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1  |  INTRODUC TION

Under rapidly changing environmental conditions, the need for ac-
curate and speedy ecological assessment of marine and freshwater 
ecosystems has greatly increased. This is particularly pressing for 

coral reefs, which are the most biologically diverse marine eco-
systems on the planet, but have suffered significant deterioration 
in recent years due to a variety of stressors, such as tourism over-
use, destructive fishing practices, land- based pollution and climate 
change (Cesar et al., 2003; Hughes et al., 2020). Continued stress 
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Abstract
1. Coral reefs are the most biodiverse marine ecosystems, and host a wide range 

of taxonomic diversity in a complex spatial community structure. Existing coral 
reef survey methods struggle to accurately capture the taxonomic detail within 
the complex spatial structure of benthic communities.

2. We propose a workflow to leverage underwater hyperspectral image transects 
and two machine learning algorithms to produce dense habitat maps of 1150 m2 
of reefs across the Curaçao coastline. Our multi- method workflow labelled all 
500+ million pixels with one of 43 classes at taxonomic family, genus or species 
level for corals, algae, sponges, or to substrate labels such as sediment, turf algae 
and cyanobacterial mats.

3. With low annotation effort (only 2% of pixels) and no external data, our work-
flow enables accurate (Fbeta of 87%) survey- scale mapping, with unprecedented 
thematic detail and with fine spatial resolution (2.5 cm/pixel). Our assessments 
of the composition and configuration of the benthic communities of 23 image 
transects showed high consistency.

4. Digitizing the reef habitat and community structure enables validation and novel 
analysis of pattern and scale in coral reef ecology. Our dense habitat maps reveal 
the inadequacies of point sampling methods to accurately describe reef benthic 
communities.

K E Y W O R D S
coral reefs, habitat mapping, hyperspectral imaging, machine learning, survey scale mapping, 
thematic detail
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on coral reefs deteriorates their health, leading to increased coral 
bleaching, coral mortality, disease outbreaks, loss of coral dominance 
and diversity loss (Burke & Spalding, 2004). In turn, the deterioration 
of coral reef health world- wide will endanger the ecosystem services 
that these reefs provide (i.e. shoreline protection, bioprospecting, 
food production, etc.) to coastal populations and other associated 
systems (Hoegh- Guldberg et al., 2017; Moberg & Folke, 1999). 
Furthermore, this long- term degradation of reefs confounds an inter- 
generational understanding of baseline reef health that informs reef 
restoration and management interventions (Muldrow et al., 2020), 
thus highlighting the need for objective assessments of reef health 
through monitoring.

Modern reef monitoring efforts focus on the creation of ben-
thic habitat maps, as they capture the spatial distributions of species 
and habitat features (Guisan et al., 2013; Roelfsema et al., 2020). 
Such information captured over a long time series forms the basis 
of scientific evaluation of the ecosystem's evolution, and underpins 
the decisions for management, conservation and restoration (Foo 
& Asner, 2019). The spatial, temporal and thematic scales of eco-
system mapping have a critical influence on the viability of specific 
scientific analyses (Lecours, 2017), such as elucidating functional 
drivers, detecting community phase shifts or signalling deterioration 
of habitats. Most reef inventories compiled from in- situ surveys lack 
sufficient taxonomic and spatial detail, and have been carried out 
in only 0.01%– 0.1% of coral reef regions world- wide (Hochberg & 
Gierach, 2021). In addition, many surveys do not report any uncer-
tainty information that limits the utility of the data for scaling up 
studies to the ecosystem- level (Reverter et al., 2022). Thus, a pri-
ority for future in- situ reef surveys should be wider biogeographic 
coverage, clearer uncertainty estimates and deeper taxonomic and 
spatial detail at the survey scale.

Satellites are increasingly used to map shallow benthic habitats 
and analyse regional and global phenomena affecting coral reefs 
(Hedley et al., 2016; Heron et al., 2016). With recent enhanced spec-
tral and spatial resolutions of remotely sensed images (0.5– 10 m 
per pixel), better reef monitoring products have been enabled, such 
as geomorphological zonation of reefs (Kennedy et al., 2021) and 
benthic habitat maps (Lyons et al., 2020; Roelfsema et al., 2021). 
However, validating the accuracy of satellite- derived maps is a 
difficult task, impeded by the lack of in- situ validation datasets 
and the lack of error estimation in existing datasets (Hochberg & 

Gierach, 2021; Phinn et al., 2012). While remote sensing offers a 
viable approach for large scale analyses of reefs, current satellite 
sensors lack spatial resolution to represent small organisms (<0.5 m) 
and the spectral resolution to potentially differentiate organisms to 
a deep taxonomic description (Hochberg et al., 2003; Muller- Karger 
et al., 2018). In contrast, in- situ surveys can provide enhanced spa-
tial and spectral resolutions in underwater imagery, made available 
by advancements in instrumentation and robotic platforms (Chennu 
et al., 2017), both aerial (Casella et al., 2017) and underwater 
(Armstrong et al., 2019). Improvements in machine learning (ML), es-
pecially with the application of artificial neural networks, have con-
tributed to better accuracy and throughput of efforts in automated 
classification (Beijbom et al., 2015; González- Rivero et al., 2020) 
and semantic segmentation (Alonso et al., 2019; Pavoni et al., 2020) 
of benthic images. Carefully designed ‘ground- truthing’, produced 
from images acquired via underwater/proximal sensing, and mapped 
through scalable and automated workflows, can provide a consis-
tent source of validation for current and upcoming ecosystem- level 
studies.

Deriving validation support from in- situ surveys requires 
careful design conformity between the proximal and remote 
sensing campaigns (Roelfsema & Phinn, 2013). For example, the 
lack of conformity in the set of labels used between satellite 
and in- situ studies is a major confounding factor (Foody, 2004). 
The labelspace of global maps usually include broad reefgroups 
(coral, algae, sediment, etc.), some status indicators (dead, alive, 
bleached) or morphological descriptions (branching, massive, 
weedy; Kennedy et al., 2021). This multi- faceted and easy- to- 
interpret view of the reef structure is useful for coastal man-
agement (Roelfsema et al., 2020). However, describing the reef 
community with broad reefgroups can hide intra- group shifts 
and conceal key dynamics of coral reef communities (Brito- Millán 
et al., 2019). To enable these analyses, in- situ studies leverage 
thematic scales that identify organisms down to genus or spe-
cies level, as well as different substrata (sand, rock, rubble) and 
the substrate- associated communities (cyanobacterial mats, turf 
algae), rendering a detailed view of the biotic and abiotic compo-
nents (Althaus et al., 2015). Capturing community structure with a 
detailed labelspace is typically limited by the availability of expert 
time or by logistical constraints. For this reason, reef community 
structure, as assessed in a majority of reef studies, is severely 

F I G U R E  1  Schematic of scalable acquisition- mapping- assessment workflow for digitizing reef community structure. The underwater 
survey with the HyperDiver at eight study sites over 147 transects (50 m each) in Curaçao produced radiance and reflectance spectral 
images. A subset of 31 transect images was annotated into the detailed (43 classes) labelspace and aggregated into the reefgroups (11 
classes) labelspace (see Figure S3 for complete labelspaces). Labelspaces can be adapted to encompass the underlying benthic community 
being studied. Annotated regions from 23 transects were used in two separate machine learning methods to classify each region of the 
spectral images into each labelspace independently. The segmented method used ensemble learning on image superpixel features, while 
the patched method used spatial- spectral neural network learning of image patches. The modular architecture of our workflow facilitates 
the usage of other ML models that produce probabilistic predictions. The classifiers were used to predict the label probabilities at each of 
500+ million pixels in all 31 transects. The classifier- predicted probability maps were contextually smoothed and converted into densely 
labelled habitat maps. The habitat maps were assessed for their consistency with reference annotations as well as their ability to describe 
the composition and configuration of the benthic communities in the transects. The effort- versus- error relationship for point- count sampling 
of the reef habitats was assessed using virtual sampling of the 23 dense habitat maps.
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undersampled— both spatially and thematically— with respect to 
habitat complexity, neglecting spatial distributions and locations 
of benthic components.

Here we demonstrate how to produce dense and detailed 
maps of coral reef habitats from underwater surveys (Figure 1). 
Dense means that all regions/pixels in each image transect are 
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assigned a (biotic or abiotic) habitat label, resulting in full se-
mantic segmentation of the transect without any ‘background’ 
or ‘unknown’ labels. Detailed refers to the thematic detail that 
is captured by the labels, either being taxonomic (species, genus, 
etc) or broad reefgroups (corals, sponges, etc). We leverage ML 
to automate the classification of underwater hyperspectral image 
transects captured over multiple weeks and locations along the 
coast of the Caribbean island of Curaçao (Chennu et al., 2017; 
Rashid & Chennu, 2020). Our workflow description (Figure 1) 
considers all the steps from the field survey to the classification 
of 500+ million pixels to the validation of aggregate habitat de-
scriptions derived from the detailed habitat maps. We show how 
dense maps can be produced, with clear assessments of accuracy, 
into multiple thematic scales, either at a broad (‘reefgroups’) or 
taxonomic (‘detailed’) labelspace. By implementing two indepen-
dent ML methods (neural networks and object- based ensemble 
classification) in parallel, we provide an assessment of the con-
sistency between the reef community structures as described by 
the maps produced with each ML method. These ML methods 
can be used to rapidly convert transect spectral data into hab-
itat maps at the survey scale, without the need to augment the 
training data with external datasets. Finally, we exploit the dense 
habitat maps of island- wide transects to reveal the inadequacies 
of sparse point sampling methods to accurately describe reef 
benthic communities.

2  |  MATERIAL S AND METHODS

2.1  |  Underwater hyperspectral surveying

Underwater hyperspectral transects were acquired with the 
HyperDiver surveying system (Chennu et al., 2017), and a detailed 
description of the acquisition and processing is available in a data de-
scriptor (Rashid & Chennu, 2020). A brief overview is provided here.

Hyperspectral transects were acquired in a survey conducted 
along the leeward coastline of the Caribbean island of Curaçao 
(Figure 1 ‘Field Survey’). At each of the eight survey sites, 10 to 20 
transect images of 50 × 1 m area were acquired by divers at varying 
depths (3 to 9 m range). The resulting dataset contains 147 hyper-
spectral transects, from which 31 transects were selected for test-
ing the proposed workflow. The 31 transects were comprised by 23 
transects selected from the 3, 6 and 9 m depth for each site (except 
for one site where the 6 m transect was missing), and 8 additional 
transects randomly selected across the depth gradient. The hyper-
spectral push- broom imager captures lines of 640 pixels at a time. 
Each pixel contained 12- bits of radiometric information for each of 
the 480 wavelength bands in the 400– 800 nm range. The spectral 
images were interpolated and reduced to 200 bands of 8- bit ra-
diometric precision. Although the spectral transect images contain 
60 times more colour information per pixel, the overall data size is 
smaller or comparable with high- resolution colour photography used 
in reef surveys.

The hyperspectral transect images were captured as radiance 
data under natural and varying light conditions due to depth, cloud 
cover, water surface conditions, etc. To be independent of these 
lighting conditions, each transect's radiance image was converted 
to pseudo- reflectance images (for brevity we refer to pseudo- 
reflectance as reflectance for the rest of this manuscript) by dividing 
out the average radiance signal of a grey reference board present at 
the ends of each transect plot.

2.2  |  Benthic annotation and thematic flexibility

Annotations were created by human experts to support automated 
classification of the transects by ML methods. The annotations con-
sisted of 2089 small polygons covering 8.2 million pixels with a cor-
responding habitat label across the 31 transects (Figures S1 and S2; 
Figure 1 ‘Survey annotation’). Biotic classes were annotated to the 
deepest taxonomic level possible, such as family, genus or species. 
Substrate classes are represented as sediment, cyanobacterial mat 
or turf algae. Survey materials were also included to give semantic 
labels to any object found in the transects, that is, transect tape or 
reference board. Three classes were removed given their very low 
representation in the selected transects (<2 annotated regions). The 
resulting ‘detailed’ labelspace had 43 final labels (Figure S3). Loosely 
speaking, the detailed labelspace describes the habitat in the per-
spective of a reef ecologist, aiming for full taxonomic resolution of 
the studied reef community.

From the perspective of a reef manager, typically interested in 
the broad demographic description of a reef, taxonomic detail is 
not useful or a detriment to management analysis. We created a la-
belspace to serve the perspective of a reef manager, by abstracting 
each label in the detailed labelspace to a corresponding broad reef-
group class (Figure S1). For example, the 19 coral species and gen-
era were abstracted to a class called ‘Coral’. The 11 resulting classes 
formed the ‘reefgroup’ labelspace. This thematic flexibility allowed 
us to run the ML setup with annotations in either labelspace, to 
measure the workflow's ability to classify into both labelspaces cor-
rectly. To compare classifications across labelspaces, we created an 
abstracted ‘detailed- to- reefgroup’ version of the detailed labelspace 
maps, that is, assigning all labels to their corresponding reefgroup 
label. Then the reef community composition was compared between 
the detailed- to- reefgroup maps and the reefgroup maps.

The reference annotations were created with a bias towards re-
ducing human effort rather than providing uniform coverage of sam-
ples across the survey data (Rashid & Chennu, 2020). This resulted in 
a ML dataset with a relatively high degree of label imbalance, either 
when considered as a set of polygons or as a set of pixels across the 
annotated transects (Figures S1 and S2). The degree of imbalance 
meant that, for example, the 5 most abundant classes (Sediment, 
Turf algae, Diploria strigosa, Dictyota, Siderastrea siderea) had 789 
polygons and 3.16 million pixels, while the 5 rarest classes (Aplysina 
cauliformis, Briareum asbestinum, Dichocoenia stokesii, Zoanthid, 
Lobophora variegata) had only 14 polygons and 18,464 pixels.

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14029 by M
PI 317 M

arine M
icrobiology, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  5Methods in Ecology and EvoluonSCHÜRHOLZ and CHENNU

The annotated data consisted of 23 ‘learning transects’ (373+ 
million pixels), that were used to train and test classifiers in the ML 
steps of our workflow, and 8 separate ‘validation transects’ (150+ 
million pixels) that were used to assess the performance of our work-
flow on unseen data outside the learning transects. Overall, it was 
possible to represent each annotated transect with two types of sig-
nal (radiance or reflectance) and labelspaces (detailed or reefgroups) 
for ML towards automated classification. The automation of map-
ping steps in our workflow (i.e. ML classifier training, map creation 
and assessment) was implemented with the snakemake workflow 
management system (Mölder et al., 2021).

2.3  |  Machine learning for benthic mapping

ML classifiers were then created to predict the identity of each 
image region based on its spectral- spatial features (Figure 1). Two 
separate ML methods— ‘patched’ and ‘segmented’— were indepen-
dently implemented for each combination of signal type (radiance, 
reflectance) and labelspace (detailed, reefgroups). The predictions 
of both methods for each image region were a probability value for 
each label/class in a labelspace.

For the patched method, a deep learning network called 
spectral- spatial residual network (Zhong et al., 2018) was used 
to train a classifier. This network identifies spectral and spatial 
features by first convolving 1D filters in a spectral branch and 
then convolving 2D filters in a spatial branch over square patches 
from the hyperspectral image. Our hyperparameter tuning exper-
iments indicated good performance for parameter values close 
to original study (see Supplement). For each pixel in the image, 
the probability of labels is predicted for the central pixel based on 
the neighbouring pixels in a regular image patch (hence the name 
‘patched’). The image was padded with reflection of border pixels 
to enable selection of patches at the image edges. After training, 
each transect was mapped by passing every image patch through 
the trained network to obtain the predicted label probabilities for 
the central pixel.

The segmented method consisted of three sequential processes 
to obtain the label probabilities for each image region (Figure 1). The 
first step was to reduce each transect image to six principal com-
ponents and calculate the mean at each pixel. The second step was 
superpixel over- segmentation of the transect using the mean image 
as input to the watershed algorithm. The parameters for the wa-
tershed algorithm were a batch size of 2000 × 640 pixels, 12,000 
markers per batch and a compactness of 1000. This reduced the 
transect image into a set of irregularly shaped superpixels, which 
were contiguous image segments of similar pixels (hence the name 
‘segmented’). Descriptors for each hyperspectral image segment 
were calculated for each spectral band: mean, standard deviation, 
minimum and maximum values. There were concatenated into a fea-
ture vector of 800 features for each image segment. These vectors 
were then used as input samples for the random forest ensemble 
classifier in the scikit- learn library. The parameters for the classifier 

used for transect mapping were 300 base estimators, 2 minimum 
leaves per tree, 25 as the maximum tree depth and a minimum of 3 
samples per tree split. The function used to measure the quality of a 
split was the Gini inequality function and the class weights were ad-
justed inversely to the class abundance in the samples. The classifier 
output was the label probabilities for an image segment, which were 
assigned to all the pixels within the segment to generate the class 
probability map of each transect.

Both methods were set up to take as input an image segment/
patch from either of the signal types and produce the same output: 
an array of probability values for each label in the labelspace linked 
to all pixels inside a segment or the central pixel in a patch. The pre-
dictive performance of the trained classifiers was tested on a set 
of image annotations, which was spatially disjoint (no shared pixels) 
from the annotations used for training, as recommended in recent 
reviews (Paoletti et al., 2019). This testing set comprised of 15,496 
image segments for the segmented method and 50,000 pixels for 
the patched method. The ML setup allowed us to use the segmented 
method (ensemble classifiers) and the patched method (deep learn-
ing) as interchangeable ML components in the workflow for scalable 
reef mapping.

The performance metrics used to evaluate the classifiers on 
the testing dataset were: overall accuracy (OA), recall (or producer 
accuracy), precision (or user accuracy), Fbeta (or F1- score) and 
Cohen's kappa (Figure 2; Table S1). OA was calculated by dividing 
the number of correctly predicted by total predicted segments/
pixels. Recall, precision and Fbeta values were calculated for each 
class separately, and then aggregated using weighted averaging, 
with weights corresponding to the inverse of the class propor-
tion in the testing dataset. Recall was calculated as the fraction 
of segments/pixels of a given class that were correctly classified. 
Precision for a class was the fraction of predicted segments/pixels 
that were annotated as that class. Fbeta is the harmonic mean of 
recall and precision. Cohen's kappa measures the performance of 
a classifier as a distance to an uninformed classifier (value of 0) 
and to a perfect classifier (value of 1), considering the dataset class 
imbalance.

We studied how both classifiers performed depending on the 
quantity and quality of annotated spectral pixels (Figure 3a,b). The 
quantity of annotated data was measured as unique pixels (in each 
patch or segment) used during training. Classifier performance was 
measured by training on various quantities of data but keeping the 
amount of computing effort constant (see Supplement). Furthermore, 
to measure the effect of the quality of the spectral information on 
the classifiers' performance, a subset (N = [10, 25, 50, 100, 150]) of 
equally spaced spectral bands were selected (out of the original 200 
bands) from the transect images (Figure 3c). Each method was sep-
arately trained and tested on the transect images with the subsam-
pled spectral bands.

The class probability maps of each transect from either ML 
method were smoothed by refining the probabilities with dense con-
ditional random fields (DCRF; Krähenbühl & Koltun, 2011). DCRFs 
were used to update the probability of each pixel based on the 
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F I G U R E  2  Performance evaluation of classifiers in detailed and reefgroups labelspaces. Recall confusion matrices of classifiers from 
a subset of ML method+labelspace+signal- type combinations were used to asses performance on a held- out testing set. The segmented 
method (a) had an excellent overall performance (84.6% Fbeta score; other metrics shown in the side notes) on the detailed labelspace. It 
presented little (<3%) to minor (<20%) confusions for the rare classes such as Zoanthid and D. anchorata. The patched method (b) showed 
a lower overall performance (Fbeta of 76.7%) in the detailed labelspace; with similar confusion for rare classes, such as A. cauliformis and 
refboard. On the reefgroup labelspace, both the segmented (c) and patched (d) methods showed excellent overall performance (87.5% and 
86.9% Fbeta, respectively), with high recall (92%) shown by the segmented method for Sediment and similarly by the patched method for 
Corals (96%). The segmented method showed some relevant confusion between the Zoanthid and Macroalgae classes, due to the rarity (only 
three segments) of Zoanthids in the dataset.
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surrounding context, that is, label probabilities. DCRFs interconnect 
every pixel in an image through a graph model, thus allowing fusing 
of long- range and short- range context within the image. The class 
probability maps were used as unary potential inputs to the DCRF, to 
obtain the smoothed probability maps (Figure 1 ‘Habitat mapping’; 
Figures 4a,b and 5).

Each class probability map— from either ML method and with 
or without smoothing— was converted to a class map by assigning 
the identity of the class with the highest probability at each tran-
sect image location. The result was a categorical habitat map where 
every pixel was assigned to one label in the labelspace of the trained 
classifier.

2.4  |  Comparison of community structure

We assessed and compared the compositional and configurational 
structures of the reef benthos from the 23 (learning) transects dis-
tributed across Curaçao island (Figure 1 ‘Assessment’; Figure 6). 
Since both ML methods independently generated habitat maps in 
each labelspace of each transect, the habitat maps derived from 
each method were used for pairwise comparisons of the transect's 
community structures. For each transect the percentage cover (Pi) 
was calculated as:

Pi = 100 ×
(
Ci ∕N

)
,

F I G U R E  3  Effect of quantity and 
quality of spectral data on classifier 
performance. The effects of increasing 
the unique number of pixels in the data, 
but training the ML models with the same 
computational effort, were measured 
(Fbeta score) for both methods and 
labelspaces. The segmented method (a) 
showed improved performance whereas 
the patched method (b) showed little 
change in performance. Both methods 
performed better at predicting into the 
reefgroup labelspace (with 11 classes) 
than the detailed labelspace (with 43 
classes) irrespective of the spectral signal 
type. (c) Both methods performed better 
when using an increasing number of 
(uniformly sampled) spectral bands for 
training, with limited improvement beyond 
50 spectral bands.
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where Ci is the count of pixels of class i  in the transect and N is the total 
pixel count in the transect.

As a diversity measure for each transect we used Shannon diver-
sity index (H′), defined as

where pi is the proportion of elements of a class i  and R is the total 
number of classes in the labelspace.

To identify biases in the ML methods, we applied a Bland– Altman 
analysis on the habitat metrics derived for the transects from each 
ML method (Figure 6a– d). This analysis consists of two plots that 
help identify agreement between two quantitative methods of mea-
surement. The first plots the values of both methods for the specific 
variable— percentage cover of a class or Shannon diversity index— 
against each other, to identify values deviating from the one- to- one 
correlation line. In the second plot, the differences of the paired 
measurements are plotted against their averages, to identify the 
mean of the difference and its ±1.96 standard deviation lines. The 
bias is read as the gap between the mean of the difference and the 0 
difference line. The two methods are considered to be in agreement 
if 95% of the values lie within the standard deviation lines in the 
second plot.

To measure the compositional similarity between two classified 
maps we used the Bray– Curtis similarity (BCS) index defined as:

where Ai is the count of pixels of class i  in map A and Bi is the count 
of pixels of class i  in map B. R is the total number of classes in the la-
belspace. We used the ‘braycurtis’ function from scipy python library 
(Virtanen et al., 2020). The closer the BCS value is to 1 the more similar 
the composition of the two compared communities.

We measured the similarity in the configuration of the communities 
between each reefgroup habitat map and their corresponding detailed- 
to- reefgroup map provided by each method, by calculating the Jaccard 
score for each reefgroup class. The Jaccard score (J) is defined as

When the Jaccard score is 1, then the two maps are identical in config-
uration and when the score is 0 then the maps are entirely dissimilar. A 
high Jaccard score requires that across the habitat maps from both ML 
methods, both the identity and the location of the pixels are a match. 
Thus, it is a stringent measure of the similarity between two maps or 
sets.

2.5  |  Effort- versus- error of point- count sampling

We conducted simulations to estimate the error associated with 
a certain level of sampling effort in assessing the diversity and 
coverage of key groups through sparse point sampling of tran-
sects. For this simulated experiment, we selected 4 transects with 
Shannon diversity index from low to high (H′ = {0.61, 1.26, 1.6, 

H� = −
∑R

i=1
piln

(
pi
)
,

BCS = 1 −

∑R

i=1
��Ai − Bi

��
∑R

i=1
��Ai + Bi

��
,

Ji =
Ai ∩ Bi

Ai ∪ Bi
,

F I G U R E  4  Smooth and consistent habitat mapping. The process of producing consistent habitat maps in the detailed (a) and reefgroups 
(b) labelspaces. Habitat maps produced from the classifiers' probability maps exhibit small- scale spatial noise and regions of low confidence. 
Smoothing the label probabilities with DCRFs renders spatially cohesive maps. (see Figure S3 for colour legend.) (c– f) The use of DCRFs 
improved the map consistency in all cases. The patched method was better than the segmented method at generalization and was more 
accurate at mapping the validation transects, which were completely disjoint from the learning transects used for training the ML classifiers.
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2.64}). Each transect was divided into 50 non- overlapping quad-
rats of size 640 pixels × 406– 705 pixels. Each of these quadrats 
was sparsely sampled with N = {5, 10, 20, 40, 80,160, 240, 320, 
480, 640, 960} randomly selected points. For example, this means 
that when N = 5 points, 250 points (50 quadrats x 5 points) were 
randomly selected from the habitat map of the transect. The ran-
dom sampling of the quadrats was conducted 250 times for each 
effort level. From each set of subsampled points in each transect, 
the coral coverage, sediment coverage and Shannon diversity 
index were calculated. For each metric, the relative deviation of 
the value obtained from the subsampled points from the value ob-
tained from all the points in each transect was calculated. We se-
lected 5% relative error as the limit for acceptable error, similar to 
a previous simulation study (Pante & Dustan, 2012). The resulting 

error from changing sampling effort was compared for each of the 
transects containing a significantly different species diversity and 
coverage distribution (Figure 7).

3  |  RESULTS

3.1  |  Automated workflow for scalable benthic 
mapping

To measure the performance of the ML methods on the expert 
annotations several experiments with combinations of signal type 
and labelspace were executed (see Section 2). For the detailed la-
belspace, the segmented+reflectance combination had the best 

F I G U R E  5  The rich structure of a digitized reef community. Sections of habitat maps produced with the patched ML method, with 
colours corresponding to classes from each labelspace (see legend and Figure S3). Rows 1 and 4 are the natural view, as would be seen by 
a human observer. Rows 2 and 5 show the sections in the detailed labelspace and rows 3 and 6 in the reefgroup labelspace. Our proposed 
workflow accurately discerns among a large labelspace and delineates complicated shapes of reef biota. In images a:2 and a:3, the habitat 
maps show correctly classified and well- delineated instances of three coral species (D. strigosa, P. asteroides and M. cavernosa), a sponge (N. 
nolitangere) as well as regions of Sediment, Turf algae and Dictyota macroalgae. The maps in f:5 and f:6 show another example of fine- grained 
segmentation of the branches of a specimen of the Plexauridae soft coral family. Comparing the maps in d:2 and d:3, or in h:5 and h:6, shows 
the number of different coral species that can be identified under the broad Coral group (in orange). Small encrusting taxa such as Coralline 
algae are visible in b:2 and e:2. The delineation of Cyanobacterial mat in g:2 and i:2, along with the many regions of Sediment and Turf algae 
represent substrate and microbial components of coral reef benthos.
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predictive performance with an Fbeta score of 84.5% (Figure 2a; 
Table S1). The classifier had 80% to 96% recall for a majority of the 
43 labels with sufficient data support (see diagonal of Figure 2a). 

Some labels with low data support showed excellent recall 
(Aplysina archeri, Aiolochroia crassa, B. asbestinum and D. stokesii), 
while others showed significant errors (Zoanthid, L. variegata and 

F I G U R E  6  Assessing the benthic community structure from dense maps. (a) Coral cover of 22 learning transects was compared from the 
habitat maps for each ML method. The segmented method predicted slightly more coral cover than the patched method in the transects. (b) 
No clear bias was noted for either method in the Bland– Altman plot. (c) The Shannon index values for 22 compared transects were highly 
correlated between the maps from the segmented and patched methods. The segmented method produced habitat maps with slightly higher 
Shannon diversity. (d) No significant bias was found in either ML method for the Shannon index comparison. (e) The median Bray– Curtis 
similarity between the mapped communities was ~80% across ML methods and ~88% across labelspaces. Note that the orange bars refer to 
a labelspace where Sediment and Turf algae were combined into a single class, resulting in a higher compositional similarity. (f) Configurational 
similarity assessed using the Jaccard index between the reefgroups and detailed- to- reefgroup habitat maps for the top- five dominant labels 
is shown. Given the 500+ millions of pixels in this assessment, the maps showed very good consistency in configuration.

F I G U R E  7  Effort- versus- error 
analysis for point- count sampling of reef 
community structure. (a) Schematic of 
the simulations of quadrat- wise random 
sparse sampling of dense habitat maps to 
estimate metrics (coverage or Shannon 
index) through point- count estimates of 
four transects with different biodiversity 
values (H = {0.61, 1.26, 1.6, 2.64}). The 
error in the habitat metric from sparse 
random points relative to the metric of 
the full map was calculated from repeated 
trials. The number of point samples per 
quadrat required to achieve a relative 
error lesser than 5% (dashed red line) 
was assessed. (b, c) The transect with the 
least coral coverage (T1) required more 
than 960 points per quadrat to estimate 
it within the 5% error limit, whereas the 
transect with the highest coral coverage 
(T4) required 80 or less points per 
quadrat. (d, e) The transect with the least 
sediment coverage (T4) required more 
than 960 points per quadrat to estimate 
sediment coverage within the 5% error 
limit, whereas the transect with the 
highest sediment coverage (T1) required 
only 5 points per quadrat. (f, g) The least 
diverse transect (T1) required 160 points, 
compared with 40 points per quadrat for 
the more diverse transect (T4), to estimate 
the Shannon diversity index within the 
5% error limit. These results suggest 
that rarer species require more sampling 
effort and that over 80 points per quadrat 
should be used to estimate habitat metrics 
in reef transects where the expected 
diversity or coverage is not previously 
known.
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Desmapsamma anchorata). Despite having to distinguish between 
43 labels, the segmented+reflectance classifier had a high Cohen's 
kappa coefficient indicating performance which is 83.5% of a 
perfect classifier (Figure 2a; Table S1). For the same labelspace, 
the patched+radiance combination (Figure 2b; larger version in 
Figure S4) performed with a 9% lesser Fbeta score (76.7%). Most 
classes had a recall value between 70% and 90%, with some rare 
classes, such as A. cauliformis and B. asbestinum, having significant 
errors.

For the reefgroup labelspace, the best predictive performance 
was 87.5% in the segmented+reflectance combination (Figure 2c) 
followed closely by the patched+radiance combination with 86.9% 
(Figure 2d). The latter showed high recall values for all 11 classes, 
even reaching 96% correctness for the Coral class— which consists of 
19 different coral genera and species (Figure S3). The highest confu-
sion occurred between Turf algae and Sediment classes. For both ML 
methods classifiers had a Cohen's kappa score of 83% towards a per-
fect classifier (Figure 2; Table S1). Overall, both ML methods showed 
Fbeta scores between 72% and 87% with better performances on 
the reefgroup labelspace than on the detailed labelspace (Figure 2; 
Figures S4– S8; Table S1).

Both classifiers had different responses to the amount of 
unique input data seen during training. The classifier performance 
in the segmented method improved significantly with greater 
quantities of training data (Figure 3a). The greatest improvement 
was an Fbeta from 76% with 1.47 million pixels to 86% with 5.89 
million pixels seen in the detailed labelspace using reflectance 
spectra. The performance also improved with greater quantities 
of radiance spectra, but overall the segmented method performed 
better on reflectance rather than radiance spectra. In contrast, the 
patched method showed no improvement with larger quantities of 
training data (Figure 3b). Instead, the performance in the detailed 
labelspace showed a 1% deterioration when the same computing 
effort was distributed over all the available data (5.93 million pix-
els). This seemingly unexpected result of poorer performance with 
more data can be understood by considering the lower number 
of training iterations over the larger dataset to maintain the same 
computing effort.

The impact of data quality, or spectral resolution, on predictive 
performance was assessed by using a subset of 10– 100 spectral 
bands in the training data. In both the segmented and patched 
methods (Figure 3c), the predictive performance showed a strong 
5% to 15% improvement when the number of spectral bands was 
increased from 10 to 25 with diminishing improvements when 
using 50+ spectral bands. Overall, the availability of greater spec-
tral resolution, even when the bands were chosen without special 
consideration, had a large effect on the performance of the ML 
methods.

To produce habitat maps for further analysis, we selected one 
patched classifier that was trained on all 200 bands and with 62,500 
patches (~4.1 million unique pixels) and one segmented classifier 
that was trained on all 200 bands and with 62,332 segments (~5.8 
million unique pixels).

3.2  |  Smooth habitat maps to digitize reef 
community structure

The label probability map obtained directly from the classifier's 
prediction showed generally noisy spatial distribution, with many 
areas of low confidence (Figure 4). This effect of low and noisy con-
fidence was larger in the detailed than the reefgroup labelspace. 
Processing the predicted probability map with DCRFs produced 
a more uniform map of probabilities with high confidence except 
for the border pixels between adjacent targets (Figure 4c,e). The 
habitat maps from the DCRF- processed probability maps better 
delineated the benthic scene with smooth and contiguous regions 
(Figure 4a,b).

Beyond the visual cohesiveness, the smoothed habitat maps 
were quantitatively more consistent than the raw habitat maps 
in all combinations of ML methods and labelspaces for transects 
(Figure 4c,f; Figure S9A,B). The map consistency was measured as 
the average of the label accuracy in each of the annotation regions in 
all of the annotated transects, that is, regions used for both training 
and testing the ML methods. The consistency of the habitat maps in 
the regions of the validation transects were lower than in the learn-
ing transects (Figure 4c– f): consistency for the segmented method 
dropped from 94% to 43% and from 95% to 56% with the detailed 
and reefgroup labelspaces (Figure 4d,f), respectively, and from 88% 
to 66% and from 92% to 74% for the patched method (Figure 4c,e). 
This indicated that the patched method (convolutional neural net-
works) was better than the segmented method (ensemble object 
classifiers) at generalizing to unseen data. Classification of transects 
with the reflectance signals resulted in a large drop of consistency, 
with a worst case change from 92% for the learning transects to 18% 
for the validation transects (Figure S9). Overall, the best predictive 
performance on data from the validation transects, which was not 
used in any ML step, was from the patched method.

Smooth habitat maps in both labelspaces were produced for all 
31 transects. With each transect approximately 50 × 1 m in size, 
this task involved assigning each of the 500+ million spectral pixels 
to one of 43 labels (detailed) or one of 11 labels (reefgroups) inde-
pendently. Montages of the habitat maps for all transects were visu-
alized (Figures S10– S13). A selection of interesting sections of these 
habitat maps were visualized (Figure 5) with the natural view (rows 1 
and 4), the detailed map (rows 2 and 5) and the reefgroup map (rows 
3 and 6) shown together. Despite overall conformity, the habitat map 
sections also display some confusions: different sections of the same 
colony in C:2 are assigned to Plexauridae and Gorgoniidae, which are 
both soft coral families with similar digitate morphologies, while in 
C:3 this same colony is assigned between Coral and Soft coral. The 
incorrectly labelled regions of Neofibularia nolitangere sponge in E:2 
(and Sponge in E:3) along the image edge are also errors. These errors 
likely occur due to the poorly illuminated shadow regions that re-
ceived predictions with low confidence, and then got reassigned to 
the Sponge class by the DCRF process due to nearby high- confidence 
regions. Note however that this did not occur for the Transect tape 
in the shadow regions which was predicted with high confidence.
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3.3  |  Assessing the community structure

A Bland– Altman analysis of the coral coverage (Figure 6a,b) and the 
Shannon diversity index (Figure 6c,d) from the reefgroup labelspace 
maps showed a high degree of correlation and low bias between the 
segmented and patched methods. The coverage of all other reef-
group classes, except for Sponges, derived from either mapping 
method, were comparable across the range of values in all the tran-
sects (Figure S14). The Bray– Curtis similarity, which compares the 
compositional structure between the communities in the maps of 
both methods, had a median value of 82% in the detailed and reef-
group labelspaces with a quartile range of 72%– 89% and 75%– 90%, 
respectively (Figure 6e). With the Sediment and Turf algae substrate 
classes merged together, the median value for the similarity rose 
to 89% for the detailed and reefgroup labelspaces, with a quartile 
range of 78%– 92% and 79%– 94%, respectively. This improvement in 
the similarity index indicates a large effect of the inherent definition 
problem of Turf algae on reef habitat mapping.

The similarity assessment across the learning transects for the 
patched method showed an 88% similarity median value with a 
quartile range of 84%– 92%, while the segmented method showed 
an 87% median value with a quartile range of 77%– 91%. With the 
Sediment and Turf algae classes merged, the patched method showed 
a similarity median of 90% (quartile range 88%– 97%), whereas the 
segmented method showed a barely improved median similarity of 
88% (quartile range 77%– 93%). Our proposed workflow recovered 
a reef community composition that was highly consistent between 
the taxonomic and broad reefgroup descriptions of the reef benthos.

The spatial configuration analysis between the detailed- to- 
reefgroup and reefgroup maps showed that three classes had higher 
configurational similarity for the patched method than for the seg-
mented method: Cyanobacterial mat (64% vs. 40%), Coral (74% vs. 
57%) and Macroalgae (51% vs. 29%; Figure 6f). Two classes showed 
higher configurational similarity for the segmented method than 
the patched method: Sediment (83% vs. 78%) and Turf algae (72% 
vs. 67%). The Jaccard score was lower for both methods on rarer 
classes (Figure S15).

3.4  |  Evaluating the effort- versus- error 
compromise in reef sampling

We exploited our dense and accurate habitat maps to revisit the 
effort- versus- error relationship of sparser reef sampling techniques 
(see Methods for point selection). The number of random point sam-
ples required to achieve a relative error lesser than 5% was assessed 
(Figure 7). To recover the hard coral coverage in transect T1— which 
had low biodiversity (H′ = 0.6) and low coral coverage (2.3%)— 960 
random points per quadrat were required (Figure 7b,c). For the 
transect T4, with H′ = 2.6 and coral coverage of 34.2%, 80 random 
points per quadrat were sufficient. Similarly, 960 points per quadrat 
were needed to recover the sediment coverage in transect T4, where 
sediment covers only 2% of the benthos (Figure 7d,e). In contrast, 

only 5 points per quadrat were required to capture the sediment 
coverage in transect T1, which has the highest sediment coverage 
(84.6%). The Shannon index was recovered with 10 sampling points 
per quadrat for transect T4 (H′ = 2.6), with 40 points per quadrat for 
the transects T2 (H′ = 1.6) and T3 (H′ = 1.3), and with 160 points 
per quadrat for transect T1 (H′ = 0.6; Figure 7f,g). Overall, higher 
sampling effort was required to accurately recover the coverage of 
rare species or to capture the Shannon biodiversity index of scenes 
with low biotic coverage.

4  |  DISCUSSION

4.1  |  Dense and detailed mapping of benthic 
communities

The presented reef mapping workflow was able to produce dense 
habitat maps with an unprecedented degree of thematic (43 labels) 
detail and high spatial (~2.5 cm/pixel) resolution. The rich spectral 
detail in the HyperDiver data was leveraged by ML classifiers to 
produce highly accurate habitat maps (87% Fbeta) with little anno-
tation effort (2% pixels in ~20 hours). The two labelspaces used in 
the maps describe the reef benthic biodiversity down to genus and 
species level as well as abiotic and microbial components, such as 
sediment, turf algae and cyanobacterial mats. Our habitat maps pro-
vide a no- pixel- left- behind dense view of entire 50 m long transects, 
which allowed us to identify, localize and delineate the components 
of the surficial reef benthic community. Two ML methods with dif-
ferent complexities were used independently to produce dense and 
detailed habitat maps, thus facilitating objective comparison of reef 
descriptions at big data scale. Our workflow provides a deep de-
scription of community structure (diversity, coverage, composition 
and configuration), which demonstrated high convergence between 
both ML methods. Nonetheless, our detailed assessment indicates 
that deep learning classifiers (i.e. the patched method) are better at 
generalizing towards new and unseen datasets under comparable 
annotation and computational effort.

We designed the thematic detail in our workflow to target 
multiple user groups. Our workflow uses a detailed thematic scale 
in the form of 43 benthic categories that describe biotic and abi-
otic components of the reef habitat. Subsequently, a reefgroup 
labelspace, comprised of broad groups of reef biodiversity, was 
abstracted from the taxonomically detailed labelspace through in-
terconnected ontologies, similar to hierarchical geomorphic zones 
developed previously (Kennedy et al., 2021). By independently 
mapping into the reefgroup labelspace we showed that the work-
flow consistently retrieved the composition and configuration of 
the reef transects across thematic resolutions (Figure 6e,f). This 
enables comparisons between our maps and previous/historical 
datasets that may have different thematic resolutions, as well as 
allowing for the workflow to ‘translate’ between the needs of dif-
ferent expert groups, such as reef ecologists or managers (Lecours 
et al., 2015; Roelfsema et al., 2021). We incorporated this thematic 
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flexibility in our workflow, so that it can be reused in other benthic 
mapping scenarios (i.e. other coral reef sites, seagrass meadows, 
rocky reef sites).

4.2  |  Comparison of machine learning methods

To automate the digitization of reef communities and commu-
nity structure, careful consideration of workflow parameters is 
recommended. In our workflow, we independently used two ML 
approaches: one based on object- based image analysis (i.e. seg-
mented method) and the other on deep neural networks (i.e. 
patched method). Continual increase in complexity and specific-
ity of ML tasks for automation impedes a clear judgement of an 
ML method's ability to generalize (Paoletti et al., 2019). We tested 
two ML methods with different operational paradigms on a non- 
overlapping dataset to explore the trade- off in performance versus 
complexity of automation. Both segmented and patched methods 
showed 80% ± 5% Fbeta scores in both labelspaces (Figure 2), the 
segmented approach performing better with reflectance data and 
the patched method with radiance data. We do not consider this 
to be generally indicative for future efforts, because both our ML 
models have no consideration of the optical physics between the 
two signal types. Another work targeting a similar sized labelspace 
(35 labels) achieves a mean pixel accuracy of 49.9% with a deep 
semantic segmentation network (DeepLabV3+) on sparse sam-
ples in 729 test images of coral reef orthophoto mosaics (Alonso 
et al., 2019). Given only 2% of annotated pixels, our workflow 
mapped, with higher accuracy on 43 labels, underwater transects 
with high natural variability. We show that both ML methods can 
produce accurate mapping of reef transects, apparently due to 
the spectral detail (Figure 3c). Nonetheless, we found significant 
differences in the data requirements of both ML methods, and in 
their generalization abilities.

To determine the data requirements for the ML algorithms, 
we assessed the performance of both methods— under a con-
stant computational effort— based on the number of unique pix-
els (in segments or patches) used for training (Figure 3a,b). The 
patched method needed less data to achieve its peak performance 
under the same amount of computing power and annotation ef-
fort. Despite the variable lighting conditions and methodological 
artefacts between training and validation transects, the patched 
method classified into both labelspaces more consistently 
(Figure 4c– f). Although classifier performance metrics on the train-
ing transects are better for the segmented method (Figure 2), the 
patched method was 23% better at classifying out- of- distribution 
data (i.e. validation transects) in the detailed labelspace and 18% 
better in the reefgroup labelspace than the segmented method 
(Figure 4c,d). Given that expert annotation is the biggest bottle-
neck for reef survey analysis (Beijbom et al., 2015; Roelfsema & 
Phinn, 2013), the patched method, with its better generalization 
capability, provides better performance- per- human- effort com-
pared with the segmented method.

4.3  |  How well do the habitat maps capture the 
community structure?

The smoothed habitat maps from our workflow show spatial and 
thematic detail of the structure of the coral reef benthic commu-
nity (Figure 5). Benthic targets are clearly separated into meaningful 
regions, which represent different substrata, different organisms of 
various sizes. Small coral colonies and intricate shapes of branching 
corals, soft corals and sponges, and even transect tapes are correctly 
delineated and classified. Our workflow is able to accurately map 
bare sediment, turf algae and cyanobacterial mats achieving a previ-
ously missing capability in reef habitat mapping: dense mapping of 
the microbial components of reef substrata, while integrating them 
into a benthic community labelspace. This can be used to quantify 
changes in abundance of cyanobacterial mats or turf algae, usually 
an indicator of reef deterioration (de Bakker et al., 2017).

The primary focus of our workflow development was to con-
vert underwater spectral images into dense habitat maps. The tar-
get of our assessment was to go beyond comparing classifier- level 
metrics, and assess the final habitat maps for consistency and ac-
curacy. We considered the goal of comparing the densely classi-
fied maps to photo- quadrats with point- count estimates (Rashid 
& Chennu, 2020), but the large difference in sample sizes— ~2000 
quadrat points versus millions of classified points— made the exper-
iment statistically unsound. Given that 98% pixels (out of 500+ mil-
lion) do not have reference label annotations and the complex spatial 
structure of the transects (Figures S10– S13), it is difficult to assess 
the maps accuracy on a pixel level. To overcome this limitation, we 
exploited the fact that the two ML methods produced the same type 
of output, but worked fully independent of each other in terms of 
method, input signal and parametrization. We compared the com-
munity structure of the dense maps in describing the same physical 
transect of the seafloor. To achieve this we used coverage, as well 
as composition and configuration metrics, which are key descriptors 
of community structure (Nowosad & Stepinski, 2019; Riitters, 2019). 
We consider that if the statistical properties of the habitat maps 
from independent methods are similar, our workflow will have suc-
ceeded in representing the true composition and configuration of 
the coral reef transects captured by the underwater surveys.

The Bland– Altman analysis showed that the habitat maps agree 
on coverage and diversity metrics, except for some small discrep-
ancies (Figure 6a,b; Figure S14). These discrepancies are notice-
able in coverage of corals, sponges and cyanobacterial mats which 
were overestimated by the segmented method in a few transects 
(Figure S14I,J). The demographic composition of the communities be-
tween pairs of dense habitat maps (considering all pixels) was highly 
similar as shown by the Bray– Curtis similarity index (Figure 6e). 
This shows that both ML methods independently ascribe similar 
classes and a similar number of those classes to the same transect. 
Furthermore, the assessment of the communities between the two 
labelspaces was also very similar (Figure 6e), providing confidence 
in the thematic flexibility of our workflow. We infer that automated 
mapping with ML methods of underwater hyperspectral transects 
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can handle intra- class variability (detailed labelspace) as well as 
inter- group variability (reefgroup labelspace) with high accuracy.

Going beyond the composition, we also assessed the spatial 
configuration similarity of the benthic community in the transects 
described by both ML methods using the Jaccard index. The regions 
from the abstracted detailed- to- reefgroup maps and direct reef-
group maps yielded Jaccard scores over 60% for the dominant la-
bels (Figure 6f). Given that these comparisons are across hundreds 
of millions of pixels and over 43 different labels, these results in-
dicate high configurational similarity between the maps. Therefore, 
our workflow is able to correctly localize and delineate important 
targets in benthic habitat maps, despite the degree of thematic de-
tail. Nonetheless, these assessments are inter- comparisons within 
our workflow and a correct assessment of the configuration of the 
community structure would require dense manual annotations of 
the transects. The high degree of convergence in the community 
structure mapped independently by the two ML methods using two 
different hyperspectral signal types gives confidence in the ability of 
the workflow to produce accurate in- situ descriptions of coral reef 
habitats with high detail and analytical throughput.

4.4  |  The effect of sampling effort on 
community structure

There has been some debate about the amount of sampling effort 
necessary to accurately measure reef community structure. In ben-
thic surveys with photo- quadrats, the ‘adequate’ number of samples 
(points- per- quadrat or quadrat- per- area) to accurately describe the 
community has been a topic of debate (Dumas et al., 2009; Pante & 
Dustan, 2012; Perkins et al., 2016). The goal is to find a good balance 
between expert effort (labelling the sampling units in images) and 
reliability in the derived scene description. At the reef area scale, 
the number of quadrats per area (i.e. sampling density) is an impor-
tant determinant of the precision of coverage estimations (Lechene 
et al., 2019; Perkins et al., 2016). At the quadrat scale, various stud-
ies have used different numbers of points per quadrat (from 5 to 99) 
within indeterminate quadrat distributions, and hence, a similar anal-
ysis at the point scale is valuable. Simulations of sampling synthetic 
habitat maps, based on normal distribution of class abundances, to 
recover the coral and sponge coverage estimates with less than 5% 
relative error, revealed that the optimal number of points per quad-
rat ranged between 13 points for a heterogeneous area with high 
coral coverage and over 600 points for a very homogeneous region 
with low coral coverage (Pante & Dustan, 2012). The recommended 
number of points per quadrat was 80 for transects of unknown com-
munity structure, but generally depended on the true underlying di-
versity and dispersion of the community configuration.

We contribute to the debate with a reef- scale analysis based 
on empirical community structure derived from our benthic habi-
tat maps (Figure 7). We simulated quadrat sampling with various 
degrees of sampling effort, and found that higher densities of sam-
pling points reduced the estimation error, similar to the results at 

the quadrat scale (Lechene et al., 2019). The number of point per 
quadrat to accurately recover the coverage of rare classes exceeded 
the recommended values in the literature. Even with 1000 sampling 
points per quadrat, rare classes at the transect level could not be 
detected within the 5% relative error limit (Figure 7b,d). In contrast 
to the coverage of individual classes, the Shannon diversity index 
was captured within 5% relative error with 160 sampling points per 
quadrat (Figure 7e). We demonstrate that the rarity and skewness 
of occurrence significantly impacts the error associated with a con-
stant sampling effort. Ultimately, the precision of survey estimations 
is determined by the tension between distribution and density of 
sampling units, whether points or quadrats. When dense mapping 
at new sites is not possible and logistics constrain the number of 
quadrats, we recommend to sample over 160 points per quad-
rat during generation of baseline data, as well as to communicate 
the uncertainty generated from the sampling design (Hochberg & 
Gierach, 2021).

4.5  |  Limitations and outlook

Although the results of our workflow are encouraging enough 
to recommend the different methods applied in this work, some 
limitations are noteworthy. For example, the nature of the images 
gathered by the push- broom hyperspectral camera (without geo- 
referencing) meant that the resulting transects are not ideal for pho-
togrammetric techniques. This hinders the generation of 3D models 
and orthophoto mosaics, which provide a more comprehensive view 
of reef sites and facilitate temporal studies through geo- referencing. 
Recent studies are investigating novel techniques to overcome this 
limitation of hyperspectral push- broom sensors and have succeeded 
in producing rectified orthophoto mosaics of hyperspectral tran-
sects (Jurado et al., 2021; Moroni et al., 2012). Similarly, new robotic 
platforms, survey methods and data sources are being developed to 
improve benthic habitat mapping. We believe that the future direc-
tion of reef mapping is to develop end- to- end workflows that can 
handle mapping at the reefscape scale, with thematic and technical 
flexibility. Our workflow lays the groundwork for such end- to- end 
frameworks, where spectrally rich data flows are leveraged for map-
ping coral reefs.

It is also important to note, that the ML methods presented in 
this study are tailored for hyperspectral data and would not produce 
similarly high performance on RGB images. Another limitation of our 
ML methods is that they show low classification confidence in dark-
ened areas (i.e. shadows). Thus, caution is advised when measuring 
small changes in temporal studies or reporting size of benthic organ-
isms. A simple solution would be to group such problematic regions 
in a ‘Shadow’ class of the labelspace. It must also be mentioned, that 
deep neural networks require high computational power to train and 
predict on hyperspectral data within reasonable time frames.

Regardless of the imaging techniques and ML methods used in 
reef surveys, we consider it important to evaluate the dense habitat 
maps (and not the classifiers) in terms of accuracy and completeness, 
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as the measure of progress. To disentangle the effects of changes in 
ML methods and data, we urge that the original images and anno-
tations be made publicly available so that they can be re- evaluated 
independently. We have made the complete datasets (Chennu 
et al., 2020; Schürholz & Chennu, 2022a) and source code avail-
able to reproduce the results presented in this work (Schürholz & 
Chennu, 2022b).

Even though our workflow produces dense habitat maps with 
species- level resolution in several reefgroups, it is not a replace-
ment for biodiversity assessments, where every species is recorded. 
New ML paradigms might be necessary to resolve the taxonomical 
hierarchy within reef organisms. Habitat descriptions that are de-
rived from purely surficial surveys neglect cryptic biota, which can 
account for as much as half of the reef community and are, hence, 
critical to biodiversity assessments (Kornder et al., 2021). Further 
development of interdisciplinary efforts intersecting ML, computer 
vision, robotics, environmental DNA analysis and reef ecology will 
be required to automate survey outputs that directly enable biodi-
versity assessments and detailed reef inventories.

5  |  CONCLUSIONS

Our proposed workflow showcases a way to generate dense habi-
tat maps of coral reefs with flexible thematic detail. This thematic 
and spatial detail in the maps enables fine- grained analyses of coral 
reef functions and community dynamics by coral reef ecologists. We 
seek to contribute to unifying the perspective of ecologists, envi-
ronmental managers, remote sensing and ML communities involved 
in the study of coral reefs. Particularly for ecologists and managers, 
our approach provides a consistent habitat description with adaptive 
thematic detail. Between remote sensing and ML experts, it offers a 
perspective on bridging the ‘measurement gap’ between ML classifi-
ers and the ultimate data products, that is, habitat maps. The consist-
ency achieved by our mapping workflow, and the patched method in 
particular, is related to the richness in spectral detail and the spatial 
acuity of our proximal sensing vantage point of underwater surveys 
(Chennu et al., 2017; Rashid & Chennu, 2020). When certain limita-
tions are overcome and with improvements in cost and performance 
of underwater spectral surveying technology, it will become feasible 
to integrate it as a standard in- situ reef monitoring technique. The 
widespread use of underwater spectral surveying and automated 
benthic habitat mapping promises to provide the best validation data 
for aerial Earth observation efforts to map coral reefs globally. The 
integration of thematic detail into global habitat mapping promises 
to enable novel analyses of pattern and scale in coral reef ecology.
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