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Abstract
In this work, we investigate a model order reduction scheme for high-fidelity nonlin-
ear structured parametric dynamical systems. More specifically, we consider a class of
nonlinear dynamical systemswhose nonlinear terms are polynomial functions, and the
linear part corresponds to a linear structured model, such as second-order, time-delay,
or fractional-order systems. Our approach relies on the Volterra series representation
of these dynamical systems. Using this representation, we identify the kernels and,
thus, the generalized multivariate transfer functions associated with these systems.
Consequently, we present results allowing the construction of reduced-order models
whose generalized transfer functions interpolate these of the original system at pre-
defined frequency points. For efficient calculations, we also need the concept of a
symmetric Kronecker product representation of a tensor and derive particular prop-
erties of them. Moreover, we propose an algorithm that extracts dominant subspaces
from the prescribed interpolation conditions. This allows the construction of reduced-
order models that preserve the structure. We also extend these results to parametric
systems and a special case (delay in input/output). We demonstrate the efficiency of
the proposed method by means of various numerical benchmarks.
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1 Introduction

Dynamical systems are the basic framework used for modeling, controlling, and ana-
lyzing a large variety of engineering processes. Due to the increasing use of dedicated
computer-based modeling design software, numerical simulation is now used more
frequently to understand the dynamics of a complex system and to shorten both devel-
opment time and cost. However, the need for enhanced model accuracy inevitably
leads to an increasing number of variables and resources, which entails a high compu-
tational cost. In this context, model order reduction (MOR) is a possible remedy for
such complex simulations. Precisely, MOR aims to replace a complex high-fidelity
model with a reduced-ordermodel (ROM) thatmimics a certain dynamical behavior of
the original model and preserves its features. As a result, this alleviates the numerical
burden and reduces the computational time.

Many MOR methods for (parametric) nonlinear systems are based on simulated
data. This means that, for given inputs and parameters, snapshots of the state vector
x are collected [18]. Then, a low-dimensional dominant subspace is determined by
means of a singular value decomposition (SVD) of the matrix containing the collected
snapshots as columns. Hence, a ROM is constructed via Galerkin projection. Among
these methods, proper orthogonal decomposition is arguably the most favored method
(see, e.g., [29] for more details). Additionally, for nonlinear systems, this approach
is often combined with hyper-reduction methods, such as EIM [4], DEIM [24], and
GNAT [21], allowing fast evaluation of nonlinear terms.Also, for parametric problems,
reduced basis methods have been successfully applied to several nonlinear systems,
see, e.g., [35]. Although these methods have been successful in several applications,
they are input-dependent, i.e., the quality of the ROMs depends on the choices of
input functions and parameters used to collect the snapshots. Hence, it may be harder
to obtain a ROM independent of inputs, which are suitable, e.g., for control problems.

In this work, we focus on MOR methods that are input-independent, i.e., ROMs
can approximate the high-fidelity model behavior for all admissible inputs. The reader
is referred to [5] for an overview of input-independent MOR methods. These meth-
ods, broadly speaking, are divided into two classes: interpolation-based and balanced
truncation approaches. In this work, we focus on the class of interpolation-based
methods. For the class of nonlinear systems, interpolation-based MOR methods have
been extended to certain classes of nonlinear systems, e.g., bilinear (see, e.g., [3, 20]),
parametric bilinear (see, e.g., [37]), quadratic-bilinear (see, e.g., [1, 9, 27]) and, more
recently, (parametric-)polynomial systems (see, e.g., [11, 12]).

Besides the nonlinearities, in many applications, dynamical systems possess a
particular dynamical structure, e.g., second-order, time-delay, and fractional-order
systems. We call these systems structured. There exist several MOR methods for
structured systems, allowing to preserve such dynamical structures in a ROM. We
refer to [23, 26, 36] for second-order systems and [32] for time-delay systems. More-
over, in [6], the authors propose a framework allowing interpolation-based MOR for
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a vast class of linear structured systems. This framework was extended to the class of
parametric linear structured systems in [2], and a data-driven identification approach
was proposed in [39]. Additionally, in [14], the authors have proposed an approach to
determine the dominant subspaces of a given (parametric) linear structured model. It
is worth noticing that a balanced truncation approach is proposed in [19] for this class
of systems.

In this paper, we focus on MOR for structured systems with polynomial nonlinear-
ities. To illustrate this class of systems, let us consider the bilinear time-delay system
presented in [28], which is of the form:

ẋ(t) − A1x(t) − A2x(t − τ) = Nx(t)u(t) + Bu(t), (1a)

y(t) = Cx(t), (1b)

where x(t) ∈ R
n , u(t) ∈ R

m and u(t) ∈ R
p are the state, input, and output vectors.

The left-hand side of (1a) corresponds to the linear part of the dynamics, governed
by a time-delay structure. On the right-hand side, the term Nx(t)u(t) corresponds to
a bilinear nonlinearity. Our main goal is to determine a ROM for the system (1) that
preserves its structure as well, i.e., to search for a surrogate model of the form:

˙̂x(t) −̂A1x̂(t) −̂A2x̂(t − τ) = ̂Nx̂(t)u(t) +̂Bu(t), (2a)

ŷ(t) = ̂Ĉx(t), (2b)

where x̂(t) ∈ R
r is the reduced state vector and r � n. This ROM should have a

similar input-output behavior as the original one for all admissible inputs. Note that
interpolation-based MOR for (parametric-) bilinear structured systems has been pro-
posed in [16, 17]. In this paper, we build upon the methodologies proposed in [15, 40]
for structured bilinear and quadratic-bilinear systems, and in [12] for polynomial sys-
tems. Particularly, we focus on an interpolation-based MOR approach for structured
systems with polynomial nonlinearities, which was not addressed before in the model
reduction literature. To this aim, firstly, we derive a Volterra series expansion for this
class of systems, which was not yet in the literature. Based on the Volterra kernels and
the associated generalized transfer functions, we are able to state several new inter-
polatory results, in particular also for systems with parameter dependency. Moreover,
to prove some of these results, we show that tensors appearing in the dynamical sys-
tem representation can always have a matrix representation with particular symmetric
properties. Additionally, by following the philosophy in [11, 12, 14], we propose an
algorithm enabling us to determine the dominant subspace information via interpola-
tion.

The remaining structure of the paper is as follows. In Section 2, we present the class
of polynomial structured systems, and provide some results for symmetric tensor
representations that play an important role in MOR. In Section 3, we discuss the
Volterra series representation of polynomial structured systems. This representation
allows us to identify the system kernels, thus enabling us to define the generalized
transfer functions of the system. Based on these, we present results that yield ROMs
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whose generalized transfer functions interpolate those of the original model at pre-
defined interpolation points. Then, in Section 4, these results are generalized to other
classes, such as parametric and input-output delay systems. Moreover, in Section 5,
we propose an algorithm to determine the dominant subspace information from a
given large set of interpolation points. In Section 6, we illustrate the efficiency of the
proposed algorithm by means of three benchmark problems and compare it with the
state-of-the-art.We conclude the paper with a summary of our contributions and future
perspectives.

We make use of the following notation in the paper:

– Matrices and vectors are denoted with bold symbols, e.g., A,B, v,w.
– The i th entry of a vector q ∈ R

n is denoted by qi .
– The Kronecker product is denoted by ‘⊗’.
– Im is the identity matrix of size m × m.
– ei denotes the i th column of the identity matrix of appropriate size.
– V ξ is a short-hand notation for V ⊗ · · · ⊗ V

︸ ︷︷ ︸

ξ−times

, where V is a vector/matrix.

2 Problem setting and tensor algebra

2.1 Problem setting

In this paper, we focus on structured dynamical systemswith polynomial non-linearity.
These systems can be written in the form:

(Lx) (t) = P(x(t),u(t)) + Bu(t), (3a)

y(t) = Cx(t), (3b)

with matrices B ∈ R
n×m , C ∈ R

p×n ; the state, input, and output vectors are denoted
by x(t) ∈ R

n , u(t) ∈ R
m and y(t) ∈ R

p, respectively; L(·) corresponds to a linear
operator, while P(·) : R

n+m → R
n represents non-linear terms. Additionally, we

assume the corresponding initial conditions for (3a) to be zero. We shall discuss its
variants (e.g., the parametric version) in Section 4.

We consider linear operatorsL(·) in the system (3), covering a large class of systems
arising in various science and engineering applications, e.g., classical linear systems,
second-order systems, time-delay systems, and integro-differential systems. We list
some examples in Table 1. Furthermore, we assume that the non-linear function P(·)
corresponds to polynomial non-linearities as follows:

P(x(t),u(t)) =
d
∑

ξ=2

Hξx ξ (t) +
d−1
∑

η=1

Nη

(

u(t) ⊗ x η (t)
)

, (4)

where Hξ ∈ R
n×nξ

, ξ ∈ {2, . . . , d},Nη ∈ R
n×m·nη

, η ∈ {1, . . . , d − 1}. In this work,
the system (3) is refereed to as polynomial structured system.
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Table 1 Examples of common linear operators in dynamical systems

Linear operator Lx(t) Frequency-domain description K(s)X(s)

first-order Eẋ − Ax(t) (sE − A)X(s)

second-order Mẍ(t) + Dẋ(t) + Kx(t)
(

s2M + sD + K
)

X(s)

state delay Eẋ(t) − Ax(t) − Aτ x(t − τ)
(

sE − A − e−τ sAτ

)

X(s)

fractional order Eẋ(t) − 1

�(α)

∫ t

0
sα−1Ax(t − s)ds

(

sE − s−αA
)

X(s)

In this paper, our aim is to construct ROMs of order r that have the same structure
as in (3):

(

̂L̂x) (t) = ̂P (̂x(t),u(t)) +̂Bu(t), (5a)

ŷ(t) = ̂Cx̂(t), (5b)

where ̂B ∈ R
r×m , ̂C ∈ R

p×r ; the reduced state, input, and approximated output
vectors are denoted by x̂(t) ∈ R

r , u(t) ∈ R
m and ŷ(t) ∈ R

p, respectively, with
r � n, and ŷ(t) approximates very well y(t) for all admissible inputs. Additionally,
the reduced linear operator ̂L has also the same structure as the linear operator L.
As an example, for a second order dynamical system, the original linear operator is
represented by

L(x) = Mẍ(t) + Dẋ(t) + Kx(t),

whereM,D,K ∈ R
n×n . Hence, in order to preserve the system structure, the reduced

linear operator has to possess the following form:

̂L(̂x) = ̂M ¨̂x(t) +̂D ˙̂x(t) + ̂Kx̂(t),

with ̂M, ,̂D,̂K ∈ R
r×r . Also, the reduced non-linear function ̂P has the same structure

as the original non-linear term P , i.e.,

̂P (̂x(t)) =
d
∑

ξ=2

̂Hξ x̂ ξ (t) +
d−1
∑

η=1

̂Nη

(

u(t) ⊗ x̂ η (t)
)

. (6)

We aim at achieving this goal via a Petrov-Galerkin projection. This means, we
require two matrices V,W ∈ R

n×r such that the reduced operator ̂L(·) in (5) and
matrices involved in determining the polynomial term in (6) can be given as follows:

̂L(·) = W�L(·)V, ̂Hξ = W�HξV ξ , ξ ∈ {2, . . . , d},
̂Nη = W�NηV η , η ∈ {1, . . . , d − 1}. (7)

Clearly, the selection of the projection matrices V and W plays an important role
in determining the desired ROMs. In this paper, we aim to determine these matrices
such that the resulting ROM fulfills certain interpolation properties. We mention that
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for structured bilinear cases (d = 1), some interpolation-based results were developed
in [17], which we generalize to the polynomial case in the next section.

2.2 Results on tensor algebra

In this subsection, we recall some tensor algebra concepts that will be useful later in
the paper and discuss symmetric tensors. A motivation for that is that the matrices
Hξ and Nη appearing in (4) can be interpreted as unfoldings of higher-order tensors.
The process of representing a tensor as a matrix is often referred to as matricization,
see, e.g., [33, 34]. Typically, an Nth order tensor can be unfolded in N different ways,
depending on the dimension along which the tensor is unfolded. So, we begin by
recalling the definition of matricization.

Definition 2.1 (e.g., [33]) Consider an Nth order tensorX ∈ R
n1×···×nN . The mode-n

matricization of the tensorX , denoted by X(m), is obtained by the followingmapping:

X (m)(im, j) = X (i1, . . . , iN),

where j = 1 +
N
∑

k=1,k �=m
(ik − 1)Jk with Jk =

k−1
∏

z=1,z �=m
nz and im ∈ {1, . . . , nm}.

Next, we recall a connection between the mode-n matricization and Kronecker
products from, e.g., [33]. For this, let the tensor-matrix product be:

Y = X ×1 A(1) ×2 A(2) · · · ×N A(N),

where A(l) ∈ R
Jl×nl , Y ∈ R

J1×···×JN , and ×i denotes the tensor contraction with
respect to the i th dimension of the tensor. Then, the following relation between the
unfolded tensors and Kronecker products holds ([33, Prop. 3.7]):

Y(m) = A(m)X(m)

(

A(N) ⊗ · · · ⊗ A(m+1) ⊗ A(m−1) ⊗ A(1)
)�

, m ∈ {1, . . . ,N}.
(8)

Now, we discuss a special case—that is, if A(l) = a�
l , where al is a column vector

and l ∈ {1, . . . ,N}. In this case, we observe that Y(m) becomes a scalar, given as:

Y(m) = a�
mX(m) (aN ⊗ · · · ⊗ am+1 ⊗ am−1 ⊗ · · · ⊗ a1) , m ∈ {1, . . . ,N}. (9)

In what follows, we provide a result in tensor calculus that is of particular interest
for the setting considered in this paper.

Before we proceed further, we define some notations. Let S be a set {i1, i2, . . . , in},
and denote the set of all permutations of S by Si and the number of elements
in Si by αi. For example, consider a set {1, 2, 3}. Then, its permutations are:
(1, 2, 3), (2, 1, 3), (1, 3, 2), (2, 3, 1), (3, 1, 2) and (3, 2, 1), and the number of ele-
ments are six. Having said this, in the following, we provide a result on the symmetric
representation of the tensors.
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Lemma 2.1 Consider an (N + 1)st order tensor H ∈ R
n×···×n. Let us consider a set

S ∈ {i1, . . . , in} and denote the set containing all its permutations by Si and the
number of elements in Si by αi. Furthermore, let a tensor ˜H be defined such that the

ω :=
(

i1 +∑N
l=2(il − 1)(nl−1)

)

th column of its mode-1 matricization (denoted by

˜H(1)) is given as follows:

˜H(1)(:, ω) := H(1)

⎛

⎝

∑

( j1,..., jn)∈Si

1

αi

(

e j1 ⊗ e j2 ⊗ · · · ⊗ e jn
)

⎞

⎠ , (10)

whereH(1) is the mode-1matricization of the tensorH. Then, the following conditions
are satisfied:

a). H(1) (x ⊗ · · · ⊗ x) = ˜H(1) (x ⊗ · · · ⊗ x), where x ∈ R
n is a vector.

b). ˜H(1)
(

q(1) ⊗ · · · ⊗ q(N)
) = ˜H(1)

(

q̃(1) ⊗ · · · ⊗ q̃(N)
)

, where q(i) ∈ R, i ∈
{1, . . . ,N}, and

(

q̃(1), . . . , q̃(N)
)

belongs to the set of all permutations of
{

q(1), . . . ,q(N)
}

.
c). Moreover, all mode-m matricizations of the tensor ˜H for m ≥ 2 are the same, i.e.,

˜H(2) = ˜H(3) = · · · = ˜H(N).

Proof The proof is given in Appendix A.

For a better understanding, we illustrate Lemma 2.1 by an example. Consider a
tensor H2×2×2×2 such that its mode-1 matricization (denoted by H(1)) is given by

H(1) =
[

a1 a2 a3 a4 a5 a6 a7 a8
b1 b2 b3 b4 b5 b6 b7 b8

]

. (11)

Next, we write down explicitly the term H(1)(x ⊗ x ⊗ x), where x = [

x1 x2
]�–

that is
[

a1x31 + a2x21 x2 + a3x1x2x1 + a4x1x22 + a5x2x21 + a6x2x1x2 + a7x22 x1 + a8x32
b1x31 + b2x21 x2 + b3x1x2x1 + b4x1x22 + b5x2x21 + b6x2x1x2 + b7x22 x1 + b8x32

]

.

Now, we define

ã2 = (a2+a3+a5)
3 , ã4 = (a4+a6+a7)

3
˜b2 = (b2+b3+b5)

3
˜b4 = (b4+b6+b7)

3

Then, we can also write H(1)(x ⊗ x ⊗ x) as:

[

a1x31 + ã2x21 x2 + ã2x1x2x1 + ã4x1x22 + ã2x2x21 + ã4x2x1x2 + ã4x22 x1 + a8x32
b1x31 +˜b2x21 x2 +˜b2x1x2x1 +˜b4x1x22 +˜b4x2x21 +˜b4x2x1x2 +˜b4x22 x1 + b8x32

]

.

Consequently, if we define a tensor ˜H such that its mode-1 matricization is given
as

˜H(1) =
[

a1 ã2 ã2 ã4 ã2 ã4 ã4 a8
b1 ˜b2 ˜b2 ˜b4 ˜b2 ˜b4 ˜b4 b8

]

, (12)
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then ˜H(1)(x ⊗ x ⊗ x) = H(1)(x ⊗ x ⊗ x). Moreover, it can also be observed that
˜H(1) (u ⊗ v ⊗ w) = ˜H(1) (v ⊗ u ⊗ w) = · · · = ˜H(1) (w ⊗ v ⊗ u). Furthermore, if
one aims at obtaining ˜H(1) from Lemma 2.1, then we can write, e.g., its 2nd column
as

˜H(1)(:, 2) = H(1)

(

1

3
((e2 ⊗ e1 ⊗ e1) + (e1 ⊗ e2 ⊗ e1) + (e1 ⊗ e1 ⊗ e2))

)

= 1

3

[

a2 + a3 + a5
b2 + b3 + b5

]

.

To sum up, according to Lemma 2.1, a tensor H can be symmetrized (denote the
symmetrized tensor by ˜H) without changing the quantity H(1)(x ⊗ · · · ⊗ x) and the
following commutation rule is also fulfilled:

˜H(1)(v1 ⊗ · · · ⊗ vn) = ˜H(1)(̃v1 ⊗ · · · ⊗ ṽn), (13)

for every permutation (̃v1, . . . , ṽn) of the set {v1, . . . , vn}. This extends the discussion
in [9] for 3rd order tensors to the general case. Therefore, in the rest of the paper,
without loss of generality, we assume that all tensors associated with Hξ and Nη are
symmetric.

3 Volterra series and interpolation-basedMOR

This section presents the Volterra series representation of nonlinear structured sys-
tems (3). For this, we extend the discussion on non-structured polynomial systems in
[12] to the case of structured polynomial systems. We aim at identifying the kernels
related to the system (3) that allow us to define generalized transfer functions. As a
consequence, we intend to construct a ROMsuch that its generalized transfer functions
interpolate these of the original system at pre-defined interpolation points. For sim-
plicity, in this section, we assume the system to be single-input single-output (SISO),
i.e., m = p = 1. We will also provide an extension to the multi–input multi–output
case (MIMO).

3.1 Volterra series representation

First, let� be the fundamental solution associatedwith the linear operatorL.We detail
the meaning of the fundamental solution in Appendix B. Consequently, the solution
of an equation of the form:

(Lx)(t) = g(t) (14)

can be given as the convolution (using the fact that x(0) = 0 by assumption)

x(t) =
∫ t

0
�(σ)g(t − σ)dσ. (15)
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Now let us apply the convolution form (15) to the structured dynamical systems
with polynomial nonlinearity in equation (3a), i.e., we choose g(t) as

g(t) =
d
∑

ξ=2

Hξx ξ (t) +
d−1
∑

η=1

Nη

(

u(t) ⊗ x η (t)
)+ Bu(t).

As a consequence from the linearity of the convolution operator, we obtain

x(t) =
∫ t

0
�(σ1)Bu(tσ1)dσ1 +

d
∑

ξ=2

∫ t

0
�(σ1)Hξx ξ (tσ1)dσ1

+
d−1
∑

η=1

∫ t

0
�(σ1)Nη x η (tσ1) u(tσ1)dσ1, (16)

where tσ1 := t − σ1. Moreover, we can determine the expression for x(tσ1) using the
above equation – that is,

x(tσ1) =
∫ tσ1

0
�(σ2)Bu(tσ1−σ2)dσ2 +

d
∑

ξ=2

∫ tσ1

0
�(σ2)Hξx ξ (tσ1−σ2)dσ2

+
d−1
∑

η=1

∫ tσ1

0
�(σ2)Nη x η (tσ1−σ2) u(tσ1−σ2)dσ2. (17)

We utilize the expression for x(tσ1) in (16), multiplied by the matrix C. Hence, we
obtain

y(t) =
∫ t

0
C�(σ1)Bu(tσ1)dσ1

+
d
∑

ξ=2

∫ t

0

∫ tσ1

0
· · ·
∫ tσ1

0
︸ ︷︷ ︸

ξ−times

C�(σ1)Hξ

(

�(σ2)B ⊗ · · · ⊗ �(σξ+1)B
)

× (

u(tσ1 − σ2) · · · u(tσ1 − σξ+1)
)

dσ1dσ2 · · · dσξ+1

+
d−1
∑

η=1

∫ t

0

∫ tσ1

0
· · ·
∫ tσ1

0
︸ ︷︷ ︸

η−times

C�(σ1)Nη

(

�(σ2)B ⊗ · · · ⊗ �(ση+1)B
)

× (

u(tσ1)u(tσ1 − σ2) · · · u(tσ1 − ση+1)
)

dσ1dσ2 · · · dση+1 + · · · ,

with the assumption that the above series convergences. As a result, we have an analyt-
ical representation of the output y(t) as an infinite sum of multivariable convolutions.
But in the above expression for y(t), we only note down the leading few kernels of
the Volterra series for the system (3). In this paper, we focus only on those:

fL(σ1) := C�(σ1)B, (19a)
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f (ξ)
H (σ1, . . . , σξ+1) := C�(σ1)Hξ

(

�(σ2)B ⊗ · · · ⊗ �(σξ+1)B
)

, (19b)

f (η)
N (σ1, . . . , ση+1) := C�(σ1)Nη

(

�(σ2)B ⊗ · · · ⊗ �(ση+1)B
)

, (19c)

with ξ ∈ {2, . . . , d} and η ∈ {1, . . . , d − 1}. Furthermore, by taking the multivariate
Laplace transform (see, e.g., [38]), we get the frequency-domain representations of
the kernels as follows:

FL(s1) := CK−1(s1)B, (20a)

F(ξ)
H (s1, . . . , sξ+1) := CK−1(sξ+1)Hξ

(

K−1(sξ )B ⊗ · · · ⊗ K−1(s1)B
)

, (20b)

F(η)
N (s1, . . . , sη+1) := CK−1(sη+1)Nη

(

K−1(sη)B ⊗ · · · ⊗ K−1(s1)B
)

, (20c)

for ξ ∈ {2, . . . , d} and η ∈ {1, . . . , d − 1}, where K−1(s) is the Laplace transform of
the fundamental solution �. We have listed in Table 1 some examples of the structure
ofK(s) for certain types of structured systems. In this paper, we refer to the functions
in (20) as themultivariate transfer functions associated with the polynomial structured
system (3). It is worth mentioning that one could have derived more Volterra kernels
than those presented in (19) by following the same approach presented in this paper.
However, for the brevity of this work, we decided not to include this here. Additionally,
in practice, the leading kernels in (19) are those used inmodel reduction schemes since
they typically contain the most dominant information for weakly nonlinear systems.

3.2 Interpolation-basedMOR

In this subsection,wepresent the construction of projectionmatricesV andW, yielding
ROMs (6) such that the generalized transfer functions of the original model and ROM
match at pre-defined interpolation points. The results presented here extend those
presented in [12] from polynomial systems with K(s) = sE−A and those derived in
[40] from quadratic-bilinear structured systems to the class of structured polynomial
systems.

Theorem 3.1 Let a SISO polynomial structured system be given as in (3). Assume σi
and μi , i ∈ {1, . . . , r̃}, to be interpolation points such that K(s) is invertible for all
s = {σi , μi }, i ∈ {1, . . . , r̃}. Moreover, we define the projection matrices V andW as
follows:

VL = range
(

K−1(σ1)B, . . . ,K−1(σ̃r )B
)

,

VN =
d−1
⋃

η=1

r̃
⋃

i=1

range
(

K−1(σi )Nη

(

K−1(σi )B ⊗ · · · ⊗ K−1(σi )B
))

,

VH =
d
⋃

ξ=2

r̃
⋃

i=1

range
(

K−1(σi )Hξ

(

K−1(σi )B ⊗ · · · ⊗ K−1(σi )B
))

,

WL = range
(

K−�(μ1)C�, . . . ,K−�(μr̃ )C�) ,
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WN =
d−1
⋃

η=1

r̃
⋃

i=1

range
(

K−�(σi )
(

Nη

)

(2)

(

K−1(σi )B ⊗ · · · ⊗ K−1(σi )B ⊗ K−�(μi )C�)) ,

WH =
d
⋃

ξ=2

r̃
⋃

i=1

range
(

K−�(σi )
(

Hξ

)

(2)

(

K−1(σi )B ⊗ · · · ⊗ K−�(μi )C�) ),

range(V) = VL + VN + VH,

range(W) = WL + WN + WH,

where
(

Hξ

)

(2) ∈ R
n×nξ

and
(

Nη

)

(2) ∈ R
n×m·nξ

are, respectively, the mode-2

matricizations of the (ξ+1)-way symmetric tensor Hξ ∈ R
n×···×n and (η+2)-way

symmetric tensorN η ∈ R
n×···×n whosemode-1matricizations areHξ andNη, respec-

tively. Assume V and W are of full column rank and (FL,FN,FH) and (̂FL,̂FN,̂FH)

are the multivariate transfer functions of the original model and ROM, respectively.
If the ROM is constructed by Petrov-Galerkin projections as in (7) using the matrices
V and W, then the ROM satisfies the following interpolation conditions:

FL(σi ) =̂FL(σi ), (22a)

FL(μi ) =̂FL(μi ), (22b)

F(η)
N (σi , . . . , σi ) =̂F(η)

N (σi , . . . , σi ), (22c)

F(η)
N (σi , . . . , σi , μi ) =̂F(η)

N (σi , . . . , σi , μi ), (22d)

F(ξ)
H (σi , . . . , σi ) =̂F(ξ)

H (σi , . . . , σi ), (22e)

F(ξ)
H (σi , . . . , σi , μi ) =̂F(ξ)

H (σi , . . . , σi , μi ), (22f)

provided the reduced matrix ̂K(s) := W�K(s)V is non-singular for s = {σi , μi },
i ∈ {1, . . . , r̃}.
Proof The theorem can be proven along the same lines as done in [12], where a
special case with K(s) = sE − A is considered. However, we here provide the idea
by providing the proof of the relation (22c) only.

Firstly notice that, from (7), we have ̂K(s) = W�K(s)V. The interpolation con-
ditions in (22a) and (22b) follow directly from the structured linear case, see [6].
Additionally, one can easily prove the following relations:

V̂K−1(σi )̂B = K−1(σi )B, σi ∈ {σ1, . . . , σ̃r }, (23a)

̂ĈK−1(μi )W� = CK−1(μi ), μi ∈ {μ1, . . . , μr̃ }. (23b)

Next, let us prove the interpolation condition in (22c). We begin with

V̂K−1(σi )̂Nη

(

̂K−1(σi )̂B ⊗ · · · ⊗ ̂K−1(σi )̂B
)

= V̂K−1(σi )W�NηV η

(

̂K−1(σi )̂B ⊗ · · · ⊗ ̂K−1(σi )̂B
)

= V̂K−1(σi )W�Nη

(

V̂K−1(σi )̂B ⊗ · · · ⊗ V̂K−1(σi )̂B
)
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= V̂K−1(σi )W�Nη

(

K−1(σi )B ⊗ · · · ⊗ K−1(σi )B
)

(using 23a)

= V̂K−1(σi )W�K(σi )K−1(σi )Nη

(

K−1(σi )B ⊗ · · · ⊗ K−1(σi )B
)

︸ ︷︷ ︸

∈rangeV(∴ =:Vz)
= V̂K−1(σi )W�K(σi )Vz,

= V̂K−1(σi )̂K(σi )z = Vz, (24a)

where z is a vector such thatVz = K−1(σi )B⊗· · ·⊗K−1(σi )B.Hence, pre-multiplying
withC yields the interpolation condition (22c). The proof of the interpolation condition
(22e) follows in a similar way. Moreover, the other interpolation conditions can be
proven similarly. 	


Theorem 3.1 allows to construct a ROM satisfying interpolation conditions of the
multivariate system transfer functions (20). Additionally, the result, stated in the fol-
lowing remark, also holds for interpolation conditions involving different σi .

Remark 3.1 Other combinations of σi and μi are possible in the interpolation condi-
tions if the subspaces are defined accordingly. As an example, under the assumptions
of Theorem 3.1 and following the steps of the proof of Theorem 3.1, one can show
the following result. Let

VL = range
(

K−1(σ1)B, . . . ,K−1(σ̃r )B
)

,

˜VN = range
(

K−1(ση+1)Nη

(

K−1(ση)B ⊗ · · · ⊗ K−1(σ1)B
))

,

˜VH = range
(

K−1(ση+1)Hξ

(

K−1(ση)B ⊗ · · · ⊗ K−1(σ1)B
))

, and

range(V) = VL + ˜VN + ˜VH,

and letW be such that ̂K(s) := W�K(s)V is non-singular for s = {σ1, . . . , σ̃r }. Then
the ROM obtained by Petrov-Galerkin projection using the matricesV andW satisfies
the following interpolation conditions in addition to (22a):

F(η)
N (σ1, . . . , ση+1) =̂F(η)

N (σ1, . . . , ση+1), (25)

F(ξ)
H (σ1, . . . , ση+1) =̂F(ξ)

H (σ1, . . . , ση+1). (26)

Furthermore, we can also choose an appropriatematrixW as shown in Theorem3.1,
yielding a ROM that would satisfy an increased number of interpolation conditions,
but for the brevity of the paper, we avoid including these results in detail.

In what follows, we show that if the right and left interpolation points are equal,
i.e., σi = μi , i ∈ {1, . . . , r̃}, then Hermite interpolation conditions are also satisfied.
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Theorem 3.2 Under the hypothesis of Theorem 3.1, assume that σi = μi , for i ∈
{1, . . . , r̃}. Then,

∂

∂s1
FL(σi ) = ∂

∂s1
̂FL(σi ), (27a)

∂

∂s j
F(η)
N (σi , . . . , σi ) = ∂

∂s j
̂F(η)
N (σi , . . . , σi ), for j ∈ {1, . . . , η + 1}, (27b)

∂

∂sk
F(ξ)
H (σi , . . . , σi ) = ∂

∂sk
̂F(ξ)
H (σi , . . . , σi ), for k ∈ {1, . . . , ξ + 1}. (27c)

Proof First, note that the result (27a) is well-known in the literature, see, e.g., [6, Thm.
1]. Thus, we focus here on proving the interpolation condition (27b). Observe that

∂

∂s
K−1(s) = −K−1(s)

(

∂

∂s
K(s)

)

K−1(s).

Hence,

∂

∂s1
̂F(η)
N (σi , . . . , σi )

= ̂ĈK−1(σi )̂Nη

(

̂K−1(σi )̂B ⊗ · · · ⊗ ∂

∂s1
̂K−1(σi )̂B

)

= −̂ĈK−1(σi )̂Nη

(

̂K−1(σi )̂B ⊗ · · · ⊗ ̂K−1(σi )

(

∂

∂s1
̂K(σi )

)

̂K−1(σi )̂B
)

(using (9))

= −̂B�
̂K−�(σi )

(

∂

∂s1
̂K(σi )

)�
̂K−�(σi )

(

̂Nη

)

(2)

(

̂K−1(σi )̂B ⊗ · · · ⊗ ̂K−T (σi )̂C�)

= −̂B�
̂K−�(σi )

(

∂

∂s1
̂K(σi )

)�
̂K−�(σi )V� (Nη

)

(2) (V ⊗ · · · ⊗ V ⊗ W)

×
(

̂K−1(σi )̂B ⊗ · · · ⊗ ̂K−�(σi )̂C�)

= −̂B�
̂K−�(σi )

(

∂

∂s1
̂K(σi )

)�
̂K−�(σi )V� (Nη

)

(2)

(

K−1(σi )B ⊗ · · · ⊗ K−�(σi )C�)

= −̂B�
̂K−�(σi )

(

∂

∂s1
̂K(σi )

)�
̂K−�(σi )V�K(σi )

�

× K(σi )
−� (Nη

)

(2)

(

K−1(σi )B ⊗ · · · ⊗ K−�(σi )C�)

︸ ︷︷ ︸

∈rangeW(∴ =:Wz)

= −̂B�
̂K−�(σi )

(

∂

∂s1
̂K(σi )

)�
̂K−�(σi )VK(σi )

�Wz

= −̂B�
̂K−�(σi )

(

∂

∂s1
̂K(σi )

)�
z

= −̂B�
̂K−�(σi )V�

(

∂

∂s1
K(σi )

)�
Wz
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= −B�K−�(σi )

(

∂

∂s1
K(σi )

)�
Wz

= −B�K−�(σi )

(

∂

∂s1
K(σi )

)�
K(σi )

−� (Nη

)

(2)

(

K−1(σi )B ⊗ · · · ⊗ K−�(σi )C�)

= CK−1(σi )Nη

(

K−1(σi )B ⊗ · · · ⊗ ∂

∂s1
K−1(σi )B

)

= ∂

∂s1
F(η)
N (σi , . . . , σi ).

Furthermore, due to the symmetric tensors and Lemma 2.1, we have

∂

∂s1
̂F(η)
N (σi , . . . , σi ) = ∂

∂s j
̂F(η)
N (σi , . . . , σi ), j ∈ {2, . . . , η}.

Moreover, along the same lines as above, we can also show that

d

dsη+1
F(η)
N (σi , . . . , σi ) = d

dsη+1

̂F(η)
N (σi , . . . , σi ). (29)

Hence, the relations (27b) are proven, and similarly, the relations in (27c) can also
be proven.

From Theorems 3.1 and 3.2, we are able to determine Petrov-Galerkin matrices V
and W, allowing to construct a desired interpolatory ROM. These results are derived
up to now for the SISO case. The results generalize [17, Thms. 5 and 6]. Moreover,
they can be easily generalized for the MIMO case using the idea of the so-called
tangential interpolation. We discuss the MIMO result in Appendix C.

4 Extension to parametric and special cases

In this section, we discuss extensions of the result presented in the previous section to
parametric and some special cases. We begin with the parametric case.

4.1 Parametric case

Here, we consider parametric systems of the form:

(L(p)x) (t,p) = P(x(t,p),u(t),p) + B(p)u(t), (30a)

y(t,p) = C(p)x(t,p), (30b)

where p ∈ � ⊂ R
q contains the system parameters; L(p) is a parameterized linear

operator; B(p) ∈ R
n×m,C(p) ∈ R

q×n are parameter-dependent matrices, and the
nonlinear term P(x(t,p),u(t),p) takes the form:

P(x(t,p),u(t),p) =
d
∑

ξ=2

Hξ (p)x ξ (t,p) +
d−1
∑

η=1

Nη(p)
(

u(t) ⊗ x η (t,p)
)

. (31)
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The parametric case results can be obtained by following the same lines as for the
non-parametric case and discussion in [11] for non-structured systems; thus, here we
only briefly sketch the ideas. Here again, for simplicity, we present the results for
the SISO case. In the MIMO case, we can use the idea of tangential interpolation as
discussed in Appendix C.

Similar to the non-parametric case, we can derive generalized transfer functions
for the parametric system, which are given as follows:

FL(s1,p) := C(p)K−1(s1,p)B(p), (32a)

F(ξ)
H (s1, . . . , sξ+1,p) :=

C(p)K−1(sξ+1,p)Hξ (p)
(

K−1(sξ ,p)B(p) ⊗ · · · ⊗ K−1(s1,p)B(p)
)

, (32b)

F(η)
N (s1, . . . , sη+1,p) :=

C(p)K−1(sη+1,p)Nη(p)
(

K−1(sη,p)B(p) ⊗ · · · ⊗ K−1(s1,p)B(p)
)

, (32c)

where K−1(s,p) is the Laplace transform of the fundamental solution of L(p). If a
ROM is computed using the projection matricesV andW, assumingV andW are full
rank matrices, the reduced operator and matrices are given as follows:

̂K(s,p) = W�
̂K(s,p)V, ̂Nη(p) = W�Nη(p)V η , η ∈ {1, . . . , d − 1},

̂B(p) = W�B(p), ̂C(p) = C(p)V, ̂Hξ (p) = W�Hξ (p)V ξ , ξ ∈ {2, . . . , d},
(33)

and the inverse Laplace transform of ̂K−1(s,p) is the fundamental solution related
to the reduced operator ̂L(p). In the following, an extension of Theorem 3.1 to
the parametric case is presented that allows to construct an interpolatory ROM.
Interpolation-based MOR for structured parametric bilinear systems has been inves-
tigated in [16], which we generalize to more general nonlinear systems.

Theorem 4.1 Consider the original polynomial parametric system (30), together with
its multivariate transfer functions given in (32). Let σi ,pi and μi , i ∈ {1, . . . , r̃}, be
interpolation points such that K(s,p) is invertible for all s ∈ {σi , μi }, i ∈ {1, . . . , r̃},
p ∈ {p1, . . . , p̃r }. Moreover, let V and W be defined as follows:

VL =
r̃
⋃

i=1

range
(

K−1(σi ,pi )B(pi )
)

,

VN =
d−1
⋃

η=1

r̃
⋃

i=1

range
(

K−1(σi ,pi )Nη(pi )
(

K−1(σi ,pi )B(pi ) ⊗ · · · ⊗ K−1(σi ,pi )B(pi )
))

,

VH =
d
⋃

ξ=2

r̃
⋃

i=1

range
(

K−1(σi ,pi )Hξ (pi )
(

K−1(σi ,pi )B(pi ) ⊗ · · · ⊗ K−1(σi ,pi )B(pi )
))

,

WL =
r̃
⋃

i=1

range
(

K−�(μi ,pi )C(pi )�
)
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WN =
d−1
⋃

η=1

r̃
⋃

i=1

range
(

K−1(σi ,pi )
(

Nη(pi )
)

(2)

(

K−1(σi ,pi )B(pi ) ⊗ · · ·

⊗ K−1(σi ,pi )B(pi ) ⊗ K−�(μi ,pi )C(pi )�
)

,

WH =
d
⋃

ξ=2

r̃
⋃

i=1

range
(

K−1(σi ,pi )
(

Hξ (pi )
)

(2)

(

K−1(σi ,pi )B(pi ) ⊗ · · ·

⊗ K−1(σi ,pi )B(pi ) ⊗ K−�(μi ,pi )C(pi )�
)

,

range(V) = VL + VN + VH,

range(W) = WL + WN + WH,

where
(

Hξ (p)
)

(2) ∈ R
n×nξ

and
(

Nη(p)
)

(2) ∈ R
n×m·nξ

are, respectively, the mode-2

matricizations of the (ξ+1)-way symmetric tensorHξ (p) ∈ R
n×···×n and (η+2)-way

symmetric tensor N η(p) ∈ R
n×···×n whose mode-1 matricizations are Hξ (p) and

Nη(p), respectively. Then, the following interpolation conditions are fulfilled:

FL(σi ,pi ) =̂FL(σi ,pi ),

FL(μi ,pi ) =̂FL(μi ,pi ),

F(η)
N (σi , . . . , σi ,pi ) =̂F(η)

N (σi , . . . , σi ,pi ),

F(η)
N (σi , . . . , σi , μi ,pi ) =̂F(η)

N (σi , . . . , σi , μi ,pi )

F(ξ)
H (σi , . . . , σi ,pi ) =̂F(ξ)

H (σi , . . . , σi ,pi ),

F(ξ)
H (σi , . . . , σi , μi ,pi ) =̂F(ξ)

H (σi , . . . , σi , μi ,pi ),

provided the reduced matrix W�K(s,p)V is non-singular for s ∈ {σi , μi } and p ∈
{pi }, i ∈ {1, . . . , r̃}.
Proof The proof is analogous to the proof of Theorem 3.1 and extends the proof of
[16, Thm. 2]. Therefore, for the brevity of the paper, we skip the proof.

Note that we have assumed a general parametric structure for the system matrices,
e.g., L(p) (or K(s,p)),Hξ (p). Then, the corresponding ROM can be computed as
shown in (33), but it may be required to compute a ROM for each parameter setting.
However, if we assume an affine parametric structure of the systemmatrices as follows:

K(s,p) =
tA
∑

i=1

κi (s,p)A(i), B(p) =
tb
∑

i=1

α
(i)
b (p)B(i), C(p) =

tc
∑

i=1

α(i)
c (p)C(i),

Nη(p) =
tnη
∑

i=1

α(i)
nη

(p)N(i)
η , Hξ (p) =

thξ
∑

i=1

α
(i)
hξ

(p)H(i)
ξ ,

(36)
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then the resulting ROM with the same structure can be determined using

K(s,p) =
tA
∑

i=1

κi (s,p)̂A(i), ̂B(p) =
tb
∑

i=1

α
(i)
b (p)̂B(i), ̂C(p) =

tc
∑

i=1

α(i)
c (p)̂C(i),

̂Nη(p) =
tnη
∑

i=1

α(i)
nη

(p)̂N(i)
η , ̂Hξ (p) =

thξ
∑

i=1

α
(i)
hξ

(p)̂H(i)
ξ ,

(37)
where the original matrices are reduced by the standard projections

̂A(i) = W�A(i)V, ̂B(i) = W�B(i), ̂C(1) = C(i)V,

̂N(i)
η = W�N(i)

η V η , ̂H(i)
ξ = W�H(i)

ξ V ξ ,
(38)

for η ∈ {1, . . . , d − 1} and ξ ∈ {2, . . . , d}. Consequently, we can pre-compute these
reduced matrices. Hence, the computation of a ROM for each parameter becomes
numerically cheaper.

Remark 4.1 As in Theorem 3.2, if σi = μi , Hermite interpolation conditions with
respect to the parameter are satisfied, i.e.,

∇p FL(σi ,pi ) = ∇p̂FL(σi ,pi ),

∇p F
(η)
N (σi , . . . , σi ,pi ) = ∇p̂F

(η)
N (σi , . . . , σi ,pi ),

∇p F
(ξ)
H (σi , . . . , σi ,pi ) = ∇p̂F

(ξ)
H (σi , . . . , σi ,pi ).

Thus, the sensitivity of themultivariate transfer functions with respect to the param-
eter is preserved,whichmay be useful in, e.g., parameter optimization. Since this result
can be proven in a similar way as the one in Theorem 3.2 and [16, Thm. 3], we decide
to omit it for the brevity of the paper.

4.2 Structured input and output matrices

One may also consider the case where the input and output matrices B and C depend
on the frequency s. This happens to be the case if the system is subject to input or/and
output delays, e.g, B(s) = B1 +B2e−τ s . In such scenarios, we can employ the results
of Theorem 3.1 by replacingB byB(σi ) andC by C(μi ) everywhere, e.g., the matrices
VL and WL in Theorem 3.1 are given by

VL = range
(

K−1(σ1)B(σ1), . . . ,K−1(σ̃r )B(σ̃r )
)

,

WL = range
(

K−�(μ1)C�(μ1), . . . ,K−�(μr̃ )C�(μr̃ )
)

.

The interpolation results presented in this paper also hold in this context. Since their
proof is a straightforward extension of the results presented up-to-now,we refrain from
providing details.
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5 Determining lower-order approximate interpolatorymodels

In the previous sections, we have stated results for constructing interpolatory ROMs by
a Petrov-Galerkin projection. In the proposed methodology, the quality of the ROMs
highly depends on the choice of the interpolation points. It is an open question of how
to select these interpolation points optimally, and this remains an important problem
to be investigated in the future.

However, inspired by the discussions in [3, 12, 27, 31], we propose a scheme
based on a oversampling as follows. In this scheme, we first compute the projection
matricesV andW by considering several interpolation points in a given domain. After
that, we aim to determine the dominant subspaces that not only allow us to determine
lower-order models but also approximately interpolate all the considered interpolation
points. To that end, let us assume to have a structured polynomial system as in (3)
and the projection matrices V and W as defined in Theorem 3.1. For this section, we
assume that V and W contain the columns of the Krylov basis exactly for the given
interpolation points. Furthermore, let us construct the matrices

˜K(s) = W�K(s)V, ˜B = W�B, ˜C = CV,

˜Hξ = W�HξV ξ , ˜Nη = W�NηV η .
(40)

Next, we can extend the observation from [3, 12, 27]. This means that if the pencil
˜K(s) is regular, then the realization (40) is a realization interpolating the original
model.

However, when we consider many interpolation points, then often the pencil ˜K(s)
becomes singular. In this case, there exists a lower-order realization that can interpolate
at all the given interpolation points. To obtain such a realization, we follow the idea
proposed in [3, 12, 14, 27]. For this, we first consider the form of K(s) to be

K(s) = α1(s)A(1) + · · · + αl(s)A(l), (41)

and assume that

rank
[

W�A(1)V, . . . ,W�A(l)V
] = rank

⎡

⎢

⎣

W�A(1)V
...

W�A(l)V

⎤

⎥

⎦ = r̂ . (42)

Then, according to [3, 12, 14, 27], there exists a structured system of order r̂ ≤ r ,
realizing the model whose generalized transfer functions also interpolate at the pre-
defined interpolation points. Consequently, using (42), we can estimate the complexity
of the underlying dynamical system. Additionally, an SVD procedure based on the
matrices in (42) allows us to construct a ROM using appropriate subspaces. More-
over, if small singular values are neglected while estimating the order r̂ in (42), the
resulting subspaces will lead to a reduced-order model satisfying approximately the
interpolation conditions for all selected interpolation points.
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Algorithm 1 Construction of ROMs for Structured Polynomial Systems.
1: Input: The polynomial structured system matrices as in (36), and order of a ROM r .
2: Choose interpolation points to construct V andW.
3: Compute V andW using the interpolation points as in Theorem 3.1.
4: Determine SVDs

[

W�A(1)V, . . . ,W�A(l)V
] = W1
l˜V

� and

⎡

⎢

⎢

⎣

W�A(1)V
.
.
.

W�A(l)V

⎤

⎥

⎥

⎦

= ˜W
rV�
1 (43)

5: Compute projection matrices: Ve = VV1(:, 1:r) and We = WW1(:, 1:r).
6: Compute reduced matrices:

̂K(s) = W�
e K(s)Ve, ̂B = W�

e B, ̂C = CVe,

̂Hξ = W�
e HξV

ξ
e , ̂Nη = W�

e NηV
η

e ,

7: Output: The reduced-order matrices: ̂K(s),̂B, ̂C, ̂Hξ and ̂Nη .

To obtain the corresponding subspaces and the ROM, we propose Algorithm 1,
enabling construction of ROMs for polynomial structured systems (3). This can be
seen as an extension of [12, Algo. 3] to structured polynomial systems. The procedure
consists in selecting interpolation points σi , i ∈ {1, . . . , r̃}, and constructing the
matrices V and W as in Theorem 3.1 (steps 2 and 3) containing the original Krylov
basis. The interpolation points ideally should be selected in the frequency range of
interest, which often depends on the application. In our numerical experiments, they
are typically selected using a logarithmically spaced grid in the suitable frequency
range. Then, in step 4, we compute the SVDs of the matrices in (43). As discussed
earlier, the numerical rank of these matrices indicates the order of a good ROM, and
the left and right singular vectors allow us to determine dominant subspaces. Hence,
in step 5, the projection matrices Ve and We are constructed. Finally, in step 6, the
ROM is computed in the framework of Petrov-Galerkin projection.

Algorithm 1 can easily be adapted to parametric and MIMO cases by computing
the projection matrices V andW appropriately in step 3 of the algorithm. In this case,
we need to specify parameters within the range of interest and tangential directions
along with the interpolation points for the frequency variable.

Remark 5.1 In many applications, such as dynamical systems with symmetric matri-
ces, or systems with a dissipative realization, it is desirable to apply Galerkin
projections, i.e., to enforce W = V (see, e.g., [22]). As a result, the reduced systems
would potentially preserve system properties, e.g., dissipativity, symmetry. Although
Algorithm 1 is designed for Petrov-Galerkin projection, one can still adapt it to allow
onlyGalerkin projection. Indeed, in step 3 one just needs to computeV and setW = V.
Hence, in step 5, We = Ve.

Remark 5.2 It is worth mentioning that one does not need to use any hyper reduction
method for the fast computation of the nonlinear terms. Indeed, as shown in (7), the
nonlinear terms are already directly computed using the Petrov-Galerkin projection.
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Additionally, at a first glance, the computation of the reduced matrix̂Hξ = W�HξV ξ

seems to be numerically expensive as one needs to evaluateV ξ . However, the authors
in [11] proposed a procedure based on Hadamard product form of the term Hξ x ξ =
A1x ◦ · · · ◦Aηx . As a consequence, the computation of ̂Hξ can be performed without
the explicit computation of V ξ .

6 Numerical examples

In this section, we illustrate the efficiency of the proposed method by means of three
examples. We also compare with the recent interpolation method proposed in [16,
17] for two of the examples. To integrate nonlinear structured systems, we use an
explicit Euler scheme, and for non-structured systems, we use the function ode15s
in MATLAB®. The interpolation points are selected using a logarithmically spaced
grid in the suitable frequency range. For the random number generator, we have used
the seed ‘0’. All experiments were performed using MATLAB (2020b) running on a
Macbook Pro with 2,3 GHz 8-Core Intel® Core™i9 CPU, 16GB of RAM, and Mac
OS X v10.15.6.

6.1 Parametric Chafee-Infante equation

In our first example, we consider the one-dimensional parametric Chafee-Infante sys-
tem governed by the following partial differential equation

v̇(t) = vxx + v(p − v2), x ∈ (0, 1) × (0, T ), v(0, t) = u(t), t ∈ (0, T ),

vx (L, t) = 0, t ∈ (0, T ), v(x, 0) = 0, x ∈ (0, 1),

where the parameter is assumed to lie in the interval p ∈ [0.25, 2]. After a spatial
discretization using a finite-difference method for a uniform grid with k = 500 points,
one obtains a high-fidelity cubic parametric model of the form:

v̇(t) = A1v(t) + pAp + H3 (x(t) ⊗ x(t) ⊗ x(t)) + Bu(t),

y(t) = Cx(t).
(44)

The MOR problem for its non-parametric variant (for p = 1) has been considered
in [12], where the polynomial non-linearity in the ROMs is preserved. Also, authors
in, e.g., [9, 10, 13] have constructed ROMs of the model (44), but they do not preserve
the cubic structure. These methods rewrite the model into quadratic-bilinear form,
followed by employing MOR techniques for quadratic-bilinear systems.

Here, we aim at constructing a reduced cubic parametric system using Algorithm 1.
For this, we take 200 points in the frequency range

[

10−3, 103
]

and the equal number
of points for the parameter in the considered interval.

First, in Fig. 1, we plot the decay of the singular values based on the matrices
in (42) and we observe a very fast decay. Subsequently, we determine a reduced
parametric system of order r = 5. To compare the quality of the ROM, we simulate
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Fig. 1 Parametric Chafee-Infante equation: relative decay of singular values based on the Loewner pencil

for the same inputs u(1)(t) = 10(sin(π t) + 1) and u(2)(t) = 5(te−t ) and parameters
p = {0.25, 1, 2}. We plot the transient response and relative errors in Figs. 2 and 3,
illustrating that the reduced parametric system can capture the dynamics of the high-
fidelity model very well for different inputs and different parameters.

6.2 Mechanical system

In our second example, we consider a damped mass-spring system from [17]. The
dynamics of the system is governed by a second-order bilinear system of the form:

Mẍ(t) + Dẋ(t) + Kx(t) = N1x(t)u1(t) + N2x(t)u2(t) + Bu(t),

y(t) = Cx(t)x(t).

We consider the same setting as provided in [17, Sec. 4.2]. The order of the full
model is n = 1 000, and the model has two inputs and two outputs. Mechanical
systems can havemany structural properties such as passivity, and positive definiteness
of mass, damping, and stiffness matrices, see, e.g., the survey paper [7]. Therefore, it
is desired to preserve these properties in the ROM. This can be achieved if the ROM

Fig. 2 Parametric Chafee-Infante equation: a comparison of the original and ROM for the input u(1) =
10 (sin(π t) + 1) and for different parameter values
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Fig. 3 Parametric Chafee-Infante equation: a comparison of the original and ROM for the input u(2) =
5
(

e−t t
)

and for different parameter values

is determined via Galerkin (one-sided) projection instead of Petrov-Galerkin (two-
sided) one. Hence, in this example, we construct a ROM using Galerkin projection
via Algorithm 1 as discussed in Remark 5.1.

Next, to employ Algorithm 1, we consider 1 000 logarithmically distributed fre-
quency points on the imaginary axis in the range

[

10−3, 103
]

. Since the system is
MIMO, we also choose tangential directions which are taken randomly. We then
observe the singular values obtained from Algorithm 1 in Fig. 4, indicating a sharp
decay of the singular values. From the figure, we note that the singular values after 33
are at the level of machine precision.

We determine ROMs of order r = {10, 20, 30} (denoted by StrDsp_SO). We
compare the quality of the ROMs StrDsp_SO with the method proposed in [17].
The ROM in [17] (denoted by StrInt_SO) is computed based on interpolation. We
choose the same interpolation points as in [17], which yields 36 basis vectors. To
determine ROMs of order r = {10, 20, 30}, we take the same number of dominant
basis vectors as the order out of 36 basis vectors, and these dominant basis vectors are
determined based on the QR decomposition of the basis vectors.

Fig. 4 Mechanical example: The decay of singular values obtained from Algorithm 1
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Fig. 5 Mechanical example: A comparison of the transient responses the original andROMs of order r = 10

for the control input u(t) = 50 ·
[

sin(20t) + 1
sin(t)e−0.1t

]

Next, to assess the quality of both ROMs, we compare transient responses of them

with the full model using a control input u(t) = 50 ·
[

sin(20t) + 1
sin(t)e−0.1t

]

. This is shown

in Fig. 5. Moreover, Table 2 shows a comparison of the L2 and L∞-errors these three
different ROMs.We observe that our method constructs ROMs which are consistently
better both in L2 and L∞-norm for all orders.

Finally, we would like to remark on computational aspects. Although we could
obtain a better reduced-order model using StrDsp_SO (approximately two-order
of magnitude better for smaller orders), it comes with computational expenses.
The philosophy of StrDsp_SO relies on considering many interpolation points
and, after that, on compression to determine global dominant subspaces. On the
other hand, StrInt_SO considers carefully choosing a few interpolation points.
Consequently, StrDsp_SO becomes much more computationally expensive as
compared to StrDsp_SO; for this example, 1 000 interpolation points are consid-
ered for StrDsp_SO, where only 3 points interpolation points are considered for
StrInt_SO. In the future, we will investigate active-learning-based approaches to
sample a few points for StrDsp_SO so that only relevant interpolation points (e.g.,
from 1 000) are considered to determine the global dominant subspaces.

Table 2 Mechanical example: The L2 and L∞-errors of the outputs between the original model and ROMs

L2-error L∞-error

StrInt_SO StrDsp_SO StrInt_SO StrDsp_SO

r = 10 4.68 · 10−4 1.01 · 10−4 7.48 · 10−2 1.59 · 10−2

r = 20 1.06 · 10−5 6.31 · 10−6 1.63 · 10−3 7.65 · 10−4

r = 30 8.59 · 10−8 3.83 · 10−8 2.16 · 10−5 3.98 · 10−6
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6.3 Parametric bilinear time-delay system

In our last experiment, we consider an example from [16, 28] that models a time-
delayed heated rod using a one-dimensional parametric heat equation:

∂tv(x, t) = ∂2x v(x, t) − p sin(x)v(x, t) + p sin(x)v(x, t − 1) + u(t), (45)

with homogeneous Dirichlet boundary conditions and p ∈ [1, 10]. Spatial discretiza-
tion yields a parametric bilinear systems of the form:

ẋ(t) = A(p)x(t) + pAdx(t − 1) + Nx(t)u(t) + Bu(t),

y(t) = Cx(t),
(46)

where A(p) = A0 −pAd. We have employed 5 000 grid points to discretize the PDEs
(45), thus leading to the state-space model (46) of order n = 5 000. Additionally, this
model is single-input single-output. The example also completely fits in our set-up,
discussed in Section 2. In this case,

K(s,p) = sIn − (A0 − pAd) − pe−sAd, B(p) = B,

N(p) = N, H(p) = 0, and C(p) = C.

Next, we aim at constructing a ROM using Algorithm 1. In order to employ the
algorithm, we consider 1 000 logarithmically distributed frequency points in the range
[

10−2, 102
]

, and for the parameterp, we randomly take the parameter in the considered
parameter range. Consequently, we have tuples {σi ,pi }, i ∈ {1, . . . , 1 000}.

Next, we plot the decay of the singular values obtained from Algorithm 1 in Fig. 6,
indicating a rapid decay. Hence, we can expect a good quality ROM of small order.
Then, we determine ROMs of order r = {5, 10, 20} using Algorithm 1 (denoted by
(StrDsp_delay)). We compare the quality of the (StrDsp_delay) with a ROM
obtained using the interpolation-based methodology proposed in [16] (denoted by
StrInt_delay). We use the interpolation points as in [16], which yield 24 basis

Fig. 6 Delay parametric example: The decay of singular values obtained from Algorithm 1
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Fig. 7 Delay parametric example: A comparison of transient response for an input u(t) =
0.05 (cos(10t) + cos(5t))

vectors. We construct StrInt_delay ROMs of order r = {5, 10, 20} using the
dominant basis vectors of the 24 basis vectors, which is done by taking QR decompo-
sition of the basis vectors.

Next, we compare the time-domain simulation of both ROMs with the high-fidelity
model for a wide range of parameters.We use the same control input as in [16, 28]; that
is u(t) = 0.05 (cos(10t) + cos(5t)), and vary the parameter in the range of interest.
To perform time-domain simulation, we employ the explicit Euler method with time
stepping dt = 2·10−2. Tomeasure the quality of the ROMs, we consider the following
error function:

E(t,p) := ‖y(t;p) − ŷ(t;p)‖
max
t

max
p∈[1,10] ‖y(t;p)‖ . (47)

Table 3 Delay parametric
example: Error between the full
model and ROMs, namely
StrInt_delay and
StrDsp_delay of different
orders

StrInt_SO StrDsp_SO

r = 5 8.45 · 10−6 1.00 · 10−6

r = 10 1.87 · 10−8 3.25 · 10−9

r = 20 1.38 · 10−10 1.39 · 10−10
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Then, we plot the transient responses and errors (as defined in (47)) for different
parameters in Fig. 7. Furthermore, we compute the maximum error in the time and
parameter domain as follows:

Emax := max
p∈[1,10]

(

max
t∈[0,10] E(t,p)

)

,

which is reported in Table 3 (see the first columns of the table).
We notice that both ROMs perform equally good, but StrDsp_delay is con-

sistently better than StrInt_delay. In particular, the proposed methodology can
produce high-quality parametric ROMs of small orders as it determines the dominant
subspace jointly for parameter and frequency in the given domains.

7 Conclusions

In this paper, we have studied amodel order reduction problem for structured nonlinear
systems. To that aim, we have defined generalized transfer functions for structured
systems based on the associated Volterra series. We have then shown how to construct
a reduced-order model such that its generalized transfer functions interpolate those
of the original model at the pre-defined frequency points. Subsequently, we have
proposed an algorithm that allows determining the dominant subspaces to construct
minimal interpolatory reduced-order models.Moreover, we have discussed extensions
of those results to parametric nonlinear structured systems, aswell as special structured
systems such as input-delay systems. Finally, we have illustrated the performance of
the proposed methodology based on a couple of examples and compared it with the
existingmethodologies. In future work, wewill focus on choosing interpolation points
adaptively, which is essential to reduce computational efforts and to capture all the
important dynamics of the system. To achieve this goal, one may tailor the ideas
presented in [25].

A Proof of Lemma 2.1

Proof a). First note that

x N =
n
∑

i1=1

· · ·
n
∑

iN=1

(

xi1xi2 · · · xin
) (

ei1 ⊗ ei2 ⊗ · · · ⊗ ein
)

. (48)

Since xi1xi2 · · · xin = x j1x j2 · · · x jn , for every ( j1, . . . , jn) ∈ Si, we can write

x N =
n
∑

i1=1

· · ·
n
∑

iN=1

(

xi1xi2 · · · xin
)

⎛

⎜

⎜

⎝

1

αi

∑

( j1,..., jn)∈Si

(

e j1 ⊗ e j2 ⊗ · · · ⊗ e jn
)

⎞

⎟

⎟

⎠

.
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Next, we have

H(1)x N =
n
∑

i1=1

· · ·
n
∑

iN=1

(

xi1xi2 · · · xin
)

H(1)

⎛

⎜

⎜

⎝

1

αi

∑

( j1,..., jn)∈Si

(

e j1 ⊗ e j2 ⊗ · · · ⊗ e jn
)

⎞

⎟

⎟

⎠

=
n
∑

i1=1

· · ·
n
∑

iN=1

(

xi1xi2 · · · xin
)

(

˜H(1)

(

:, i1 +
N
∑

l=2

(il − 1)
(

nl−1
)

))

=
n
∑

i1=1

· · ·
n
∑

iN=1

(

xi1xi2 · · · xin
)

˜H(1)
(

ei1 ⊗ ei2 ⊗ · · · ⊗ ein
)

= ˜H(1)x N ,

which proves part (a).
b). We begin with

˜H(1)
(

q(1) ⊗ · · · ⊗ q(N)
)

=
n
∑

i1=1

· · ·
n
∑

iN=1

˜H(1)

(

:,
(

i1 +
N
∑

l=2

(il − 1)nl)

))

(

q(1)
i1

· · · q(N)
iN

)

=
n
∑

i1=1

· · ·
n
∑

iN=1

H(1)

⎛

⎜

⎜

⎝

∑

( j1,..., jn)∈Si

1

αi

(

e j1 ⊗ e j2 ⊗ · · · ⊗ e jn
)

⎞

⎟

⎟

⎠

(

q(1)
i1

· · · q(N)
iN

)

.

(49)

Since ( j1, . . . , jn) ∈ Si, the above equation is invariant to the interchange of the
indices ik . Therefore, the Kronecker product of the qi ’s can appear in any order
that would yield the same ˜H(1) (̃q1 ⊗ · · · ⊗ q̃N), where (̃q1, . . . , q̃N) belongs to
the set of all permutations of the set {q1, . . . ,qN}. This proves the result.

c). Assuming l j ∈ {1, . . . , n} for j ∈ {1, . . . ,N + 1}, we have
el2˜H(2)

(

elN+1 ⊗ elN ⊗ · · · ⊗ el3 ⊗ el1
)

using (9)

= el1˜H(1)
(

elN+1 ⊗ elN ⊗ · · · ⊗ el3 ⊗ el2
)

using (49)

= el1˜H(1)
(

elN+1 ⊗ elN ⊗ · · · ⊗ elm+1 ⊗ el2 ⊗ elm ⊗ elm−1 ⊗ el3
)

using (9)

= el2˜H(m)

(

elN+1 ⊗ elN ⊗ · · · ⊗ elm+1 ⊗ elm ⊗ elm−1 ⊗ el3 ⊗ el1
)

.

This shows that the entries in˜H(2) and˜H(m) (m ≥ 2) are equal, implying the result.
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B Fundamental solution using frequency domainmethods

The fundamental solution of a linear operator can be defined in different ways. In this
work, we follow the approaches that use the frequency domain representation of the
linear operator. We refer the reader to [8, 30] for more details.

Let us start by defining the unilateral Laplace transform. Given a function g(·), its
unilateral Laplace transform is given by

L (g(·)) = G(s) =
∫ ∞

0
e−stg(t)dt .

where G(·) corresponds to the frequency domain representation of g(·).
Now, let us consider a linear operator L such as shown in Table 1. By means of

the Laplace transform, we obtain the frequency domain representation of (Lx)(t) as
follows:

L ((Lx)(t)) = K(s)X(s), (50)

where X(s) corresponds to the Laplace transform of x(t) andK(s) corresponds to the
frequency domain representation of the operator L. Let us assume that the inverse of
the Laplace transform of K−1(s) exists and is given as

L −1(K−1(·)) := �(·).

Then, �(t) is the fundamental solution associated to the linear operator L. Indeed,
�(t) is the solution of the functional differential equation

(Lx) (t) = δ(t),

where δ(t) is the Dirac delta distribution and the initial conditions are all zero. More-
over, the inhomogeneous equation

(Lx) (t) = g(t),

with g(·) being a suitable function, has a solution in convolution form

x(t) =
∫ t

0
�(σ)g(t − σ)dσ.

C Tangential interpolation-basedMOR for MIMO systems

Here, we discuss a construction of an interpolating ROM for MIMO polynomial sys-
tems. Similar to the SISO case, the leading generalized transfer functions for a MIMO
polynomial system are given as follows:

FL(s1) = CK−1(s1)B, (51a)
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F(ξ)
H (s1, . . . , sξ+1) = CK−1(sξ+1)Hξ

(

K−1(sξ )B ⊗ · · · ⊗ K−1(s1)B
)

, (51b)

F(η)
N (s1, . . . , sη+1) = CK−1(sη+1)Nη

(

Im ⊗ K−1(sη)B ⊗ · · · ⊗ K−1(s1)B
)

. (51c)

Lemma C.1 Consider the original system as given in (3). Let σi ∈ C, i ∈ {1, . . . , r̃}, be
interpolation points such thatK(s) is invertible for all s ∈ {σ1, . . . , σ̃r }, and bi ∈ C

m

and ci ∈ C
q for i ∈ {1, . . . , r̃} be right and left tangential directions corresponding

to σi , respectively. Let V and W be defined as follows:

VL =
r̃
⋃

i=1

range
(K−1(σi )Bbi

)

,

VN =
d−1
⋃

η=1

r̃
⋃

i=1

range
(K−1(σi )Nη

(

Im ⊗ K−1(σi )Bbi ⊗ · · · ⊗ K−1(σi )Bbi
))

,

VH =
d
⋃

ξ=2

r̃
⋃

i=1

range
(K−1(σi )Hξ

(K−1(σi )Bbi ⊗ · · · ⊗ K−1(σi )Bbi
))

,

WL =
r̃
⋃

i=1

range
(

K−�(σi )C�ci
)

,

WN =
d−1
⋃

η=1

r̃
⋃

i=1

range
(

K−1(σi )
(

Nη

)

(2)

(

Im ⊗ K−1(σi )Bbi ⊗ · · · ⊗ K−1(σi )Bbi ⊗ K−�(σi )C�ci
))

,

WH =
d
⋃

ξ=2

r̃
⋃

i=1

range
(

K−1(σi )
(

Hξ

)

(2)

(

K−1(σi )Bbi ⊗ · · · ⊗ K−1(σi )Bbi ⊗ K−�(μi )C�ci
))

,

range(V) = VL + VN + VH,

range(W) = WL + WN + WH.

If a ROM is computed as shown in (7) using the projection matrices V andW, where
we assumeV andW to be of full rank, then the following interpolation conditions are
fulfilled:

FL(σi )bi =̂FL(σi )bi , (53a)

c�
i FL(σi ) = c�

i
̂FL(σi ), (53b)

d

ds1
c�
i FL(σi )bi = d

ds1
c�
i
̂FL(σi )bi , (53c)

F(η)
N (σi , . . . , σi )

(

Im ⊗ b
η

i

)

=̂F(η)
N (σi , . . . , σi )

(

Im ⊗ b
η

i

)

, (53d)

c�
i F

(η)
N (σi , . . . , σi )

(

I 2
m ⊗ b

η−1

i

)

= c�
i
̂F(η)
N (σi , . . . , σi )

(

I 2
m ⊗ b

η−1

i

)

(53e)

∂

∂s j
c�
i F

(η)
N (σi , . . . , σi )

(

Im ⊗ b
η

i

)

= ∂

∂s j
c�
i
̂F(η)
N (σi , . . . , σi )

(

Im ⊗ b
η

i

)

, (53f)

F(ξ)
H (σi , . . . , σi )b

ξ

i =̂F(ξ)
H (σi , . . . , σi )b

ξ

i , (53g)
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c�
i F

(ξ)
H (σi , . . . , σi )

(

Im ⊗ b
ξ−1

i

)

= c�
i
̂F(ξ)
H (σi , . . . , σi )

(

Im ⊗ b
ξ−1

i

)

, (53h)

∂

∂s j
c�
i F

(ξ)
H (σi , . . . , σi )b

ξ

i = ∂

∂s j
c�
i
̂F(ξ)
H (σi , . . . , σi )b

ξ

i (53i)

where i ∈ {1, . . . , r̃}, ξ ∈ {2, . . . , d}, η ∈ {1, . . . , d} and ∂

∂s j
denotes the partial

derivative with respect to s j of a given function.

Proof The proof of these interpolation conditions follows exactly the one of Theorem
3.1.
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