Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Low-Coordination Rhodium Catalysts for an Efficient Electrochemical Nitrate Reduction to Ammonia

MPG-Autoren
/persons/resource/persons227619

Timoshenko,  Janis
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons271029

Bai,  Lichen
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons267176

Rüscher,  Martina
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22020

Roldan Cuenya,  Beatriz
Interface Science, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Liu, H., Timoshenko, J., Bai, L., Li, Q., Rüscher, M., Sun, C., et al. (2023). Low-Coordination Rhodium Catalysts for an Efficient Electrochemical Nitrate Reduction to Ammonia. ACS Catalysis, 13(2), 1513-1521. doi:10.1021/acscatal.2c03004.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-7D51-D
Zusammenfassung
Ammonia is an essential bulk chemical and the main component of fertilizers. In addition, the use of ammonia (NH3) as an energy carrier and hydrogen storage material has continuously surged. Electrochemical nitrate reduction is a low-carbon, environment-friendly, and efficient method of ammonia synthesis, which has attracted extensive attention in recent years; however, the overpotential needed to produce NH3 with most catalysts is still too large. In this work, we rationally designed rhodium nanoflowers (Rh NFs) composed of ultrathin nanosheets and explored their performance for the electrocatalytic nitrate reduction to ammonia (NITRR). With a high faradic efficiency of 95% at 0.2 V vs reversible hydrogen electrode (RHE) for ammonia production, the overpotential required for the NH3 formation on an Rh NF catalyst is much lower than on most previously reported catalysts. X-ray absorption spectroscopy (XAS) analysis shows that there are low-coordination atoms in the Rh NF catalyst, which can promote the adsorption of NO3 ions and stabilize intermediates as revealed by the density functional theory (DFT) calculation, resulting in efficient NITRR performance.