
Inference of Continuous Linear Systems from
Data with Guaranteed Stability

Pawan Goyal1 Igor Pontes Duff2 Peter Benner3

1Max Planck Institute of Dynamics of Complex Technical Systems
Email: goyalp@mpi-magdeburg.mpg.de, ORCID: 0000-0003-3072-7780

2Max Planck Institute of Dynamics of Complex Technical Systems
Email: pontes@mpi-magdeburg.mpg.de, ORCID: 0000-0001-6433-6142

3Max Planck Institute of Dynamics of Complex Technical Systems, Otto-von-Guericke University Magdeburg
Email: benner@mpi-magdeburg.mpg.de, ORCID: 0000-0003-3362-4103

Abstract: Machine-learning technologies for learning dynamical systems from data play
an important role in engineering design. This research focuses on learning continuous linear
models from data. Stability, a key feature of dynamic systems, is especially important in design
tasks such as prediction and control. Thus, there is a need to develop methodologies that
provide stability guarantees. To that end, we leverage the parameterization of stable matrices
proposed in [Gillis/Sharma, Automatica, 2017] to realize the desired models. Furthermore,
to avoid the estimation of derivative information to learn continuous systems, we formulate
the inference problem in an integral form. We also discuss a few extensions, including those
related to control systems. Numerical experiments show that the combination of a stable
matrix parameterization and an integral form of differential equations allows us to learn
stable systems without requiring derivative information, which can be challenging to obtain
in situations with noisy or limited data.

Keywords: Continuous systems, linear dynamical models, stability, Lyapunov function,
Runge-Kutta scheme.

Novelty statement:

• Learning stability-guaranteed continuous linear systems.

• Utilizing a stable matrix parameterization.

• Employing an integral form of differential equations to learn continuous systems, hence
does not require estimating derivative information for data.

• Several numerical examples demonstrate the stability-guarantee of the learned models,
which otherwise yield unstable models despite good data fit.

1 Introduction

Linear dynamical systems (LDS) are a widely used class of dynamical systems for describing underlying
physical processes in science and engineering. These models are also utilized to understand the dynamic
behavior of more complex nonlinear dynamical systems around operating points or equilibria. Conse-
quently, LDS can be employed for optimization, and the design of feedback control laws. However, for
complex physical processes, mathematical models are often hard to build from first-principles and physi-
cal parameters. Thus, there is a growing interest in developing mathematical models using experimental
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data, which is widely available due to advances in measurement technology. This work aims at learning
continuous-time LDS from data while ensuring that the learned models are stable, which is necessary for
goals such as long-term predictions.

Significant research has been dedicated to learning discrete-time linear dynamic systems (LDS) from
time-domain data in the literature. One method that has gained widespread attention is dynamic mode
decomposition (DMD), due to its accuracy in predicting dynamic systems, its connection to the Koopman
operator [1], and its ease of implementation [2]. DMD was originally developed in the field of fluid
dynamics [3], and several variations have been proposed since, such as compressed DMD [4], extended
DMD [5], and DMD with control [6]. In the field of systems and control, methods for learning LDS
from input-output data include the eigensystem realization algorithm [7], and subspace methods [8, 9].
There are also several methods for learning LDS from frequency data measurements, such as the Loewner
framework [10], vector fitting [11, 12], and the AAA algorithm [13]. In addition, the operator inference
method [14] was proposed for learning linear or polynomial dynamics from state-space data in continuous-
time systems. This method can be viewed as a continuous-time version of DMD, at least for linear systems.
Indeed, both involve solving a least squares problem from data. However, a key difference between both
is that operator inference utilizes the derivative data, while DMD uses the shift state data.

Many physical processes are typically stable, meaning their state variables are well-behaved and glob-
ally bounded. These processes are often described by a set of stable differential equations, which is
necessary for an accurate representation of the physics, as well as for numerical computations. However,
stability is often neglected in many frameworks for learning dynamical systems. Consequently, unstable
learned dynamical systems may be inferred even if the original dynamics are stable, leading to failure
in predicting long-term behavior [15]. Stability constraints based on eigenvalues can be applied to an
optimization problem, but this results in a non-convex constraint optimization problem that does not
scale well with complexity. In the literature, the identification of linear stable discrete-time systems using
matrix inequality constraints has been addressed in [16,17] in the context of subspace identification meth-
ods. In DMD perspectives, a nonsmooth optimization method was suggested in [18] to enforce stability.
Very recently, using parametrization for discrete stable matrices [19], the authors guarantee the stability
of discrete linear dynamical systems, see [20]. More recently, operator inference with matrix inequality
constraints was discussed in [21] for a particular structured case where the linear matrix or operator is
symmetric and negative definite.

In this study, we propose a framework for learning continuous-time LDS enforcing stability by construc-
tion. To achieve this, we exploit the stable matrix parameterization proposed in [22], which guarantees
stability for continuous-time LDS. This allows us to formulate the identification problem as an uncon-
strained optimization loss function. Hence, this methodology does not require any stability constraints,
e.g., by means of eigenvalues or matrix inequalities, and therefore it scales to more significant complexity
problems. Additionally, we use an integral form of differential equations to avoid the need to estimate
derivative information, which can be challenging to obtain for noisy or scarce data. This idea is highly
inspired by the recent advances in Neural ODEs [23] and the use of integrating schemes in learning of
dynamical systems [24–26]. Through numerical experiments, we illustrate that the new methodology
(sLSI) yields systems that are guaranteed to be stable. In contrast, the classical methods—that do not
enforce this property—can produce unstable models. Moreover, we show that the inference methodology
is suitable for high-dimensional data by combining it with a compression step to obtain a low-dimensional
data representation.

The reminder of this paper is organized as follows. In Section 2, we provide a brief overview of
a method for learning continuous-time LDS through a DMD-like procedure. The learned models are
obtained through the solution of an unconstrained least-squares problem using the available data. In
Section 3, we recall the stability concept for continuous-time LDS and present the characterization for
stable matrices, proposed in [22], which forms the basis for our proposed methodology. We then formulate
a suitable optimization problem for learning LDS, enforcing stability. We further show how to rewrite
the optimization problem as an unconstraint one. In Section 4, we discuss incorporating integration
schemes in learning continuous systems to avoid the necessity of derivative information, which yields a
robust performance of sLSI under noisy and limited data conditions. In Section 5, we show how the
methodology can be adapted for high-dimensional data and discuss a few possible extensions. Finally,
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Section 6 presents numerical experiments illustrating that sLSI guarantees to produce stable models, and
Section 7 provide a summary of our findings.

2 Continuous-time Linear Systems and its Inference

Throughout this work, we consider continuous-time linear dynamical systems as follows:

d

dt
x(t) = Ax(t), x(0) = x0, (1)

where x(t) ∈ Rn is the state variable, x0 ∈ Rn is the initial condition, and A ∈ Rn×n is a matrix. The
inclusion of control variables in such systems is discussed in Section 5. Our goal is to learn a stable linear
dynamical system from state measurements. The DMD algorithm finds the linear operator A ∈ Rn×n
that best fits the available data in the desired norm. In this work, we will focus on the analog to the
DMD algorithm for continuous-time systems as (1). This methodology is also referred to in the literature
as operator inference with only linear term [14]. For continuous-time systems, we assume that snapshots
of the state x(t) and the state derivative d

dtx(t) are available for time instances {t1, . . . , tN}. These
snapshots are collected in the snapshot matrices as follows:

X =

 | | |
x(t0) x(t1) . . . x(tN )
| | |

 ∈ Rn×N , and Ẋ =

 | | |
d
dtx(t0) d

dtx(t1) . . . d
dtx(tN )

| | |

 ∈ Rn×N .

(2)
In terms of these matrices, the operator A can be inferred via a least squares fitting. More precisely, the
matrix A is the solution to the optimization problem

A = arg min
Ã∈Rn×n

∥∥∥Ẋ− ÃX
∥∥∥
F
, (3)

where ‖·‖F is the Frobenius norm. Additionally, the minimal-norm solution for the previous optimization
problem can be given as follows:

A = X†Ẋ,

where X† denotes the pseudo-inverse of the snapshot matrix X.
It is worth noticing that the learned linear model using (3) is not guaranteed to be stable, even if

the available data was obtained from an underlying stable system. Another drawback of the linear
regression (3) is that it requires knowledge of the derivative of the state. Indeed, it can be difficult to
accurately estimate this derivative information when dealing with noisy or limited data. To circumvent
this issue, the authors e.g., in [23–26] have suggested reformulating the problem in an integral form, which
has been shown to provide robust performance. In this work, we also employ a similar concept to avoid
computation of the derivative information which shall be discussed more in Section 4.

3 Stability-guaranteed Learning

We begin by describing the characterization of stability for linear dynamical systems (1) which will be
used on this work. It is known that a linear system (1) is stable if and only if all of the eigenvalues of the
matrix A are in the closed left half complex plane and all eigenvalues on the imaginary axis are semi-
simple. Additionally, the linear system (1) is asymptotically stable if and only if all of the eigenvalues of
the matrix A are in the closed left half complex plane.

Parametrization of stable matrices: A recent characterization of stable matrices is discussed in [22,
Lemma 1]. In this work, the authors show that every stable matrix A can be written as:

A = (J−R)Q (4)
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where J = −J> is a skew symmetric matrix, R = R> ≥ 0 i symmetric positive semi-definite, and
Q = Q> > 0 is symmetric positive definite. The authors discussed such parametrization to determine
the distance to stability of any given matrix.

It is worthwhile mentioning that the parametrization (4) encodes a Lyapunov function for the under-
lying linear dynamical system, which is stated in the following lemma.

Lemma 1. Consider a linear dynamical system as in (1) where A takes the form given in (4). Then,
the quadratic function

V(x(t)) =
1

2
x(t)>Qx(t)

is a Lyapunov function of the system.

Proof. Note that

d

dt
V(x(t)) =

1

2

(
d

dt
x(t)

)>
Qx(t) +

1

2
x(t)>Q

(
d

dt
x(t)

)
= x(t)>Q

(
d

dt
x(t)

)
= x(t)>QAx(t)

= x(t)>Q(J−R)Qx(t)

= x̃(t)>(J−R)x̃(t) with x̃(t) = Qx(t)

= x̃(t)>(J−R)x̃(t)

=���
���:

0
x̃(t)>Jx̃(t)− x̃(t)>Rx̃(t) ≤ 0,

because R ≥ 0.

Remark 1. We also highlight that if R is a positive definite matrix, d
dtV(x(t)) < 0. As a consequence,

the matrix A is asymptotically stable.

The parametrization in (4) enables us to characterize every continuous-time stable dynamical sys-
tem. Instead of relying on constraints involving matrix inequalities or eigenvalues, we will utilize this
parametrization to ensure the stability of the learned dynamical system.

Stability informed learning As noted earlier, the matrix decomposition (4) guarantees that the matrix
A is stable. So, we will use the stable matrix parametrization to guarantee that the learned linear systems
are stable. To this aim, we formulate our objective function as follows:

(J,R,Q) = arg min
J̃,R̃,Q̃

∥∥∥Ẋ− (J̃− R̃)Q̃X
∥∥∥
F
,

subject to J̃ = −J̃>, R̃ = R̃> ≥ 0, Q̃ = Q̃> > 0.

(5)

Once we have the optimal value for the tuple (J,R,Q), we can construct the stable matrix A as (J−R)Q.

Note that the optimization problem (5) includes constraints on the matrices J̃, R̃, Q̃. With an appropriate
parameterization for these matrices, we can re-formulate the optimization problem (5) as an unconstrained

one. To that end, first, note that any skew-symmetric matrix J̃ can be parameterized as

J̃ = J̄− J̄>, (6)

where J̄ ∈ Rn×n is a square matrix. Moreover, to remove the symmetric positive (semi)definite con-
straints, we parameterize Q̃ and R̃ as

Q̃ = Q̄Q̄> and R̃ = R̄R̄>, (7)

for any given matrices Q̄ and R̄ ∈ Rn×n. Notice that the parametrization (7) only guarantees that Q̃ is
positive semidefinite unless the matrix Q̄ is full rank. In order to avoid the rank constraint, we will relax
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the problem, where we allow Q̃ to be semidefinite. These parametrizations enable us to re-formulate the
objective constraint function (5) as the unconstrained objective function:

(J̄, R̄, Q̄) = arg min
J́,Q́,Ŕ

∥∥∥Ẋ− (J́− J́> − ŔŔ>)Q́Q́>X
∥∥∥
F
. (8)

This then results in a stable matrix A =
(
J̄− J̄> − R̄R̄>

)
Q̄Q̄>.

4 Un-rolling Integrating Schemes to Avoid Derivative Information
Requirement

One of the challenges to learning continuous-time LDS (see, e.g., (8)) is the requirement for derivative
information, which can be difficult to accurately estimate from noisy and scarce data. As an alternative,
researchers have explored the use of integral forms of differential equations and numerical techniques to
learn continuous systems [24–26] . With a similar spirit, we focus on embedding a Runge-Kutta fourth-
order integration scheme to predict the dependent variable x at the next time step. Given a stable linear
system (1) and the state x at time ti, denoted by x(ti), we can estimate x(ti+1) as follows:

x(ti+1) = Φdt (A,x(ti)) := x(ti) +
dt

6
(h1 + 2h2 + 2h3 + h4) , (9)

where

h1 = Ax(ti), h2 = A

(
x(ti) +

dt

2
h1

)
, h3 = A

(
x(ti) +

dt

2
h2

)
, h4 = A (x(ti) + h3) . (10)

We can then modify the objective function (8) as follows:

min
J̄, R̄,Q̄

∑
i

∥∥x(ti+1)− Φdt

(
Ā,x(ti)

)∥∥ , with Ā =
(
J̄− J̄> − R̄R̄>

)
Q̄Q̄>, (11)

thus avoiding the necessity of derivative information. Consequently, we have the optimization problem
(11) whose solutions are stable by construction. This proposed methodology is called stable linear system
inference (sLSI) throughout this paper.

Moreover, we highlight that one can use any other numerical integration or higher-order schemes, as
well as multi-step unfolding schemes. In fact, the concept of adjoint sensitivity, as proposed in neural
ODEs [23], can be employed to perform efficient computation (in term of memory cost) through any
numerical integrator, but it often comes with more CPU cost.

5 Further Considerations

In this section, we discuss a few possible considerations and extensions for sLSI.

5.1 Low-dimensional representation and analog to compressed DMD

Collecting data from physical systems often results in high-dimensional data with thousands to millions
of degrees of freedom. As a result, building models from such high-dimensional data are computationally
expensive. However, mostly these high-dimensional data reside in a low-dimensional subspace, so we
can obtain a compact, low-dimensional representation by projecting onto such a subspace. Techniques
such as principal component analysis (PCA), proper-orthogonal decomposition (POD), and autoencoders
can be used to achieve this goal. Here, we describe the POD approach, which is commonly used in the
reduced-order modeling community.

Singular-value decomposition (SVD) is a key element of POD and allows us to determine a suitable low-
dimensional subspace. To that aim, let us consider a data matrix X ∈ Rn×N , where n is the dimension of
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the data, and N is the number of measurements. We can determine the dominant subspace by performing
the SVD of X, i.e.,

X := UΣV>, (12)

where the dominating subspaces are contained in U, and the singular values stored in Σ determine
their significance. Σ := diag (σ1, . . . , σn) is a diagonal matrix with σi+1 ≥ σi. By using the subspace
spanned by the r most dominant left singular vectors, denoted by Ur, we can obtain a low-dimensional
representation as follows:

Xr = U>r X, (13)

where Xr ∈ Rr×N . Moreover, we can reconstruct our high-dimensional data X, indicated by X̃, using Xr,
e.g., X̃ = UrXr. Additionally, the information loss due to projection and re-projection can be measured
as follows:

‖X− X̃‖2 ≤
n∑
r+1

σi. (14)

Using the above relation as an indicator, we can choose a suitable r. Finally, once we have a low-
dimensional representation of the data Xr, we can use the method sLSI described in the previous sections
to learn linear dynamical systems in the low-dimensional space, thus avoiding numerical computations in
high dimensions, which may be too expensive.

5.2 Systems controlled by external inputs

Many dynamic processes are controlled by external inputs, which can result in different dynamic behavior
when varied. To account for this in our modeling, we consider the following model hypothesis:

ẋ(t) = Ax(t) + Bu(t). (15)

Given the trajectories x(t) subject to various control inputs, we aim to learn (15) while maintaining
stability constraints. To this aim, we collect snapshots of the input functions as follows

U =

 | | |
u(t0) u(t1) . . . u(tN )
| | |

 ∈ R1×N , (16)

and tailor the objective function in (8) to include the control input. Hence, the resulting objective for
inferring control systems is given by

(J̄, R̄, Q̄, B̄) = arg min
J́,Q́,Ŕ,B́

‖Ẋ− (J́− J́> − ŔŔ>)Q́Q́>XB́U‖F , (17)

and the learned dynamical system with control is guaranteed to be stable.
With some slight modifications, we can easily extend the discussion from Subsection 3 and incorporate

numerical schemes to avoid the derivative data. Specifically, we modify (9) as follows:

x(ti+1) ≈ Φc
dt (A,B,x(ti),u) := x(ti) +

dt

6
(h1 + 2 · h2 + 2 · h3 + h4) , with dt = ti+1 − ti (18)

h1 = Ax(ti) + Bu(ti), h2 = A

(
x(ti) +

dt

2
h1

)
+ Bu

(
ti + dt

2

)
h3 = A

(
x(ti) +

dt

2
h2

)
+ Bu

(
ti + dt

2

)
, and h4 = A (x(ti) + h3) + Bu(ti + dt).

(19)

The objective function (17) then changes as follows:

min
J̄, R̄,Q̄,B̄

∑
i

∥∥x(ti+1)− Φc
dt

(
Ā, B̄,x(ti)

)∥∥
F
, with Ā =

(
J̄− J̄> − R̄R̄>

)
Q̄Q̄>. (20)

This allows us to obtain a stable control system realization by construction and avoid the need to compute
derivative information by combining it with a numerical integrator.
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Figure 1: Flow-past cylinder example: A comparison of the eigenvalues of the learned models, which
clearly shows sLSI guarantees that all of the eigenvalues are in the left half-plane. The right
plot shows a zoomed-in version of the left plot centered around the origin.

5.3 Stable linear models for predefined observers

It is well-known that nonlinear dynamic systems can be represented as linear systems in an infinite-
dimensional Hilbert space, as described in [27]. However, in order to use these models for engineering
purposes, it is necessary to approximate this infinite-dimensional space. The extended DMD method
proposed in [5] aims to design observers that can accurately approximate infinite-dimensional operators
using finite-dimensional linear operators. However, the methodology to learn stable models is maintained
for newly designed observers. Hence, the method for learning stable realizations described in the previous
section (sLSI) can be readily applied in the context of extended DMD to learn stable linear operators
for continuous-time systems.

6 Numerical Experiments

In this section, we evaluate the performance of sLSI through three numerical examples. We compare
sLSI with the recently proposed methodology in [26] which allows inference for LDS using numerical
integration un-rolling to avoid the need for derivative computation but without any enforcing of stability
of the learned operator. We refer to it as linear system inference (LSI). All experiments are conducted
using PyTorch, with 20,000 updates performed using the Adam optimizer [28] and a triangular cyclic
learning rate ranging from 10−6 to 10−2. The coefficients of all matrices are randomly generated from a
Gaussian distribution with a mean of 0 and standard deviation of 0.1.

6.1 Unsteady flow for cylinder-wake example

In this example, we study the flow past a cylinder, a widely used benchmark problem in the literature
(see, for instance, [2]). The Reynolds number is set to Re = 100 and we have 151 vorticity measurements,
which exhibits periodic oscillations. The data was collected on a grid of 199 × 449. Since the data can
be represented very well in a low-dimensional manifold, we compress the data using 31 dominant POD
modes, consequently reducing the complexity of the optimization problem and so for the learned model.
We learn continuous-time linear models using sLSI and LSI. To assess the performance, we first compare
the eigenvalues of these learned systems in Figure 1, which clearly indicates sLSI yields a model with all
eigenvalues in the left-half plane. In contrast, LSI yields a model, possessing some unstable eigenvalues.
Furthermore, we compute the inferred eigenfunctions from the model obtained with sLSI. In Figure 2, we
plot the real part of the four dominant eigenfunctions showing the dominant flow dynamics as expected.
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Figure 2: Flow-past cylinder example: The plots show the real part of the dominant eigenfunctions from
the learned model via sLSI.

6.2 Transporting flow

Figure 3: Transporting flow: The plot
shows the magnitude of the ve-
locity at time t = 0.

Next, we consider a two-dimensional transporting flow whose
x and y-directions velocities, denoted by u and v, are given
by

u(x, y, t) = sin(5(t− x)) sin(5(t− y)),

v(x, y, t) = cos(5(t− x)) cos(5(t− y)).
(21)

We consider the spatial domain [−1.5, 1.5]× [−1.5, 1.5] and
200 equidistant points in both directions to sample the flow.
Then, we collect 100 data points in time interval [0, 5], and
the flow at time t = 0 is shown in Figure 3.

The data in this study has a high dimensionality, with a
total of 2 · 40, 000 variables. To address this, we first aim
to find a low-dimensional representation of the data using
POD. We discover that the data can be described by only
three dominant modes (up to the machine precision). Hence,
we project the high-dimensional data onto these dominant
subspaces and use them to learn linear dynamical models with sLSI and LSI. The eigenvalues of these
models are depicted in Figure 4. The figure clearly demonstrates that the proposed methods ensure
stability. In contrast, when stability is not imposed, then the resulting systems can be unstable, which
is the case for this example. Moreover, we show the eigenfunctions related to the velocities in the x and
y-directions in Figure 5, showing transportion of the flow in a specific direction.

6.3 Burgers’ equations

In our last example, we consider the one-dimensional Burgers’ equation with the following initial and
boundary:

vt + vv̇ζ = +µvζζ in (0, 1)× (0, T ),

vζ(0, ·) = 0,

uζ(1, ·) = 0,

u(ζ, 0) = v0(ζ) in (0, 1),

(22)

where vt and vζ denote the derivative of v with respect to time t and space ζ, and vζζ denotes the second
derivative of v with respect to ζ. The PDE is discretized using 1, 000 equidistant grid points. We collect
500 data points for a given initial condition in the time interval [0, 1]s. Furthermore, we assume the initial
conditions to be v0(ζ) = 1 + sin((2fζ + 1)π), where f = [1, 1.25, . . . , 4.75, 5.0]. Hence, we have the data
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Figure 4: Transport flow example: A comparison of the eigenvalues of the learned models, which clearly
shows sLSI guarantees to have all eigenvalues in the left half-plane. The right plot shows a
zoomed-in version of the left plot centered around the origin.

0 100
x

0

50

100

150

y

eigenfunc for u

0 100
x

0

50

100

150

y

eigenfunc for u

0 100
x

0

50

100

150

y

eigenfunc for u

0 100
x

0

50

100

150

y

eigenfunc for u

0 100
x

0

50

100

150

y

eigenfunc for v

0 100
x

0

50

100

150

y

eigenfunc for v

0 100
x

0

50

100

150

y

eigenfunc for v

0 100
x

0

50

100

150

y

eigenfunc for v

0 100
x

0

50

100

150

y

eigenfunc for u

0 100
x

0

50

100

150

y

eigenfunc for u

0 100
x

0

50

100

150

y

eigenfunc for u

0 100
x

0

50

100

150

y

eigenfunc for u

0 100
x

0

50

100

150

y

eigenfunc for v

0 100
x

0

50

100

150

y

eigenfunc for v

0 100
x

0

50

100

150

y

eigenfunc for v

0 100
x

0

50

100

150

y

eigenfunc for v

Figure 5: Transport flow example: The plots show the dominant eigenfunctions for u and v, i.e., the
velocities in the x and y-directions, respectively.

corresponding to in-total 17 different initial conditions. Next, we split the data into training and testing,
and for the testing, we take the initial conditions with f = [1.75, 2.75, 3.75], and the rest are considered
for learning.

First of all, since the data are high-dimensional, we seek to determine a low-dimensional representation
of the training data by projecting it using the dominant POD basis. We consider 21 modes, which
capture more than 99.9% of the total energy. Next, we employ sLSI and LSI to obtain linear models.
For comparison, we first look at the eigenvalues of both learned models, which is shown in Figure 6.
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Figure 6: Burgers’ equation: A comparison of the eigenvalues of the learned models, which clearly shows
that sLSI guarantees not to have any eigenvalues in the right half-plane.
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Figure 7: Burgers’ equation: A performance of the learned models on the test data.

It indicates the guaranteed stability of sLSI, whereas LSI has an eigenvalue in the right-half plane,
indicating potential instability in long-term prediction.

Moreover, we compare the learned models on the left-out initial conditions for testing. For this, we first
project the initial condition onto a 21-dimensional subspace using the same POD basis as used for the
training data. We integrate the system for the time-interval [0, 1] and take 500 steps in this interval. For
comparison, we examine the relative L2-error for all three testing initial conditions, shown in Figure 7. It
shows that sLSI even performs well, up to a factor of two, in the time-domain simulations despite having
stability constraints on the linear operator while inferring. We also compare the time-domain simulations
for one of the test cases in Figure 8. It is done by first integrating the low-dimensional model, which is
followed by re-projecting onto the higher-dimensional using the POD basis.

7 Conclusions

We discussed a method for learning continuous-time linear dynamical systems (sLSI) with two key fea-
tures. First, the sLSI approach makes use of the parameterization of stable matrices, ensuring the
stability of the inferred systems through direct encoding. The second feature of the proposed method is
the use of an integral form for learning continuous-time systems, thus eliminating the requirement for ex-
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Figure 8: Burgers’ equation: A comparison of the time-domain simulation of sLSI on a test data with
f = 3.75. The left figure is the ground truth; the middle is sLSI, and the right one shows the
error between them.

plicit derivative computation. Several extensions are presented as well. Numerical examples demonstrate
the stability features of the learned models. In contrast, this characteristic can be broken if stable-matrix
parameterization is not applied. Moreover, the performance of the learned models using sLSI can lead
to an improvement of up to a factor of two in time-domain simulations.

This work opens up the possibility for further research. As emphasized, having an adequate parameter-
ization, which directly encodes desired properties, guarantees to have those properties by construction.
Therefore, it would be intriguing to explore the possibility of enforcing additional physical laws, such
as conservation of mass and energy, through the use of appropriate parameterizations. An extension to
parametric varying systems could also be promising.
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[24] R. González-Garćıa, R. Rico-Mart̀ınez, I. G. Kevrekidis, Identification of distributed parameter
systems: A neural net based approach, Computers & Chemical Engineering 22 (1998) S965–S968.

[25] P. Goyal, P. Benner, Discovery of nonlinear dynamical systems using a Runge-Kutta inspired
dictionary-based sparse regression approach, Proc. Royal Society A: Mathematical, Physical and
Engineering Sciences 478 (2262) (2022) 20210883. doi:10.1098/rspa.2021.0883.

[26] W. I. T. Uy, D. Hartmann, B. Peherstorfer, Operator inference with roll outs for learning reduced
models from scarce and low-quality data, arXiv preprint arXiv:2212.01418 (2022).

[27] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Nat. Acad. Sci.
U.S.A. 17 (5) (1931) 315–318.

[28] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980
(2014).

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2023-01-25

https://doi.org/10.1109/61.772353
https://doi.org/10.1137/15M1010774
https://doi.org/10.1016/j.cma.2016.03.025
https://doi.org/10.1007/s10444-018-9592-x
https://doi.org/10.1098/rspa.2021.0883

	1 Introduction
	2 Continuous-time Linear Systems and its Inference
	3 Stability-guaranteed Learning
	4 Un-rolling Integrating Schemes to Avoid Derivative Information Requirement
	5 Further Considerations
	5.1 Low-dimensional representation and analog to compressed DMD
	5.2 Systems controlled by external inputs
	5.3 Stable linear models for predefined observers

	6 Numerical Experiments
	6.1 Unsteady flow for cylinder-wake example
	6.2 Transporting flow
	6.3 Burgers' equations

	7 Conclusions

