagram

CH1,0(A)

��

F // CH1(A)

��

CH1,0(A)Q
FA // CH1(A)Q

(F.3.10)

commutes. On the other hand, since the line bundle L is symmetric, we have

Θ = 1
2 · (id, λ)∗c1(PA) = 1

2 · c1 ((id, λ)∗PA) = 1
2 · c1(L ⊗ L) = c1(L) ∈ CH1(A)Q. (F.3.11)

The class c1(L) ∈ CH1,0(A) of the line bundle L thus lies above Θ ∈ CH1(A)Q. Therefore,
F(c1(L)) ∈ CH1(A) lies above ΓΘ = (−1)g−1FA(Θ) by the commutativity of (F.3.10), and
(v) holds.
Suppose that (v) holds. Then (i) follows readily from Lemma F.3.5. Moreover, if (ii) holds,

then ch(PA) ∈ CH(A×A)Q lifts to CH(A×A), hence in particular (iv) holds. Since we have
already proved that (i) implies (ii), we conclude that [(iv) =⇒ (v) =⇒ (i) =⇒ (ii) =⇒ (iv)].
The implications [(ii) =⇒ (vi) =⇒ (vii)] are trivial. Assume that (vii) holds. By Equation

(F.3.11), Θ ∈ CH1(A)Q lifts to CH1(A), hence FA(Θ) = (−1)g−1 ·ΓΘ lifts to CH1(A), i.e. (v)
holds.
Assume that (vii) holds. The fact that FA (CH(A)/torsion) ⊂ CH(A)/torsion implies that

CH(A)/torsion = FA (FA (CH(A)/torsion)) ⊂ FA (CH(A)/torsion) ⊂ CH(A)/torsion.

Thus the restriction of the Fourier transform FA to CH(A)/torsion defines an isomorphism
FA : CH(A)/torsion ∼−→ CH(A)/torsion. Now if R is a ring and γ is a PD-structure on an
ideal I ⊂ R, then γ extends to a PD-structure on I/torsion ⊂ R/torsion. Consequently, the
ideal CH>0(A)/torsion ⊂ CH(A)/torsion admits a PD-structure for the Pontryagin product
? by Theorem F.3.7. Since FA exchanges the Pontryagin and intersection product (up to a
sign, see [20, Proposition 3(ii)]), it follows that (viii) holds. Since (viii) trivially implies (v),
we are done.

Question F.3.9 (Moonen–Polishchuk [153], Totaro [206]). LetA be any principally polarized
abelian variety over k = k̄. Are the equivalent conditions in Theorem F.3.8 satisfied for A?
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Remark F.3.10. For Jacobians of hyperelliptic curves the answer to Question F.3.9 is "yes"
[153].

Similarly, there is a relation between integral Fourier transforms up to homology and
the algebraicity of minimal cohomology classes induced by Poincaré line bundles and theta
divisors.

Proposition F.3.11. Let A/k be an abelian variety of dimension g. The following are
equivalent:

(i) The class ρA := c1(PA)2g−1/(2g−1)! ∈ H4g−2
ét ((A×Â)ks ,Z`(2g−1)) lifts to CH1(A×Â).

(ii) The abelian variety A admits a motivic integral Fourier transform up to homology.

(iii) The abelian variety A× Â admits a motivic integral Fourier transform up to homology.

Moreover, if A carries a symmetric ample line bundle that induces a principal polarization
λ : A ∼−→ Â, then the above statements are equivalent to the following equivalent statements:

(iv) The class σA := c1(PA)2g−2/(2g−2)! ∈ H4g−4
ét ((A×Â)ks ,Z`(2g−2)) lifts to CH2(A×Â).

(v) The class γθ = θg−1/(g − 1)! ∈ H2g−2
ét (Aks ,Z`(g − 1)) lifts to a cycle in CH1(A).

(vi) The abelian variety A admits an integral Fourier transform up to homology.

Proof. The proof of Theorem F.3.8 can easily be adapted to this situation.

Proposition F.3.12. (i) If k = C, then each of the statements (i) – (vi) in Proposition
F.3.11 is equivalent to the same statement with étale cohomology replaced by Betti cohomol-
ogy.

(ii) Proposition F.3.11 remains valid if one replaces integral Chow groups in statements (i),
(iv) and (v) by their tensor product with Z` as well as ‘integral Fourier transform up to
homology’ by ‘`-adic integral Fourier transform up to homology’ in statements (ii), (iii) and
(vi).

Proof. (i) In this case Z`(i) = Z` and the Artin comparison isomorphism

H2i
ét(A,Z`)

∼−→ H2i(A(C),Z`)

[10, III, Exposé XI] is compatible with the cycle class map. Since the map H2i(A(C),Z) →
H2i

ét(A,Z`) is injective, a class β ∈ H2i(A(C),Z) is in the image of cl : CHi(A)→ H2i(A(C),Z)
if and only if its image β` ∈ H2i

ét(A,Z`) is in the image of cl : CHi(A)→ H2i
ét(A,Z`).

(ii) Indeed, for an abelian variety A over k, the PD-structure on CH>0(A) ⊂ (CH(A), ?)
induces a PD-structure on CH>0(A) ⊗ Z` ⊂ (CH(A)Z` , ?) by [200, Tag 07H1], because the
ring map (CH(A), ?)→ (CH(A)Z` , ?) is flat. The latter follows from the flatness of Z→ Z`.
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F.4. The integral Hodge conjecture for one-cycles on complex
abelian varieties

In this section we use the theory developed in Section F.3 to prove Theorem F.1.1. We
also prove some applications of Theorem F.1.1: the integral Hodge conjecture for one-cycles
on products of Jacobians (Theorem F.1.2), the fact that the integral Hodge conjecture for
one-cycles on principally polarized complex abelian varieties is stable under specialization
(Corollary F.4.3) and density of polarized abelian varieties satisfying the integral Hodge
conjecture for one-cycles (Theorem F.1.3).

F.4.1. Proof of the main theorem

Let us prove Theorem F.1.1.

Proof of Theorem F.1.1. Suppose that (i) holds. Then (ii) holds by Propositions F.3.11 and
F.3.12.(i). Suppose that (ii) holds. Then (iv) follows from Lemma F.3.3. So we have
[(i) ⇐⇒ (ii) =⇒ (iv)]. If (i) holds, then ρA = c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A × Â,Z)
is algebraic, which implies that ρ

Â
∈ H4g−2(Â × A,Z) is algebraic. Therefore, ρ

A×Â ∈
H8g−2(A × Â × Â × A,Z) is algebraic by Equation (F.3.9). We then apply the implication
[(i) =⇒ (iv)] to the abelian variety A × Â, which shows that (iii) holds. Since [(iii) =⇒ (i)]
is trivial, we have proven [(i)⇐⇒ (ii)⇐⇒ (iii) =⇒ (iv)].
Next, assume that A is principally polarized by θ ∈ NS(A) ⊂ H2(A,Z). The directions

[(iv) =⇒ (v)] and [(ii) =⇒ (vi)] are trivial and [(v) =⇒ (i)] follows from Propositions F.3.11
and F.3.12.(i). We claim that (vi) implies (iv). Define σA = c1(PA)2g−2/(2g−2)! ∈ H4g−4(A×
Â,Z) and let S ∈ CH2(A×Â) be such that cl(S) = σA. The squares in the following diagram
commute:

CH1(A)

cl
��

π∗1 // CH1(A× Â)

cl
��

·S // CH2g−1(A× Â)

cl
��

π2,∗
// CH1(Â)

cl
��

H2(A,Z)
π∗1 // H2(A× Â,Z) ·σA // H4g−2(A× Â,Z)

π2,∗
// H2g−2(Â,Z).

(F.4.1)
Since FA = π2,∗ (ch(PA) · π∗1(−)) restricts to an isomorphism FA : H2(A,Z) ∼−→ H2g−2(Â,Z)
by [20, Proposition 1], the composition π2,∗ ◦ (− · σA) ◦ π∗1 on the bottom row of (F.4.1) is an
isomorphism. Thus, by Lefschetz (1, 1), cl : CH1(Â)→ Hdg2g−2(Â,Z) is surjective.
It remains to prove the algebraicity of the classes θi/i! ∈ H2i(A,Z). This follows from

Theorem F.3.7 together with the following equality, proven by Beauville [20, Corollaire 2]):

θi

i! = γ?jθ
j! , γθ = θg−1

(g − 1)! ∈ H2g−2(A,Z), i+ j = g.

Therefore, the proof is finished.

Corollary F.4.1. Let A and B be complex abelian varieties of respective dimensions gA and
gB.
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• The Hodge classes ρA ∈ H4gA−2(A× Â,Z) and ρB ∈ H4gB−2(B × B̂,Z) are algebraic if
and only if A× Â, B × B̂, A× B and Â× B̂ satisfy the integral Hodge conjecture for
one-cycles.

• If A and B are principally polarized, then the integral Hodge conjecture for one-cycles
holds for A×B if and only if it holds for A and B.

Proof. The first statement follows from Theorem F.1.1 and Equation (F.3.9). The second
statement follows from the fact that the minimal cohomology class of the product A × B
is algebraic if and only if the minimal cohomology classes of the factors A and B are both
algebraic.

Proof of Theorem F.1.2. By Corollary F.4.1 we may assume n = 1, so let C be a smooth
projective curve. Let p ∈ C and consider the morphism ι : C → J(C) defined by sending a
point q to the isomorphism class of the degree zero line bundle O(p − q). Then cl(ι(C)) =
γθ ∈ H2g−2(J(C),Z) by Poincaré’s formula [7], so γθ is algebraic and the result follows from
Theorem F.1.1.

Remark F.4.2. (i) Let us give another proof of Theorem F.1.2 in the case n = 1, i.e. let
C be a smooth projective curve of genus g and let us prove the integral Hodge conjecture
for one-cycles on J(C) in a way that does not use Fourier transforms. It is classical that
any Abel-Jacobi map C(g) → J(C) is birational. On the other hand, the integral Hodge
conjecture for one-cycles is a birational invariant, see [214, Lemma 15]. Therefore, to prove
it for J(C) it suffices to prove it for C(g). One then uses [65, Corollary 5] which says that for
each n ∈ Z≥1, there is a natural polarization η on the n-fold symmetric product C(n) such
that for any i ∈ Z≥0, the map ηn−i ∪ (−) : Hi(C(n),Z)→ H2n−i(C(n),Z) is an isomorphism.
In particular, the variety C(n) satisfies the integral Hodge conjecture for one-cycles for any
positive integer n.

(ii) Along these lines, observe that the integral Hodge conjecture for one-cycles holds not
only for symmetric products of smooth projective complex curves but also for any product
C1 × · · · × Cn of smooth projective curves Ci over C. Indeed, this follows readily from the
Künneth formula.

(iii) Let C be a smooth projective complex curve of genus g. Our proof of Theorem F.1.1
provides an explicit description of Hdg2g−2(J(C),Z) depending on Hdg2(J(C),Z). More
generally, let (A, θ) be a principally polarized abelian variety of dimension g, identify A and
Â via the polarization, and let ` = c1(PA) ∈ H2(A× Â,Z). Then ` = m∗(θ)− π∗1(θ)− π∗2(θ),
which implies that

σA = `2g−2

(2g − 2)! =
2g−2∑
i,j,k≥0

i+j+k=2g−2

(−1)j+k ·m∗
(
θi

i!

)
· π∗1

(
θj

j!

)
· π∗2

(
θk

k!

)
.

On the other hand, any β ∈ Hdg2g−2(A,Z) is of the form π2,∗ (σA · π∗1[D]), where [D] = cl(D)
for a divisor D on A, as follows from (F.4.1). Therefore, any β ∈ Hdg2g−2(A,Z) may be
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written as

β =
2g−2∑
i,j,k≥0

i+j+k=2g−2

(−1)j+k · π2,∗

(
m∗

(
θi

i!

)
· π∗1

(
θj

j!

)
· π∗1[D]

)
· θ

k

k! . (F.4.2)

Returning to the case of a Jacobian J(C) of a smooth projective curve C of genus g, the
classes θi/i! appearing in (F.4.2) are effective algebraic cycle classes. Indeed, for p ∈ C and
d ∈ Z≥1, the image of the morphism Cd → J(C), (xi) 7→ O(∑i xi−d ·p) defines a subvariety
Wd(C) ⊂ J(C) and by Poincaré’s formula [7, §I.5] one has cl(Wd(C)) = θg−d/(g − d)! ∈
H2g−2d(J(C),Z).

Besides Theorem F.1.2, we obtain the following corollary of Theorem F.1.1:

Corollary F.4.3. Let A→ S be a principally polarized abelian scheme over a proper, smooth
and connected variety S over C. Let X ⊂ S(C) be the set of x ∈ S(C) such that the abelian
variety Ax satisfies the integral Hodge conjecture for one-cycles. Then X = ∪iZi(C) for some
countable union of closed algebraic subvarieties Zi ⊂ S. In particular, if the integral Hodge
conjecture for one-cycles holds on U(C) for a non-empty open subscheme U of S, then it
holds on all of S(C).

Proof. Write A = A(C) and B = S(C) and let π : A → B be the induced family of complex
abelian varieties. Let g ∈ Z≥0 be the relative dimension of π and define, for t ∈ S(C),
θt ∈ NS(At) ⊂ H2(At,Z) to be the polarization of At. There is a global section γθ ∈
R2g−2π∗Z such that for each t ∈ B, γθt = θg−1

t /(g − 1)! ∈ H2g−2(At,Z). Note that γθ
is Hodge everywhere on B. For those t ∈ B for which γθt is algebraic, write γθt as the
difference of effective algebraic cycle classes on At. This gives a countable disjoint union
φ : tij Hi ×S Hj → S of products of relative Hilbert schemes Hi → S. By Lemma F.4.4
below, γθt is algebraic precisely for closed points t in the image Y ⊂ S of φ. Theorem F.1.1
implies that X = Y and the assertion is proven.

Lemma F.4.4. Let S be an integral variety over C, let A → S be a principally polarized
abelian scheme of relative dimension g over S and let Ci ⊂ A for i = 1, . . . , k be relative
curves in A over S. Let n1, . . . , nk be integers and let y ∈ S(C) be a point that satisfies∑k
i=1 ni ·cl(Ci,y) = γθy ∈ H2g−2(Ay,Z). Then for every x ∈ S(C), one has ∑k

i=1 ni ·cl(Ci,x) =
γθx ∈ H2g−2(Ax,Z).

Proof. Since it suffices to prove the lemma for any open affine U ⊂ S that contains y, we may
assume that S is quasi-projective. Fix x ∈ S(C). After replacing S by a suitable base change
containing x and y, we may assume that S is an open subscheme of a smooth connected curve.
For t ∈ S, denote by θt̄ ∈ H2

ét(At̄,Z`) the class of the polarization and γθt̄ = θg−1
t̄

/(g−1)!. Let
η = SpecK be the generic point of S. The elements ∑i ni · cl(Ci,η̄) and γθη̄ in H2g−2

ét (Aη̄,Z`)
both map to ∑i ni · cl(Ci,y) = γθy ∈ H2g−2

ét (Ay,Z`) under the specialization homomorphism
s : H2g−2

ét (Aη̄,Z`) → H2g−2
ét (Ay,Z`) by [76, Example 20.3.5]. Since s is an isomorphism, we

have ∑i ni · cl(Ci,η̄) = γθη̄ , which implies that ∑i ni · cl(Cx,i) = γθx ∈ H2g−2
ét (Ax,Z`).
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F.4.2. Density of abelian varieties satisfying IHC1

The goal of this section is to prove that Conditions (i) – (iii) in Theorem F.1.1 are satisfied
on a dense subset of the moduli space of complex abelian varieties. To do so, will we state
yet another criterion that a complex abelian variety may satisfy. In some sense this criterion
provides a bridge between abelian varieties outside the Torelli locus and those lying within,
thereby implying the integral Hodge conjecture for one-cycles for the abelian variety under
consideration.

Definition F.4.5. Let A and B be a complex abelian varieties and let p a prime number.
We say that A is prime-to-p isogenous to a B if there exists an isogeny α : A → B whose
degree deg(α) is not divisible by p. We say that A is p-power isogenous to B if A is isogenous
to B for some isogeny α whose degree is a power of p.

The following proposition shows in particular that to prove the density part of the state-
ment in Theorem F.1.3, it suffices to prove that for any prime number `, those abelian
varieties that are `-power isogenous to a product of elliptic curves are dense in their moduli
space.

Proposition F.4.6. Let A be a complex abelian variety of dimension g. Let Â be the dual
abelian variety and let PA be the Poincaré bundle. Let κ be a non-zero integer such that the
cohomology class κ · c1(PA)/(2g− 1)! ∈ H4g−2(A× Â,Z) is algebraic. Consider the following
statements:

(i) The abelian variety A satisfies the integral Hodge conjecture for one-cycles.

(ii) For every prime number p, there exists an abelian variety B such that the abelian variety
A×B is prime-to-p isogenous to the Jacobian of a smooth projective curve.

(iii) For every prime number p that divides κ, there exists an abelian variety B such that
the abelian variety A×B is prime-to-p isogenous to a Jacobian of a smooth projective
curve.

(iv) For every prime number p, there exists an abelian variety B such that the abelian variety
A×B is prime-to-p isogenous to a product of Jacobians of smooth projective curves.

(v) For every prime number p dividing κ, there exists an abelian variety B such that the
abelian variety A × B is prime-to-p isogenous to a product of Jacobians of smooth
projective curves.

Then [(ii) =⇒ (iii) =⇒ (v) =⇒ (i)] and [(ii) =⇒ (iv) =⇒ (v)]. Moreover, if A is principally
polarized by θA ∈ NS(A), then (i) is implied by

(vi) For any prime number p|(g − 1)! there exists a smooth projective curve C and a mor-
phism of abelian varieties φ : A → J(C) such that φ∗θJ(C) = m · θA for m ∈ Z≥1 with
gcd(m, p) = 1.

Finally, if A is principally polarized of Picard rank one, then the statements (i) – (vi) are
equivalent.
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Proof. Step one: [(ii) =⇒ (iii) =⇒ (v)] and [(ii) =⇒ (iv) =⇒ (v)]. These implications are
trivial.

Step two: [(v) =⇒ (i)]. Let g be the dimension of A. We want to prove that the
class c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A × Â,Z) is algebraic. Let p be any prime number
that divides κ. Then by Condition (v), there exists an abelian variety B and an isogeny
α : A×B → Y to the product Y = ∏

i J(Ci) of Jacobians J(Ci) of smooth projective curves
Ci such that gcd(deg(α), p) = 1. Define X = A × B. Let gB be the dimension of B, let
h = g + gB = dim(X) = dim(Y ), and let mp = deg(α). There exists an isogeny β : Y → X
such that β◦α = [mp]X . If we define np = deg(β) thenmp·np = deg(α)·deg(β) = deg(α◦β) =
m2h
p . Therefore, (β ◦ α) × (α̂ ◦ β̂) = [mp]X×X̂ . Consequently, if Np = 2h · (4h − 2), then

the homomorphism [m2h
p ]∗ = (mNp

p · (−)) : H4h−2(X × X̂,Z) → H4h−2(X × X̂,Z) factors
through H4h−2(Y × Ŷ ,Z). Since Y × Ŷ satisfies the integral Hodge conjecture by Theorem
F.1.2, the Hodge class mNp

p · c1(PX)2h−1/(2h − 1)! ∈ H4h−2(X × X̂,Z) is algebraic. Let
f : A× B × Â× B̂ → A× Â and g : A× B × Â× B̂ → B × B̂ be the canonical projections.
Then PX ∼= f∗PA ⊗ g∗PB. Using this and denoting µ = c1(PA) and ν = c1(PB) we have

c1(PX)2h−1

(2h− 1)! = f∗
(

µ2g−1

(2g − 1)!

)
· g∗

(
ν2gB

(2gB)!

)
+ f∗

(
µ2g

(2g)!

)
· g∗

(
ν2gB−1

(2gB − 1)!

)
.

This implies that f∗
(
c1(PX)2h−1/(2h− 1)!

)
= (−1)gbµ2g−1/(2g−1)!. In particular, the class

m
Np
p · c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A× Â,Z) is algebraic.
Let p1, . . . , pn be all prime divisors of κ and observe that gcd(κ,mNp1

p1 ,m
Np2
p2 , . . . ,m

Npn
pn ) = 1.

Therefore, there are integers a, b1, . . . , bn such that a · κ+∑n
i=1 bi ·m

Npi
pi = 1. One obtains

c1(PA)2g−1

(2g − 1)! = a · κ · c1(PA)2g−1

(2g − 1)! +
n∑
i=1

bi ·m
Npi
pi ·

c1(PA)2g−1

(2g − 1)! ∈ H4g−2(A× Â,Z).

This proves that c1(PA)2g−1/(2g − 1)! is a Z-linear combination of algebraic classes, hence
algebraic. Condition (i) follows then from Theorem F.1.1.

Step three: [(vi) =⇒ (i)] for A principally polarized by θA ∈ NS(A). Let p1, . . . , pk be
the prime factors of (g−1)! and let C1, . . . , Ck be smooth proper curves for which there exist
homomorphisms φi : A→ J(Ci) such that φ∗θJ(Ci) = mi · θA for some mi ∈ Z≥1 with pi - m.
Since θg−1

J(Ci)/(g−1)! ∈ H2g−2(J(Ci),Z) is algebraic for each i, the classes φ∗i (θ
g−1
J(Ci)/(g−1)!) =

mg−1
i · θg−1

A /(g − 1)! ∈ H2g−2(A,Z) are algebraic. Since gcd((g − 1)!,m1, . . . ,mk) = 1, this
implies that θg−1

A /(g − 1)! is algebraic. Condition (i) follows then from Theorem F.1.1.

Step four: [(vi) ⇐= (i) =⇒ (ii)] for (A, θA) principally polarized with ρ(A) = 1. Write θ =
θA. Let Z1, . . . , Zn be integral curves Zi ⊂ A and let e1, . . . , en ∈ Z with ei 6= 0 for all i be such
that θg−1/(g − 1)! = ∑n

i=1 ei · [Zi] ∈ H2g−2(A,Z). Since ρ(A) = 1, the group Hdg2g−2(A,Z)
is generated by θg−1/(g−1)!. Consequently, we have [Zi] = fi ·

(
θg−1/(g − 1)!

)
for some non-

zero fi ∈ Z. Hence we can write θg−1/(g − 1)! = ∑n
i=1 ei · [Zi] = ∑n

i=1 ei · fi · θg−1/(g − 1)!,
which implies ∑n

i=1 ei · fi = 1. Now let p be any prime number. Then there exists an integer
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i with 1 ≤ i ≤ n such that p does not divide fi. Let Ci → Zi be the normalization of Zi and
let λA = ϕθ : A→ Â be the polarization corresponding to θ. This gives a diagram

Ci
ϕ

//

ι

&&

A

φ

88∼
λA // Â

ϕ∗
// Pic0(Ci) a

∼
// J(Ci),

J(Ci)

ψ

88

(F.4.3)
where ι : Ci → J(Ci) = H0(C,ΩC)∗/H1(C,Z) is the Abel–Jacobi map (for some p ∈ C), and
ϕ∗ : Â = Pic0(A) → Pic0(Ci) is the pullback of line bundles along ϕ : Ci → A. The natural
homomorphism a : Pic0(Ci) → J(Ci) is an isomorphism by the Abel–Jacobi theorem. Since
the triangle on the left in Diagram (F.4.3) commutes and [Zi] ∈ H2g−2(A,Z) is non-zero,
the morphism ψ : J(Ci) → A is non-zero. As ρ(A) = 1, the map ψ : J(Ci) → A must be
surjective, the Picard rank of a non-simple abelian variety being greater than one. Dually, ψ
gives rise to a non-zero homomorphism ψ̂ : Â→ Ĵ(Ci), and the simpleness of Â implies that ψ̂
is finite onto its image. We claim that the same is true for φ. To prove this, it suffices to show
that the kernel of ϕ∗ : Â→ Pic0(Ci) is finite. Since the homomorphism ι∗ : Ĵ(Ci)→ Pic0(Ci)
induced by the embedding ι : Ci → J(Ci) is an isomorphism, dualizing the triangle on the left
in Diagram (F.4.3) proves our claim. By construction, we have ϕ∗[Ci] = [Zi] = fi · θg−1/(g−
1)! ∈ H2g−2(A,Z). By a version of Welters’ Criterion (see [31, Lemma 12.2.3]), this implies
that φ∗

(
θJ(Ci)

)
= fi · θ ∈ H2(A,Z), where θJ(Ci) ∈ H2(J(Ci),Z) is the canonical principal

polarization. In particular, (vi) holds.
We claim that also (ii) holds. Let j : A0 ↪→ J(Ci) be the embedding of A0 = φ(A) into

J(Ci) and let λ0 : A0 → Â0 be the polarization on A0 induced by j. We have φ∗(λ) = ϕfi·θ =
fi · ϕθ = fi · λA. We obtain a commutative diagram

A

[fi]A

xx

π //

fi·λA
��

A0

λ0
��

j
// J(Ci)

λ
��

A Â
λ
Â

oo Â0
π̂

oo Ĵ(Ci).oo

ĵ

oo

Let G be the kernel of π. Define K = Ker([fi]A) = Ker(fi · λA) ∼= (Z/fi)2g ⊂ A, and
U = Ker(π̂ ◦ λ0) ⊂ A0. Also define H = Ker(λ0), and observe that H ⊂ U . The exact
sequence 0 → G → K → U → 0 shows that if a, k, u and h are the respective orders of G,
K, U and H, then one has

h|u|k|fi and a|k|fi. (F.4.4)

Then define B = Ker(ĵ ◦ λ) ⊂ J(Ci) with inclusion i : B ↪→ J(Ci). It is easy to see that B is
connected. Moreover, we have A0∩B = H and, therefore, an exact sequence of commutative
group schemes

0→ H → A0 ×B
ψ−→ J(Ci)→ 0.

The morphism α : A×B → J(Ci), defined as the composition

A×B π×id
// A0 ×B

ψ
// J(Ci),
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is an isogeny. Since the degree of an isogeny is multiplicative in compositions, we have
deg(α) = deg (ψ ◦ (π × id)) = deg(ψ) · deg(π × id) = h · deg(π) = h · a. In particular, p does
not divide deg(α) because h and a divide fi by Equation (F.4.4).

Proof of Theorem F.1.3. According to Theorem F.1.1, it suffices to show that the cohomology
class c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A× Â,Z) is algebraic for [(A, λ)] in a dense subset X of
Ag,δ(C) as in the statement. Define D = diag(δ1, . . . , δg) and define, for each subring R of C,
a group

Spδ2g(R) =
{
M ∈ GL2g(R) |M

(
0 D

−D 0

)
M t =

(
0 D

−D 0

)}
.

The isomorphism

Spδ2g(R)→ Sp2g(R), M 7→
(

1g 0
0 D

)−1

M

(
1g 0
0 D

)

induces an action of Spδ2g(Z) on the genus g Siegel space Hg, and the period map defines
an isomorphism of complex analytic spaces Ag,δ(C) ∼= Spδ2g(Z) \ Hg [31, Theorem 8.2.6].
Pick any prime number ` > (2g − 1)! and consider, for a period matrix x ∈ Hg, the orbit
Spδ2g(Z[1/`]) · x ⊂ Hg. Let (A, λ) be a polarized abelian variety admitting a period matrix
equal to x. The image of Spδ2g(Z[1/`]) ·x in Ag,δ(C) is the Hecke-`-orbit of [(A, λ)] ∈ Ag,δ(C),
i.e. the set of isomorphism classes of polarized abelian varieties [(B,µ)] ∈ Ag,δ(C) for which
there exists integers n,m ∈ Z≥0 and an isomorphism of polarized rational Hodge structures
φ : H1(B,Q) ∼−→ H1(A,Q) such that `n · φ and `m · φ−1 are morphisms of integral Hodge
structures (Hecke orbits were studied in positive characteristic in e.g. [51,52]). The degree of
the isogeny α = `nφ must be `k for some nonnegative integer k. In particular, if one abelian
variety in a Hecke-`-orbit happens to be isomorphic to a Jacobian, then every abelian variety
in that orbit is `-power isogenous to a Jacobian, see Definition F.4.5.

The decomposition of a polarized abelian variety into non-decomposable polarized abelian
subvarieties is unique [63, Corollaire 2], which implies that the following morphism

π :
g∏
i=1

A1,1 → Ag,δ, ([(E1, λ1)], . . . , [(Eg, λg)]) 7→ ([E1 × · · · × Eg, δ1 · λ1 × · · · × δg · λg)]

is finite onto its image. Thus Ag,δ contains a g-dimensional subvariety on which the integral
Hodge conjecture for one-cycles holds. We claim that Spδ2g(Z[1/`]) is dense in Sp2g(R). Since
Spδ2g(Q) arises as the group of rational points of an algebraic subgroup Spδ2g of GL2g over
Q [183, Chapter 2, §2.3.2], which is isomorphic to Sp2g over Q, this claim follows from the
well-known fact that for S = {`} ⊂ SpecZ, the algebraic group Sp2g satisfies the strong
approximation property with respect to S [183, Chapter 7, §7.1] (indeed, this is classical and
follows from the non-compactness of Sp2g(Q`), see [183, Theorem 7.12]).

Let V = π (∏g
i=1 A1,1) ⊂ Ag,δ. Then X ′ := Spδ2g(Z[1/`]) ·V = ∪iZi ⊂ Ag,δ(C) is a countable

union of closed analytic subsets Zi ⊂ Ag,δ(C) of dimension dimZi ≥ g such that X ′ ⊂ Ag,δ(C)
is dense in the analytic topology and c1(PA)2g−1/(2g− 1)! ∈ H4g−2(A× Â,Z) is algebraic for
every polarized abelian variety (A, λ) of polarization type δ whose isomorphism class lies in
X ′. To prove the theorem, we are reduced to proving that there exists a similar countable
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unionX ⊂ Ag,δ(C) whose components are algebraic. For this, it suffices to prove the following
claim: the locus of [(A, λ)] ∈ Ag,δ(C) such that c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A × Â,Z)alg
is a countable union W = ∪jYj ⊂ Ag,δ(C) of closed algebraic subsets Yj ⊂ Ag,δ(C). Indeed,
if this holds, then X ′ ⊂ W and since each Zi ⊂ X is irreducible, each Zi is contained in an
irreducible component Yj ⊂ W . We may then define X as the union of those Yj ⊂ W that
contain some Zi.
To prove the claim, let U → Ag,δ be a finite étale cover of the moduli stack Ag,δ and let
X → U be the pullback of the universal family of abelian varieties along U → Ag,δ. This
gives an abelian scheme X × X̂ → U carrying a relative Poincaré line bundle PX/U and
arguments similar to those used to prove Lemma F.4.4 show that indeed, for each irreducible
component U ′ ⊂ U , the locus in U ′(C) where c1(PA)2g−1/(2g−1)! is algebraic is a countable
union of closed algebraic subvarieties of U ′(C).

Finally, Theorem F.1.1 implies that for each [(A, λ)] ∈ X, the integral Hodge conjecture
for one-cycles holds for the abelian variety A, so we are done.

Remark F.4.7. Using level structures one can show that whenever gcd(∏i δi, (2g− 1)!) = 1
(or, more generally, gcd(∏i δi, (2g−2)!) = 1, see Section F.5 below), there is a countable union
X = ∪iZi ⊂ Ag,δ(C) as in Theorem F.1.3 such that dimZi ≥ 3g− 3. Indeed, let A∗g,δg be the
moduli space of principally polarized abelian varieties of dimension g with δg-level structure.
Then there is a natural morphism φ : A∗g,δg → Ag,δ such that for any x = [(A, λ)] ∈ A∗g,δg(C)
with [(B,µ)] = φ(x) ∈ Ag,δ(C), there exists an isogeny α : A→ B of degree ∏g

i=1 δi, see [157].

Remark F.4.8. In the principally polarized case, the density in the moduli space of those
abelian varieties that satisfy the integral Hodge conjecture for one-cycles admits another proof
which might be interesting for comparison. Let Ag be the coarse moduli space of principally
polarized complex abelian varieties of dimension g and let [(A, θ)] be a closed point of Ag.
Then by [31, Exercise 5.6.(10)], the following are equivalent: (i) A is isogenous to the g-
fold self-product Eg for an elliptic curve E with complex multiplication, (ii) A has maximal
Picard rank ρ(A) = g2, (iii) A is isomorphic to the product E1×· · ·×Eg of pairwise isogenous
elliptic curves Ei with complex multiplication. If any of these conditions is satisfied, then A
satisfies the integral Hodge conjecture for one-cycles by Theorem F.1.2. Moreover, the set
of isomorphism classes of principally polarized abelian varieties (A, θ) for which this holds is
dense in Ag by [127]. For an explicit example in dimension g = 4 of a principally polarized
abelian variety (A, θ) that satisfies one of the equivalent conditions above, but which is not
isomorphic to a Jacobian, see [62, §5].

F.5. The integral Hodge conjecture for one-cycles up to factor n
In this section, we study a property of a smooth projective complex variety that lies some-
where in between the integral Hodge conjecture and the usual (i.e. rational) Hodge conjecture.
The key will be the following:

Definition F.5.1. Let d, k, n ∈ Z≥1 and let X be a smooth projective variety over C of
dimension d. Recall the definition of the degree 2d− 2k Voisin group of X [180,215]:

Z2d−2k(X) := Hdg2d−2k(X,Z)/H2d−2k(X,Z)alg = Coker
(
CHk(X)→ Hdg2d−2k(X,Z)

)
.
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We say that X satisfies the integral Hodge conjecture for k-cycles up to factor n if Z2d−2k(X)
is annihilated by n (in other words, if n · x ∈ H2d−2k(X,Z)alg for every x ∈ Hdg2d−2k(X,Z)).

Lemma F.5.2. Let A be a complex abelian variety of dimension g. Define σA ∈ H4g−4(A×
Â,Z) to be the class c1(PA)2g−2/(2g − 2)!.

(i) Let n be a positive integer and let Fn : CH1(Â) → CH1(A) be a group homomorphism
such that the following diagram commutes:

CH1(Â)

��

Fn // CH1(A)

��

H2(Â,Z)
n·F

Â // H2g−2(A,Z).

Then A satisfies the integral Hodge conjecture for one-cycles up to factor n.

(ii) Let n ∈ Z≥1 be such that n ·σA is algebraic. Then a homomorphism Fn as in (i) exists.

Proof. Statement (i) follows immediately from the fact that CH1(Â) → Hdg2(Â,Z) is sur-
jective by Lefschetz (1, 1). To prove (ii), first observe that if σ

Â
:= c1(P

Â
)2g−2/(2g − 2)! ∈

H4g−4(Â×A,Z), then n · σ
Â
is algebraic since n · σA is. Let Σn ∈ CH2(Â×A) be such that

cl(Σn) = n · σ
Â
. This gives a commutative diagram:

CH1(Â)

cl
��

π∗1 // CH1(Â×A)

cl
��

·Σn // CH2g−1(Â×A)

cl
��

π2,∗
// CH1(A)

cl
��

H2(Â,Z)
π∗1 // H2(Â×A,Z)

·n·σ
Â // H4g−2(Â×A,Z)

π2,∗
// H2g−2(A,Z).

Since π2,∗ ◦
(
(−) · n · σ

Â

)
◦ π∗1 = n ·F

Â
, the homomorphism Fn := π2,∗ ◦ ((−) · Σn) · π∗1 has

the required property.

Theorem F.5.3. Consider a complex abelian variety A of dimension g. Define the cycle
σA ∈ H4g−4(A× Â,Z) as before and define ρA = c1(PA)2g−1/(2g − 1)! ∈ H4g−2(A× Â,Z).

(i) Let n ∈ Z≥1 be such that n · ρA is algebraic. Then n2 · σA is algebraic. In particular, A
satisfies the integral Hodge conjecture up to factor gcd(n2, (2g − 2)!) in this case.

(ii) If A is principally polarized, and n ∈ Z≥1 is such that n·γθ ∈ Hdg2g−2(A,Z) is algebraic,
then n · ρA ∈ Hdg4g−2(A× Â,Z) is algebraic.

(iii) We have that A satisfies the integral Hodge conjecture for one-cycles up to factor (2g−
2)!, and Prym varieties satisfy the integral Hodge conjecture for one-cycles up to factor
4.

Proof. (i). By Lemma F.3.4, one has

σA = c1(PA)2g−2/(2g − 2)! = (−1)g · (ρA)?2 /2! ∈ H4g−4(A× Â,Z).
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By Theorem F.3.7, this implies that if n · ρA is algebraic, then n2 · σA is algebraic. Since
(2g− 2)! ·σA is algebraic, it follows that gcd(n2, (2g− 2)!) ·σA is algebraic. Thus we are done
by Lemma F.5.2.
(ii). This follows from Lemma F.3.5.
(iii). This follows from Lemma F.5.2, parts (i) and (ii) and the fact that if A is a g-

dimensional Prym variety with principal polarization θ ∈ Hdg2(A,Z), then

2 · γθ ∈ H2g−2(A,Z)

is algebraic.

F.6. The integral Tate conjecture for one-cycles on abelian
varieties over the separable closure of a finitely generated
field

Let X be a smooth projective variety over the separable closure k of a finitely generated
field. Let k0 be a finitely generated field of definition of X. A class u ∈ H2i

ét(X,Z`(i)) is
an integral Tate class if it is fixed by some open subgroup of Gal(k/k0). Totaro has shown
that for codimension-one cycles on X, the Tate conjecture over k implies the integral Tate
conjecture over k [206, Lemma 6.2]. This means that every integral Tate class is the class of
an algebraic cycle over k with Z`-coefficients.
Suppose that A/k is an abelian variety, defined over a finitely generated field k0 ⊂ k such

that k is the separable closure of k0. Then the Tate conjecture for codimension-one cycles
holds for A over k by results of Tate [202], Faltings [70, 71], and Zarhin [218, 219]. By the
above, A satisfies the integral Tate conjecture for codimension-one cycles over k. On the
other hand, the Fourier transform defines an isomorphism

FA : H2
ét(A,Z`(1)) ∼−→ H2g−2

ét (Â,Z`(g − 1)), (F.6.1)

see [206, Section 7]. Since (F.6.1) is Galois-equivariant (the Poincaré bundle being defined
over k0) it sends integral Tate classes to integral Tate classes. Therefore, to prove the
integral Tate conjecture for one-cycles on A, it suffices to lift (F.6.1) to a homomorphism
CH1(A)Z` → CH1(Â)Z` .

Proof of Theorem F.1.6. This follows from the above together with Proposition F.3.12.(ii).

Corollary F.6.1. Let A and B be abelian varieties defined over the separable closure k of a
finitely generated field, of respective dimensions gA and gB.

(i) The classes ρA ∈ H4gA−2
ét (A × Â,Z`(2gA − 1)) and ρB ∈ H4gB−2

ét (B × B̂,Z`(2gA − 1))
are algebraic if and only if A × Â, B × B̂, A × B and Â × B̂ satisfy the integral Tate
conjecture for one-cycles.

(ii) If A and B are principally polarized, then the integral Tate conjecture for one-cycles
holds for A×B if and only if it holds for both A and B.
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(iii) If θ ∈ H2
ét(A,Z`(1)) is the first Chern class of an ample line bundle that induces a prin-

cipal polarization on A, and if the minimal class γθ = θg−1/(g−1)! ∈ H2g−2
ét (A,Z`(g−1))

is algebraic, then θi/i! in H2i
ét(A,Z`(i)) is algebraic for each i ∈ Z≥1.

Proof. (i). See Equation (F.3.9).
(ii). This is true because the minimal cohomology class of the product is algebraic if and

only if the minimal cohomology classes of the factors are algebraic.
(iii). One has θi/i! = γ

?(g−i)
θ /(g − i)! by [20, Corollaire 2].

Combining Theorems F.1.1 and F.1.6, we obtain:

Corollary F.6.2. Let AK be a principally polarized abelian variety over a number field
K ⊂ C and let AC be its base change to C. Then AC satisfies the integral Hodge conjecture
for one-cycles if and only if AK̄ satisfies the integral Tate conjecture for one-cycles over
K̄ = Q̄.

Proof. We view Q̄ as a subfield of C in a way compatible with the inclusion K ↪→ C. For a
prime number `, let θ` = c1(L) ∈ H2

ét(AQ̄,Z`(1)) be the `-adic étale cohomology class of L.
On the other hand, define θC ∈ NS(A) ⊂ H2(AC,Z) to be the polarization of the complex
abelian variety AC. By Theorems F.1.1 and F.1.6, it suffices to show that γθC ∈ H2g−2(AC,Z)
is algebraic if and only if γθ` ∈ H2g−2

ét (AQ̄,Z`(g− 1)) is in the image of (F.1.1) for each prime
number `. We have, by definition, that Z2g−2(A) = Coker

(
CH1(AC)→ H2g−2(AC,Z)

)
. This

implies that Z2g−2(A)⊗ Z` = Coker
(
CH1(AC)Z` → H2g−2(AC,Z`)

)
.

Suppose that γθ` is in the image of (F.1.1) for every prime number `. Then Z2g−2(A)⊗Z` =
0 for each prime number ` by Theorem F.1.6, which means that Z2g−2(A) = 0. Conversely,
suppose that γθ = ∑k

i=1 ni · cl(Ci) for some smooth projective curves Ci over C. The Hilbert
scheme H = HilbAK/K is defined over K; for each i = 1, . . . , k we pick a Q̄-point in the
connected component ofH containing [Ci ⊂ A]. This gives smooth projective curves C ′i ⊂ AQ̄
over Q̄ and we define Γ = ∑

i ni · [C ′i] ∈ CH1(AQ̄). On the one hand, we have cl(ΓC) = γθC
by Lemma F.4.4. On the other hand, the Artin comparison theorem gives an isomorphism
of Z`-algebras

φ : H•ét(AQ̄,Z`) = H•ét(AC,Z`) ∼= H•(AC,Z)⊗Z Z`.

Since φ is compatible with the cycle class maps CH(AQ̄) → H•ét(AQ̄,Z`) and CH(AC) →
H•(AC,Z), we have φ(γθ`) = γθC and φ(cl(Γ)) = cl(ΓC) = γθC . Therefore, cl(Γ) = γθ` .

Another corollary of Theorem F.1.6 is that the integral Tate conjecture for one-cycles
on abelian varieties is stable under specialization. For example, one has the following (c.f.
Corollary F.4.3):

Corollary F.6.3. Let AK be a principally polarized abelian variety over a number field K
and suppose that AK̄ satisfies the integral Tate conjecture for one-cycles over K̄. Let p be
a prime ideal of the ring of integers OK of K at which AK has good reduction and write
κ = OK/p. Then the abelian variety Aκ̄ over κ̄ satisfies the integral Tate conjecture for
one-cycles over κ̄.

Proof. Write S = SpecOK and let A→ S be the Néron model of AK . Let R (resp.Kp) be the
completion of OK (resp. K) at the prime p. The natural composition K → Kp → K̄p induces

264



an embedding K̄ → K̄p, where K̄p is an algebraic closure of Kp. This gives a commutative
diagram, where the square on the right is provided in [76, Example 20.3.5]:

CH(AK̄)Z` //

��

CH(AK̄p
)Z` //

��

CH(Aκ̄)Z`

��

⊕r≥0H2r
ét (AK̄ ,Z`(r))

∼ // ⊕r≥0H2r
ét (AK̄p

,Z`(r)) ∼ // ⊕r≥0H2r
ét (Aκ̄,Z`(r)).

(F.6.2)

Now the principal polarization λK : AK ∼−→ ÂK extends uniquely to a homomorphism λ : A→
Â by the Néron mapping property [37, Section 1.2, Definition 1] and since the same is
true for the inverse λ−1

K : ÂK ∼−→ AK we find that λ is an isomorphism. In particular, we
see that Aκ̄ is principally polarized and that the class in CH1(AK̄)Z` of a theta divisor on
AK̄ is sent to the class in CH1(Aκ̄)Z` of a theta divisor on Aκ̄. Thus, the minimal class
γθK̄ ∈ H2g−2

ét (AK̄ ,Z`(g − 1)) is sent to the minimal class γθκ̄ ∈ H2g−2
ét (Aκ̄,Z`(g − 1)) by the

isomorphism on the bottom of Diagram (F.6.2). It follows that γθκ̄ is algebraic which by
Theorem F.1.6 means that we are done.

Finally, let us prove Theorem F.1.7. The theorem follows from Theorem F.1.6 together
with a result of Chai on the density of an ordinary isogeny class in positive characteristic
[51].

Proof of Theorem F.1.7. For any t ∈ Ag(k), let (At, λt) be a principally polarized abelian
variety such that [(At, λt)] = t. Let A = E1 × · · · × Eg be the product of g ordinary elliptic
curves Ei over k and provide A with its natural principal polarization. Let x ∈ Ag(k) be
the point corresponding to the isomorphism class of A. Let q > (g − 1)! be a prime number
different from p and let Gq(x) ⊂ Ag(k) be the set of isomorphism classes y = [(Ay, λy)] that
admit an isogeny φ : Ay → Ax with φ∗λx = qN · λy for some nonnegative integer N . We
claim that Ay satisfies the integral Tate conjecture for one-cycles over k for any y ∈ Gq(x).
Indeed, for such y there exists a nonnegative integer N such that the isogeny [qN ] : Ay → Ay
factors through Ax. Consequently, q(2g−2)·N · γθ is algebraic for the first Chern class θ of the
principal polarization on Ay, which implies that γθ is algebraic (as q > (g − 1)!). Thus, the
claim follows from Theorem F.1.6. Now Gq(z) is dense in Ag for any ordinary principally
polarized abelian variety (Az, λz) by a result of Chai [51, Theorem 2]. Therefore, Gq(x) is
dense in Ag and the proof is finished.
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