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We analyze the complexity of classically simulating continuous-time dynamics of locally interacting
quantum spin systems with a constant rate of entanglement breaking noise. We prove that a polynomial
time classical algorithm can be used to sample from the state of the spins when the rate of noise is higher
than a threshold determined by the strength of the local interactions. Furthermore, by encoding a 1D
fault tolerant quantum computation into the dynamics of spin systems arranged on two or higher
dimensional grids, we show that for several noise channels, the problem of weakly simulating the
output state of both purely Hamiltonian and purely dissipative dynamics is expected to be hard in the

low-noise regime.
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Introduction.—Locally interacting spin systems are of
fundamental interest in many-body physics and, also,
describe engineered quantum systems that underly quan-
tum information technologies. Consequently, there is great
interest in developing classical algorithms for simulating
their dynamics [1-5]. It is recognized that simulating
quantum spin system dynamics on classical computers
is generically hard since they can encode quantum
computations [6—8]. However, strong interaction with
an external environment prevents significant entangle-
ment of the individual spins [9-14]. Physical intuition
then suggests that a transition occurs in the classical
complexity of such dynamics on tuning the strength of
the system-environment interaction, i.e., the spin system
transitions from a classically tractable phase, whose
dynamics can be simulated on a classical computer in
time that scales, at most, polynomially with the number of
spins, to a classically intractable phase.

This expectation has been made rigorous in the context
of circuit model (or discrete-time model) of noisy quan-
tum computation [15-21]. It was shown, very early on,
that such a transition is expected for the circuit model of
quantum computation on tuning the rate of noise. For a
sufficiently high rate of noise, provably efficient classical
algorithms to simulate quantum circuits [15,16] have been
provided. Moreover, the threshold theorem for quantum
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computation [17,18] implied that, if the noise is below a
certain threshold and fresh auxiliary qubits are available,
then a quantum computation can be encoded into a
noisy quantum circuit. The requirement of fresh auxiliary
qubits was subsequently relaxed for quantum circuits in
two or higher dimensions when the noise was not
depolarizing [19].

Less attention has been paid to continuous-time dynam-
ics. Not only does it underly the discrete-time circuit
model, it is also physically more relevant for analyzing
near term analog quantum simulators [22-29]. While some
studies have focused on the classical complexity of bosonic
systems as a function of evolution time [30-32], theoretical
results on the classical complexity as a function of noise
strength have, thus far, only been provided for fermionic
systems [33].

In this Letter, we study computational complexity
transition with noise rate in spatially local spin-systems.
We consider an open system of n spins arranged on a d-
dimensional lattice (Z¢) that are initially in a product state.
Within the Born-Markov approximation [34], the state of
the spins p(¢) is governed by a quantum Lindblad equation
dp(t)/dt = L(t)p(t), with the Lindbladian

£(6) = ~i(H(1). (1)
+ 3 (Lo OO = (o0 LUOL} )
m

where H(1) is the (possibly time-dependent) Hamiltonian,
and L,(7) are (possibly time-dependent) jump operators.
Here, we study a restricted class of master equations with
generators £(¢) of the form

Published by the American Physical Society


https://orcid.org/0000-0003-3359-1743
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.260405&domain=pdf&date_stamp=2022-12-22
https://doi.org/10.1103/PhysRevLett.129.260405
https://doi.org/10.1103/PhysRevLett.129.260405
https://doi.org/10.1103/PhysRevLett.129.260405
https://doi.org/10.1103/PhysRevLett.129.260405
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

PHYSICAL REVIEW LETTERS 129, 260405 (2022)

L) = Lol) + 1S (N, — id). @)
i=1

where “id” is the identity channel. The generator of this
master equation has two terms—the first term, L£y(), is a
Lindbladian [i.e., of the form of Eq. (1)] that models
interactions between different spins and the second term
captures noise, modeled by a channel A/; on the ith spin,
acting at a constant rate k. We do not restrict ourselves to
Ly(t) being described by only a Hamiltonian since even
dynamics described by Lindbladians with only jump
operators (albeit acting simultaneously on multiple spins)
can be classically intractable [35].

We constrain Ly(z) to be geometrically local with
interaction range R and with a uniformly bounded inter-
action strength J, i.e., L£y(¢) permits a representation

Lo(r) =Y LY(1). (3)

Acz?

where £)(¢) is a Lindbladian which is identity on spins
outside A with diam(A) <R and [|£)(7)|,, <J. The
noise channel A\, is assumed to be entanglement breaking
[36]—examples of such noise channels could include local
depolarizing noise [N;(p) = tr;(p)I/2], dephasing noise
Ni(p) = (p+ ZipZ;)/2], and amplitude damping noise
[Ni(p) = tr;(p)|0)(0]]. Throughout this Letter, we con-
sider evolution times ¢ that scale, at most, as poly(n).

In the high noise regime, we show that this problem is
classically tractable. Our proof strategy, inspired by pre-
vious results for quantum circuits [15,37], is to identify a
map between the quantum dynamics and a percolation
problem. However, unlike the discrete-time setting, where
the dynamics respect a strict light cone, thus, making this
mapping direct, the continuous-time dynamics for local
Lindbladians only has an approximate light cone [38]. Our
key technical contribution is to show that an approximation
of the continuous-time dynamics can be mapped to a
correlated percolation problem, which we prove percolates
at a sufficiently high rate of noise.

Next, we consider the complementary low noise regime
and study the worst-case hardness of this problem. The
threshold theorem for quantum computation [17,18] already
suggests that local Lindbladians are classically intractable
below a noise threshold. This is so because a local
Lindbladian can be chosen to fault-tolerantly encode any
given quantum computation [17,18], including those that
cannot be efficiently classically simulated. However, it is
also of interest to study two subclasses of local Lindbladians.
First, where Ly(#) models Hamiltonian interactions, i.e.,
where Ly(1)p = —i[H(t), p] for some Hamiltonian H ()
these models arise in out of equilibrium many-body systems
[39-41]. Second, interactions described entirely by many-
body traceless jump operators and no Hamiltonian, i.e.,

where £o(1)p = S Li(t)pLi(t) — {LL()Ly(1). p}/2 for

some jump operators L (¢) with Tr[L(7)] = 0. Such inter-
actions are often referred to as purely dissipative [42], and
arise in many-body quantum optics [43—45]. While both of
these classes of systems are known to be hard to classically
simulate when x = 0 [35,46,47], their worst-case hardness
in the low noise regime does not follow from a direct
application of the threshold theorem.

We show that, for both of these classes and for noise rates
below a threshold, it is unlikely that an efficient classical
algorithm can simulate Eq. (2) in two or higher dimensions
for arbitrary noise channels ;. More specifically, by an
adaptation of Ref. [19] to continuous time, we identify a
class of noise channels (which includes, e.g., the amplitude
damping channel) such that Eq. (2) with purely
Hamiltonian £,(¢) is classically intractable below a noise
threshold. Then, we consider L (¢) to be purely dissipative,
which is classically intractable without noise [35]. We show
that, for amplitude damping or dephasing noise and when «
is below a threshold, the dissipative dynamics can encode a
postselected quantum computation and, hence, is expected
to be classically intractable.

Results.—Our first result considers the high-noise regime
of Eq. (2), and shows its classical tractability.

Theorem |.—For k > ky, where ky; depends on the
lattice dimension d, interaction range R and interaction
strength J, there is a poly(n, 1/¢) randomized classical
polynomial-time algorithm to sample within ¢ total varia-
tion distance of p(¢) obtained on evolving Eq. (2) for ¢
scaling at most as poly(n).

Our general strategy for the classical algorithm is to map
Eq. (2) to a percolation problem. This has previously been
done for the local unitary circuits [15,37], where, at
sufficiently high noise rate, the effective percolation prob-
lem is subcritical [48] and the circuit can be exactly broken
into small noninteracting clusters which permit individual
contraction. However, unlike local unitary circuits, the
continuous-time dynamics does not respect an exact light
cone [38], and consequently, this mapping is not direct. We
circumvent this issue by mapping a Trotterized approxi-
mation of this dynamics to a correlated percolation problem
that is then shown to percolate at sufficiently high noise
rates K.

Proof sketch for Theorem [.—The steps in the proof are
depicted in Fig. |—first, we Trotterize the evolution with
time-step 6t = O[e/poly(n)] chosen to incur a total varia-
tion error < O(¢) [Figs. 1(a) and 1(b)]. Next, we approxi-
mate the channels resulting from the Trotterization of
Ly(t), as a convex combination of identity, applied with
probability 1 — O(J)5t and another channel, applied with
probability O(J)6t. The probability distribution at the
output of the Trotterized circuit, p(x), is then expressed as

p(x) = _p(C)p(x[C),
c
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Schematic depiction of the mapping of a continuous time model, to an equivalent percolation problem. For simplicity, we only

depict a 1D setting. (a) The continuous-time model, where the spins interact with each through a local Lindbladian and with the crosses
depicting the entanglement breaking noise occurring at a rate «. (b) Trotterization of the continuous-time evolution, with the grey
rectangles representing the channels resulting from L,(#) and the purple thombi being the Trotterized single-qubit noise channel. The
Trotterized channels are then sampled from, with the faded channels being sampled to identity, (c) blocking m =~ 7/t time-steps together
for each qubit and identifying this block of time-steps with a site on the percolating lattice. The site is declared open if the qubit
associated with the site experiences entanglement breaking noise at least once and does not couple to any of the neighboring qubits via

the channels obtained on Trotterization of the Lindbladian Ly(1).

where the summation is over circuits C [Fig. 1(b)] obtained
by randomly choosing between (i) identity or otherwise,
instead of the Trotterization of local Lindbladian, and
(i) identity or A/, instead of the noise channel. p(C) is
the probability of choosing the circuit instance C, thus,
obtained and p(x|C) is the probability of obtaining x at the
output of C.

Next, we use percolation theory to show that, with high
probability over C, p(x|C) can be efficiently sampled from
on a classical computer. First, we map sampling from p(C)
to a percolation problem on Z%*! [Fig. 1(c)]—a site in this
equivalent percolation problem is associated with a qubit
and a block of m Trotterized time steps, where m ~ t/6t for
some 7 > 0. For a sampled circuit C, the site is declared
open if the associated qubit experiences noise at least once
in the m associated time steps, and all channels arising from
Ly(t) acting on it are replaced with identity, or else it is
declared closed. Note that this percolation problem is
correlated, i.e., the state of each site depends on its
neighborhood. However, for sufficiently large x, z can
be chosen such that the percolation problem is subcritical.
Similar to discrete time [15], the sizes of the clusters in the
subcritically percolated lattice are almost surely O(logn)
[48], which allows us to classically compute p(x|C) and its
marginals in polynomial time and, thus, sample from the
output of C. A detailed proof is provided in [49]. (]

Our next two results deal with the low-noise regime.
First, we consider local Hamiltonians, i.e., £ (7) in Eq. (3)
satisfies L) (1)p = —i[H"(t), p] for some H(7), and shows
its low-noise intractability. We restrict ourselves to entan-
glement breaking noise channels A; of the form

Nilp) = Tri(Pp) ® |a@){al + Tri(Qp) @ |B)(p

. (4)

where {P,Q} is a single-qubit positive operator-valued
measurement (POVM), with P —I/2 being positive defi-
nite and {|a), |f#)} is an orthonormal basis for the qubit

Hilbert space. The channel N; thus, maps any initial state
of the ith qubit to a mixture of |&), |#) with a higher
probability of being in |a). An example of such a channel
would be an amplitude damping channel. The proof of this
result is a straightforward adaption of the discrete-time
fault-tolerant construction previously used in Ref. [19], the
only additional ingredient needed being the analysis of how
faults in the unitary gates (as opposed to before or after
them) do not impact the threshold theorem.

Theorem 2.—If N; is of the form described in Eq. (4),
then for qubits arranged on two or higher dimensional
lattices and for k below a threshold, there are instances of
Eq. (2) with Ly(¢) being a local Hamiltonian that cannot
be weakly simulated on a classical computer within a
small total variation error unless BQP = BPP.

A family of n-qubit quantum circuits is said to be weakly
simulable within e-total variation error if a classical computer
can be used to sample in poly(n) time within a probability
distribution p such that ||p — p4ll, <&, where p is the
probability distribution at the output of the quantum circuit.

Proof sketch for Theorem 2.—We will restrict ourselves
to two-dimensional lattices. First, we briefly review the
discrete-time construction of Ref. [19]—the key idea is to
fault-tolerantly encode 1D local quantum circuits, which
can perform arbitrary quantum computations [6,7], in the
continuous-time model. It has been previously established
that fault tolerance can be achieved with just nearest
neighbor unitary gates in 1D [17] if a RESTART operation
(i.e., a quantum channel which replaces a qubit with a
known pure state, say |0)) is accessible. Reference [19]
proposed to exploit the noise channel to implement the
RESTART gate. Given a 2D grid of qubits [Fig. 2(a)], qubits
in one column of the lattice are used as the computational
qubits, comprising of data qubits (on which the quantum
computation is performed) and ancilla qubits (which are
used to perform error correction and need to be restarted).
To restart an ancilla qubit, they utilize the qubits,
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(a) Construction of worst-case example of Eq. (2) when L (¢) is a local Hamiltonian in 2D—one column is used for encoding a

1D fault-tolerant quantum computation and RESTART operation is implemented using the auxiliary qubits in the same row. The steps in
the RESTART operation, also schematically depicted, include cooling the auxiliary qubits, swap with ancilla and shift for the next restart
operation. (b) The SHIFT operation implemented by layers of SWAP gates (which take time z,) followed by allowing the noise to act on the
individual qubits for time z,. The SWAP gates are faulty due to the noise, but the subsequent time interval z,; is used to drive the swapped
qubits to the fixed point of the noise channel. (¢) Construction of worst-case example of Eq. (2) when £ (7) is a local on a 2D lattice and
purely dissipative. One column of qubits is again used to encode a 1D fault-tolerant quantum computation, with the remaining qubits
used as the clock qubits to implement the involved unitaries dissipatively.

henceforth called the auxiliary qubits, in the row containing
the ancilla. These qubits are initialized in the fixed point of
N; (and, hence, remain in it at all times), and when the
ancillas need to be restarted, a (constant) number of
auxiliary qubits are algorithmically cooled to a pure state
[53,54], which is then swapped with ancilla. We point out
that, since the noise channel (Eq. (4)) always maps to a state
which has a higher probability of being in |a), it does not
drive the auxiliary qubits to the maximally mixed state, and
hence, this cooling step is possible. The used auxiliary
qubits are then shifted to bring unused auxiliary qubits
next to the ancilla so that another RESTART gate can be
performed when required.

If the noise is assumed to act only before or after the
unitary gates, then this shift operation can be performed
without any errors. However, in the continuous-time set-
ting, the noise can act while the shift operation is being
performed. Furthermore, since we could possibly need
RESTART operations at ®[poly(n)| time, which would need
O[poly(n)] shift operations—thus, there is a possibility of
accumulating a large error in the overall SHIFT operation at
any, no matter how small, nonzero x. To resolve this issue,
we propose to perform an imperfect shift operation,
followed by allowing the noise to act on the shifted qubits
for time 7, to drive them to its fixed point [Fig. 2(b)].
Clearly, if 7, is chosen to be large enough, then the qubits
would be in a state which can be subsequently cooled.
However, increasing 7, also increases the effective noise on
the computational qubits since error correction is paused
while the qubits are being restarted. A close analysis of this
operation (provided in [49]) reveals that, to replenish m
auxiliary qubits with the shift operation, 7z, can be chosen to
be @(I/Kl_l/ ™), and hence, the error sustained in the
computational qubits while error correction is paused for
this shifting, which is proportional to xz,, can be made
smaller than the error correction threshold for sufficiently
small «. (]

Our next result considers purely dissipative
dynamics—for dephasing or amplitude damping chan-
nels, we provide theoretical evidence of the master
equation remaining classically intractable at low noise
rates. Our proof relies on using the Feynman clock
construction [35], to encode a fault-tolerant quantum
computation in a local dissipative master equation with
postselected clock qubits. Since postselected quantum
circuits that can encode (postselected) quantum compu-
tations are unlikely to be classically tractable [55-57], we
obtain the low-noise intractability of the noisy dissipative
master equation.

Theorem 3.—If N, is the dephasing or amplitude
damping channel, then for qubits arranged on two or
higher dimensional lattices and for x below a threshold,
there are instances of Eq. (2) with Ly(¢) being purely
dissipative that cannot be weakly simulated on a classical
computer within a small multiplicative error unless the
polynomial hierarchy collapses to the third level.

A family of n-qubit quantum circuits is said to be weakly
simulable within multiplicative error ¢ if a classical
computer can be used to sample in poly(n) time within
a probability distribution p such that

—p(x) < pa(x) <cp(x) VY xe{0,1}",

where p is the probability distribution at the output of the
quantum circuit.

Proof sketch for Theorem 3.—To dissipatively apply a
unitary U on p,, we use an additional qubit, called the clock
qubit, and L = |1)(0] ® U—with the initial state |0)(0| ®
po and postselecting on the clock qubit being in |1), the
remaining qubits will be in Up,U'. Consider again
d = 2—the computational qubits are laid out in one
column, and the corresponding clock qubits are laid out
in the rows [Fig. 2(c)]. A fault-tolerant quantum circuit can
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now be encoded in the dissipative master equation with the
unitaries encoded as shown above, and the RESTART
operations encoded with just an amplitude damping
channel. We show, in [49], that errors in both the
computational qubits and the clock qubits participating
in a unitary can be translated to independent faults in the
unitary gates being applied, and thus, the threshold
theorem still holds. Finally, the clock qubits are replen-
ished with a dissipative SHIFT to prepare for the next time
step in the circuit (the SHIFT operation is performed again
with two layers of SwAp, with SWAP being implemented
dissipatively using the jump operators |0, 1)(1,0],
[1,0)(0, 1|)—we show, in [49], that if the noise channel
under consideration is dephasing or amplitude damping,
then the errors in the SHIFT operation do not impact the
state of the computational qubits when postselected on the
clock qubits being in |1). n

We remark that, in Theorem 3, we assumed the ability
to implement a purely dissipative Lindbladian for a
chosen jump operator. Physically, due to Lamb shift
and nonzero environment temperatures, a Lindbladian
with jump operator L(7) is accompanied with two cor-
rections [58,59]—a Hamiltonian o L(¢)L(f) (the Lamb
shift) and a Lindbladian with jump operator L7(¢) (the re-
excitation). However, it can be shown that, for the specific
choice of the jump operators used above and with
postselection on the clock qubits, these corrections do
not impact the encoded quantum circuit. We provide a
detailed analysis of these corrections in [49].

Conclusion.—We studied noisy dynamics of many-body
open quantum spin systems with local interactions. Our
Letter provides rigorous evidence of transitions in the
classical complexity of their continuous-time dynamics.
As specific technical problems, we leave open the exten-
sions of Theorems 2 and 3 to one-dimensional systems as
well as to a larger class of noise channels. Furthermore,
while we have exclusively focused on Markovian spin
systems, future directions could include studying such
transitions in other experimentally relevant models of
many-body quantum systems. These could include non-
Gaussian bosonic systems, which would be a model for
many quantum optics experiments, and non-Markovian
quantum systems.
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