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Neurons encounter unavoidable evolutionary trade-offs between multiple
tasks. They must consume as little energy as possible while effectively fulfill-
ing their functions. Cells displaying the best performance for such multi-task
trade-offs are said to be Pareto optimal, with their ion channel configurations
underpinning their functionality. Ion channel degeneracy, however, implies
that multiple ion channel configurations can lead to functionally similar be-
haviour. Therefore, instead of a single model, neuroscientists often use
populations of models with distinct combinations of ionic conductances.
This approach is called population (database or ensemble) modelling. It
remains unclear, which ion channel parameters in the vast population of
functional models are more likely to be found in the brain. Here we argue
that Pareto optimality can serve as a guiding principle for addressing this
issue by helping to identify the subpopulations of conductance-based
models that perform best for the trade-off between economy and functional-
ity. In this way, the high-dimensional parameter space of neuronal models
might be reduced to geometrically simple low-dimensional manifolds,
potentially explaining experimentally observed ion channel correlations.
Conversely, Pareto inference might also help deduce neuronal functions
from high-dimensional Patch-seq data. In summary, Pareto optimality is a
promising framework for improving population modelling of neurons and
their circuits.
1. Ion channel degeneracy in population models of
neurons

Landmark studies have shown that multiple different parameters of ion
channels can generate similar activity both at the level of single cells [1] as well
as neural circuits [2,3]. This multiple-to-one mapping between combinations of
ion channel parameters and cell or circuit phenotypes has been termed ion
channel degeneracy [4] or non-uniqueness [5,6]. Degeneracy [7] is present at all
scales of the brain (figure 1). Its importance for the flexibility and robustness of
brain functions has been increasingly acknowledged in recent years (for reviews
see [9–11]). Accordingly, ion channel degeneracy has been linked to the flexibility
[4] and robustness of neuronal behaviour [10,12,13].

Several groups have adopted computational insights and methods of the
above-mentioned landmark studies [1,2] to explore ion channel degeneracy in
different types of neurons (e.g. [5,14–23]). This approach has been successfully
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Figure 1. Degeneracy in the parameter space of biological systems (e.g. neur-
ons with ion channels). Multiple disparate parameter configurations in the
parameter (trait) space (e.g. ion conductance space) can lead to similar func-
tional phenotypes optimized for a given task A (e.g. dendritic computation). In
degenerate systems such as our brain, there is a multiple-to-one mapping
between the parameter space and the phenotype space at all scales including
the scale of ion channels and nerve cells (and their circuits). Each point (tri-
angle) may represent a single neuron in a multidimensional parameter
( performance) space. The schematic shows a 2D space but in real systems, par-
ameter and performance space can have different numbers of dimensions (see
also figure 8). The degeneracy and Pareto optimality concepts can be applied to
any number of dimensions. For three-dimensional version of a similar sche-
matic see, for example, fig. 4 in Mishra & Narayanan [8]. Throughout this
article, we consider ‘parameter space’ and ‘trait space’ to be synonyms. Simi-
larly, we consider ‘performance space’, ‘functional space’, ‘phenotype space’
and ‘output space’ to be synonyms. This applies also to (neuronal) ‘tasks’,
‘objectives’ and ‘functions’.
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used even outside of neuroscience, for example in heart cell
physiology [24]. It has been called population- [23–25] or data-
base- [16,17] or ensemble-modelling [18]. Population-based
computer models have provided a better understanding of
cell-to-cell as well as animal-to-animal variability of electro-
physiological and ion channel expression data [3,25,26].
Instead of a ‘one-size-fits-all’ approach in which a computer
model simulates average properties of a nerve cell or heart
muscle cell, the population-based approach constructs and vali-
dates large populations of realistic cellular models that differ in
their ion channel configurations and reflect the variability of
experimental data [24,27]. Recent work has also shown that
such population models may allow pharmacological predic-
tions in silico, thus complementing, and partially replacing
animal experiments [23,28].

Ion channel degeneracy applies not only to intrinsic cellular
properties but also to extrinsic synaptic properties [2]. Already
the first landmark studies have shown that many disparate
configurations of synaptic and intrinsic conductances are able
to generate similar neuronal behaviour as well as similar (func-
tional) network behaviour [2] (see also [29–33]). Therefore,
although in this article we focus on degeneracy of intrinsic
ion channels at the cellular level, the concepts of degeneracy
and Pareto optimality [34] can be extended also to extrinsic
synaptic channels and to the level of neuronal circuits.
2. The problem of the large and complex
parameter space of functional models

Given the importance and the success of the populationmodel-
ling approach, it would be desirable to further improve
its predictive power. Thiswould facilitate clinically relevantpre-
dictions about the role of ion channels in neurological diseases
with known ion channel expression correlates, such as epilepsy.
However, to achieve this, we need to find a solution to one par-
ticularly problematic issue of population modelling. Due to ion
channel degeneracy, one can obtain similar neuronal compu-
tational, functional and electrophysiological properties with
widely different parameter combinations in any given neuronal
biophysical model. The problematic issue is that it is unclear
which compositions of ion channels and their parameters, all
of which generate realistic (functional) electrophysiological
behaviour, are in reality preferred by evolutionary selection. In
other words, it is not understood, which ion channel configur-
ations in a vast population of valid models are more likely to
be found in the brain. We know that often there is a degenerate
multiple-to-one mapping between parameter (or trait) space of
ion channels and phenotype (or performance/function) space
of neurons (figure 1). However, we lack a theoretical framework
to fully constrain thismapping in abiologically realisticmanner.

Thus, it is an unresolved question whether naturally
occurring configurations of neuronal parameters occupy a
large or a restricted subspace in the large, theoretically possible
parameter space. The complex shape of the valid parameter
space has been explored before (e.g. [15,35,36]). However,
there is a need for universal guiding principles that would
further constrain the shape of the parameter space to those
models that most likely represent real neurons found in
nature. Such a principle would help address the following
questions. Are naturally occurring instances of real neurons
(and their circuits) confined to low-dimensional manifolds or
rather scattered widely over the entire parameter space [37]?
In case a neuron type has n ion channel parameters, each
instance of the neuron can be represented as a point in an
n-dimensional parameter space. Can complex n-dimensional
conductance spaces [35] be reduced to low-dimensional
subspaces? If real (naturally occurring) configurations of par-
ameters were restricted to low-dimensional manifolds [8], it
would greatly enhance our understanding of neuronal sys-
tems. It would potentially allow us to infer most unknown
parameters from a small subset of known parameters [37].

Intriguingly, 10 years ago, in their pioneering research,
computational systems biologists started using Pareto optim-
ality to show that evolution selects phenotypes that are
located in low-dimensional manifolds (e.g. lines, triangles)
of parameter space [38]. Pareto theory predicts that such a
low-dimensional geometry of the parameter space would be
found in nature. The framework of Pareto optimality explains
it as a consequence of evolutionary optimization of the phe-
notypes for their multiple tasks (functions) and making
optimal trade-offs between the tasks [37,38] (for a recent
neuroscience review see [34]).
3. Multi-objective Pareto optimality as a
geometrically elegant solution for
simplifying parameter space

Evolutionary restriction of a complex parameter space to a
simpler subspace or a low-dimensional manifold is per se a
plausible and realistic assumption (figure 2). However, it
remains unclear what additional principle can help us in
practice to reduce the parameter space of degenerate ion
channels in populations of neuron models. Ideally, such a
principle would allow us to identify or at least approximate
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Figure 2. Evolutionary selection based on trade-offs between multiple tasks
can remove suboptimal points from (ion channel) parameter space. Each
(neuronal) phenotype can be seen as a point in a two- or n-dimensional
parameter space. There are two possibilities for the geometry of parameter
space, as follows. (a) The (ion conductance) parameters that contribute to
the function(s) of a neuron fill the entire parameter space. (b) Parameters
occurring in nature (in real neurons) are restricted to a small subspace (or
a curve) of the parameter space because evolution removes inefficient or inef-
fective parameter configurations. This can be generalized to any number of
dimensions. Evolution can confine a high-dimensional parameter space to
a low-dimensional manifold [37].
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Figure 3. Neuronal phenotypes that cannot be outperformed in all tasks
simultaneously are Pareto optimal and lie on the Pareto front. Neuronal phe-
notypes, which correspond to different ion channel configurations, can be
plotted in performance space based on their performance in 2 (or n)
tasks. N1, N2 and N3 neurons outperform N4 and N6 in at least one task.
Best phenotypes for a given task (A or B) are referred to as archetypes
(A or B, respectively). Pareto optimal neurons that are close to archetypes
are called task specialists. Neurons that are in the middle can be called
generalists. Based on Alon [39]. See also Pallasdies et al. [34].
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Figure 4. Evolutionary trade-offs between different tasks reduce
the performance space to a Pareto front. The key hypothesis is that evolutionary
selection based on multi-task trade-offs removed suboptimal neuronal pheno-
types from performance space and greatly simplified performance (and the
corresponding parameter) space. Based on Alon [39]. Caveat: if measured neur-
onal phenotypes do not lie on a Pareto front predicted by a Pareto analysis, this
could mean that the analysis neglected some important tasks or that neurons
are not Pareto optimal for the studied tasks (see [34]).
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the shape of the subspaces or manifolds selected by evol-
ution. Pareto optimality linked to evolutionary trade-offs
[39] is a promising candidate for such a general and at the
same time a practical principle.

Usually a neuron (in fact any artificial or a biological
system) has to fulfil more than one task at the same time. For
example, it must generate functional electrical behaviour (e.g.
dendritic spikes and/or somatic bursting) and/or maintain
its stable (fast or slow) firing and at the same time expend as
little energy as possible. In addition, a neuron often has to be
robust against perturbations and/or flexible enough to
respond to a wide input range. Nevertheless, typically its per-
formance cannot be optimal for all of these separate tasks.
Thus, neurons (and their circuits) face a fundamental optimiz-
ation problem of finding an optimal trade-off among multiple
objectives [40,41]. If there is a competition between multiple
tasks, then evolutionary multi-task optimization can lead to a
‘tug-of-war’ dynamics [42] pulling neurons towards an equili-
brium with Pareto optimal multi-task solutions.

A key evolutionary hypothesis is that if multiple compet-
ing tasks affect the fitness of a phenotype then evolution will
select individual phenotypes with optimal performance for,
potentially different, combinations of those tasks (for trade-
offs between them, see [39]). In such a case, Pareto optimality
may help identify the sets of neurons, for which evolution
solved the multi-task optimization problem. By definition,
the performance of such a set of Pareto optimal neurons
cannot be improved for any task without decreasing their
performance for some other task. This means that no other
plausible neuron can dominate a Pareto optimal neuron by
outperforming it at all tasks simultaneously. The set of
Pareto optimal neurons form a so-called Pareto front in task
or function space. By contrast to the parameter space,
the space of plausible neuronal functionality is typically
restricted, with the Pareto front forming part of the boundary
manifold between plausible and implausible regions. A
neuron belongs to a Pareto front if and only if the following
condition is satisfied [43]: for any other distinct neuron in
the population, there must exist at least one task at which
the Pareto front neuron is strictly better. We can examine
such Pareto front sets of neurons first in performance
(figures 3 and 4) and then in parameter space (figure 5).
Let us assume that neurons need to optimize their bio-
physical design (ion channel parameters) for two tasks
simultaneously, for example low energy expenditure and
dendritic computation. If one neuron (e.g. N4 in figure 3)
underperforms another neuron (e.g. N3) at both tasks simul-
taneously then it does not belong to the Pareto front and has
been likely eliminated by evolutionary selection. If we
remove all neurons that are outperformed (i.e. dominated)
by other neurons, we get the Pareto front. Thus, the set of
neurons that cannot be outperformed concurrently at both
tasks (objectives) is the Pareto front set. The neurons (pheno-
types) that achieve peak performance for one objective (N1
and N2) are called archetypes [38,39]. Archetypes are pheno-
types with best combinations of parameters (traits) for given
tasks. N1 is the neuronal phenotype with such a combination
of ion channel parameters that leads to the best performance
in dendritic computation. By contrast, N2’s ion channel par-
ameters support its best performance in energy efficiency
(i.e. economy: defined e.g. as low ATP consumption per
spike, see below). N5 represents an impossible configuration
of parameters with effective dendritic computation, but
which is not achievable at such a high energy efficiency.

Strikingly, landmark computational studies have shown that
theParetooptimalityprinciple canelegantlysimplify thegeome-
try of the parameter space, in fact more clearly than it can the
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Figure 5. Trade-offs between 2 or 3 tasks reduce parameter space to low-dimensional Pareto fronts in the form of a line or a triangle, respectively. (a) Archetypes
are located at peaks of a task performance. Contours indicate a monotonic drop in performance for locations further away from archetypes. (b) Nonoptimal neurons
(N4) are more distant from archetypes than neurons on the Pareto front (N1,2,3), which is the line between archetypes (N1,2). (c,d ) Hypothetical neurons that are
concurrently optimized for 2 or 3 objectives (e.g. dendritic computation, its energy efficiency and robustness) would be found on a line segment or inside a triangle
with specialists near the 2 or 3 vertices (archetypes), respectively. Based on Alon [39].

royalsocietypublishing.org/journal/rsob
Open

Biol.12:220073

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 J

an
ua

ry
 2

02
3 
geometry of the performance space [38,44]. Two tasks or objec-
tives push neurons with an optimal trade-off to a low-
dimensional subregion in parameter space that corresponds to
a Pareto front. Interestingly, irrespective of the number of par-
ameters (traits), in the case of two tasks, the Pareto front must
have a shape of a line connecting two archetypes (figure 5a).
The reason is that any neuron that is not located on the line
(e.g. N4 in figure 5b) is necessarily further away from the two
archetypes (N1, N2) than any neuron on the line (e.g. N3). This
is the case in parameter space, but not in performance space.
The performance landscape can be visualized in the parameter
space by drawing performance contours (figure 5a) around
archetypes [38]. Archetypes represent peaks of performance
for single tasks. Importantly, performance decreases with a
growingdistance fromarchetypes (inparameter space). For geo-
metrical reasons, each neuronbelonging to thePareto frontmust
have a lower total distance to both archetypes than any neuron
outside the Pareto front. The lower distance to both archetypes
means higher simultaneous performance in both tasks. Pareto
optimal neurons that are near the ends of thePareto line segment
are specialists foroneof the two tasks,while those inbetweenare
generalists for both tasks.

Similar geometrical reasoning can show that, for three
tasks, the Pareto front must have the shape of a triangle in par-
ameter space (figure 5d ). Intriguingly, this is again true
irrespective of the number of dimensions of the parameter
space. Again, whereas specialists, optimal for a single task,
concentrate close to one of the three corners (archetypes), gen-
eralists, optimal for combinations of three tasks, occupy the
region in the middle. This can be extrapolated to any
number of tasks. For four tasks, Pareto front is a tetrahedron
with four corners or vertices (archetypes). For n tasks,
the Pareto front is a polytopewith n vertices or corners [39,44].
Importantly, these geometrical insights hold under three
assumptions about task performance [38,44]: (1) performance
decays monotonically with increasing remoteness from
the peak (archetype); (2) there is one point representing a
global peak; (3) all performances decay with the same
metric distance from corresponding peaks. However, even
after violating these conditions, approximate Pareto fronts
with relatively simple shapes can still emerge, still having
archetypes as vertices. The vertices are then connected by
mildly curved instead of straight lines, still corresponding
to where the performance contours for different tasks lie
tangentially to one another [38,44].
4. Evolutionary trade-offs between
functionality (effectiveness) and energy
efficiency (economy) of neurons

How could we take advantage of the above geometrical
principles [38,39] derived from Pareto optimality? How can
we apply them to reduce the parameter space of degenerate
neuronal models? Ion channel degeneracy implies multiple
valid solutions (i.e. a population of solutions) for realistic vol-
tage traces. The valid solutions can fill large and distributed
regions of parameter space (see e.g. [15,35,36]). However,
although being valid with respect to reproducing voltage
traces, individual models in a population differ regarding
their optimality for additional functions or objectives. One
such important additional objective is energy efficiency (i.e.
economy or low ATP expenditure; cf. [34]).

It is well established that to achieve their computational
goals, brain circuits and nerve cells consume large amounts
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models that are optimal for the trade-off between the 2 tasks. Coloured
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parameters. Energy cost was estimated using a standard approach for converting
ionic currents into ATP. KLT: low threshold potassium current. Note that a model,
which was well constrained by experimental data (open star), is close to the
Pareto front and displays strong performance in coincidence detection and
high energy efficiency (i.e. low energy cost). Reproduced from Remme et al.
[65], licensed under Creative Commons Attribution License. https://doi.org/10.
1371/journal.pcbi.1006612.g004.
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of energy [45–47]. Therefore, their anatomical and physiologi-
cal properties are likely to be optimized for a fundamental
trade-off between function-effectiveness (i.e. effectiveness)
and energy efficiency (i.e. economy). This would be in close
agreement with the Pareto optimality concept although in
most neuroscience studies it has not been named as such (for
a recent general review, see [34]). It has been increasingly recog-
nized that evolution has optimized neurons and their circuits
for best simultaneous performance in terms of functional effec-
tiveness and economy [34,40,48]. Thus, Pareto optimality for
the trade-off between effectiveness and economy, which has
been used to better understand non-neuronal systems [37]
can also be applied explicitly to neurons as a general principle.
In line with this, in neural information theory, accumulating
computational and experimental evidence shows that neurons
are not optimized for processing maximum amounts of infor-
mation but rather maximum amounts of information per
energy cost [49–54]. Although not explicitly using Pareto
theory, several studies have indicated that both extrinsic
(synaptic) as well as intrinsic ion channel properties of neurons
are concurrently optimal for high energy efficiency (economy)
and effective information processing and its biophysical
implementation (e.g. [55–64]).

Intriguingly, a recent study used conductance-based mod-
elling to show explicitly that neurons in the medial superior
olive (MSO) are close to the Pareto front set of models in per-
formance space [65]. The Pareto front neurons were optimal
for a two-task trade-off between energy expenditure and a
well-known MSO neuronal function, namely detection of
temporal coincidence in input signals (figure 6). The tem-
poral coincidence detection is crucial for the computation of
the direction of sound source in the MSO. Remarkably, a
default model (open star in figure 6) that was experimentally
well constrained for biophysical (ion channel) and morpho-
logical parameters exhibited high energy efficiency and at
the same time high functional (computational) effectiveness.
This pioneering study is probably the first publication that
has explicitly applied the Pareto optimality theory to an effec-
tiveness-economy trade-off in a conductance-based neuronal
model (figure 6). The modelling work has indicated that
neurons minimize their energy costs related to their ion
channel parameters as long as their computational function
remains intact [65].

Interestingly, the morphological parameter space of
neuronal dendrites and axons can be understood to some
extent separately from the biophysical parameter space
[66,67]. A morphological modelling study by Cuntz et al. [68]
showed that dendritic trees of neurons search for a compromise
between two costs: cable length and conduction time.Minimiz-
ation of cable length can be seen asminimization of energy cost
(i.e.maximization of efficientwiring), whereasminimization of
conduction time can be seen as effective signal propagation
[43,69,70] (see also fig. 1 in [34]). A more recent publication
has confirmed and extended findings of Cuntz et al. [68,70]
showing that by implementing optimal solutions for the
trade-off between cable length and conduction time, dendritic
trees seem to achieve Pareto optimality [71]. As a note of
caution, this conclusion should be corroborated by further
explorations, using a more extensive collection of random
tree models as a negative control.

Thus, although many open questions about the relation-
ship between morphology and biophysics in neuronal
models remain (e.g. [72]), these studies indicate that dendrite
morphology is well constrained by optimal wiring alone
(if defined as optimal dendritic structure for minimizing
the cable length and the conduction time [68,70]). Similar
observations have been made for axonal connections
[43,73–76] (but see also [77]). Therefore, in this article we
focus mostly on the conductance space and do not discuss
the morphological space of population neuronal models
and its impact on the variability and robustness of electro-
physiological behaviour (for this topic see e.g. [78,79]) or
their potential interactions.
5. Effectiveness-economy trade-offs may
simplify conductance space of
population models of neurons

So far the Pareto optimality theory with a focus on effective-
ness-economy trade-offs has not yet been explicitly used to
address directly the problem of ion channel degeneracy
in population models of neurons (but see also [5], and the
discussion below).We argue that multi-objective Pareto optim-
ality, which can be estimated for trade-offs between known
(but to some extent also unknown, see Pareto task inference
below) computational functions and energy efficiency could
be a very fruitful theoretical framework for improving

https://doi.org/10.1371/journal.pcbi.1006612.g004
https://doi.org/10.1371/journal.pcbi.1006612.g004
https://doi.org/10.1371/journal.pcbi.1006612.g004
http://dx.doi.org/.
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population models of neurons. Energy costs of individual
conductance-based models in populations of valid single- or
multi-compartmental models are usually not considered.
However, an estimation of energy costs for a given ion channel
configuration is relatively straightforward and easy to
implement (see e.g. [55,65]). Currents flowing through ion
channels in compartmental models can be collected and
converted to ATP costs. The estimated ATP amount is pro-
portional to energy consumed by ATP-driven pumps, which
maintain transmembrane concentration gradients of sodium,
potassium and calcium ions. ATP calculated in this way is a
good approximation for the energy costs of conductance-
based models [45,65]. Therefore, in the context of the Pareto
optimality framework, we suggest that, whenever possible,
energy efficiency should be added as an additional objective
to inform the search formost realistic configurations of ion chan-
nel parameters. Moreover, we encourage modellers to extend
the objectives byevaluating themodels not only by their voltage
trace features but also by their performance in well-defined
computational functions. Examples would include for instance
coincidence detection of MSO neurons [65] coincidence detec-
tion in the form of BAC firing of cortical layer 5 pyramidal
neurons [80,81], orientation tuningof layer 2 pyramidal neurons
[82] spatial tuning of grid cells [83] and place cells [84], pattern
separation in dentate granule cells [85], or motion detection in
direction-selective T4 neurons [86].

It is important to note that feature-based multi-objective
optimization has already been established before as an extre-
mely helpful method for tuning compartmental models [5]. In
their landmark study, the authors used genetic algorithms to
optimize multiple objectives in the form of selected features of
experimental voltage traces such as frequency, timing or width
of action potentials [5]. This approach has been very successful
as a feature-based optimization tool [5,19,20,22,81,87–89]. Here
we argue for an extrapolation of multi-objective optimization
from spiking features to additional neuronal functions and
their energy costs. This would extend population neuronal
modelling beyond reproducing electrophysiological features
toward capturing evolutionary trade-offs between physiological
functions and their energy costs. In other words, conceptually
we suggest using multi-objective trade-offs in a more general
evolutionary context (cf. [90]). Furthermore, we propose using
the above-described geometrical principles [38,39] for exploring
whether it is possible to reduce high-dimensional parameter
spaces of ion conductances to low-dimensional manifolds.
Importantly, multi-task Pareto optimization or selection of
neuronal models based on function-economy trade-offs can be
combined with or complement standard multi-objective optim-
ization based on trade-offs between voltage features. The hope is
that such a complementary use of the two non-exclusive over-
lapping approaches [5,65] can further constrain the parameter
space in a biologically realistic manner.

Indeed, recent modelling efforts suggest that such an
extended multi-objective optimality framework could be a
promising approach for tackling ion channel degeneracy
in populations of conductance-based models. New compu-
tational studies employing population models of neurons
or neuronal circuits have provided further hints that effective-
ness-economy trade-offs contribute to a better understanding
of the complex parameter space and its degeneracy. One
study [91] used, in a first step, the classical feature-based
multi-objective optimization [5,81] to generate multi-compart-
mental population models for layer 5 pyramidal tract neurons
(L5 PCs). Then, in a second step, the feature-optimized models
were further analysed for their energy efficiency using the
above-mentioned ATP estimation approach based on monitor-
ing ionic currents [65]. Not surprisingly, the populationmodels
of L5 PCs showed extensive degeneracy of ion channels since
nonlinear dendritic computation emerged from a large range
of ion channel configurations. Notably, their computational
analysis identified models that were efficient in terms of
energy as well as effective in terms of dendritic computation.
The nonlinear dendritic computation was assessed based on
BAC firing [80,92] and dendritic calcium spikes, which are
thought to be important for conscious perception [93–95].

Curiously, the L5 PCmodels with energy-efficient dendritic
computation displayed a low expression of fast non-inactivat-
ing potassium channels and high-voltage activated calcium
channels in the dendritic calcium hot zone [91], which corre-
sponds to a major site of dendritic spike generation.
Consistent with the idea that evolution selects energy-efficient
neuronal phenotypes [96], low expression of potassium chan-
nels in distal apical dendrite has been observed before in real
neurons [97]. Although the authors did not perform Pareto
analysis for the economy-computation trade-off, it is tempting
to speculate that the models with a best compromise for the
two tasks (dendritic computation and energy efficiency)
would lie close to the Pareto front in parameter space for ion
channels (figure 7). Future experimental and computational
analyses might reveal whether the Pareto front for optimal
ion channels in L5 PCs resembles a line segment connecting
the two archetypes of dendritic computation and energy effi-
ciency (or a triangle in case of three tasks, etc.). Indeed, the
authors concluded that L5 PCs do not exploit all possible par-
ameter combinations but ‘select those optimized for energy-
efficient active dendritic computations’. Interestingly, morpho-
logical variability did not seem to play a major role,
suggesting that dendritic structure is constrained mainly by
optimal wiring (as we mentioned before) and does not greatly
affect ion channel parameters.
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Another recent study [32] explored how energy efficiency
and temperature robustness affect parameter space of
population models for the canonical circuit of the crab stomato-
gastric ganglion, inwhichparameterdegeneracywasdiscovered
for the first time [2]. The authors combinedpopulationmodeling
with a newmachine learning method for estimating parameters
of mechanistic models [98]. As expected, energy efficiency
reduced the parameter space for realistically behaving models
[32]. However, the remaining parameter space was still large
and degenerate so that disparate parameter combinations still
led to well performing models in terms of energy efficiency
and network behaviour. In addition, somewhat surprisingly,
increased robustness to temperature did not always cause
increased energy consumption. This suggests that in this circuit
there might not be a significant trade-off between energy cost
and robustness to alterations in temperature. Nevertheless, it
does not exclude the possibility that future research employing
Pareto optimality theory will discover other tasks (e.g. robust-
ness to other, temperature-unrelated perturbations) that would
further constrain parameter space and find stronger trade-offs
with energy efficiency. Notably, although the authors did not
study Pareto fronts in conductance space, their simulations pre-
dict that sodium and calcium conductances contribute
significantly to energy costs and are therefore ‘less variable in
nature than expected by computational models only matching
network activity’. This is in agreement with the hypothesis
that evolutiondoes not implement all possible parameter combi-
nations but selects their subsets (see figures 2 and 4).
Interestingly, the work showed also that individual neuron
models could be tuned for low energy costs independently
from network activity and then used to construct energy-effi-
cient circuit models. This strengthens the idea that Pareto
analysis of economy-function trade-offs can be applied not
only to circuits but also to single-cell models of neurons.
6. Pareto inference for deducing neuronal
functions from high-dimensional patch-
seq data

Until now we have described possible applications of Pareto
theory to known tasks (or functions and their energy costs) of
neurons. However, the tasks of most neurons and neural cir-
cuits are still not fully understood. Moreover, even if we knew
the functions, we might not be able to estimate the associated
performance in performance space. Surprisingly, even if no
(or not all) functions and corresponding performances of
neurons are known, the framework of Pareto optimality can
still be used and provide interesting insights.

As mentioned above, in parameter space (but not in per-
formance space), evolutionary multi-task optimization leads
to Pareto fronts with specific geometrical shapes (see
figure 5 for a 2D parameter space). A trade-off between
two, three, four or n tasks leads to a Pareto front shaped as
a line segment, a triangle, a tetrahedron or a polytope with
n vertices and an (n – 1)-dimensional surface [38,39,44,99].
Optimal neuronal phenotypes would be expected to lie
inside such polytopes whose vertices represent the arche-
types for each task. Remarkably, the theory [39] predicts
that Pareto fronts with polytope shapes and sharp vertices
will emerge in parameter space independently from the
number of measured parameters (i.e. the number of dimen-
sions; see figure 8 for a three-dimensional parameter space).
For example in two-, three- or higher-dimensional parameter
space, two tasks always lead to a one-dimensional line seg-
ment (a curve) as the corresponding Pareto front. The
reason for this is that the projection of the line segment to a
plane is again a line segment ([39]; figure 8a). Therefore, in
theory, these geometrical shapes (especially their vertices)
should be identifiable in experimental datasets irrespective
of which or how many parameters were measured [39]. Con-
veniently, if biological data can be fit to the polytopes (i.e.
lines, triangles, tetrahedrons etc.) then the sharp vertices or
corners can be exploited to infer biological tasks from exper-
imental data (figure 8). This innovative approach has been
termed Pareto task inference (ParTI, [38,99]).

ParTI has been successfully applied to diverse datasets
including morphologies and life history traits in animals
[101,102] or parameters in biological homeostatic systems
[37] as well as gene expression in bacteria [38], liver cells
[100] and cancer cells [90,103]. Motivated by the success of
ParTI even for single-cell data, we believe that ParTI applied
to Patch-seq data (table 1 in [104]) might provide new insights
into neuronal functions. Patch-seq experiments generate large
amounts of multimodal and high-dimensional data for ion
channel expression, electrophysiological behaviour and
dendritic morphologies of neurons (e.g. [105–108]). Unfortu-
nately, higher than three-dimensional datasets are difficult to
visualize. However, Pareto optimality makes it plausible that
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neuronal tasks (such as for example nonlinear dendritic com-
putations, sparse or fast firing, etc. and most likely always
also energy efficiency) simplify the geometrical shape of
experimentally observed parameter space of Patch-seq data-
sets to low-dimensional manifolds. Typically, Patch-seq
datasets are analysed by common data clustering analyses.
However, clustering analysis presupposes that neuronal
data is structured in separate clusters [39] although ion chan-
nel degeneracy may lead to data continuity [109] (see also
[36,91]). Accordingly, ParTI may be more suitable for a
high-dimensional continuum of Patch-seq data (e.g. [109])
than clustering analysis [39]. High-dimensionality of datasets
is not a great problem since the Pareto optimal geometrical
shapes should emerge irrespective of dimensionality. Besides,
dimension reduction methods (e.g. principal component
analysis, PCA) can help visualize projections of the presum-
ably Pareto optimal shapes in two-dimensional or three-
dimensional parameter space (figure 8). Interestingly, the
above-mentioned population modelling of L5 PCs [91] dis-
covered a highly significant correlation of energy efficiency
with the first principal component (PCA1) in hybrid func-
tion/parameter space for ion channels (space consisted of
total charges flowing through ion channels). Together with
non-neuronal cellular examples [39,100], this suggests that
ParTI (or its improved version [110]) might be able to reveal
biologically important tasks of analysed neurons when
applied to a high-dimensional ion channel space reduced to
three dimensions by PCA.

PCA on a high-dimensional dataset might mask some
archetypes by projecting any true high-dimensional poly-
topes onto a lower-dimensional space. In this case,
archetypes might become unidentifiable as their correspond-
ing vertex is projected to the interior of the new polytope.
However, it is also possible that by increasing variability
along certain dimensions in PCA trait space, while reducing
total dimensionality, significant archetypes would be easier
to identify in potentially noisy data (figure 8). Further
research is needed to categorize when exactly each situation
will apply, but PCA will remain a useful tool alongside
ParTI when used appropriately.

Aside from that, ParTI is based on statistical inference of
Pareto optimality [99] comparing the set of solutions to ran-
domly shuffled data under the assumption that phenotypic
traits are independent and the data are uncorrelated. It has
beenpointed out that thismay not be the case in biological data-
sets due to phylogenetic correlations of traits [111,112] (see also
[34]). This would make the identification of Pareto fronts in
high-dimensional datasets prone to errors. Nevertheless, a
recent study has addressed these problems by introducing a
new algorithm accounting for the phylogenetic dependence of
traits [110]. In any case, itwill be interesting to testwhether care-
fully applied ParTI can infer known (or also unknown)
functions of neurons from the geometrical shapes of Patch-seq
datasets and their sharp corners in parameter space.

Del Giudice & Crespi [41] have described basic functional
trade-offs between four universal tasks of neural systems,
namely (1) functional performance (termed ‘efficiency’ in
their article, synonymous with ‘effectiveness’ in our article),
(2) energy efficiency (synonymous with ‘economy’), (3)
robustness and (4) flexibility (see their article for a concise
definition of these four universal properties). Converging
evidence indicates that trade-offs between the four tasks pro-
foundly shape cognitive, neuronal and synaptic phenotypes
[41]. Correspondingly, it is an exciting question whether
these basic four functional properties (or their derivatives)
and their trade-offs can be identified, disentangled and clari-
fied with the help of ParTI-analysis of experimental data.
Future ParTI-based neuroscience studies might focus on infer-
ring brain region-specific, cell type-specific or/and universal
tasks of neurons across brain regions (cf. [90]).
7. Open questions
Multi-task Pareto optimality is a promising but still largely
unexplored framework for studying ion conductance space of
neurons and their models. For example, it remains an open
question whether Pareto analysis will show that real neurons
with their naturally occurring ion channel parameters lie on
modelling-based Pareto fronts or not. If data showed that neur-
ons were distant from a predicted Pareto front this could mean
that the Pareto analysis did not include the important (i.e. evo-
lutionarily relevant) tasks or that neurons were not close to
being Pareto-optimal [34]. In any case, the Pareto framework
will provide new testable predictions and insights.

Moreover, there are also open technical questions and
challenges, for instance regarding sampling a sufficiently
large space of possible neuronal models and the related
necessity of generating sufficiently large numbers of system-
atically randomized ‘null’ models of biophysical mechanisms
and morphological features.

Many other open scientific questions remain to be
addressed. For example, if neurons are optimized for the
best compromise between function and energy efficiency,
what happens if they face perturbations such as scarcity of
energy resources? Interestingly, a recent study [113] has
shown that in animals with food restriction, layer 2/3 pyra-
midal cells (L2/3 PCs) in visual cortex increase their energy
efficiency (by weakening their input synapses) but reduce
their coding precision (as reflected in a broader orientation
tuning). However, the firing rate of L2/3 PCs remained
unchanged. It would be intriguing to apply Pareto theory
to these data. It is tempting to speculate that under food scar-
city, neocortical L2/3 PCs moved along the Pareto front closer
towards the archetype for maximum energy efficiency but
further away from the archetype for the best computational
function in the form of visual information processing. Cur-
iously, they still performed well in firing rate homeostasis.
Thus, the neurons probably found a new optimal balance
between economy and visual computation. It would be inter-
esting to use population modelling and ion channel analyses
to find out the shape of the Pareto front in parameter space
of L2/3 neurons. It might be a line for a trade-off between econ-
omy-visual processing. Alternatively, it might be a triangle if
relevant trade-offs include firing rate homeostasis. Or it could
be a tetrahedron or another polytope if these cells are opti-
mized for multi-objective trade-offs between more than three
tasks.

Another exciting and not fully resolved question iswhether
multi-objective Pareto optimality may provide insights on
well-established correlations of ion channels. Ion channel cor-
relations have been observed in experiments [114–119] and
explored in computational models [30,120,123]. Our hypoth-
esis is that multi-task Pareto optimization of ion channel
parameters could shape their homeostatic tuning and lead to
ion channel correlations. This is in line for example with the
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above-mentioned computational prediction that low calcium
and potassium channel co-expression appears to be optimal
for the trade-off between dendritic computing and low
energy cost [91]. Likewise, ion channel expression data from
fast-spiking neurons in the vestibular nucleus suggest that
co-regulation of ion channels supports optimal balance
between high firing rates and their energy efficiency [119].
Other recent computational work using biophysically simple
single-compartment models has explored as to when homeo-
static co-regulation of ion channels leads to ion channel
correlations [124]. Intriguingly, Yang et al. [124] have addressed
this question in the context of ion channel degeneracy and
multi-objective optimization. The authors predict that homeo-
static ion channel co-regulation can lead to many (degenerate)
multi-objective solutions if the number of available ion chan-
nels is higher than the number of objectives. For example,
more than two ion channelswould be required for findingmul-
tiple neuronal models with a successful co-regulation of firing
rate and energy efficiency. Thus, homeostatic co-tuning of mul-
tiple tasks seems possible only with sufficiently large ion
channel diversity (see also [36]). In addition, ion channel corre-
lations seem to arise if the solution space (defined as a
difference between the number of dimensions of parameter
space and the number of dimensions of performance space)
is low-dimensional [124]. It would be interesting to compare
these predictions to experiments accompanied by simulations
in biophysically and morphologically more complex models
complemented by Pareto analysis. Pareto theory suggests
that irrespective of the dimensionality of parameter space,
the Pareto front for n tasks (objectives) is an (n – 1)-dimensional
surface in parameter space [44]. To add a remark of caution,
homeostatic regulation (for instance of firing rate) may gener-
ate linear relationships between ion conductances, which
might be difficult to distinguish from the correlations resulting
from multi-objective optimization (cf. [125]).
8. Conclusion
We have seen that Pareto multi-objective optimality is a
useful concept for an elegant simplification of the geometry
of parameter space. It has been widely employed in engineer-
ing, computer science and economics [126–129]. However,
only relatively recently has it started being used in molecular
biology and in other life science areas [39] including neuro-
science [34]. Importantly, it has been successfully applied
not only to phenotypes of organisms [102,130] but also to
phenotypes of molecules, molecular pathways [38,131–133]
and cells, including intestinal and liver cells [100], cancer
cells [90] and nerve cells [5,65,71,72].

Therefore, based on these and other examples mentioned
here, we believe that Pareto optimality can be fruitfully
applied to conductance-based population models of neurons
(and their circuits, see [34]), especially if it informs the search
for models with optimal trade-offs between economy and
neuronal computations and takes advantage of simplifying
geometrical rules for Pareto fronts in parameter space
[38,44]. In short, we encourage a more frequent usage of
Pareto theory and evolutionary economy–effectiveness
trade-offs to select optimal and therefore presumably the
most realistic neuronal models. Pareto optimality could
provide a general conceptual framework to elucidate the
diversity in ion channel properties of neurons. This theoreti-
cal framework is linked to multi-task evolution theory
[38,39] implying that trade-offs between tasks curb ion chan-
nel expression to a continuous Pareto front having a shape of
a polytope whose vertices represent ion channel expression
profiles specializing for a given task (cf. [90]).
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