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We consider the data-driven approximation of the Koopman operator for stochastic differential 
equations on reproducing kernel Hilbert spaces (RKHS). Our focus is on the estimation error if 
the data are collected from long-term ergodic simulations. We derive both an exact expression 
for the variance of the kernel cross-covariance operator, measured in the Hilbert-Schmidt norm, 
and probabilistic bounds for the finite-data estimation error. Moreover, we derive a bound on 
the prediction error of observables in the RKHS using a finite Mercer series expansion. Further, 
assuming Koopman-invariance of the RKHS, we provide bounds on the full approximation error. 
Numerical experiments using the Ornstein-Uhlenbeck process illustrate our results.

1. Introduction

The Koopman operator [29] has become an essential tool in the modeling process of complex dynamical systems based on 
simulation or measurement data. The philosophy of the Koopman approach is that for a (usually non-linear) dynamical sys-

tem on a finite-dimensional space, the time-evolution of expectation values of observable functions satisfies a linear differential 
equation. Hence, after “lifting” the dynamical system into an infinite-dimensional function space of observables, linear methods 
become available for its analysis. The second step is then to notice that traditional Galerkin approximations of the Koopman op-

erator can be consistently estimated from simulation or measurement data, establishing the fundamental connection between the 
Koopman approach and modern data science. Koopman methods have found widespread application in system identification [5], con-

trol [30,50,31,22,58], sensor placement [39], molecular dynamics [59,53,43,44,23,66], and many other fields. We refer to [24,41,6]

for comprehensive reviews of the state of the art.

The fundamental numerical method for the Koopman approach is Extended Dynamic Mode Decomposition (EDMD) [64], which 
allows to learn a Galerkin approximation of the Koopman operator from finite (simulation or measurement) data on a subspace 
spanned by a finite set of observables, often called dictionary. An appropriate choice of said dictionary is a challenging problem. In 
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Fig. 1. Diagram illustrating the different operators involved.

Fig. 2. Illustration of main results.

light of this issue, representations of the Koopman operator on large approximation spaces have been considered in recent years, 
including deep neural networks [37,40], tensor product spaces [26,45], and reproducing kernel Hilbert spaces (RKHS) [65,12,25]. See 
also [3,8,15–17,32,33] for recent studies on the use of reproducing kernels in the context of dynamical systems. In Reference [25] it 
was shown that by means of the integral operator associated to an RKHS, it is possible to construct a type of Galerkin approximation of 
the Koopman operator. The central object are (cross-)covariance operators, which can be estimated from data, using only evaluations 
of the feature map. Due to the relative simplicity of the resulting numerical algorithms on the one hand, and the rich approximation 
properties of reproducing kernels on the other hand, kernel methods have emerged as a promising candidate to overcome the 
fundamental problem of dictionary selection.

A key question is the quantification of the estimation error for (compressed1) Koopman operators. For finite dictionaries and 
independent, identically distributed (i.i.d.) samples, error estimates were provided in [34,46], see also [68] for the ODE case and [58]

for an extension to control-affine systems. The estimation error for cross-covariance operators on kernel spaces was considered 
in [42], where general concentration inequalities were employed. The data were also allowed to be correlated, and mixing coefficients 
were used to account for the lack of independence. In this article, we take a different route and follow the approach of our previous 
paper [46], where we, in addition, also derived error estimates for the Koopman generator and operator for finite dictionaries and 
data collected from long-term, ergodic trajectories. This setting is relevant in many areas of science, where sampling i.i.d. from an 
unknown stationary distribution is practically infeasible, e.g., in fluid or molecular dynamics. The centerpiece of our results was 
an exact expression for the variance of the finite-data estimator, which can be bounded by an asymptotic variance. The asymptotic 
variance by itself is a highly interesting dynamical quantity, which can also be described in terms of Poisson equations for the 
generator [35, Section 3].

We consider the Koopman semigroup (𝐾𝑡)𝑡≥0 generated by a stochastic differential equation on the space 𝐿2
𝜇 , where 𝜇 is a 

probability measure which is invariant w.r.t. the associated Markov process. We study the action of 𝐾𝑡 on observables in an RKHS 
ℍ which is densely and compactly embedded in 𝐿2

𝜇 . If this action is considered through the “lens” of the kernel integral operator 
 ∶ 𝐿2

𝜇 → ℍ (see Section 2.2), we arrive at a family of operators 𝐶𝑡
ℍ = 𝐾𝑡∗ (cf. Fig. 1). The action of 𝐶𝑡

ℍ ∶ ℍ → ℍ is that of a 
cross-covariance operator:

𝐶𝑡
ℍ𝜓 = ∫ (𝐾𝑡𝜓)(𝑥)𝑘(𝑥, ⋅)𝑑𝜇(𝑥), 𝜓 ∈ℍ,

where 𝑘(⋅, ⋅) is the kernel generating the RKHS ℍ. These operators possess canonical empirical estimators based on finite simulation 
data, which only require evaluations of the feature map.

Our contribution, illustrated in Fig. 2, is two-fold. In our first main result, Theorem 3.1, we provide an exact formula for the 
Hilbert-Schmidt variance of the canonical empirical estimator 𝐶𝑚,𝑡

ℍ of the cross-covariance operator 𝐶𝑡
ℍ, for 𝑚 data points sampled 

from a long ergodic simulation. This result holds under the very mild assumption that 𝜆 = 1 is a simple2 isolated eigenvalue of 
𝐾𝑡, which does not exclude deterministic systems, extends the findings in [46] to the kernel setting and no longer depends on 
the dictionary size (which would be infinite, at any rate). Furthermore, the result allows for probabilistic estimates for the error ‖𝐶𝑚,𝑡

ℍ −𝐶𝑡
ℍ‖𝐻𝑆 , see Proposition 3.5.

As a second main result, we propose an empirical estimator for the restriction of the Koopman operator 𝐾𝑡 to ℍ, truncated to 
finitely many terms of its estimated Mercer series expansion, and prove a probabilistic bound for the resulting estimation error in 
Theorem 4.1, measured in the operator norm for bounded linear maps from ℍ to 𝐿2

𝜇 . This result can be seen as a bound on the 
prediction error for the RKHS-based Koopman operator due to the use of finite data. In the situation where the RKHS is invariant 

1 A compression of a linear operator 𝑇 to a subspace 𝑀 is given by 𝑃𝑇 |𝑀 , where 𝑃 denotes a projection onto 𝑀 .
2 Simplicity of 𝜆 = 1 as an eigenvalue of 𝐾𝑡 is already guaranteed by ergodicity, cf. Appendix D. Hence, the essential assumption here is that the eigenvalue is 
2

isolated.
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under the Koopman operator we are able to complement the preceding error analysis with a bound on the full approximation error 
in Theorem 4.5.

Finally, we illustrate our results for a one-dimensional Ornstein-Uhlenbeck (OU) process. For this simple test case, all quantities 
appearing in our error estimates are known analytically and can be well approximated numerically. Therefore, we are able to 
provide a detailed comparison between the error bound obtained from our results and the actual errors observed for finite data. Our 
experiments show that our bounds for the estimation error of the cross-covariance operator are accurate, and that the corrections 
we introduced to account for the inter-dependence of the data are indeed required. Concerning the prediction error, we find our 
theoretical bounds still far too conservative, which reflects the problem of accounting for the effect of inverting the mass matrix in 
traditional EDMD. This finding indicates that additional research is required on this end.

The paper is structured as follows: the setting is introduced in Section 2. The result concerning the variance of the empirical 
cross-covariance operator, Theorem 3.1, is presented and proved in Section 3, while our bound for the prediction error is part of 
Theorem 4.1 in Section 4. Numerical experiments are shown in Section 5, conclusions are drawn in Section 6.

2. Preliminaries

In this section, we review the required background on stochastic differential equations (Section 2.1), reproducing kernel Hilbert 
spaces (Section 2.2), Koopman operators (Section 2.3), their representations on an RKHS (Section 2.4), and the associated empirical 
estimators (Section 2.5). The results in this section can all be found in the literature, but we list them here at any rate to achieve 
a self-contained presentation. Selected proofs are also shown in the appendix for the reader’s convenience. Below, we list the most 
frequently used notation:

Symbol Meaning

𝑏, 𝜎 Drift and diffusion of SDE

 State space

𝜇 Invariant measure

𝐿
𝑝
𝜇() 𝜇-weighted Lebesgue space on 

𝑘 Kernel function

Φ Kernel feature map

𝜑 Diagonal of the kernel

𝐾𝑡 Koopman operator

 Infinitesimal generator

𝜇𝑗,𝜓𝑗 Eigenvalues and eigenfunctions of 
𝐶𝑡
ℍ Time-lagged kernel cross-covariance operator

𝐶ℍ Kernel covariance operator

2.1. Stochastic differential equations

Let  ⊂ℝ𝑑 and let a stochastic differential equation (SDE) with drift vector field 𝑏 ∶  →ℝ𝑑 and diffusion matrix field 𝜎 ∶  →
ℝ𝑑×𝑑 be given, i.e.,

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡+ 𝜎(𝑋𝑡)𝑑𝑊𝑡, (2.1)

where 𝑊𝑡 is 𝑑-dimensional Brownian motion. We assume that both 𝑏 and 𝜎 are Lipschitz-continuous and that (1 + ‖ ⋅ ‖2)−1[‖𝑏‖2 +‖𝜎‖𝐹 ] is bounded on  . Then [47, Theorem 5.2.1] guarantees the existence of a unique solution (𝑋𝑡)𝑡≥0 to (2.1).

The solution (𝑋𝑡)𝑡≥0 constitutes a continuous-time Markov process whose transition kernel will be denoted by 𝜌𝑡 ∶  × →ℝ, 
where  denotes the Borel 𝜎-algebra on  . Then 𝜌𝑡(𝑥, ⋅) is a probability measure for all 𝑥 ∈  , and for each 𝐴 ∈ we have that 
𝜌𝑡(⋅, 𝐴) is a representative of the conditional probability for 𝐴 containing 𝑋𝑡 given 𝑋0 = ⋅, i.e.,

𝜌𝑡(𝑥,𝐴) = ℙ(𝑋𝑡 ∈𝐴|𝑋0 = 𝑥) for ℙ𝑋0
-a.e. 𝑥 ∈  ,

where ℙ𝑋0
denotes the marginal distribution of 𝑋0.

Throughout, we will assume the existence of an invariant (Borel) probability measure 𝜇 for the Markov process (𝑋𝑡)𝑡≥0, i.e., we 
have

∫ 𝜌𝑡(𝑥,𝐴)𝑑𝜇(𝑥) = 𝜇(𝐴) (2.2)

for all 𝑡 ≥ 0.

In addition to invariance, we assume that 𝜇 is ergodic, meaning that for any 𝑡 > 0 every 𝜌𝑡-invariant set 𝐴 (that is, 𝜌𝑡(𝑥, 𝐴) = 1 for 
all 𝑥 ∈𝐴) satisfies 𝜇(𝐴) ∈ {0, 1}. In this case, the Birkhoff ergodic theorem [20, Theorem 9.6] (see also (D.1)) and its generalizations 
apply, and allow us to calculate expectations w.r.t. 𝜇 using long-time averages over simulation data.

We let ‖ ⋅ ‖𝑝 denote the 𝐿𝑝
𝜇()-norm, 1 ≤ 𝑝 <∞. In the particular case 𝑝 = 2, scalar product and norm on the Hilbert space 𝐿2

𝜇()
3

will be denoted by ⟨⋅ , ⋅⟩𝜇 and ‖ ⋅ ‖𝜇 , respectively.
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2.2. Reproducing kernel Hilbert spaces

In what follows, let 𝑘 ∶  ×  → ℝ be a continuous and symmetric positive definite kernel, that is, we have 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥) for 
all 𝑥, 𝑦 ∈  and

𝑚∑
𝑖,𝑗=1

𝑘(𝑥𝑖, 𝑥𝑗 )𝑐𝑖𝑐𝑗 ≥ 0

for all choices of 𝑥1, … , 𝑥𝑚 ∈  and 𝑐1, … , 𝑐𝑚 ∈ ℝ. It is well known that 𝑘 generates a so-called reproducing kernel Hilbert space

(RKHS) [1,7,48] (ℍ, ⟨⋅ , ⋅⟩) of continuous functions, such that for 𝜓 ∈ℍ the reproducing property

𝜓(𝑥) = ⟨𝜓,Φ(𝑥)⟩, 𝑥 ∈  , (2.3)

holds, where Φ ∶  →ℍ denotes the so-called feature map corresponding to the kernel 𝑘, i.e.,

Φ(𝑥) = 𝑘(𝑥, ⋅), 𝑥 ∈  .

In the sequel, we shall denote the norm on ℍ by ‖ ⋅ ‖ and the kernel diagonal by 𝜑:

𝜑(𝑥) = 𝑘(𝑥,𝑥), 𝑥 ∈  .

Then for 𝑥 ∈  we have

‖Φ(𝑥)‖2 = ⟨Φ(𝑥),Φ(𝑥)⟩ = ⟨𝑘(𝑥, ⋅), 𝑘(𝑥, ⋅)⟩ = 𝑘(𝑥,𝑥) = 𝜑(𝑥).

We shall frequently make use of the following estimate:

|𝑘(𝑥, 𝑦)| = |⟨Φ(𝑥),Φ(𝑦)⟩| ≤ ‖Φ(𝑥)‖‖Φ(𝑦)‖ =√𝜑(𝑥)𝜑(𝑦).

In particular, it shows that 𝑘 is bounded if and only if its diagonal 𝜑 is bounded.

By 𝑝
𝜇(), 𝑝 ∈ [1, ∞), we denote the space of all functions (not equivalence classes) on  with a finite 𝑝-norm ‖ ⋅ ‖𝑝. Henceforth, 

we shall impose the following

Compatibility Assumptions:

(A1) 𝜑 ∈2
𝜇().

(A2) If 𝜓 ∈𝐿2
𝜇() such that ∫ ∫ 𝑘(𝑥, 𝑦)𝜓(𝑥)𝜓(𝑦) 𝑑𝜇(𝑥) 𝑑𝜇(𝑦) = 0, then 𝜓 = 0.

(A3) If 𝜓 ∈ℍ such that 𝜓(𝑥) = 0 for 𝜇-a.e. 𝑥 ∈ , then 𝜓(𝑥) = 0 for all 𝑥 ∈  .

Many of the statements in this subsection can also be found in [61, Chapter 4]. However, as we aim to present the contents in a 
self-contained way, we provide the proofs in Appendix A.

The following lemma explains the meaning of the compatibility assumptions (A1) and (A2), cf. [61, Theorem 4.26].

Lemma 2.1. Under the assumption that 𝜑 ∈ 1
𝜇() (in particular, under assumption (A1)), we have that ℍ ⊂ 2

𝜇() with

‖𝜓‖𝜇 ≤ √‖𝜑‖1 ⋅ ‖𝜓‖, 𝜓 ∈ℍ, (2.4)

and assumption (A2) is equivalent to the density of ℍ in 2
𝜇().

We have meticulously distinguished between functions and equivalence classes as there might be distinct functions 𝜙 and 𝜓 in 
ℍ, which are equal 𝜇-almost everywhere,3 i.e., 𝜙 = 𝜓 in 𝐿2

𝜇(). The compatibility assumption (A3) prohibits this situation so that ℍ
can in fact be seen as a subspace of 𝐿2

𝜇(), which is then densely and continuously embedded.

Remark 2.2. (a) Condition (A1) implies 𝑘 ∈ 𝐿4
𝜇⊗𝜇

( ×), where 𝜇 ⊗ 𝜇 is the product measure on  × .

(b) The density of ℍ in 𝐿2
𝜇() is strongly related to the term universality in the literature, see [63].

(c) Condition (A3) holds if supp𝜇 =  , cf. [61, Exercise 4.6].

It immediately follows from

∫ |𝜓(𝑥)|‖Φ(𝑥)‖𝑑𝜇(𝑥) ≤ ‖𝜓‖𝜇‖𝜑‖1∕21 , (2.5)
4

3 For example, if 𝜇 = 𝛿𝑎 and 𝜙(𝑎) = 𝜓(𝑎).
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for 𝜓 ∈𝐿2
𝜇() that the linear operator  ∶𝐿2

𝜇() →ℍ, defined by

𝜓 ∶= ∫ 𝜓(𝑥)Φ(𝑥)𝑑𝜇(𝑥), 𝜓 ∈𝐿2
𝜇(),

is well defined (as a Bochner integral in ℍ) and bounded with operator norm not larger than ‖𝜑‖1∕21 .

Remark 2.3. The so-called kernel mean embedding 𝑘, mapping probability measures 𝜈 on  to the RKHS ℍ, is defined by 𝑘𝜈 =
∫ Φ(𝑥) 𝑑𝜈(𝑥), see, e.g., [60]. Hence, we have 𝜓 = 𝑘𝜈 with 𝑑𝜈 = 𝜓 𝑑𝜇.

Note that the operator  is not an embedding in strict mathematical terms. The terminology embedding rather applies to its adjoint 
∗. Indeed, the operator  enjoys the simple but important property:

⟨𝜓, 𝜂⟩ = ∫ 𝜓(𝑥)⟨Φ(𝑥), 𝜂⟩𝑑𝜇(𝑥) = ∫ 𝜓(𝑥)𝜂(𝑥)𝑑𝜇(𝑥) = ⟨𝜓, 𝜂⟩𝜇 (2.6)

for 𝜓 ∈𝐿2
𝜇() and 𝜂 ∈ℍ. This implies that the adjoint operator ∗ ∶ℍ →𝐿2

𝜇() is the inclusion operator from ℍ into 𝐿2
𝜇(), i.e.,

∗𝜂 = 𝜂, 𝜂 ∈ℍ. (2.7)

We shall further define the covariance operator4

𝐶ℍ ∶= ∗ ∈ 𝐿(ℍ).

Recall that a linear operator 𝑇 ∈𝐿() on a Hilbert space  is trace class if for some (and hence for each) orthonormal basis (𝑒𝑗 )𝑗∈ℕ
of  we have that 

∑∞
𝑗=1⟨(𝑇 ∗𝑇 )1∕2𝑒𝑗 , 𝑒𝑗⟩ <∞. A linear operator 𝑆 ∈ 𝐿(, ) between Hilbert spaces  and  is said to be Hilbert-

Schmidt [13, Chapter III.9] if 𝑆∗𝑆 is trace class, i.e., ‖𝑆‖2
𝐻𝑆

∶=
∑∞

𝑗=1 ‖𝑆𝑒𝑗‖2 <∞ for some (and hence for each) orthonormal basis 
(𝑒𝑗 )𝑗∈ℕ.

Lemma 2.4 ([61, Theorem 4.27]). Let the Compatibility Assumptions (A1)–(A3) be satisfied. Then the following hold.

(a) The operator  is an injective Hilbert-Schmidt operator with

‖‖2
𝐻𝑆

= ‖𝜑‖1.
(b) The space ℍ is densely and compactly embedded in 𝐿2

𝜇().
(c) The operator 𝐶ℍ is an injective non-negative self-adjoint trace class operator.

The next theorem is due to Mercer and can be found in, e.g., [54]. It shows the existence of a particular orthonormal basis (𝑒𝑗 )∞𝑗=1
of 𝐿2

𝜇() composed of eigenfunctions of ∗ , which we shall henceforth call the Mercer basis corresponding to the kernel 𝑘. Again 
for the sake of self-containedness, we give a short proof in Appendix A.

Theorem 2.5 (Mercer’s Theorem). There exists an orthonormal basis (𝑒𝑗 )∞𝑗=1 of 𝐿2
𝜇() consisting of eigenfunctions of ∗ with corre-

sponding eigenvalues 𝜆𝑗 > 0 such that 
∑∞

𝑗=1 𝜆𝑗 = ‖𝜑‖1 <∞. Furthermore, (𝑓𝑗)∞𝑗=1 with 𝑓𝑗 =
√

𝜆𝑗𝑒𝑗 constitutes an orthonormal basis of ℍ
consisting of eigenfunctions of 𝐶ℍ with corresponding eigenvalues 𝜆𝑗 . Moreover, for all 𝑥, 𝑦 ∈  ,

𝑘(𝑥, 𝑦) =
∑
𝑗

𝑓𝑗 (𝑥)𝑓𝑗 (𝑦) =
∑
𝑗

𝜆𝑗𝑒𝑗 (𝑥)𝑒𝑗 (𝑦),

the series converges absolutely.

2.3. The Koopman semigroup

The Koopman semigroup (𝐾𝑡)𝑡≥0 associated with the SDE (2.1) is defined by

(𝐾𝑡𝜓)(𝑥) = 𝔼[𝜓(𝑋𝑡)|𝑋0 = 𝑥] = ∫ 𝜓(𝑦)𝜌𝑡(𝑥,𝑑𝑦),

for 𝜓 ∈𝐵(), the set of all bounded Borel-measurable functions on  , and 𝜌𝑡(𝑥, 𝑑𝑦) = 𝑑𝜌𝑡(𝑥, ⋅)(𝑦). It is easy to see that the invariance 
of 𝜇 is equivalent to the identity

4 In what follows, by 𝐿(, ) we denote the set of all bounded (i.e., continuous) linear operators between Hilbert spaces  and . As usual, we also set 
5

𝐿() ∶=𝐿(, ).
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∫ 𝐾𝑡𝜓 𝑑𝜇 = ∫ 𝜓 𝑑𝜇 (2.8)

for all 𝑡 ≥ 0 and 𝜓 ∈𝐵() (which easily extends to functions 𝜓 ∈𝐿1
𝜇(), see Proposition 2.7).

Remark 2.6. Note that in the case 𝜎 = 0 the SDE (2.1) reduces to the deterministic ODE �̇� = 𝑏(𝑥). Then (2.8) implies 
∫ |𝜓(𝜙(𝑡, 𝑥))|2 𝑑𝜇(𝑥) = ∫ |𝜓(𝑥)|2 𝑑𝜇(𝑥) for all 𝑡 ≥ 0 and all 𝜓 ∈ 𝐵(), where 𝜙(⋅, 𝑥) is the solution of the initial value problem 
�̇� = 𝑏(𝑦), 𝑦(0) = 𝑥. Hence, the composition operator 𝐾𝑡 ∶ 𝜓 ↦ 𝜓◦𝜙(𝑡, ⋅) is unitary in 𝐿2

𝜇().

The proofs of the following two propositions can be found in Appendix A.

Proposition 2.7. For each 𝑝 ∈ [1, ∞] and 𝑡 ≥ 0, 𝐾𝑡 extends uniquely to a bounded operator from 𝐿𝑝
𝜇() to itself with operator norm ‖𝐾𝑡‖𝐿𝑝

𝜇→𝐿
𝑝
𝜇
≤ 1.

By 𝐶𝑏() we denote the set of all bounded continuous functions on  . As the measure 𝜇 is finite, we have 𝐶𝑏() ⊂ 𝐵() ⊂ 𝐿
𝑝
𝜇()

for all 𝑝 ∈ [1, ∞]. In fact, 𝐶𝑏() is dense in each 𝐿𝑝
𝜇(), 𝑝 ∈ [1, ∞), see [57, Theorem 3.14].

Proposition 2.8. (𝐾𝑡)𝑡≥0 is a 𝐶0-semigroup of contractions in 𝐿𝑝
𝜇() for each 𝑝 ∈ [1, ∞).

The infinitesimal generator of the 𝐶0-semigroup (𝐾𝑡)𝑡≥0 is the (in general unbounded) operator in 𝐿2
𝜇(), defined by

𝜓 =𝐿2
𝜇- lim

𝑡→0

𝐾𝑡𝜓 −𝜓

𝑡
, (2.9)

whose domain dom is the set of all 𝜓 ∈𝐿2
𝜇() for which the above limit exists. By Proposition 2.8 and the Lumer-Phillips theorem 

(see [36]), the operator  is densely defined, closed,5 dissipative (i.e., Re⟨𝜓, 𝜓⟩𝜇 ≤ 0 for all 𝜓 ∈ dom), and its spectrum is 
contained in the closed left half-plane.

Lemma 2.9. The constant function 1 is contained in dom and 1 = 0. Moreover, both 𝑀 ∶= span{1} and 𝑀⟂ are invariant under 
and all 𝐾𝑡, 𝑡 ≥ 0.

Proof. It is easy to see that 𝐾𝑡1 = 1 for each 𝑡 ≥ 0 and hence 1 ∈ dom with 1 = 0. Hence 𝐾𝑡𝑀 ⊂ 𝑀 for all 𝑡 ≥ 0 and 𝑀 ⊂ 𝑀 . 
Now, if 𝜓 ∈𝑀⟂, then ⟨𝐾𝑡𝜓, 1⟩𝜇 = ∫ 𝐾𝑡𝜓 𝑑𝜇 = ∫ 𝜓 𝑑𝜇 = ⟨𝜓, 1⟩𝜇 = 0, which shows that also 𝐾𝑡𝑀⟂ ⊂ 𝑀⟂. The relation 𝑀⟂ ⊂ 𝑀⟂

follows from (2.9). □

2.4. Representation of Koopman operators on the RKHS

Using the integral operator  , it is possible to represent the Koopman operator with the aid of a linear operator on ℍ, which is 
based on kernel evaluations. This construction mimics the well-known kernel trick used frequently in machine learning. To begin 
with, for any 𝑥, 𝑦 ∈  define the rank-one operator 𝐶𝑥𝑦 ∶ℍ →ℍ by

𝐶𝑥𝑦𝜓 ∶= ⟨𝜓,Φ(𝑦)⟩Φ(𝑥) = 𝜓(𝑦)Φ(𝑥).

For 𝑡 ≥ 0 and 𝜓 ∈ℍ we further define the cross-covariance operator 𝐶𝑡
ℍ ∶ℍ →ℍ by

𝐶𝑡
ℍ𝜓 ∶= ∫ ∫ 𝐶𝑥𝑦𝜓 𝜌𝑡(𝑥,𝑑𝑦)𝑑𝜇(𝑥) = ∫ (𝐾𝑡𝜓)(𝑥)Φ(𝑥)𝑑𝜇(𝑥) = 𝐾𝑡𝜓 = 𝐾𝑡∗𝜓.

Thus, we have

𝐶𝑡
ℍ = 𝐾𝑡∗. (2.10)

In other words, the cross-covariance operator 𝐶𝑡
ℍ represents the action of the Koopman semigroup through the lens of the RKHS 

integral operator  (see [25] for details). Being the product of the two Hilbert-Schmidt operators 𝐾𝑡 and ∗, the operator 𝐶𝑡
ℍ is 

trace class for all 𝑡 ≥ 0 (cf. [21, p. 521]).

Note that due to 𝜌0(𝑥, ⋅ ) = 𝛿𝑥, for 𝑡 = 0 this reduces to the already introduced covariance operator

∫ ∫ 𝐶𝑥𝑦 𝜌0(𝑥,𝑑𝑦)𝑑𝜇(𝑥) = ∫ 𝐶𝑥𝑥 𝑑𝜇(𝑥) = ∗ = 𝐶ℍ.

The identity (2.10) shows that for all 𝜂, 𝜓 ∈ℍ we have
6

5 Recall that a linear operator 𝑇 , defined on a subspace dom𝑇 of a Hilbert space , which maps to a Hilbert space , is closed if its graph is closed in  ×.
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⟨𝜂,𝐶𝑡
ℍ𝜓⟩ = ⟨𝜂,𝐾𝑡𝜓⟩𝜇, (2.11)

which shows that the role of 𝐶𝑡
ℍ is analogous to that of the stiffness matrix in a traditional finite-dimensional approximation of the 

Koopman operator. In this analogy, the covariance operator 𝐶ℍ plays the role of the mass matrix.

2.5. Empirical estimators

Recall that the resolvent set 𝜌(𝑇 ) of a bounded operator 𝑇 , mapping from a Hilbert space  into itself, is the set consisting of all 
𝜆 ∈ℂ such that 𝑇 − 𝜆𝐼 is boundedly invertible. It is the complement of the spectrum 𝜎(𝑇 ) of 𝑇 .

Next, we introduce empirical estimators for 𝐶𝑡
ℍ based on finite data (𝑥𝑘, 𝑦𝑘), 𝑘 = 1, … , 𝑚. We consider two sampling scenarios for 

fixed 𝑡 > 0.

Assumptions on the sampling scheme and the Koopman operator:

(1) The 𝑥𝑘 are drawn i.i.d. from 𝜇, and each 𝑦𝑘 ∼ 𝜇 is obtained from the conditional distribution 𝜌𝑡(𝑥𝑘, ⋅), i.e., 𝑦𝑘|(𝑥𝑘 = 𝑥) ∼ 𝜌𝑡(𝑥, ⋅)
for 𝜇-a.e. 𝑥 ∈ . For example, 𝑦𝑘 can be obtained by simulating the SDE (2.1) starting from 𝑥𝑘 until time 𝑡.

(2) 𝜇 is ergodic and both 𝑥𝑘 and 𝑦𝑘 are obtained from a single (usually long-term) simulation of the dynamics 𝑋𝑡 at discrete 
integration time step 𝑡 > 0, using a sliding-window estimator, i.e.,

𝑥0 =𝑋0 ∼ 𝜇, 𝑥𝑘 =𝑋𝑘𝑡, and 𝑦𝑘 =𝑋(𝑘+1)𝑡.

In this case, we assume that

1 ∈ 𝜌(𝐾𝑡
0), (2.12)

where 𝐾𝑡
0 is the restriction of the Koopman operator 𝐾𝑡 to the orthogonal complement 𝐿2

𝜇,0(ℝ
𝑑 ) ∶= 1⟂ of span{1} in 𝐿2

𝜇(ℝ
𝑑 ).

Remark 2.10. (a) The condition (2.12) means that 𝜆 = 1 is an isolated simple eigenvalue of 𝐾𝑡. It is satisfied if 𝐾𝑡 is compact. Then 
𝜎(𝐾𝑡) consists of zero and a sequence of eigenvalues converging to zero, and ergodicity ensures that the eigenvalue 𝜆 = 1 is simple, 
cf. Proposition D.1. Another case where (2.12) holds is when the semigroup (𝐾𝑡

0)𝑡≥0 is exponentially stable, i.e., there exist 𝑀 ≥ 1
and 𝜔 > 0 such that ‖𝐾𝑡

0‖ ≤𝑀𝑒−𝜔𝑡 for all 𝑡 ≥ 0. Then ‖𝐾𝑛𝑡
0 ‖1∕𝑛 ≤𝑀1∕𝑛𝑒−𝜔𝑡, so that the spectral radius 𝑟 = lim𝑛→∞ ‖𝐾𝑛𝑡

0 ‖1∕𝑛 of 𝐾𝑡
0 is 

at most 𝑒−𝜔𝑡 < 1.

(b) The invariant measure 𝜇 is typically unknown, and drawing samples from it as in case (1) is usually challenging. In [51], we 
therefore consider i.i.d. data samples from a “user-defined” measure and deduce error bounds on Koopman regression for prediction 
and control of dynamical systems.

Recall that the joint distribution of two random variables 𝑋 and 𝑌 is given by

𝑑𝑃𝑋,𝑌 (𝑥, 𝑦) = 𝑑𝑃𝑌 |𝑋=𝑥(𝑦) ⋅ 𝑑𝑃𝑋 (𝑥).

Set 𝑋 = 𝑥𝑘 and 𝑌 = 𝑦𝑘. Then, in both cases (1) and (2), we have 𝑃𝑋 = 𝜇 and

𝑃𝑌 |𝑋=𝑥(𝐵) = 𝑃 (𝑦𝑘 ∈𝐵|𝑥𝑘 = 𝑥) = 𝑃 (𝑋𝑡 ∈𝐵|𝑋0 = 𝑥) = 𝜌𝑡(𝑥,𝐵).

In other words, for the joint distribution 𝜇0,𝑡 of 𝑥𝑘 and 𝑦𝑘 we have

𝑑𝜇0,𝑡(𝑥, 𝑦) = 𝑑𝜌𝑡(𝑥, ⋅)(𝑦) ⋅ 𝑑𝜇(𝑥) = 𝜌𝑡(𝑥,𝑑𝑦) ⋅ 𝑑𝜇(𝑥).

More explicitly,

𝜇0,𝑡(𝐴 ×𝐵) = ∫
𝐴

𝜌𝑡(𝑥,𝐵)𝑑𝜇(𝑥).

Now, since

𝐶𝑡
ℍ = ∫ ∫ 𝐶𝑥𝑦 𝜌𝑡(𝑥,𝑑𝑦)𝑑𝜇(𝑥) = ∫ 𝐶𝑥𝑦 𝑑𝜇0,𝑡(𝑥, 𝑦) = 𝔼

[
𝐶𝑥𝑘,𝑦𝑘

]
,

for the empirical estimator for 𝐶𝑡
ℍ we choose the expression

̂𝑚,𝑡 1
𝑚−1∑
7

𝐶ℍ =
𝑚

𝑘=0
𝐶𝑥𝑘,𝑦𝑘

. (2.13)
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3. Variance of the empirical estimator

In case (1), the law of large numbers [4, Theorem 2.4] and, in case (2), ergodicity [2] ensures the expected behavior

lim
𝑚→∞

‖𝐶𝑚,𝑡
ℍ −𝐶𝑡

ℍ‖𝐻𝑆 = 0 a.s.

However, this is a purely qualitative result, and nothing is known a priori on the rate of this convergence. The main result of this 
section, Theorem 3.1, yields probabilistic estimates for the expression ‖𝐶𝑚,𝑡

ℍ −𝐶𝑡
ℍ‖𝐻𝑆 , see Proposition 3.5. Here, our focus is on the 

estimation from a single ergodic trajectory, i.e., case (2) above. While the broader line of reasoning partially resembles that of our 
previous paper [46], we require additional steps due to the infinite-dimensional setting introduced by the RKHS.

Theorem 3.1. The Hilbert-Schmidt variance of the empirical estimator can be written as

𝔼
[‖𝐶𝑚,𝑡

ℍ −𝐶𝑡
ℍ‖2𝐻𝑆

]
= 1

𝑚

[
𝔼0(𝑡) + 2

𝑚−1∑
𝑘=1

𝑚−𝑘

𝑚
⋅ 𝔼
[⟨𝐶𝑥𝑘,𝑦𝑘

−𝐶𝑡
ℍ,𝐶𝑥0 ,𝑦0

−𝐶𝑡
ℍ⟩𝐻𝑆

]]
, (3.1)

where

𝔼0(𝑡) ∶= ⟨𝐾𝑡𝜑,𝜑⟩𝜇 − ‖𝐶𝑡
ℍ‖2𝐻𝑆

.

In case (1), we have

𝔼
[‖𝐶𝑚,𝑡

ℍ −𝐶𝑡
ℍ‖2𝐻𝑆

]
= 1

𝑚
𝔼0(𝑡),

whereas in case (2),

𝔼
[‖𝐶𝑚,𝑡

ℍ −𝐶𝑡
ℍ‖2𝐻𝑆

]
= 1

𝑚

[
𝔼0(𝑡) +

∞∑
𝑖,𝑗=1

⟨𝑄𝑔∗𝑗𝑖, 𝐹𝑚(𝐾𝑡
0)𝑄𝑔𝑖𝑗⟩𝜇], (3.2)

where 𝑄 denotes the orthogonal projection onto 𝐿2
0,𝜇(ℝ

𝑑 ) = 1⟂ in 𝐿2
𝜇(ℝ

𝑑 ),

𝑔𝑖𝑗 = 𝑓𝑗 ⋅𝐾
𝑡𝑓𝑖, 𝑔∗𝑗𝑖 = 𝑓𝑖 ⋅ (𝐾𝑡)∗𝑓𝑗 𝑖, 𝑗 ∈ ℕ,

with the Mercer basis (𝑓𝑖) ⊂ℍ (cf. Theorem 2.5), and 𝐹𝑚 ∶ℂ∖{1} →ℂ is given by

𝐹𝑚(𝑧) = 2
𝑚−1∑
𝑘=1

𝑚−𝑘

𝑚
⋅ 𝑧𝑘−1 = 2

1 − 𝑧

(
1 − 1 − 𝑧𝑚

𝑚(1 − 𝑧)

)
, 𝑧 ∈ℂ∖{1}.

Proof. Let us prove (3.1). First of all, we set 𝑧𝑘 = (𝑥𝑘, 𝑦𝑘), 𝑘 = 1, … , 𝑚. Then

𝔼
[‖𝐶𝑚,𝑡

ℍ −𝐶𝑡
ℍ‖2𝐻𝑆

]
= 𝔼

[‖‖‖ 1𝑚 𝑚−1∑
𝑘=0

(𝐶𝑧𝑘
−𝐶𝑡

ℍ)
‖‖‖2𝐻𝑆

]
= 𝔼

[ 1
𝑚2

𝑚−1∑
𝑘,𝓁=0

⟨
𝐶𝑧𝑘

−𝐶𝑡
ℍ,𝐶𝑧𝓁

−𝐶𝑡
ℍ
⟩
𝐻𝑆

]
= 𝔼

[
1
𝑚2

𝑚−1∑
𝑘=0

‖𝐶𝑧𝑘
−𝐶𝑡

ℍ‖2𝐻𝑆
+ 2

𝑚2

𝑚−1∑
𝑘=0

𝑚−1∑
𝓁=𝑘+1

⟨
𝐶𝑧𝑘

−𝐶𝑡
ℍ,𝐶𝑧𝓁

−𝐶𝑡
ℍ
⟩
𝐻𝑆

]

= 1
𝑚
𝔼
[‖𝐶𝑧0

−𝐶𝑡
ℍ‖2𝐻𝑆

]
+ 2

𝑚2

𝑚−1∑
𝑘=1

(𝑚− 𝑘)𝔼
[⟨𝐶𝑧𝑘

−𝐶𝑡
ℍ,𝐶𝑧0

−𝐶𝑡
ℍ⟩𝐻𝑆

]
,

where we exploited that 𝔼[⟨𝐶𝑧𝑘
−𝐶𝑡

ℍ, 𝐶𝑧𝓁
−𝐶𝑡

ℍ⟩𝐻𝑆 ] only depends on the difference 𝓁 − 𝑘.

Let us compute the first term. Since 𝔼[𝐶𝑧0
] = 𝐶𝑡

ℍ and thus 𝔼[⟨𝐶𝑧0
, 𝐶𝑡

ℍ⟩𝐻𝑆 ] = ‖𝐶𝑡
ℍ‖2𝐻𝑆

,

𝔼
[‖𝐶𝑧0

−𝐶𝑡
ℍ‖2𝐻𝑆

]
= 𝔼

[‖𝐶𝑧0
‖2
𝐻𝑆

]
− ‖𝐶𝑡

ℍ‖2𝐻𝑆
.

For 𝜓 ∈ℍ we have

‖𝐶𝑧0
𝜓‖2 = ‖𝜓(𝑦0)Φ(𝑥0)‖2 = 𝜓(𝑦0)2𝜑(𝑥0).

As 𝜑(𝑥) = 𝑘(𝑥, 𝑥) =
∑

𝑖 𝑓𝑖(𝑥)2, we obtain

𝔼
[‖𝐶𝑧0

‖2
𝐻𝑆

]
= 𝔼

[∑
𝑖

‖𝐶𝑧0
𝑓𝑖‖2] = 𝔼

[∑
𝑖

𝑓𝑖(𝑦0)2𝜑(𝑥0)
]
= 𝔼[𝜑(𝑥0)𝜑(𝑦0)]

= 𝜑(𝑥)𝜑(𝑦)𝜌 (𝑥,𝑑𝑦)𝑑𝜇(𝑥) = 𝜑(𝑥)(𝐾𝑡𝜑)(𝑥)𝑑𝜇(𝑥) = ⟨𝐾𝑡𝜑,𝜑⟩ .
8

∫ ∫ 𝑡 ∫ 𝜇
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Therefore,

𝔼
[‖𝐶𝑧0

−𝐶𝑡
ℍ‖2𝐻𝑆

]
= ⟨𝐾𝑡𝜑,𝜑⟩𝜇 − ‖𝐶𝑡

ℍ‖2𝐻𝑆
=𝐸0(𝑡),

and thus (3.1) follows.

Case (1). Since 𝑧𝑘 and 𝑧𝓁 are independent for 𝑘 ≠ 𝓁, we have 𝔼
[⟨𝐶𝑧𝑘

−𝐶𝑡
ℍ, 𝐶𝑧𝓁

−𝐶𝑡
ℍ⟩𝐻𝑆

]
= 0. Hence, the statement of the theorem 

for case (1) follows.

Case (2). First of all, note that 𝑔𝑖𝑗 ∈𝐿2
𝜇 as∑

𝑖,𝑗
∫ |𝑔𝑖𝑗 |2 𝑑𝜇 =

∑
𝑖,𝑗

∫ 𝑓 2
𝑗 (𝐾

𝑡𝑓𝑖)2 𝑑𝜇 ≤ ∑
𝑖,𝑗

∫ 𝑓 2
𝑗 ⋅𝐾𝑡[𝑓 2

𝑖 ]𝑑𝜇 = ∫ 𝜑 ⋅𝐾𝑡𝜑𝑑𝜇 = ⟨𝐾𝑡𝜑,𝜑⟩𝜇. (3.3)

As also (𝐾𝑡)∗ enjoys the property [(𝐾𝑡)∗𝑓 ]2 ≤ (𝐾𝑡)∗𝑓 2 (see Appendix C), we similarly have∑
𝑖,𝑗

‖𝑔∗𝑗𝑖‖2𝜇 ≤ ⟨𝐾𝑡𝜑,𝜑⟩𝜇. (3.4)

For the cross terms, we compute

𝔼
[⟨𝐶𝑧𝑘

−𝐶𝑡
ℍ,𝐶𝑧0

−𝐶𝑡
ℍ⟩𝐻𝑆

]
+ ‖𝐶𝑡

ℍ‖2𝐻𝑆
= 𝔼[⟨𝐶𝑧𝑘

,𝐶𝑧0
⟩𝐻𝑆 ] = 𝔼

[∑
𝑖

⟨𝐶𝑧𝑘
𝑓𝑖,𝐶𝑧0

𝑓𝑖⟩]
= 𝔼

[(∑
𝑖

𝑓𝑖(𝑦𝑘)𝑓𝑖(𝑦0)
)
𝑘(𝑥𝑘, 𝑥0)

]
= 𝔼

[∑
𝑖,𝑗

𝑓𝑖(𝑦𝑘)𝑓𝑖(𝑦0)𝑓𝑗 (𝑥𝑘)𝑓𝑗 (𝑥0)
]
.

The last term can be expressed as

∫ ∫ ∫ ∫
∑
𝑖,𝑗

𝑓𝑗 (𝑥)𝑓𝑖(𝑦)𝑓𝑗 (𝑥′)𝑓𝑖(𝑦′)𝜌𝑡(𝑥′, 𝑑𝑦′)𝜌(𝑘−1)𝑡(𝑦, 𝑑𝑥′)𝜌𝑡(𝑥,𝑑𝑦)𝑑𝜇(𝑥)

=
∑
𝑖,𝑗

∫ ∫ ∫ 𝑓𝑗 (𝑥)𝑓𝑖(𝑦)𝑓𝑗 (𝑥′)(𝐾𝑡𝑓𝑖)(𝑥′)𝜌(𝑘−1)𝑡(𝑦, 𝑑𝑥′)𝜌𝑡(𝑥,𝑑𝑦)𝑑𝜇(𝑥)

=
∑
𝑖,𝑗

∫ ∫ 𝑓𝑗 (𝑥)𝑓𝑖(𝑦)(𝐾 (𝑘−1)𝑡𝑔𝑖𝑗 )(𝑦)𝜌𝑡(𝑥,𝑑𝑦) 𝑑𝜇(𝑥) =
∑
𝑖,𝑗

∫ 𝑓𝑗 (𝑥)
(
𝐾𝑡(𝑓𝑖 ⋅𝐾

(𝑘−1)𝑡𝑔𝑖𝑗 )
)
(𝑥)𝑑𝜇(𝑥)

(∗)
=
∑
𝑖,𝑗

⟨
𝑓𝑖(𝐾𝑡)∗𝑓𝑗 ,𝐾

(𝑘−1)𝑡𝑔𝑖𝑗
⟩
𝜇
=
∑
𝑖,𝑗

⟨
𝑔∗𝑗𝑖,𝐾

(𝑘−1)𝑡𝑔𝑖𝑗
⟩
𝜇
.

For a justification of (∗) see Lemma C.1.

Let 𝑃 be the orthogonal projection in 𝐿2
𝜇(ℝ

𝑑 ) onto span{1}, i.e., 𝑃 = 𝐼 −𝑄. Then, by Lemma 2.9,

𝔼
[⟨𝐶𝑧𝑘

−𝐶𝑡
ℍ,𝐶𝑧0

−𝐶𝑡
ℍ⟩𝐻𝑆

]
+ ‖𝐶𝑡

ℍ‖2𝐻𝑆
=
∑
𝑖,𝑗

⟨
𝑄𝑔∗𝑗𝑖,𝐾

(𝑘−1)𝑡
0 𝑄𝑔𝑖𝑗

⟩
𝜇
+
∑
𝑖,𝑗

⟨
𝑃𝑔∗𝑗𝑖,𝐾

(𝑘−1)𝑡𝑃 𝑔𝑖𝑗
⟩
𝜇
.

For 𝑓 ∈𝐿2
𝜇(ℝ

𝑑 ) we have 𝑃𝑓 = ⟨𝑓, 1⟩𝜇1, so (since ∫ 𝑔∗
𝑗𝑖
𝑑𝜇 = ∫ 𝑔𝑖𝑗 𝑑𝜇)

∑
𝑖,𝑗

⟨
𝑃𝑔∗𝑗𝑖,𝐾

(𝑘−1)𝑡𝑃 𝑔𝑖𝑗
⟩
𝜇
=
∑
𝑖,𝑗

⟨⟨𝑔∗𝑗𝑖,1⟩𝜇1, ⟨𝑔𝑖𝑗 ,1⟩𝜇𝐾 (𝑘−1)𝑡1
⟩
𝜇
=
∑
𝑖,𝑗

|⟨𝑔𝑖𝑗 ,1⟩𝜇|2 =∑
𝑖,𝑗

||||∫ 𝑓𝑗 ⋅𝐾
𝑡𝑓𝑖 𝑑𝜇

||||2
=
∑
𝑖,𝑗

∫ ∫ 𝑓𝑗 (𝑥)(𝐾𝑡𝑓𝑖)(𝑥)𝑓𝑗 (𝑥′)(𝐾𝑡𝑓𝑖)(𝑥′)𝑑𝜇(𝑥)𝑑𝜇(𝑥′)

=
∑
𝑖
∫ ∫ 𝑘(𝑥,𝑥′)(𝐾𝑡𝑓𝑖)(𝑥)(𝐾𝑡𝑓𝑖)(𝑥′)𝑑𝜇(𝑥)𝑑𝜇(𝑥′)

=
∑
𝑖
∫ ∫ ∫ ∫

⟨
𝑓𝑖(𝑦)Φ(𝑥), 𝑓𝑖(𝑦′)Φ(𝑥′)

⟩
𝜌𝑡(𝑥,𝑑𝑦)𝜌𝑡(𝑥′, 𝑑𝑦′)𝑑𝜇(𝑥)𝑑𝜇(𝑥′)

=
∑
𝑖

‖‖‖∫ 𝑓𝑖(𝑦)Φ(𝑥)𝑑𝜇0,𝑡(𝑥, 𝑦)
‖‖‖2 =∑

𝑖

‖𝐶𝑡
ℍ𝑓𝑖‖2 = ‖𝐶𝑡

ℍ‖2𝐻𝑆
.

At this point, we would like to remark for later use that in a similar way we get∑‖𝑃𝑔𝑖𝑗‖2𝜇 =
∑‖𝑃𝑔∗𝑗𝑖‖2𝜇 = ‖𝐶𝑡

ℍ‖2𝐻𝑆
. (3.5)
9

𝑖,𝑗 𝑖,𝑗
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We have thus shown that

𝔼
[⟨𝐶𝑧𝑘

−𝐶𝑡
ℍ,𝐶𝑧0

−𝐶𝑡
ℍ⟩𝐻𝑆

]
=
∑
𝑖,𝑗

⟨
𝑄𝑔∗𝑗𝑖,𝐾

(𝑘−1)𝑡
0 𝑄𝑔𝑖𝑗

⟩
𝜇
,

which concludes the proof. □

Remark 3.2. Let us compute the variance in the case, where the generator  is self-adjoint with discrete spectrum. Then  =∑∞
𝓁=0 𝜇𝓁⟨⋅, 𝜓𝓁⟩𝜇𝜓𝓁 with eigenvalues 𝜇𝓁 ≤ 0 and eigenfunctions 𝜓𝓁 . We let 𝜇0 = 0 and 𝜓0 = 1. Then, setting 𝑞𝓁 = 𝑒𝜇𝓁 𝑡, we get 

𝐾𝑡
0 =

∑∞
𝓁=1 𝑞𝓁⟨⋅, 𝜓𝓁⟩𝜇𝜓𝓁 and thus

𝐹𝑚(𝐾𝑡
0) =

∞∑
𝓁=1

𝐹𝑚(𝑞𝓁)⟨⋅, 𝜓𝓁⟩𝜇𝜓𝓁 .

It is now easy to see that (note that 𝑔∗
𝑗𝑖
= 𝑔𝑗𝑖 in this case)

∑
𝑖,𝑗

⟨𝑄𝑔𝑗𝑖, 𝐹𝑚(𝐾𝑡
0)𝑄𝑔𝑖𝑗⟩𝜇 =

∞∑
𝓁=1

𝑑𝓁,𝑡 ⋅ 𝐹𝑚(𝑞𝓁), (3.6)

where 𝑑𝓁,𝑡 =
∑

𝑖,𝑗⟨𝑔𝑖𝑗 , 𝜓𝓁⟩𝜇⟨𝑔𝑗𝑖, 𝜓𝓁⟩𝜇 .

In the following, we let

𝜎2
𝑚 ∶= 𝔼0(𝑡) +

∞∑
𝑖,𝑗=1

⟨𝑄𝑔∗𝑗𝑖, 𝐹𝑚(𝐾𝑡
0)𝑄𝑔𝑖𝑗⟩𝜇 and 𝜎2

∞ ∶= 𝔼0(𝑡) + 2
∞∑

𝑖,𝑗=1
⟨𝑄𝑔∗𝑗𝑖, (𝐼 −𝐾𝑡

0)
−1𝑄𝑔𝑖𝑗⟩𝜇.

Then

𝔼
[‖𝐶𝑚,𝑡

ℍ −𝐶𝑡
ℍ‖2𝐻𝑆

]
=

𝜎2
𝑚

𝑚

and 𝜎2
𝑚 → 𝜎2

∞ as 𝑚 →∞. We can therefore interpret 𝜎2
∞ as asymptotic variance of the estimator 𝐶𝑚,𝑡

ℍ , similar to our previous results 
in [46, Lemma 6].

An upper bound on the variance can be obtained as follows.

Corollary 3.3. In case (2), for all 𝑚 ∈ ℕ we have

𝜎2
𝑚 ≤ 𝔼0(𝑡)

[
1 + ‖𝐹𝑚(𝐾𝑡

0)‖] ≤ 8𝔼0(𝑡)‖(𝐼 −𝐾𝑡
0)

−2‖. (3.7)

Proof. We set 𝑃 ∶= 𝐼 −𝑄 and estimate (cf. (3.3), (3.4), and (3.5))

∞∑
𝑖,𝑗=1

⟨𝑄𝑔∗𝑗𝑖, 𝐹𝑚(𝐾𝑡
0)𝑄𝑔𝑖𝑗⟩𝜇 ≤ (∑

𝑖,𝑗

‖𝑄𝑔∗𝑗𝑖‖2𝜇)1∕2(∑
𝑖,𝑗

‖𝐹𝑚(𝐾𝑡
0)‖2‖𝑄𝑔𝑖𝑗‖2𝜇)1∕2

≤ ‖𝐹𝑚(𝐾𝑡
0)‖(∑

𝑖,𝑗

[‖𝑔∗𝑗𝑖‖2𝜇 − ‖𝑃𝑔∗𝑗𝑖‖2𝜇])1∕2(∑
𝑖,𝑗

[‖𝑔𝑖𝑗‖2𝜇 − ‖𝑃𝑔𝑖𝑗‖2𝜇])1∕2
≤ ‖𝐹𝑚(𝐾𝑡

0)‖(⟨𝐾𝑡𝜑,𝜑⟩𝜇 − ‖𝐶𝑡
ℍ‖2𝐻𝑆

)
= ‖𝐹𝑚(𝐾𝑡

0)‖ ⋅𝐸0(𝑡).

This proves the first estimate. For the second one, we observe that for 𝑇 ∶=𝐾𝑡
0 we have

𝐹𝑚(𝑇 ) = 2(𝐼 − 𝑇 )−1
(
𝐼 − 1

𝑚
(𝐼 − 𝑇 )−1(𝐼 − 𝑇𝑚)

)
= 2(𝐼 − 𝑇 )−2

(
(1 − 1

𝑚
)𝐼 − 𝑇 + 1

𝑚
𝑇𝑚
)
.

Making use of ‖𝑇 ‖ ≤ 1, we obtain

‖𝐹𝑚(𝑇 )‖ ≤ 2‖(𝐼 − 𝑇 )−2‖ ⋅ (1 − 1
𝑚
+ 1 + 1

𝑚
) = 4‖(𝐼 − 𝑇 )−2‖.

Moreover, ‖𝐼 − 𝑇 ‖ ≤ 2, so that

1 = ‖(𝐼 − 𝑇 )2(𝐼 − 𝑇 )−2‖ ≤ ‖𝐼 − 𝑇 ‖2‖(𝐼 − 𝑇 )−2‖ ≤ 4‖(𝐼 − 𝑇 )−2‖,
and the corollary is proved. □

Remark 3.4. If the semigroup (𝐾𝑡
0)𝑡≥0 is exponentially stable with 𝑀 ≥ 1 and 𝜔 > 0, then, setting 𝑞 = 𝑒−𝜔𝑡 < 1, we have

𝑡
‖‖𝑚−1∑

𝑚−𝑘 (𝑘−1)𝑡
‖‖ 𝑚−1∑

𝑚−𝑘 𝑘−1
10

‖𝐹𝑚(𝐾0)‖ = 2‖‖‖ 𝑘=1
𝑚

⋅𝐾0 ‖‖‖ ≤ 2𝑀
𝑘=1

𝑚
⋅ 𝑞 =𝑀𝐹𝑚(𝑞)
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= 2𝑀
1 − 𝑞

(
1 − 1 − 𝑞𝑚

𝑚(1 − 𝑞)

)
≤ 2𝑀

1 − 𝑞
.

Especially, if 𝑀 = 1, we obtain 1 + ‖𝐹𝑚(𝐾𝑡
0)‖ ≤ 3−𝑞

1−𝑞
and thus 𝜎2

𝑚 ≤ 3−𝑞

1−𝑞
⋅ 𝔼0(𝑡).

Proposition 3.5. We have the following probabilistic bound on the estimation error:

⎧⎪⎪⎨⎪⎪⎩
ℙ
(‖𝐶𝑡

ℍ −𝐶𝑚,𝑡
ℍ ‖𝐻𝑆 > 𝜀

) ≤ 𝜎2
𝑚

𝑚𝜀2
, in case (2), (a)

𝐸0(𝑡)
𝑚𝜀2

, in case (1), (b)

2 𝑒
− 𝑚𝜀2

8‖𝑘‖2∞ , in case (1) with bounded kernel. (c)

(3.8)

In particular, the above also holds upon replacing the left-hand side by ℙ
(‖𝐾𝑡𝜓 −𝐶𝑚,𝑡

ℍ 𝜓‖ > 𝜀
)

for 𝜓 ∈ℍ, ‖𝜓‖ = 1.

Proof. The inequalities (3.8a) and (3.8b) are an immediate consequence of Markov’s inequality, applied to the random variable ‖𝐶𝑡
ℍ −𝐶𝑚,𝑡

ℍ ‖2
𝐻𝑆

. Towards the inequality (3.8c), we observe that (cf. the proof of Theorem 3.1)

‖𝐶𝑡
ℍ‖2𝐻𝑆

= ∫ ∫ ∫ ∫ 𝑘(𝑥,𝑥′)𝑘(𝑦, 𝑦′)𝜌𝑡(𝑥,𝑑𝑦)𝜌𝑡(𝑥′, 𝑑𝑦′)𝑑𝜇(𝑥)𝑑𝜇(𝑥′) ≤ ‖𝑘‖2∞,

and ‖𝐶𝑥𝑦‖2𝐻𝑆
= 𝜑(𝑥)𝜑(𝑦) for 𝑥, 𝑦 ∈ℝ𝑑 . Hence, (3.8c) follows from 𝐶𝑡

ℍ −𝐶𝑚,𝑡
ℍ = 1

𝑚

∑𝑚−1
𝑘=0 (𝐶

𝑡
ℍ −𝐶𝑧𝑘

), Hoeffding’s inequality for Hilbert 
space-valued random variables [52, Theorem 3.5] (see also [38, Theorem A.5.2]), and

‖𝐶𝑡
ℍ −𝐶𝑥𝑦‖𝐻𝑆 ≤ ‖𝐶𝑡

ℍ‖𝐻𝑆 + ‖𝐶𝑥𝑦‖𝐻𝑆 ≤ 2‖𝑘‖∞.

The estimate

‖𝐾𝑡𝜓 −𝐶𝑚,𝑡
ℍ 𝜓‖ = ‖𝐾𝑡∗𝜓 −𝐶𝑚,𝑡

ℍ 𝜓‖ = ‖(𝐶𝑡
ℍ −𝐶𝑚,𝑡

ℍ )𝜓‖ ≤ ‖𝐶𝑡
ℍ −𝐶𝑚,𝑡

ℍ ‖𝐻𝑆

finally yields the last claim. □

Remark 3.6. Under additional assumptions (boundedness of the kernel, mixing, etc.), other concentration inequalities than Markov’s, 
such as, e.g., [4, Theorem 2.12] (𝛼-mixing) or [55, Théorème 3.1] (𝛽-mixing), might lead to better estimates than (3.8a).

4. Bound on the Koopman prediction error

The kernel cross-covariance operator 𝐶𝑡
ℍ can also be used to approximate the predictive capabilities of the Koopman operator, 

for observables in ℍ. Approximating the full Koopman operator involves the inverse of the co-variance operator, which becomes an 
unbounded operator on a dense domain of definition in the infinite-dimensional RKHS case. Moreover, its empirical estimator 𝐶𝑚

ℍ is 
finite-rank and thus not even injective. While Fukumizu et al. tackle this problem in [11] by means of a regularization procedure, 
we choose to use pseudo-inverses instead (cf. Remark 4.2). We truncate the action of the Koopman operator using 𝑁 terms of the 
Mercer series expansion and derive a bound for the prediction error for fixed truncation parameter 𝑁 . While we use similar ideas 
as presented in [12], we heavily rely on our new results on the cross-covariance operator, cf. Section 3. Afterwards, we deal with 
the case of Koopman-invariance of the RKHS [27]. Here, we establish an estimate for the truncation error, which then yields a 
bound on the deviation from the full Koopman operator. We emphasize that this error bound is extremely useful in comparison to 
its prior counterparts based on the assumption that the space spanned by a finite number of so-called observables (dictionary) is 
invariant under the Koopman operator. The latter essentially requires to employ only Koopman eigenfunctions as observables, see, 
e.g., [31,19].

Let (𝑒𝑗 ) be the Mercer orthonormal basis of 𝐿2
𝜇() corresponding to the kernel 𝑘 and let 𝜆𝑗 = ‖𝑒𝑗‖𝜇 as well as 𝑓𝑗 ∶=

√
𝜆𝑗𝑒𝑗 (cf. 

Theorem 2.5). We arrange the Mercer eigenvalues in a non-increasing way, i.e.,

𝜆1 ≥ 𝜆2 ≥… .

Let 𝜓 ∈ℍ. Then

𝐾𝑡𝜓 =
∞∑⟨𝐾𝑡𝜓, 𝑒𝑗⟩𝜇𝑒𝑗 = ∞∑⟨𝐶𝑡

ℍ𝜓, 𝑒𝑗⟩𝑒𝑗 = 𝑁∑⟨𝐶𝑡
ℍ𝜓, 𝑒𝑗⟩𝑒𝑗 + ∞∑ ⟨𝐶𝑡

ℍ𝜓, 𝑒𝑗⟩𝑒𝑗 . (4.1)
11

𝑗=1 𝑗=1 𝑗=1 𝑗=𝑁+1
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4.1. Prediction error

In the next theorem, we estimate the probabilistic error between the first summand

𝐾𝑡
𝑁
𝜓 =

𝑁∑
𝑗=1
⟨𝐶𝑡

ℍ𝜓, 𝑒𝑗⟩𝑒𝑗 , 𝜓 ∈ℍ,

and its empirical estimator, which is of the form 
∑𝑁

𝑗=1⟨𝐶𝑚,𝑡
ℍ 𝜓, ̂𝑒𝑗⟩𝑒𝑗 with approximations 𝑒𝑗 of the 𝑒𝑗 .

Theorem 4.1. Assume that the eigenvalues 𝜆𝑗 of 𝐶ℍ are simple, i.e., 𝜆𝑗+1 < 𝜆𝑗 for all 𝑗. Fix an arbitrary 𝑁 ∈ ℕ and let

𝛿𝑁 = min
𝑗=1,…,𝑁

𝜆𝑗 − 𝜆𝑗+1

2
. (4.2)

Further, let 𝜀 ∈ (0, 𝛿𝑁 ) and 𝛿 ∈ (0, 1) be arbitrary and fix some6 𝑚 ≥max{𝑁, 2𝜎
2
𝑚

𝜀2𝛿
}. Let now 𝜆1 ≥… ≥ 𝜆𝑚 denote the largest 𝑚 eigenvalues 

of 𝐶𝑚
ℍ in descending order and let 𝑒1, … , ̂𝑒𝑚 be corresponding eigenfunctions, respectively, such that ‖𝑒𝑗‖ = 𝜆

−1∕2
𝑗

for 𝑗 = 1, … , 𝑚. If we 
define

𝐾𝑚,𝑡
𝑁

𝜓 =
𝑁∑
𝑗=1
⟨𝐶𝑚,𝑡

ℍ 𝜓, 𝑒𝑗⟩𝑒𝑗 , 𝜓 ∈ℍ, (4.3)

then, with probability at least 1 − 𝛿, we have that

‖𝐾𝑡
𝑁
−𝐾𝑚,𝑡

𝑁
‖ℍ→𝐿2

𝜇 () ≤
[

1√
𝜆𝑁

+ 𝑁 + 1
𝛿𝑁𝜆𝑁

(1 + ‖𝜑‖1)‖𝜑‖1∕21

]
𝜀. (4.4)

All of the above statements equally apply to case (1) upon replacing 𝜎𝑚 by 𝐸0(𝑡).

Remark 4.2. (a) If we set 𝑓𝑗 = 𝜆
1∕2
𝑗

⋅ 𝑒𝑗 , then

𝐶𝑚
ℍ =

𝑚∑
𝑗=1

𝜆𝑗⟨ ⋅ , 𝑓𝑗⟩𝑓𝑗 ,

and thus

𝑁∑
𝑗=1
⟨ ⋅ , 𝑒𝑗⟩𝑒𝑗 = 𝑁∑

𝑗=1

1
𝜆𝑗

⟨ ⋅ , 𝑓𝑗⟩𝑓𝑗 = (𝐶𝑚
ℍ )

†�̂�𝑁 ,

where �̂�𝑁 =
∑𝑁

𝑗=1⟨ ⋅ , 𝑓𝑗⟩𝑓𝑗 is the orthogonal projector onto the span of the first 𝑁 eigenfunctions of 𝐶𝑚
ℍ in ℍ. Therefore,

𝐾𝑚,𝑡
𝑁

𝜓 =
𝑚∑

𝑗=1
⟨𝐶𝑚,𝑡

ℍ 𝜓, 𝑒𝑗⟩𝑒𝑗 = (𝐶𝑚
ℍ )

†�̂�𝑁𝐶𝑚,𝑡
ℍ 𝜓.

In particular, for 𝑁 = 𝑚 we have 𝐾𝑚,𝑡
𝑁

= (𝐶𝑚
ℍ )

†𝐶𝑚,𝑡
ℍ , which surely is one of the first canonical choices for an empirical estimator of 

𝐾𝑡.

(b) The functions 𝑒𝑗 have unit length in the empirical 𝐿2
𝜇 -norm:

1
𝑚

𝑚∑
𝑘=1

𝑒𝑗 (𝑥𝑘)𝑒𝑗 (𝑥𝑘) =
⟨
𝐶𝑚
ℍ𝑒𝑗 , 𝑒𝑗

⟩
= 1.

Therefore, projecting onto the first 𝑁 empirical Mercer features is the whitening transformation commonly used in traditional 
EDMD [24].

Proof of Theorem 4.1. By Proposition 3.5, both events ‖𝐶𝑡
ℍ − 𝐶𝑚,𝑡

ℍ ‖𝐻𝑆 ≤ 𝜀 and ‖𝐶ℍ − 𝐶𝑚
ℍ‖𝐻𝑆 ≤ 𝜀 occur with probability at least 

1 − 𝛿∕2, respectively. Hence, they occur simultaneously with probability at least 1 − 𝛿.

In the remainder of this proof we assume that both events occur. Then all the statements deduced in the following hold with 
probability at least 1 − 𝛿.

{ }

12

6 In case (2), by Corollary 3.3, an amount of at least 𝑚 ≥ max 𝑁 , 16𝔼0 (𝑡)
𝜀2𝛿

‖(𝐼 −𝐾𝑡
0)

−2‖ data points suffices.
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Let us define the intermediate approximation

𝐾𝑚,𝑡
𝑁

𝜓 =
𝑁∑
𝑗=1
⟨𝐶𝑚,𝑡

ℍ 𝜓, 𝑒𝑗⟩𝑒𝑗 , 𝜓 ∈ℍ.

Let 𝜓 ∈ℍ be arbitrary. Setting 𝐶 ∶= 𝐶𝑡
ℍ −𝐶𝑚,𝑡

ℍ , we have

‖𝐾𝑡
𝑁
𝜓 −𝐾𝑚,𝑡

𝑁
𝜓‖2𝜇 =

‖‖‖‖‖
𝑁∑
𝑗=1

⟨
𝐶𝜓, 𝑒𝑗

⟩
𝑒𝑗

‖‖‖‖‖
2

𝜇

=
𝑁∑
𝑗=1

|||⟨𝐶𝜓, 𝑒𝑗
⟩|||2 = 𝑁∑

𝑗=1

|||⟨𝜓,𝐶∗𝑒𝑗
⟩|||2

≤ ‖𝜓‖2 𝑁∑
𝑗=1
‖𝐶∗𝑒𝑗‖2 ≤ ‖𝜓‖2 𝑁∑

𝑗=1

1
𝜆𝑗

‖𝐶∗𝑓𝑗‖2 ≤ ‖𝜓‖2
𝜆𝑁

𝑁∑
𝑗=1
‖𝐶∗𝑓𝑗‖2

≤ ‖𝜓‖2
𝜆𝑁

∞∑
𝑗=1
‖𝐶∗𝑓𝑗‖2 = ‖𝜓‖2

𝜆𝑁

⋅ ‖𝐶𝑡
ℍ −𝐶𝑚,𝑡

ℍ ‖2
𝐻𝑆

,

and thus,

‖𝐾𝑡
𝑁
𝜓 −𝐾𝑚,𝑡

𝑁
𝜓‖𝜇 ≤ ‖𝜓‖√

𝜆𝑁

⋅ 𝜀.

Next, we aim at estimating the remaining error

𝐾𝑚,𝑡
𝑁

𝜓 −𝐾𝑚,𝑡
𝑁

𝜓 =
𝑁∑
𝑗=1
⟨𝐶𝑚,𝑡

ℍ 𝜓, 𝑒𝑗⟩𝑒𝑗 − 𝑁∑
𝑗=1
⟨𝐶𝑚,𝑡

ℍ 𝜓, 𝑒𝑗⟩𝑒𝑗
=

𝑁∑
𝑗=1

𝜆−1𝑗 ⟨𝐶𝑚,𝑡
ℍ 𝜓,𝑓𝑗⟩𝑓𝑗 −

𝑁∑
𝑗=1

𝜆−1𝑗 ⟨𝐶𝑚,𝑡
ℍ 𝜓,𝑓𝑗⟩𝑓𝑗

=
𝑁∑
𝑗=1

𝜆−1𝑗 ⟨𝑓,𝑓𝑗⟩𝑓𝑗 −
𝑁∑
𝑗=1

𝜆−1𝑗 ⟨𝑓,𝑓𝑗⟩𝑓𝑗

=
𝑁∑
𝑗=1

[
𝜆−1𝑗 𝑃𝑗𝑓 − 𝜆−1𝑗 𝑃𝑗𝑓

]
=

𝑁∑
𝑗=1

𝜆−1𝑗 (𝑃𝑗 − 𝑃𝑗 )𝑓 +
𝑁∑
𝑗=1

(𝜆−1𝑗 − 𝜆−1𝑗 )𝑃𝑗𝑓 ,

where 𝑓 = 𝐶𝑚,𝑡
ℍ 𝜓 ,

𝑃𝑗𝑓 = ⟨𝑓,𝑓𝑗⟩𝑓𝑗 and 𝑃𝑗𝑓 = ⟨𝑓,𝑓𝑗⟩𝑓𝑗 .

By (2.4), it suffices to estimate the above error in the ‖ ⋅ ‖-norm. By Theorem B.3, the first summand can be estimated as

‖‖‖ 𝑁∑
𝑗=1

𝜆−1𝑗 (𝑃𝑗 − 𝑃𝑗 )𝑓
‖‖‖ ≤ 𝑁∑

𝑗=1

1
𝜆𝑗

‖𝑃𝑗 − 𝑃𝑗‖‖𝑓‖ ≤ 𝑁 ⋅ ‖𝐶ℍ −𝐶𝑚
ℍ‖

𝜆𝑁𝛿𝑁
‖𝑓‖ ≤ 𝑁

𝜆𝑁𝛿𝑁
‖𝑓‖𝜀.

For the second summand we have

‖‖‖ 𝑁∑
𝑗=1

(𝜆−1𝑗 − 𝜆−1𝑗 )𝑃𝑗𝑓
‖‖‖2 = 𝑁∑

𝑗=1
|𝜆−1𝑗 − 𝜆−1𝑗 |2‖𝑃𝑗𝑓‖2 = 𝑁∑

𝑗=1

|𝜆𝑗 − 𝜆𝑗 |2
𝜆2
𝑗
𝜆2
𝑗

‖𝑃𝑗𝑓‖2.
Now, note that 𝜖 < 𝛿𝑁 by assumption and therefore ‖𝐶ℍ−𝐶𝑚

ℍ‖𝐻𝑆 ≤ 𝛿𝑁 ≤ 𝜆𝑁−𝜆𝑁+1
2 ≤ 𝜆𝑁

2 . For 𝑗 = 1, … , 𝑁 , according to Theorem B.1

this implies

𝜆𝑗 ≥ 𝜆𝑗 − |𝜆𝑗 − 𝜆𝑗 | ≥ 𝜆𝑗 − ‖𝐶ℍ −𝐶𝑚
ℍ‖𝐻𝑆 ≥ 𝜆𝑗 −

𝜆𝑁

2 ≥ 𝜆𝑗

2 .

Hence,

‖‖‖ 𝑁∑
𝑗=1

(𝜆−1𝑗 − 𝜆−1𝑗 )𝑃𝑗𝑓
‖‖‖2 ≤ 4

𝑁∑
𝑗=1

|𝜆𝑗 − 𝜆𝑗 |2
𝜆4
𝑗

‖𝑃𝑗𝑓‖2 ≤ 4
‖𝐶ℍ −𝐶𝑚

ℍ‖2𝐻𝑆

𝜆4
𝑁

‖�̂�𝑁𝑓‖2,
13

and thus,
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‖‖‖ 𝑁∑
𝑗=1

(𝜆−1𝑗 − 𝜆−1𝑗 )𝑃𝑗𝑓
‖‖‖ ≤ 2

𝜆2
𝑁

‖𝑓‖𝜀 ≤ 1
𝜆𝑁𝛿𝑁

‖𝑓‖𝜀.
From

‖𝐶𝑚,𝑡
ℍ ‖ ≤ ‖𝐶𝑚,𝑡

ℍ −𝐶𝑡
ℍ‖+ ‖𝐶𝑡

ℍ‖ ≤ ‖𝐶𝑚,𝑡
ℍ −𝐶𝑡

ℍ‖𝐻𝑆 + ‖𝐾𝑡∗‖ ≤ 𝜀+ ‖𝜑‖1
we conclude‖‖‖𝐾𝑚,𝑡

𝑁
𝜓 −𝐾𝑚,𝑡

𝑁
𝜓
‖‖‖ ≤ 𝑁 + 1

𝜆𝑁𝛿𝑁
‖𝐶𝑚,𝑡

ℍ 𝜓‖𝜀 ≤ 𝑁 + 1
𝜆𝑁𝛿𝑁

(𝜀+ ‖𝜑‖1)‖𝜓‖𝜀.
All together, we obtain (recall (2.4))

‖𝐾𝑡
𝑁
𝜓 −𝐾𝑚,𝑡

𝑁
𝜓‖𝜇 ≤ ‖𝐾𝑡

𝑁
𝜓 −𝐾𝑚,𝑡

𝑁
𝜓‖𝜇 + ‖𝜑‖1∕21 ‖𝐾𝑚,𝑡

𝑁
𝜓 −𝐾𝑚,𝑡

𝑁
𝜓‖

≤ ‖𝜓‖√
𝜆𝑁

⋅ 𝜀+ 𝑁 + 1
𝜆𝑁𝛿𝑁

(𝜀+ ‖𝜑‖1)‖𝜑‖1∕21 ‖𝜓‖𝜀
=

[
1√
𝜆𝑁

+ 𝑁 + 1
𝛿𝑁𝜆𝑁

(1 + ‖𝜑‖1)‖𝜑‖1∕21

]
𝜀 ⋅ ‖𝜓‖,

which implies (4.4). □

4.2. Projection error in case of Koopman-invariance of the RKHS

In the preceding section, we have seen that the empirical operator 𝐾𝑚,𝑡
𝑁

can be written as (𝐶𝑚
ℍ )

†𝐶𝑚,𝑡
ℍ if 𝑚 =𝑁 . In the limit 𝑚 →∞, 

we would arrive at the operator 𝐶−1
ℍ 𝐶𝑡

ℍ, which is not even well-defined for all 𝜓 ∈ℍ, in general. However, if the RKHS is invariant 
under 𝐾𝑡, the above operator limit is well-defined as a bounded operator on ℍ. In this situation we are able to extend Theorem 4.1

to an estimate on the full error made by our empirical estimator.

We start by defining the operator

𝐾𝑡
ℍ ∶= 𝐶−1

ℍ 𝐶𝑡
ℍ

on its natural domain

dom𝐾𝑡
ℍ ∶= {𝜓 ∈ℍ ∶ 𝐶𝑡

ℍ𝜓 ∈ ran𝐶ℍ}. (4.5)

We consider 𝐾𝑡
ℍ as an operator from ℍ into itself (with domain of definition in ℍ).

Lemma 4.3. We have

dom𝐾𝑡
ℍ = {𝜓 ∈ℍ ∶𝐾𝑡𝜓 ∈ℍ}, (4.6)

and 𝐾𝑡
ℍ is closed.

Proof. Note that 𝐶𝑡
ℍ𝜓 ∈ ran𝐶ℍ if and only if 𝐾𝑡𝜓 = 𝐶ℍ𝜙 for some 𝜙 ∈ℍ. Since ℂℍ𝜙 = 𝜙 and ker  = {0}, the latter is equivalent 

to 𝐾𝑡𝜓 = 𝜙 ∈ℍ, which proves the representation of the domain. As to the closedness of 𝐾𝑡
ℍ, let (𝜓𝑛) ⊂ dom𝐾𝑡

ℍ and 𝜙 ∈ℍ such that 
𝜓𝑛 → 𝜓 in ℍ and 𝐾𝑡

ℍ𝜓𝑛 → 𝜙 in ℍ as 𝑛 →∞. The latter implies 𝐶𝑡
ℍ𝜓𝑛 → 𝐶ℍ𝜙, while the first implies 𝐶𝑡

ℍ𝜓𝑛 → 𝐶𝑡
ℍ𝜓 in ℍ as 𝑛 →∞, 

from which we conclude that 𝐶𝑡
ℍ𝜓 = 𝐶ℍ𝜙, i.e., 𝜓 ∈ dom𝐾𝑡

ℍ and 𝐾𝑡
ℍ𝜓 = 𝜙. □

If the Koopman operator leaves the RKHS ℍ invariant (i.e., 𝐾𝑡ℍ ⊂ ℍ), 𝐾𝑡
ℍ is defined on all of ℍ. Moreover, since the canonical 

inclusion map ∗ ∶ℍ →𝐿2
𝜇() is injective, it possesses an unbounded inverse on its range ℍ, and therefore:

𝐶−1
ℍ 𝐶𝑡

ℍ𝜙 = 𝐶−1
ℍ 𝐾𝑡∗𝜙 = (∗)−1∗(∗)−1𝐾𝑡∗𝜙 = (∗)−1𝐾𝑡∗𝜙. (4.7)

Remarkably, invariance of ℍ under the Koopman operator implies that the left-hand side not only reproduces the Koopman operator 
on ℍ, but actually defines a bounded operation.

Parts of the next proposition can be found in [27, Theorem 5.3] and [9, Theorem 1].

Proposition 4.4. For 𝑡 > 0, the following statements are equivalent:

(i) 𝐾𝑡ℍ ⊂ℍ.

(ii) 𝐾𝑡
ℍ ∈𝐿(ℍ).
14

(iii) ran𝐶𝑡
ℍ ⊂ ran𝐶ℍ.
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Proof. With regard to the two representations (4.5) and (4.6) of the domain, it is immediate that both (i) and (iii) are equivalent to 
dom𝐾𝑡

ℍ =ℍ. The equivalence of the latter to (ii) follows from the closed graph theorem. □

Note that if one of (i)–(iii) holds, then 𝐾𝑡
ℍ =𝐾𝑡|ℍ.

Theorem 4.5. In addition to the assumptions in Theorem 4.1, assume that ℍ is invariant under the Koopman operator 𝐾𝑡. For fixed 𝑁 ∈ℕ, 
let 𝛿𝑁 be as in (4.2), choose 𝜀, 𝛿, and 𝑚 as in Theorem 4.1 and define the empirical estimator 𝐾𝑚,𝑡

𝑁
as in (4.3). Then, with probability at 

least 1 − 𝛿 we have that

‖𝐾𝑡 −𝐾𝑚,𝑡
𝑁
‖ℍ→𝐿2

𝜇 () ≤
√

𝜆𝑁+1 ‖𝐾𝑡
ℍ‖+

[
1√
𝜆𝑁

+ 𝑁 + 1
𝛿𝑁𝜆𝑁

(1 + ‖𝜑‖1)‖𝜑‖1∕21

]
𝜀. (4.8)

Proof. First of all, Theorem 4.1 implies that

‖𝐾𝑡 −𝐾𝑚,𝑡
𝑁
‖ℍ→𝐿2

𝜇 () ≤ ‖𝐾𝑡 −𝐾𝑡
𝑁
‖ℍ→𝐿2

𝜇 () + ‖𝐾𝑡
𝑁
−𝐾𝑚,𝑡

𝑁
‖ℍ→𝐿2

𝜇 ()

≤ ‖𝐾𝑡 −𝐾𝑡
𝑁
‖ℍ→𝐿2

𝜇 () +

[
1√
𝜆𝑁

+ 𝑁 + 1
𝛿𝑁𝜆𝑁

(1 + ‖𝜑‖1)‖𝜑‖1∕21

]
𝜀.

Now, for 𝜓 ∈ℍ,

‖𝐾𝑡𝜓 −𝐾𝑡
𝑁
𝜓‖2𝜇 =

‖‖‖‖‖
∞∑

𝑗=𝑁+1
⟨𝐶𝑡

ℍ𝜓, 𝑒𝑗⟩𝑒𝑗‖‖‖‖‖
2

𝜇

=
∞∑

𝑗=𝑁+1
|⟨𝐶𝑡

ℍ𝜓, 𝑒𝑗⟩|2 = ∞∑
𝑗=𝑁+1

1
𝜆𝑗

|⟨𝐶𝑡
ℍ𝜓,𝑓𝑗⟩|2

=
∞∑

𝑗=𝑁+1

1
𝜆𝑗

|⟨𝐾𝑡
ℍ𝜓,𝐶ℍ𝑓𝑗⟩|2 = ∞∑

𝑗=𝑁+1
𝜆𝑗 |⟨𝐾𝑡

ℍ𝜓,𝑓𝑗⟩|2 ≤ 𝜆𝑁+1‖𝐾𝑡
ℍ𝜓‖2,

which proves the theorem. □

Remark 4.6. (a) The proof of Theorem 4.5 shows that the projection error ‖𝐾𝑡𝜓 − 𝐾𝑡
𝑁
𝜓‖𝜇 decays at least as fast as the square 

roots of the eigenvalues of 𝐶ℍ. Recall that (𝜆𝑗 )𝑗∈ℕ ∈ 𝓁1(ℕ), since 𝐶ℍ is trace class with 
∑∞

𝑗=1 𝜆𝑗 = Tr(𝐶ℍ) = ‖∗‖2
𝐻𝑆

= ‖𝜑‖1, see 
Lemma 2.4(c).

(b) In Appendix E, we prove that the RKHS generated by Gaussian RBF kernels on ℝ is invariant under the Koopman semigroup 
associated with the 1D Ornstein-Uhlenbeck process. In fact, it can be proved that this invariance also holds in higher dimensions. 
This shows that the assumption in Theorem 4.5 is not too exotic and can be satisfied.

5. Illustration with the Ornstein-Uhlenbeck process

For the numerical illustration of our results, we consider the Ornstein-Uhlenbeck (OU) process on  =ℝ, which is given by the 
SDE

𝑑𝑋𝑡 = −𝛼𝑋𝑡 𝑑𝑡+ 𝑑𝑊𝑡,

where 𝛼 > 0 is a positive parameter.

5.1. Analytical results

Since all relevant properties of the OU process are available in analytical form, we can exactly calculate all of the terms appearing 
in our theoretical error bounds. Moreover, we can also compute the exact estimation and prediction errors for finite data in closed 
form. Let us begin by recapping the analytical results required for our analysis, which can be found in [49].

The invariant measure 𝜇, and the density of the stochastic transition kernel 𝜌𝑡, are given by

𝑑𝜇(𝑥) =
√

𝛼

𝜋
𝑒−𝛼𝑥2 𝑑𝑥 and 𝜌𝑡(𝑥,𝑑𝑦) =

√
𝛼

𝜋𝑣2𝑡
exp

[
− 𝛼

𝑣2𝑡
(𝑦− 𝑒−𝛼𝑡𝑥)2

]
𝑑𝑦,

with 𝑣2𝑡 = 1 − 𝑒−2𝛼𝑡. The Koopman operators 𝐾𝑡 are self-adjoint in 𝐿2
𝜇(ℝ), their eigenvalues and corresponding eigenfunctions are 

given by

𝑞𝑗 = 𝑒−𝛼𝑗𝑡 and 𝜓𝑗 (𝑥) =
1√

2𝑗𝛼𝑗𝑗!
𝐻𝑗 (

√
2𝛼𝑥), 𝑗 ∈ℕ0,
15

where 𝐻𝑗 are the physicist’s Hermite polynomials.
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We consider the Gaussian radial basis function (RBF) kernel with bandwidth 𝜎 > 0, i.e.,

𝑘(𝑥, 𝑦) = exp
[
−(𝑥− 𝑦)2

𝜎2

]
.

Let us quickly verify that this choice of the kernel satisfies the compatibility assumptions (A1)–(A3). Indeed, (A1) is trivial as 
𝑘(𝑥, 𝑥) = 1 and (A3) follows easily from the continuity of the functions in ℍ. To see that ℍ is dense in 𝐿2

𝜇(ℝ) (i.e., (A2)), let 
𝜓 ∈𝐿2

𝜇(ℝ) be such that ⟨𝜓, Φ(𝑦)⟩𝜇 = 0 for all 𝑦 ∈ℝ. The latter means that 𝜙 ∗ 𝜑𝜎 = 0, where 𝜙(𝑥) = 𝜓(𝑥)𝑒−𝛼𝑥2 and 𝜑𝜎(𝑥) = 𝑒−𝑥2∕𝜎2 . 
We apply the Fourier transform and obtain 𝜙 ⋅ 𝜑𝜎 = 0. Noting that the Fourier transform of a Gaussian is again a Gaussian, we get 
𝜙 = 0 and thus 𝜓 = 0.

The Mercer eigenvalues and features with respect to the invariant measure 𝜇 of the Ornstein-Uhlenbeck process, i.e., the eigen-

values and eigenfunctions of the integral operator ∗ in 𝐿2
𝜇(ℝ), are also available in analytical form [10]. They are given by

𝜆𝑖 =
√

𝛼

𝐶1

[
1

𝜎2𝐶1

]𝑖
and 𝜑𝑖(𝑥) = 𝛾𝑖𝑒

−𝜁2𝑥2𝐻𝑖

(√
𝛼𝜂𝑥

)
, 𝑖 ∈ℕ0,

using the following constants:

𝜂 =
[
1 + 4

𝛼𝜎2

]1∕4
, 𝛾𝑖 =

[
𝜂

2𝑖Γ(𝑖+ 1)

]1∕2
, 𝜁2 = 𝛼

2
(𝜂2 − 1), 𝐶1 = 𝛼 + 𝜁2 + 𝜎−2.

With these results, we can compute the variance of the empirical estimator for 𝐶𝑡
ℍ as described in Theorem 3.1. The eigenvalues 𝑞𝑗

were already given above. The coefficients 𝑑𝑗,𝑡 (cf. Remark 3.2) are given by

𝑑𝑗,𝑡 =
∑
𝑘,𝓁

𝜆𝑘𝜆𝓁

[
∫ 𝜑𝑘(𝑥)𝜑𝓁(𝑦)𝜓𝑗 (𝑥)𝑑𝜇0,𝑡(𝑥, 𝑦)

][
∫ 𝜑𝓁(𝑥)𝜑𝑘(𝑦)𝜓𝑗 (𝑥)𝑑𝜇0,𝑡(𝑥, 𝑦)

]
.

The series needs to be truncated at a finite number of terms and the integrals can be calculated by numerical integration. As 
furthermore (see the proof of Theorem 3.1)

‖𝐶𝑡
ℍ‖2𝐻𝑆

=
∑
𝑘,𝓁

|⟨𝑔𝑘𝓁 ,1⟩𝜇|2 =∑
𝑘,𝓁

𝜆𝑘𝜆𝓁

[
∫ 𝜑𝑘(𝑥)𝜑𝓁(𝑦)𝑑𝜇0,𝑡(𝑥, 𝑦)

]2
(5.1)

the Hilbert-Schmidt norm of the cross-covariance operator 𝐶𝑡
ℍ can be computed similarly. Since, for the Gaussian RBF kernel, we 

have 𝜑(𝑥) = 𝑘(𝑥, 𝑥) = 1 for all 𝑥, we therefore find

𝔼0(𝑡) =
⟨
𝐾𝑡𝜑, 𝜑

⟩
𝜇
− ‖𝐶𝑡

ℍ‖2𝐻𝑆
= 1 − ‖𝐶𝑡

ℍ‖2𝐻𝑆
,

completing the list of terms required by Theorem 3.1 and Remark 3.4. In addition, we notice that upon replacing either one or two 
of the integrals in (5.1) by finite-data averages, we can also calculate ‖𝐶𝑚,𝑡

ℍ ‖2
𝐻𝑆

and ⟨𝐶𝑡
ℍ, 𝐶

𝑚,𝑡
ℍ ⟩𝐻𝑆 . Therefore, the estimation error 

for finite data {(𝑥𝑘, 𝑦𝑘)}𝑚𝑘=1 can be obtained by simply expanding the inner product

‖𝐶𝑡
ℍ −𝐶𝑚,𝑡

ℍ ‖2
𝐻𝑆

= ‖𝐶𝑡
ℍ‖2𝐻𝑆

+ ‖𝐶𝑚,𝑡
ℍ ‖2

𝐻𝑆
− 2⟨𝐶𝑚,𝑡

ℍ ,𝐶𝑡
ℍ⟩𝐻𝑆,

allowing us to precisely compare the estimation error to the error bounds obtained in Theorem 3.1.

Besides the estimation error for 𝐶𝑡
ℍ , we are also interested in the prediction error, which is bounded according to Theorem 4.1. 

We will compare these bounds to the actual error ‖(𝐾𝑡
𝑁
−𝐾𝑚,𝑡

𝑁
)𝜙‖𝐿2

𝜇 (), for a specific observable 𝜙 ∈ ℍ and a fixed number of 𝑁
Mercer features. For the OU process, it is again beneficial to consider Gaussian observables 𝜙:

𝜙(𝑥) = 1√
2𝜋𝜎2

0

exp

[
−
(𝑥−𝑚0)2

2𝜎2
0

]
.

Application of the Koopman operator leads to yet another, unnormalized Gaussian observable, which is given by

𝐾𝑡𝜙(𝑥) = 1√
2𝜋𝜎2

𝑡

exp

[
−
(𝑚0 − 𝑒−𝛼𝑡𝑥)2

2𝜎2
𝑡

]
, 𝜎2

𝑡 = 𝜎2
0 + 𝑣2𝑡 .

The inner products of 𝐾𝑡𝜙 with the Mercer eigenfunctions 𝜑𝑖 can be evaluated by numerical integration, providing full access to the 
truncated observable 𝐾𝑡

𝑁
𝜙. On the other hand, the empirical approximation 𝐾𝑚,𝑡

𝑁
𝜙 can be computed directly based on the data. We 

note that

𝐾𝑚,𝑡
𝑁

𝜙 =
𝑁∑⟨

𝐶𝑚,𝑡
ℍ 𝜙, 𝑒𝑗

⟩
𝑒𝑗 =

1
𝑚∑

𝜙(𝑦𝑘)
𝑁∑⟨

Φ(𝑥𝑘), 𝑒𝑗
⟩
𝑒𝑗 =

1
𝑚∑

𝜙(𝑦𝑘)
𝑁∑

𝑒𝑗 (𝑥𝑘)𝑒𝑗 .
16

𝑗=1 𝑚
𝑘=1 𝑗=1 𝑚

𝑘=1 𝑗=1
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Fig. 3. Probabilistic error estimates for 𝐶𝑡
ℍ associated to the OU process, at lag time 𝑡 = 0.05, and the Gaussian RBF kernel with different bandwidths 𝜎 ∈ {0.05, 0.1, 0.5}

(indicated by circles, x-es, and squares). We show the estimated error obtained from Proposition 3.5, with confidence 1 − 𝛿 = 0.9, using either the exact variance given 
in Theorem 3.1 (blue), the coarser estimate in Remark 3.4 (green), or the i.i.d.-variance 1

𝑚
𝔼0(𝑡) (purple). The red curves in both panels show the 0.9-percentile of the 

estimation error based on 200 independent simulations. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

The functions 𝑒𝑗 can be obtained from the eigenvalue decomposition of the standard kernel Gramian matrix

1
𝑚

𝐾 ∶= 1
𝑚

[
𝑘(𝑥𝑘, 𝑥𝑙)

]𝑚
𝑘,𝑙=1 ,

as the latter is the matrix representation of the empirical covariance operator 𝐶𝑚
ℍ on the subspace span{Φ(𝑥𝑘)}𝑚𝑘=1. If 1

𝑚
𝐾 = 𝑉 Λ𝑉 ⊤

is the spectral decomposition of the Gramian, then

𝑒𝑗 =
1

𝑚1∕2𝜆𝑗

𝑚∑
𝑙=1

𝑉𝑙𝑗Φ(𝑥𝑙)

are the correctly normalized eigenfunctions according to Theorem 4.1. Plugging this into the above, we find

𝐾𝑚,𝑡
𝑁

𝜙(𝑥) = 1
𝑚

𝑚∑
𝑘=1

𝜙(𝑦𝑘)
𝑁∑
𝑗=1

1
𝑚1∕2𝜆𝑗

𝑚∑
𝑙=1

𝑉𝑙𝑗𝑘(𝑥𝑙, 𝑥𝑘)
1

𝑚1∕2𝜆𝑗

𝑚∑
𝑟=1

𝑉𝑟𝑗𝑘(𝑥𝑟, 𝑥)

= 1
𝑚

𝜙(𝑌 )⊤ 1
𝑚

𝐾
[
𝑉𝑁Λ−2

𝑁
𝑉 ⊤
𝑁

]
𝐾 ,𝑥

= 1
𝑚

𝜙(𝑌 )⊤𝑉𝑁Λ−1
𝑁

𝑉 ⊤
𝑁
𝐾 ,𝑥,

where 𝜙(𝑌 ) = [𝜙(𝑦𝑘)]𝑚𝑘=1, 𝐾 ,𝑥 = [𝑘(𝑥𝑘, 𝑥)]𝑚𝑘=1, 𝑉𝑁 = 𝑉 [𝐼𝑁 0𝑚−𝑁 ]⊤, Λ𝑁 = diag(𝜆𝑗 )𝑁𝑗=1.

5.2. Numerical results

For the actual numerical experiments, we set 𝛼 = 1, choose the Koopman lag time as 𝑡 = 0.05, and downsample all simulation data 
such that successive time steps are separated by time 𝑡. We compute the exact variance 𝔼[‖𝐶𝑡

ℍ − 𝐶𝑚,𝑡
ℍ ‖2

𝐻𝑆
] by the expression given 

in Theorem 3.1, and also the coarser estimate for the variance given in Remark 3.4. In addition, we also compute the i.i.d. variance 
1
𝑚
𝔼0(𝑡). We test three different kernel bandwidths, 𝜎 ∈ {0.05, 0.1, 0.5}. All Mercer series are truncated after the first 10 terms for 

𝜎 ∈ {0.1, 0.5}, and 20 terms for 𝜎 = 0.05, while Koopman eigenfunction expansions are truncated after 15 terms.

In the first set of experiments, we use Chebyshev’s inequality as in Proposition 3.5 combined with the variance estimates described 
above to compute the maximal estimation error ‖𝐶𝑡

ℍ − 𝐶𝑚,𝑡
ℍ ‖𝐻𝑆 that can be guaranteed with confidence 1 − 𝛿 = 0.9, for a range of 

data sizes 𝑚 between 𝑚 = 20 and 𝑚 = 50.000. As a comparison, we generate 200 independent simulations with simulation horizon 
𝑚 ⋅ 𝑡, for each data size 𝑚. We then compute the resulting estimation error using the expressions given in the previous section. The 
comparison of these results for all data sizes 𝑚 and the different kernel bandwidths is shown in Fig. 3. We observe that the bound 
based on the exact variance from Theorem 3.1 is quite accurate, over-estimating the actual error by about a factor three, and captures 
the detailed qualitative dependence of the estimation error on 𝑚 and 𝜎. The coarser bound from Remark 3.4, however, appears to 
discard too much information, it over-estimates the error by at least an order of magnitude, and also does not change significantly 
with 𝜎. Finally, we note that for larger kernel bandwidth, the i.i.d. variance is indeed too small, leading to an under-estimation of 
the error. This observation confirms that it is indeed necessary to take the effect of the correlation between data points into account.

In a second set of experiments, we test the performance of our theoretical bounds concerning the prediction of expectations for 
individual observables, obtained in Theorem 4.1. For the same three Gaussian RBF kernels as in the first set of experiments, we 
consider the observable 𝜙 = 𝜑0, i.e., the first Mercer feature. As above, we choose 𝑁 = 10 or 𝑁 = 20, depending on the bandwidth, 
to truncate the Mercer series expansion 𝐾𝑡

𝑁
𝜙 and its empirical approximation 𝐾𝑚,𝑡

𝑁
𝜙. Note that 𝜙 is a different observable depending 

on the bandwidth. Again, we set 1 − 𝛿 = 0.9, and use Theorem 4.1 to bound the 𝐿2
𝜇 -error between 𝐾𝑡

𝑁
𝜙 and 𝐾𝑚,𝑡

𝑁
𝜙. As a comparison, 
17

we compute the actual 𝐿2
𝜇 -error by numerical integration, using the fact that we can evaluate 𝐾𝑡

𝑁
𝜙(𝑥) and 𝐾𝑚,𝑡

𝑁
𝜙(𝑥) at any 𝑥 based 
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Fig. 4. Comparison of the theoretical bound on the prediction error ‖𝐾𝑡
𝑁
𝜙 −𝐾𝑚,𝑡

𝑁
𝜙‖𝜇 , if 𝜙 is chosen as the first Mercer feature 𝜑0, using 𝑁 = 20 (for 𝜎 = 0.05) or 

𝑁 = 10 (otherwise) in the Mercer series representation. The predicted error is shown in blue, different bandwidths are indicated by circles, x-es and squares. Error 
bars for the actual error obtained from 20 independent data sets are shown in red.

on the discussion above. We repeat this procedure 20 times and provide average errors and standard deviations. The results for 
all three kernels are shown in Fig. 4, and we find that our theoretical bounds are much too pessimistic in all cases. This finding 
highlights our previous observation that bounding the prediction error outside the RKHS still requires more in-depth research.

6. Conclusions

We have analyzed the finite-data estimation error for data-driven approximations of the Koopman operator on reproducing 
kernel Hilbert spaces. More specifically, we have provided an exact expression for the variance of empirical estimators for the cross-

covariance operator, if a sliding-window estimator is applied to a long ergodic trajectory of the dynamical system (Theorem 3.1). This 
setting is relevant for many complex systems, such as molecular dynamics simulations. Our results present a significant improvement 
over the state of the art, since they concern a setting where the notorious problem of dictionary selection can be circumvented, 
and therefore no longer depend on the dictionary size. We have also extended the concept of asymptotic variance to an infinite-

dimensional approximation space for the Koopman operator. Our numerical study on the Ornstein Uhlenbeck process has shown 
that, even using a simple mass concentration inequality, accurate bounds on the estimation error can be obtained (Fig. 3).

In our second main contribution, Theorem 4.1, we have extended our estimates to a uniform bound on the prediction error for 
observables in the RKHS. Thereby, we have circumvented dealing with an unbounded inverse of the covariance operator by applying 
a finite-dimensional truncation of the associated Mercer series. In case of Koopman-invariance of the RKHS, we were even able 
to find a bound on the truncation error which then yields estimates for the full approximation error (Theorem 4.5). The resulting 
error bounds have, however, proven very conservative in the numerical examples (Fig. 4). Therefore, obtaining sharper bounds on 
the prediction error constitutes a primary goal for future research. A fundamental step in this direction was recently made in [28], 
where 𝐿∞-bounds on the prediction error are provided, leveraging the equivalence of regression and interpolation in RKHS. These 
pointwise bounds will also lay the foundation for kEDMD-based control with guarantees using approximate control affinity, cf. [51].

Data availability

Codes and data required for reproducing the numerical results in this study are available at https://zenodo .org /doi /10 .5281 /
zenodo .10044360.
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Appendix A. Proofs

Proof of Lemma 2.1. Let 𝜓 ∈ℍ. Then (2.4) follows from

∫ |𝜓(𝑥)|2 𝑑𝜇(𝑥) = ∫ |⟨𝜓,Φ(𝑥)⟩|2 𝑑𝜇(𝑥) ≤ ‖𝜓‖2 ∫ 𝜑(𝑥)𝑑𝜇(𝑥) = ‖𝜓‖2‖𝜑‖1.
Assume that (A2) holds and that 𝜓 ∈𝐿2

𝜇() is such that ⟨𝜓, Φ(𝑥)⟩𝜇 = 0 for all 𝑥 ∈  . Then
18

0 = ∫ ⟨𝜓,Φ(𝑥)⟩𝜇𝜓(𝑥)𝑑𝜇(𝑥) = ∫ ∫ 𝑘(𝑥, 𝑦)𝜓(𝑥)𝜓(𝑦)𝑑𝜇(𝑥)𝑑𝜇(𝑦).

https://zenodo.org/doi/10.5281/zenodo.10044360
https://zenodo.org/doi/10.5281/zenodo.10044360
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Hence, 𝜓 = 0 by (A2). Conversely, assume that ℍ is dense in 𝐿2
𝜇(). Let 𝜓 ∈𝐿2

𝜇() such that we have ∫ ∫ 𝑘(𝑥, 𝑦)𝜓(𝑥)𝜓(𝑦) 𝑑𝜇(𝑥) 𝑑𝜇(𝑦)
= 0. Since the integrand equals ⟨𝜓(𝑥)Φ(𝑥), 𝜓(𝑦)Φ(𝑦)⟩ and the corresponding integral ∫ 𝜓(𝑥)Φ(𝑥) 𝑑𝜇(𝑥) exists by (2.5), we obtain 
∫ 𝜓(𝑥)Φ(𝑥) 𝑑𝜇(𝑥) = 0ℍ. This implies that ⟨𝜓, Φ(𝑦)⟩𝜇 = ∫ 𝜓(𝑥)𝑘(𝑥, 𝑦) 𝑑𝜇(𝑥) = 0 for each 𝑦 ∈  . Hence, ⟨𝜓, 𝜙⟩𝜇 = 0 for each 𝜙 ∈ ∶=
span{Φ(𝑥) ∶ 𝑥 ∈ }. Now, let 𝜙 ∈ℍ. Then there exists a sequence (𝜙𝑛) ⊂ such that ‖𝜙𝑛 − 𝜙‖ → 0 as 𝑛 →∞. Therefore,

|⟨𝜓,𝜙⟩𝜇| = |⟨𝜓,𝜙− 𝜙𝑛⟩𝜇| ≤ ‖𝜓‖𝜇‖𝜙−𝜙𝑛‖𝜇 ≤ ‖𝜓‖𝜇√‖𝜑‖1‖𝜙− 𝜙𝑛‖.
Hence, ⟨𝜓, 𝜙⟩𝜇 = 0, and the density of ℍ in 𝐿2

𝜇() implies 𝜓 = 0. □

Proof of Lemma 2.4. (a) For 𝜓 ∈𝐿2
𝜇() we have

‖𝜓‖2 = ∫ ∫ 𝜓(𝑥)𝜓(𝑦)⟨Φ(𝑥),Φ(𝑦)⟩𝑑𝜇(𝑥)𝑑𝜇(𝑦) = ∫ ∫ 𝑘(𝑥, 𝑦)𝜓(𝑥)𝜓(𝑦)𝑑𝜇(𝑥)𝑑𝜇(𝑦).

Hence, the injectivity of  follows from (A2). If (𝑒𝑖) is an orthonormal basis of ℍ, then∑
𝑖

‖∗𝑒𝑖‖2𝜇 =
∑
𝑖

‖𝑒𝑖‖2𝜇 =
∑
𝑖
∫ |𝑒𝑖(𝑥)|2 𝑑𝜇(𝑥) =∑

𝑖
∫ |⟨Φ(𝑥), 𝑒𝑖⟩|2 𝑑𝜇(𝑥) = ∫ ‖Φ(𝑥)‖2 𝑑𝜇(𝑥).

The claim is now a consequence of ‖Φ(𝑥)‖2 = 𝜑(𝑥).
(b) By Lemma 2.1, ℍ is dense in 𝐿2

𝜇(). Moreover, ∗ is compact by (a) and Schauder’s theorem [56, Theorem 4.19].

(c) This follows from (a) and ker 𝐶ℍ = ker ∗ = ker ∗ = {0} by (A3). □

Proof of Theorem 2.5. By Lemma 2.4, the operator ∗ ∈ (𝐿2
𝜇()) is a positive self-adjoint trace-class operator. Hence, by the 

well known spectral theory of compact operators (see, e.g., [13]) there exists an orthonormal basis (𝑒𝑗 )∞𝑗=1 of 𝐿2
𝜇() consisting of 

eigenfunctions of ∗ corresponding to a summable sequence (𝜆𝑗)∞𝑗=1 of strictly positive eigenvalues. Since ∗𝜓 = 𝜓 for 𝜓 ∈ ℍ, we 
have 𝑒𝑗 = 𝜆𝑗𝑒𝑗 and thus 𝑒𝑗 ∈ ℍ for all 𝑗 and 𝐶ℍ𝑒𝑗 = ∗𝑒𝑗 = 𝑒𝑗 = 𝜆𝑗𝑒𝑗 . Moreover, ⟨𝑓𝑖, 𝑓𝑗⟩ =√𝜆𝑗∕𝜆𝑖⟨𝑒𝑖, 𝑒𝑗⟩ =√𝜆𝑗∕𝜆𝑖⟨𝑒𝑖, 𝑒𝑗⟩𝜇 =
𝛿𝑖𝑗 by (2.6) so that the 𝑓𝑗 indeed form an orthonormal system in ℍ. The completeness of (𝑓𝑗 ) in ℍ follows from the injectivity of  . 
Finally, 

∑∞
𝑗=1 𝜆𝑗 = Tr𝐶ℍ = ‖𝜑‖1 and

𝑘(𝑥, 𝑦) = ⟨Φ(𝑥),Φ(𝑦)⟩ =∑
𝑗

⟨Φ(𝑥), 𝑓𝑗⟩⟨𝑓𝑗 ,Φ(𝑦)⟩ =∑
𝑗

𝑓𝑗 (𝑥)𝑓𝑗 (𝑦),

which completes the proof. □

Proof of Proposition 2.7. Let 𝜓 ∈ 𝐵(). For 𝑝 =∞ we have |(𝐾𝑡𝜓)(𝑥)| = |𝔼𝑥[𝜓(𝑋𝑡)]| ≤ 𝔼𝑥[|𝜓(𝑋𝑡)|] ≤ ‖𝜓‖∞. If 𝑝 <∞, by Jensen’s 
inequality, for every convex 𝜙 ∶ℝ →ℝ we have 𝜙◦𝐾𝑡𝜓 ≤𝐾𝑡(𝜙◦𝜓) and thus |𝐾𝑡𝜓|𝑝 ≤𝐾𝑡|𝜓|𝑝, which, by invariance of 𝜇, leads to

‖𝐾𝑡𝜓‖𝑝𝑝 = ∫ |𝐾𝑡𝜓|𝑝 𝑑𝜇 ≤ ∫ 𝐾𝑡|𝜓|𝑝 𝑑𝜇 = ∫ |𝜓|𝑝 𝑑𝜇 = ‖𝜓‖𝑝𝑝.
The claim now follows by density of 𝐵() in 𝐿𝑝

𝜇(). □

Proof of Proposition 2.8. Let 𝜓 ∈ 𝐶𝑏() and fix 𝑥 ∈  . Denote the stochastic solution process of the SDE (2.1) with initial value 𝑥
by 𝑋𝑥

𝑡 . Since 𝑋𝑥
𝑡 (𝜔) is continuous in 𝑡 for ℙ-a.e. 𝜔 ∈Ω (see [47, Theorem 5.2.1]), 𝜓(𝑋𝑥

𝑡 (𝜔)) → 𝜓(𝑋𝑥
0 (𝜔)) = 𝜓(𝑥) as 𝑡 → 0 for ℙ-a.e. 

𝜔 ∈Ω. Hence, by dominated convergence,

𝐾𝑡𝜓(𝑥) = 𝔼[𝜓(𝑋𝑥
𝑡 )] = ∫ 𝜓(𝑋𝑥

𝑡 (𝜔))𝑑ℙ(𝜔) → 𝜓(𝑥)

as 𝑡 → 0. It now follows from Proposition 2.7 and, again, dominated convergence that ‖𝐾𝑡𝜓 − 𝜓‖𝑝 → 0 as 𝑡 → 0. If 𝜓 ∈ 𝐿
𝑝
𝜇() and 

𝜀 > 0, there exists 𝜂 ∈ 𝐶𝑏() such that ‖𝜓 − 𝜂‖𝑝 < 𝜀∕3. Choose 𝛿 > 0 such that ‖𝐾𝑡𝜂 − 𝜂‖𝑝 < 𝜀∕3 for 𝑡 < 𝛿. Then

‖𝐾𝑡𝜓 −𝜓‖𝑝 ≤ ‖𝐾𝑡(𝜓 − 𝜂)‖𝑝 + ‖𝐾𝑡𝜂 − 𝜂‖𝑝 + ‖𝜂 −𝜓‖𝑝 < 𝜀

for 𝑡 < 𝛿, which proves the claim. □

Appendix B. Some facts from spectral theory

In this section, let  be a Hilbert space. If 𝑃 is an orthogonal projection in , we set 𝑃⟂ = 𝐼 − 𝑃 . For 𝑣 ∈, ‖𝑣‖ = 1, denote by 
𝑃𝑣 the rank-one orthogonal projection onto span{𝑣}.

We say that a linear operator on  is non-negative if it is self-adjoint and its spectrum is contained in [0, ∞). For a non-negative 
19

compact operator 𝑇 on  we denote by 𝜆1(𝑇 ) ≥ 𝜆2(𝑇 ) ≥… the eigenvalues of 𝑇 in descending order (counting multiplicities). We 
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set 𝜆𝑗 (𝑇 ) = 0 if 𝑗 > rank(𝑇 ). Moreover, if 𝑇 has only simple eigenvalues,7 we let 𝑃𝑗 (𝑇 ) denote the orthogonal projection onto the 
eigenspace ker(𝑇 − 𝜆𝑗 (𝑇 )) and 𝑄𝑛(𝑇 ) =

∑𝑛
𝑗=1 𝑃𝑗 (𝑇 ) the spectral projection corresponding to the 𝑛 largest eigenvalues of 𝑇 .

Theorem B.1 ([13, Cor. II.2.3]). If 𝑇 and 𝑇 are two non-negative compact operators on , then for all 𝑗 ∈ℕ,

|𝜆𝑗 (𝑇 ) − 𝜆𝑗 (𝑇 )| ≤ ‖𝑇 − 𝑇 ‖.
Lemma B.2. For 𝑣, 𝑤 ∈ with ‖𝑣‖ = ‖𝑤‖ = 1 we have

‖𝑃𝑣 − 𝑃𝑤‖ = ‖𝑃⟂
𝑤𝑃𝑣‖ =√1 − |⟨𝑣,𝑤⟩|2. (B.1)

Proof. First of all, the second equation in (B.1) is clear, since

‖𝑃⟂
𝑤𝑃𝑣𝑓‖2 = ‖⟨𝑓, 𝑣⟩𝑃⟂

𝑤𝑣‖2 = |⟨𝑓, 𝑣⟩|2(1 − ‖𝑃𝑤𝑣‖2) = |⟨𝑓, 𝑣⟩|2(1 − |⟨𝑣,𝑤⟩|2).
Second, if 𝑃𝑣,𝑤 denotes the orthogonal projection onto 𝑣,𝑤 ∶= span{𝑣, 𝑤}, we have

‖𝑃𝑣 − 𝑃𝑤‖ = ‖(𝑃𝑣 − 𝑃𝑤)𝑃𝑣,𝑤‖ = ‖(𝑃𝑣 − 𝑃𝑤)|𝑣,𝑤
‖ = sup

𝑥∈𝑣,𝑤,‖𝑥‖=1‖(𝑃𝑣 − 𝑃𝑤)𝑥‖,
which is a two-dimensional problem in 𝑣,𝑤. Now, if 𝑥 ∈𝑣,𝑤, ‖𝑥‖ = 1, we write 𝑥 = 𝑎𝑣 + 𝑏𝑤 and obtain 𝑎2 + 2𝑎𝑏𝛾 + 𝑏2 = 1, where 
𝛾 = ⟨𝑣, 𝑤⟩. Moreover, ⟨𝑥, 𝑣⟩ = 𝑎 + 𝑏𝛾 , ⟨𝑥, 𝑤⟩ = 𝑎𝛾 + 𝑏 and so

‖(𝑃𝑣 − 𝑃𝑤)𝑥‖2 = ‖⟨𝑥, 𝑣⟩𝑣− ⟨𝑥,𝑤⟩𝑤‖2 = ‖(𝑎+ 𝑏𝛾)𝑣− (𝑎𝛾 + 𝑏)𝑤‖2
= (𝑎+ 𝑏𝛾)2 − 2(𝑎+ 𝑏𝛾)(𝑎𝛾 + 𝑏)𝛾 + (𝑎𝛾 + 𝑏)2

= 𝑎2 + 2𝑎𝑏𝛾 + 𝑏2𝛾2 − 2𝛾(𝑎2𝛾 + 𝑎𝑏𝛾2 + 𝑎𝑏+ 𝑏2𝛾) + 𝑎2𝛾2 + 2𝑎𝑏𝛾 + 𝑏2

= (1 − 𝛾2)𝑎2 + 2𝑎𝑏𝛾 − 2𝑎𝑏𝛾3 + 𝑏2(1 − 𝛾2)

= (1 − 𝛾2)(𝑎2 + 𝑏2 + 2𝑎𝑏𝛾)

= 1 − |⟨𝑣,𝑤⟩|2.
Hence, the objective function is constant on {𝑥 ∈𝑣,𝑤 ∶ ‖𝑥‖ = 1} and (B.1) is proved. □

The next theorem is a variant of the Davis-Kahan sin(Θ) theorem (cf. [67]).

Theorem B.3. Let 𝑇 and 𝑇 be non-negative Hilbert-Schmidt operators on , let 𝑛 ∈ ℕ, assume that the largest 𝑛 + 1 eigenvalues of 𝑇 are 
simple, and set

𝛿 = min
𝑗=1,…,𝑛

𝜆𝑗 (𝑇 ) − 𝜆𝑗+1(𝑇 )
2

.

If ‖𝑇 − 𝑇 ‖𝐻𝑆 < 𝛿, then for 𝑗 = 1, … , 𝑛 we have

‖𝑃𝑗 (𝑇 ) − 𝑃𝑗 (𝑇 )‖ ≤ ‖𝑇 − 𝑇 ‖
𝛿

.

Proof. For 𝑗 ∈ ℕ put 𝜆𝑗 = 𝜆𝑗 (𝑇 ), 𝑃𝑗 = 𝑃𝑗 (𝑇 ), 𝜆𝑗 = 𝜆𝑗 (𝑇 ), and 𝑃𝑗 = 𝑃𝑗 (𝑇 ). By Theorem B.1, we have |𝜆𝑗 − 𝜆𝑗 | ≤ ‖𝑇 − 𝑇 ‖𝐻𝑆 < 𝛿 for 
all 𝑗, hence 𝜆𝑗 is contained in the interval 𝐼𝑗 = (𝜆𝑗 − 𝛿, 𝜆𝑗 + 𝛿) for 𝑗 = 1, … , 𝑛 + 1. By assumption, sup𝐼𝑗+1 ≤ inf 𝐼𝑗 for 𝑗 = 1, … , 𝑛. In 
particular, the intervals 𝐼1, … , 𝐼𝑛+1 are pairwise disjoint.

Now, let 𝑗 ∈ {1, … , 𝑛}. Then for 𝑘 ∈ ℕ ⧵ {𝑗} we have |𝜆𝑘 − 𝜆𝑗 | > 𝛿. Therefore, we have dist(𝜆𝑗 , 𝜎(𝑇 )∖{𝜆𝑗}) ≥ 𝛿 and thus, for 
𝑓 ∈ 𝑃⟂

𝑗
,

‖(𝑇 − 𝜆𝑗 )𝑓‖ ≥ dist
(
𝜆𝑗 , 𝜎(𝑇 |𝑃⟂

𝑗
 )
)‖𝑓‖ = dist(𝜆𝑗 , 𝜎(𝑇 )∖{𝜆𝑗})‖𝑓‖ ≥ 𝛿‖𝑓‖.

As 𝑇𝑃𝑗 = 𝜆𝑗𝑃𝑗 and 𝑃⟂
𝑗
𝑇 = 𝑇𝑃⟂

𝑗
, we obtain

‖𝑇 − 𝑇 ‖ ≥ ‖𝑃⟂
𝑗 (𝑇 − 𝑇 )𝑃𝑗‖ = ‖𝑃⟂

𝑗 𝑇 𝑃𝑗 − 𝑃⟂
𝑗 𝑇 𝑃𝑗‖ = ‖(𝑇 − 𝜆𝑗 )𝑃⟂

𝑗 𝑃𝑗‖ ≥ 𝛿‖𝑃⟂
𝑗 𝑃𝑗‖.

The claim now follows from Lemma B.2. □
20

7 I.e., dimker(𝑇 − 𝜆) = 1 for each eigenvalue 𝜆 of 𝑇 .
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Appendix C. The adjoint of the Koopman operator

For 𝑝 ∈ [1, ∞) let 𝐾𝑡
𝑝 ∶𝐿

𝑝
𝜇 →𝐿

𝑝
𝜇 denote the Koopman operator on 𝐿𝑝

𝜇 . If 𝑝 = 2, we still write 𝐾𝑡
2 =𝐾𝑡. For a Borel set 𝐴 ∈𝔅(ℝ𝑑 )

and 𝑓 ∈𝐿
𝑞
𝜇(ℝ𝑑 ) we have

∫
𝐴

(𝐾𝑡
𝑝)

∗𝑓 𝑑𝜇 = ⟨(𝐾𝑡
𝑝)

∗𝑓,1𝐴⟩𝐿𝑞
𝜇,𝐿

𝑝
𝜇
= ⟨𝑓,𝐾𝑡

𝑝1𝐴⟩𝐿𝑞
𝜇,𝐿

𝑝
𝜇
= ∫ 𝜌𝑡(𝑥,𝐴)𝑓 (𝑥)𝑑𝜇(𝑥).

Since the right-hand side also makes sense for 𝑓 ∈𝐿1
𝜇 , the operator (𝐾𝑡)∗ extends to a bounded operator 𝑃 𝑡 on 𝐿1

𝜇 . From the above 
defining identity, it is readily seen that 𝑃 𝑡 is a Markov operator, i.e., 𝑃 𝑡1 = 1 and 𝑃 𝑡𝑓 ≥ 0 if 𝑓 ≥ 0.

Let 𝑓 be a simple function, i.e., 𝑓 =
∑𝑛

𝑖=1 𝑎𝑖1𝐴𝑖
, where the 𝐴𝑖 are mutually disjoint and 

⋃𝑛
𝑖=1 𝐴𝑖 = ℝ𝑑 . Then 

∑𝑛
𝑖=1 𝑃

𝑡1𝐴𝑖
=

(𝐾𝑡)∗1 = 1, hence, by convexity of 𝑧 ↦ 𝑧2,

𝑃 𝑡𝑓 2(𝑥) =
𝑛∑

𝑖=1
𝑎2𝑖 𝑃

𝑡1𝐴𝑖
(𝑥) ≥ ( 𝑛∑

𝑖=1
𝑎𝑖𝑃

𝑡1𝐴𝑖
(𝑥)
)2

= [𝑃 𝑡𝑓 (𝑥)]2,

and therefore 𝑃 𝑡𝑓 2 ≥ [𝑃 𝑡𝑓 ]2. Similarly, 𝑃 𝑡|𝑓 | ≥ |𝑃 𝑡𝑓 |, which shows ‖𝑃 𝑡‖ ≤ 1. If 𝑓 ∈ 𝐿2
𝜇 , let (𝑓𝑛) be a sequence of simple functions 

such that ‖𝑓𝑛 − 𝑓‖𝜇 → 0 as 𝑛 →∞. Then

∫
𝐴

([(𝐾𝑡)∗𝑓 ]2 − (𝐾𝑡)∗𝑓 2)𝑑𝜇 ≤ ∫
𝐴

([𝑃 𝑡𝑓 ]2 − [𝑃 𝑡𝑓𝑛]2)𝑑𝜇 + ∫
𝐴

(𝑃 𝑡𝑓 2
𝑛 − 𝑃 𝑡𝑓 2)𝑑𝜇

≤ ∫ 𝑃 𝑡(𝑓 − 𝑓𝑛)𝑃 𝑡(𝑓 + 𝑓𝑛)𝑑𝜇 + ‖𝑃 𝑡(𝑓 2
𝑛 − 𝑓 2)‖𝐿1

𝜇

≤ ‖(𝐾𝑡)∗(𝑓𝑛 − 𝑓 )‖𝜇‖(𝐾𝑡)∗(𝑓𝑛 + 𝑓 )‖𝜇 + ‖𝑓 2
𝑛 − 𝑓 2‖𝐿1

𝜇

≤ 2‖𝑓𝑛 − 𝑓‖𝜇‖𝑓𝑛 + 𝑓‖𝜇
for every 𝐴 ∈𝔅(ℝ𝑑 ). This proves [(𝐾𝑡)∗𝑓 ]2 ≤ (𝐾𝑡)∗𝑓 2 𝜇-a.e. for all 𝑓 ∈𝐿2

𝜇(ℝ
𝑑 ).

Lemma C.1. Let 𝑓, 𝑔, ℎ ∈ 𝐿2
𝜇 such that 𝑔2(𝐾𝑡)∗𝑓 2 ∈𝐿1

𝜇 . Then 𝑓 ⋅𝐾𝑡
1(𝑔ℎ) ∈𝐿1

𝜇 and

∫ 𝑓 ⋅𝐾𝑡
1(𝑔ℎ)𝑑𝜇 = ∫ [𝑔 ⋅ (𝐾𝑡)∗𝑓 ] ⋅ ℎ𝑑𝜇.

Proof. Let (𝑓𝑛) ⊂ 𝐿∞
𝜇 be a sequence of simple functions such that 𝑓𝑛 → 𝑓 and |𝑓𝑛| ↗ |𝑓 | pointwise 𝜇-a.e. as 𝑛 →∞. Then

∫ |(𝐾𝑡)∗(𝑓𝑛 − 𝑓 )|𝑑𝜇 ≤ ∫ (𝐾𝑡)∗|𝑓𝑛 − 𝑓 |𝑑𝜇 = ∫ |𝑓𝑛 − 𝑓 |𝑑𝜇,
which converges to zero as 𝑛 →∞ by majorized convergence (|𝑓𝑛 − 𝑓 | ≤ 2|𝑓 |). Hence, there exists a subsequence (𝑓𝑛𝑘

) such that 
(𝐾𝑡)∗𝑓𝑛𝑘

→ (𝐾𝑡)∗𝑓 𝜇-a.e. as 𝑘 →∞. WLOG, we may therefore assume that (𝐾𝑡)∗𝑓𝑛 → (𝐾𝑡)∗𝑓 𝜇-a.e. as 𝑛 →∞. By monotone conver-

gence,

∫ |𝑓 ||𝐾𝑡
1(𝑔ℎ)|𝑑𝜇 = lim

𝑛→∞∫ |𝑓𝑛||𝐾𝑡
1(𝑔ℎ)|𝑑𝜇 ≤ lim sup

𝑛→∞ ∫ |𝑓𝑛| ⋅𝐾𝑡
1[|𝑔ℎ|]𝑑𝜇

= limsup
𝑛→∞ ∫ (𝐾𝑡

1)
∗|𝑓𝑛| ⋅ |𝑔ℎ|𝑑𝜇 ≤ ∫ |𝑔|(𝐾𝑡)∗|𝑓 | ⋅ |ℎ|𝑑𝜇,

which is a finite number. Hence, indeed, 𝑓 ⋅𝐾𝑡
1(𝑔ℎ) ∈𝐿1

𝜇 and by majorized convergence,

∫ 𝑓 ⋅𝐾𝑡
1(𝑔ℎ)𝑑𝜇 = lim

𝑛→∞∫ 𝑓𝑛 ⋅𝐾
𝑡
1(𝑔ℎ)𝑑𝜇 = lim

𝑛→∞∫ [𝑔 ⋅ (𝐾𝑡
1)

∗𝑓𝑛] ⋅ ℎ𝑑𝜇 = ∫ [𝑔 ⋅ (𝐾𝑡)∗𝑓 ] ⋅ ℎ𝑑𝜇,

as claimed. □

Appendix D. Ergodicity and the Koopman semigroup

In this section, we prove the following proposition on the spectral properties of the generator  under the ergodicity assumption.

Proposition D.1. Assume that the invariant measure 𝜇 is ergodic. Then ker(𝐼 −𝐾𝑡) = span{1} for all 𝑡 > 0. In particular, ker = span{1}
and ker( − 𝑖𝜔𝐼) = {0} for 𝜔 ∈ℝ∖{0}.

Proof. Concerning the “in particular”-part, we only mention that 𝜓 = 0 implies 𝐾𝑡𝜓 = 𝜓 for all 𝑡 ≥ 0 and that 𝜓 = 𝑖𝜔𝜓 , 𝜔 ∈
21

ℝ ⧵ {0}, implies 𝐾2𝜋∕𝜔𝜓 = 𝜓 . So, let us show that 𝐾𝑡𝜓 = 𝜓 for some 𝑡 > 0 and 𝜓 ∈ 𝐿2
𝜇() is only possible for constant 𝜓 . For this, 
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we consider the Markov process (𝑋𝑛𝑡)∞𝑛=0. For convenience, we assume w.l.o.g. that 𝑡 = 1. By invariance of 𝜇, the process (𝑋𝑛)∞𝑛=0 is 
stationary, i.e., (𝑋𝑛)∞𝑛=0 and (𝑋𝑛+1)∞𝑛=0 are equally distributed as ℕ0 -valued random variables. According to [20, Lemma 9.2] there 
exist  -valued random variables 𝑋−𝑘, 𝑘 ∈ ℕ, such that 𝑋 ∶= (𝑋𝑛)𝑛∈ℤ is also stationary. By 𝑃𝜇 denote the law of the ℤ-valued 
random variable 𝑋.

On 𝑆 ∶= ℤ define the left shift 𝑇 ∶ 𝑆 → 𝑆 by 𝑇 (𝑥𝑛)𝑛∈ℤ ∶= (𝑥𝑛+1)𝑛∈ℤ. Stationarity of 𝑋 means that also 𝑇𝑋 ∼ 𝑃𝜇 .

A set  ∈ ℤ ∶=
⨂

𝑘∈ℤ is called shift-invariant if 𝑇 −1 = . It is easy to see that the set of shift-invariant sets forms a 
sub-𝜎-algebra  of ℤ . Now, by [18, Corollary 5.11] and the ergodicity of 𝜇 we have 𝑃𝜇() ∈ {0, 1} for any  ∈ . Now, Birkhoff’s 
Ergodic Theorem [20, Theorem 9.6] states that

lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

𝑓 (𝑇 𝑘𝑋) = 𝔼
[
𝑓 (𝑋)|𝑋−1] (D.1)

almost surely and in 𝐿1(Ω) for any 𝑓 ∈ 𝐿1(𝑆). Given 𝜓 ∈ 𝐿1
𝜇(), let us apply this theorem to the function 𝑓 = 𝜓◦𝜋0, where the 

projection 𝜋0 ∶ 𝑆 →𝑋 is defined by 𝜋0(𝑥𝑛)𝑛∈ℤ = 𝑥0. First of all,

∫ |𝑓 |𝑑𝑃𝜇 = ∫ |𝜓(𝑥0)|𝑑𝑃𝜇((𝑥𝑛)𝑛∈ℤ) = ∫ |𝜓(𝑥)|𝑑𝜇(𝑥) <∞

as 𝑃𝜇◦𝜋
−1
0 = 𝜇. Hence, we have 𝑓 ∈ 𝐿1(𝑆). Furthermore, we compute 𝑓 (𝑇 𝑘𝑋) = 𝜓(𝜋0(𝑇 𝑘𝑋)) = 𝜓(𝑋𝑘). For  ∈  we have 

ℙ(𝑋−1) = 𝑃𝜇() ∈ {0, 1}. Thus, we obtain

lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

𝜓(𝑋𝑘) = 𝔼[𝑓 (𝑋)] = ∫ 𝑓 𝑑𝑃𝜇 = ∫ 𝜓◦𝜋0 𝑑𝑃𝜇 = ∫ 𝜓 𝑑𝜇

almost surely and in 𝐿1(Ω). Therefore, if 𝜓 ∈ 𝐿2
𝜇() such that 𝐾𝑡𝜓 = 𝜓 , then 𝐾𝑘𝑡𝜓 = 𝜓 for all 𝑘 ∈ ℕ0, hence for 𝜇-a.e. 𝑥 ∈𝑋 we 

have

𝜓(𝑥) = 1
𝑛

𝑛−1∑
𝑘=0

𝐾𝑘𝑡𝜓(𝑥) = 1
𝑛

𝑛−1∑
𝑘=0

𝔼[𝜓(𝑋𝑘𝑡)|𝑋0 = 𝑥]

= 𝔼

[
1
𝑛

𝑛−1∑
𝑘=0

𝜓(𝑋𝑘𝑡)
|||||𝑋0 = 𝑥

]
𝑛→∞
⟶ ∫ 𝜓 𝑑𝜇.

Thus, 𝜓 must indeed be (𝜇-essentially) constant. □

Appendix E. Koopman-invariance of the Gaussian RKHS in case of the Ornstein-Uhlenbeck process

In many works in the present literature on the Koopman operator for deterministic dynamical systems in connection with kernels, 
it is assumed that the Koopman operator maps the RKHS boundedly (or even compactly) into itself. However, as it was proved in 
[14], the Koopman operator of a discrete-time system on ℝ𝑛 is invariant under the radial basis function RKHS if and only if the 
dynamics are affine.

In the following, we show that the situation is essentially different for stochastic systems in that we prove that the RBF RKHS is 
invariant under the Koopman operator associated with the OU process.

The Ornstein-Uhlenbeck (OU) process on 𝑋 = ℝ is the solution of the SDE 𝑑𝑋𝑡 = −𝛼𝑋𝑡 𝑑𝑡 + 𝑑𝑊𝑡. The invariant measure 𝜇 and 
the Markov transition kernel 𝜌𝑡, 𝑡 > 0, are known and given by

𝑑𝜇(𝑥) =
√

𝛼

𝜋
⋅ 𝑒−𝛼𝑥2 𝑑𝑥 and 𝜌𝑡(𝑥,𝑑𝑦) =

√
𝑐𝑡
𝜋
⋅ exp

[
− 𝑐𝑡(𝑦− 𝑒−𝛼𝑡𝑥)2

]
𝑑𝑦,

where

𝑐𝑡 =
𝛼

1 − 𝑒−2𝛼𝑡
.

The Koopman operators 𝐾𝑡 are self-adjoint in 𝐿2
𝜇(ℝ).

We consider the Gaussian radial basis function (RBF) kernel with bandwidth 𝜎 > 0, i.e.,

𝑘𝜎(𝑥, 𝑦) = exp
[
−(𝑥− 𝑦)2

𝜎2

]
.

By ℍ𝜎 we denote the RKHS generated by the kernel 𝑘𝜎 . Hilbert space norm and scalar product on ℍ𝜎 will be denoted by ‖ ⋅ ‖𝜎 and ⟨⋅ , ⋅⟩𝜎 , respectively. For 𝑦 ∈ℝ and a kernel 𝑘 on ℝ set 𝑘𝑦(𝑥) ∶= 𝑘(𝑥, 𝑦). For two positive definite kernels on ℝ we write 𝑘1 ⪯ 𝑘2 if

𝑛∑
𝛼 𝛼 𝑘 (𝑥 ,𝑥 ) ≤

𝑛∑
𝛼 𝛼 𝑘 (𝑥 ,𝑥 )
22

𝑖,𝑗=1
𝑖 𝑗 1 𝑖 𝑗

𝑖,𝑗=1
𝑖 𝑗 2 𝑖 𝑗
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for any choice of 𝑛 ∈ ℕ and 𝛼𝑗 , 𝑥𝑗 ∈ ℝ, 𝑗 = 1, … , 𝑛. We also write 𝑉 
𝑐

←←←←←←←←←←←←←→ 𝑊 for two normed vector spaces 𝑉 and 𝑊 if 𝑉 ⊂ 𝑊 is 
continuously embedded in 𝑊 .

Lemma E.1. Let 0 < 𝜎1 < 𝜎2. Then we have ℍ𝜎2


𝑐
←←←←←←←←←←←←←→ℍ𝜎1

with ‖𝜓‖𝜎1 ≤√ 𝜎2
𝜎1
‖𝜓‖𝜎2 for 𝜓 ∈ℍ𝜎2

and 𝑘𝜎2 ⪯ 𝜎2
𝜎1

𝑘𝜎1 .

Proof. The first claim is Corollary 6 in [62]. The second follows from Aronszajn’s inclusion theorem [48, Theorem 5.1]. □

Proposition E.2. For each 𝑡 ≥ 0 and all 𝛼, 𝜎 > 0 we have 𝐾𝑡ℍ𝜎 ⊂ℍ𝜎 with‖‖‖𝐾𝑡‖‖‖ℍ𝜎→ℍ𝜎

≤ 𝑒
𝛼
2 𝑡.

Proof. For 𝑡 = 0 the claim is obviously true. Hence, suppose that 𝑡 > 0. For 𝑧 ∈ℝ let us compute 𝐾𝑡𝑘𝜎
𝑧 . For this, we define

𝜏 =

√
𝑐𝑡𝜎

2

1 + 𝑐𝑡𝜎
2 , and 𝜈 = 𝑒𝛼𝑡

𝜏
𝜎 >

𝜎

𝜏
> 𝜎.

Since for 𝜎1, 𝜎2 > 0 and 𝑧, 𝑤 ∈ℝ we have

∞

∫
−∞

𝑘
𝜎1
𝑧 (𝑥)𝑘𝜎2

𝑤 (𝑥)𝑑𝑥 =
√

𝜋 ⋅
𝜎1𝜎2√
𝜎2
1 + 𝜎2

2

⋅ exp

(
−(𝑧−𝑤)2

𝜎2
1 + 𝜎2

2

)
,

with 𝜎𝑡 = 1∕
√

𝑐𝑡 we obtain

(𝐾𝑡𝑘𝜎
𝑧 )(𝑥) =

∞

∫
−∞

𝑘𝜎
𝑧 (𝑦)𝜌𝑡(𝑥,𝑑𝑦) =

√
𝑐𝑡
𝜋

∞

∫
−∞

𝑘𝜎
𝑧 (𝑦) exp

[
− 𝑐𝑡(𝑦− 𝑒−𝛼𝑡𝑥)2

]
𝑑𝑦

=
√

𝑐𝑡
𝜋

∞

∫
−∞

𝑘𝜎
𝑧 (𝑦)𝑘

𝜎𝑡

𝑒−𝛼𝑡𝑥
(𝑦)𝑑𝑦 =

√
𝑐𝑡 ⋅

𝜎𝜎𝑡√
𝜎2 + 𝜎2

𝑡

⋅ exp

(
−(𝑧− 𝑒−𝛼𝑡𝑥)2

𝜎2 + 𝜎2
𝑡

)

= 𝜎√
𝜎2 + 1∕𝑐𝑡

⋅ exp
(
− (𝑒𝛼𝑡𝑧− 𝑥)2

𝑒2𝛼𝑡(𝜎2 + 1∕𝑐𝑡)

)
= 𝜏 ⋅ 𝑘𝜈

𝑒𝛼𝑡𝑧
(𝑥).

That is,

𝐾𝑡𝑘𝜎
𝑧 = 𝜏 ⋅ 𝑘𝜈

𝑒𝛼𝑡𝑧
∈ℍ𝜈 .

Note that

𝑘𝜈(𝑒𝛼𝑡𝑥, 𝑒𝛼𝑡𝑦) = exp
(
− 𝑒2𝛼𝑡(𝑥− 𝑦)2

𝜈2

)
= exp

(
− 𝜏2(𝑥− 𝑦)2

𝜎2

)
= 𝑘𝜎∕𝜏 (𝑥, 𝑦).

Now, let 𝑛 ∈ ℕ and 𝛼𝑗 , 𝑥𝑗 ∈ℝ, 𝑗 = 1, … , 𝑛, be arbitrary and let 𝜓 =
∑𝑛

𝑗=1 𝛼𝑗𝑘
𝜎
𝑥𝑗

. Then

‖𝐾𝑡𝜓‖2𝜎 ≤ 𝜈

𝜎
‖𝐾𝑡𝜓‖2𝜈 = 𝜈

𝜎

‖‖‖‖‖
𝑛∑

𝑗=1
𝛼𝑗𝐾

𝑡𝑘𝜎
𝑥𝑗

‖‖‖‖‖
2

𝜈

= 𝜈𝜏2

𝜎

‖‖‖‖‖
𝑛∑

𝑗=1
𝛼𝑗𝑘

𝜈
𝑒𝛼𝑡𝑥𝑗

‖‖‖‖‖
2

𝜈

= 𝜈𝜏2

𝜎

𝑛∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘
𝜈(𝑒𝛼𝑡𝑥𝑖, 𝑒

𝛼𝑡𝑥𝑗 ) =
𝜈𝜏2

𝜎

𝑛∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘
𝜎∕𝜏 (𝑥𝑖, 𝑥𝑗 )

≤ 𝜈𝜏2

𝜎
⋅
1
𝜏

𝑛∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘
𝜎(𝑥𝑖, 𝑥𝑗 ) =

𝜈𝜏

𝜎
‖𝜓‖2𝜎 = 𝑒𝛼𝑡‖𝜓‖2𝜎 .

This shows that 𝐾𝑡 maps ℍ0,𝜎 = span{𝑘𝜎
𝑥 ∶ 𝑥 ∈ ℝ} ⊂ ℍ𝜎 boundedly into ℍ𝜎 . Since ℍ0,𝜎 is dense in ℍ𝜎 , it follows that 𝐾𝑡|ℍ0,𝜎

extends to a bounded operator 𝑇 in ℍ𝜎 . In order to see that 𝑇𝜓 = 𝐾𝑡𝜓 for 𝜓 ∈ ℍ𝜎 , let (𝜓𝑛) ⊂ ℍ0,𝜎 such that 𝜓𝑛 → 𝜓 in ℍ𝜎 . Then 
𝐾𝑡𝜓𝑛 = 𝑇𝜓𝑛 → 𝑇𝜓 in ℍ𝜎 . Since ℍ𝜎 

𝑐
←←←←←←←←←←←←←→ 𝐿2

𝜇(ℝ), we have 𝜓𝑛 → 𝜓 in 𝐿2
𝜇(ℝ) and thus 𝐾𝑡𝜓𝑛 → 𝐾𝑡𝜓 in 𝐿2

𝜇(ℝ). Also, 𝐾𝑡𝜓𝑛 → 𝑇𝜓

in 𝐿2
𝜇(ℝ). Hence, 𝐾𝑡𝜓 = 𝑇𝜓 𝜇-a.e. on ℝ. But as both 𝐾𝑡𝜓 and 𝑇𝜓 are continuous and 𝜇 is absolutely continuous w.r.t. Lebesgue 

measure with a positive density, we conclude that 𝐾𝑡𝜓 = 𝑇𝜓 ∈ℍ𝜎 . □
23

Corollary E.3. The restriction 𝐾𝑡
𝜎 ∶=𝐾𝑡|ℍ𝜎

∈𝐿(ℍ𝜎) does not have eigenvalues and is thus not compact. Moreover, 𝐾𝑡
𝜎 is not self-adjoint.
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Proof. It is well known that 𝐾𝑡 (on 𝐿2
𝜇) has the eigenvalues 𝜆𝑗 = 𝑒−𝛼𝑗𝑡, 𝑗 ∈ ℕ, and that the corresponding eigenfunctions 𝜓𝑗 are 

polynomials. Let now 𝐾𝑡
𝜎𝜓 = 𝜆𝜓 for some 𝜓 ∈ ℍ𝜎 and 𝜆 ∈ ℂ. Then also 𝐾𝑡𝜓 = 𝜆𝜓 and so 𝜆 = 𝜆𝑗 and 𝜓 ∈ span{𝜓𝑗} for some 𝑗. 

Hence, 𝜓 is a polynomial. Since for all 𝑥 ∈ℝ we have |𝜓(𝑥)| = |⟨𝜓, 𝑘𝜎
𝑥⟩𝜎| ≤ ‖𝜓‖𝜎‖𝑘𝜎

𝑥‖𝜎 = ‖𝜓‖𝜎 , it follows that 𝜓 is bounded, which 
is only possible for 𝜓 ∈ span{1}. But 1 ∉ ℍ𝜎 by [62, Corollary 5]. Hence, 𝜓 = 0. The non-selfadjointness of 𝐾𝑡

𝜎 can be easily seen 
from computing ⟨𝐾𝑡

𝜎𝑘
𝜎
𝑧 , 𝑘

𝜎
𝑤⟩𝜎 and ⟨𝑘𝜎

𝑧 , 𝐾
𝑡
𝜎𝑘

𝜎
𝑤⟩𝜎 for 𝑧 ≠𝑤. □
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