
Multi-fidelity error estimation accelerates greedy model reduction of

complex dynamical systems

Lihong Feng ∗, Luigi Lombardi†, Giulio Antonini‡, and Peter Benner§

January 20, 2023

Abstract

Model order reduction usually consists of two stages: the offline stage and the online stage. The
offline stage is the expensive part that sometimes takes hours till the final reduced-order model is
derived, especially when the original model is very large or complex. Once the reduced-order model
is obtained, the online stage of querying the reduced-order model for simulation is very fast and
often real-time capable. This work concerns a strategy to significantly speed up the offline stage of
model order reduction for large and complex systems. In particular, it is successful in accelerating
the greedy algorithm that is often used in the offline stage for reduced-order model construction.
We propose multi-fidelity error estimators and replace the high-fidelity error estimator in the greedy
algorithm. Consequently, the computational complexity at each iteration of the greedy algorithm is
reduced and the algorithm converges more than 3 times faster without incurring noticeable accuracy
loss.

1 Introduction

Model order reduction (MOR) has achieved much success in many areas of computational science with
its capability of realizing real-time simulation and providing accurate results. Different MOR methods,
their applications and the promising results they produce can be found in the survey papers [2, 4, 12]
and books [3, 8, 9, 10, 11, 27].

MOR needs an offline stage for constructing the ROM. For many intrusive MOR methods that are
based on projection, the offline stage is usually realized via a greedy algorithm. The greedy algorithm
is used to properly select important parameter samples that contribute most to the solution space. The
offline computational time is basically the runtime of the greedy algorithm. For large-scale systems,
the offline computation is expensive and the runtime is often longer than several hours even when
run on a high-performance server. Sometimes, the system is not very large, for example, the number
of degrees of freedom is only O(105), but the system structure is complicated, so that the greedy
algorithm still takes long time to converge.

It is known that an efficient error estimator makes the greedy algorithm successful in producing
an accurate ROM without running many iterations. Therefore, many efforts have been made in
this direction to develop computable error estimators for different problems [15, 16, 18, 19, 20, 21,
22, 23, 24, 25, 28, 33, 34, 35]. However, more attention has been paid to improve the effectivity

∗Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Ger-
many feng@mpi-magdeburg.mpg.de

†Luigi Lombardi is with Micron Semiconductor, 67051 Avezzano, Italy. luigilombardi89@gmail.com
‡Giulio Antonini is with the UAq EMC Laboratory, Department of Industrial and Information Engineering and

Economics, University of L’Aquila, I-67100 L’Aquila, Italy. giulio.antonini@univaq.it
§Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany and Fakultät für Mathe-

matik, Otto-von-Guericke-Universität Magdeburg, Germany. benner@mpi-magdeburg.mpg.de

1

ar
X

iv
:2

30
1.

05
61

0v
2

 [
m

at
h.

N
A

]
 1

9
Ja

n
20

23

or accuracy of the error estimator than to develop more efficient strategies to accelerate the greedy
process [13, 25, 33, 34, 36]. Recently, some techniques are proposed to improve the adaptivity of the
greedy algorithm [6, 7, 13, 26].

In [13, 14], we proposed a surrogate model for error estimation, and proposed an adaptive greedy
algorithm by alternatively using this surrogate error estimator and the original error estimator during
the greedy algorithm. The focus in [13, 14] was to make the greedy process adaptive by starting from a
coarse training set of a small number of parameter samples, and adaptively update the coarse training
set with the aid of a surrogate error estimator. The original error estimator is computed only over
the coarse training set, while the surrogate error estimator helps to pick out candidates of important
parameter samples from a fine training set, which are then collected in the coarse training set.

In this work, we emphasize the role of the surrogate error estimator and propose the concept of
bi-fidelity error estimation and multi-fidelity error estimation. In fact, a bi-fidelity error estimation has
been used in the adaptive greedy algorithm proposed in [13, 14] without being formally defined, i.e.,
the original (high-fidelity) error estimator, and the surrogate (low-fidelity) error estimator. To further
improve the convergence speed of the greedy algorithm, we propose multi-fidelity error estimation
built upon the bi-fidelity error estimation. Here, we use a more efficient high-fidelity error estimator
than the two different high-fidelity error estimators used in [13, 14]. Although the proposed multi-
fidelity error estimation is dependent on the original high-fidelity error estimator, the idea of using
multi-fidelity error estimation is general and can be extended to develop multi-fidelity error estimation
associated with other high-fidelity error estimators.

Unlike the problems considered in [13, 14], whose ROMs can be constructed by standard greedy
algorithms within seconds to minutes, we consider in this work much more complicated problems.
On the same computer, the standard greedy algorithm takes more than half a day to converge for
such problems. By using the proposed multi-fidelity error estimator, the greedy algorithm achieves
4x speed-up and produces ROMs with little loss of accuracy. The speed-up is also higher than those
reported in [13, 14] by using the bi-fidelity error estimation, which is usually 2x.

In the next section, we present the greedy algorithm in the standard form. Then we analyze
some ingredients of the algorithm, which contribute most to the computational cost. Starting from
those computationally expensive parts, we develop possible strategies to reduce the computational
complexity in Section 3. As a consequence, it becomes clear that the resulting strategy develops a
greedy algorithm with multi-fidelity error estimation. The proposed algorithm is then applied to large
time-delay systems with many delays. The numerical tests on three large time-delay systems with
more than 100 delays are demonstrated in Section 4. Conclusions are given in the end.

2 Standard greedy algorithm

The standard greedy algorithm was first proposed for steady systems without time evolution. Then
it was extended to POD-greedy for dynamical systems, which is used to construct the ROM using
snapshots in the time domain. Later the greedy algorithm found its capability in adaptively choosing
interpolation points for frequency-domain MOR methods [15, 16]. The greedy algorithm for steady
systems and frequency-domain MOR has the same formulation, whereas POD-greedy for time-domain
MOR of time-dependent systems needs an SVD step at each greedy iteration. In this work, we focus
on the greedy algorithm, though the proposed scheme can be easily extended to POD-greedy. We
consider constructing a ROM for the following full-order model (FOM) using the greedy algorithm,

F (x(µ), µ) = B(µ). (1)

Here, F (x(µ), µ) ∈ Cn×nI , x(µ) ∈ Cn×nI , and B(µ) ∈ Cn×nI . µ ∈ P is a parameter in the parameter
domain P. The variable n is the order of the FOM, which can be the number of degrees of freedom

2

Algorithm 1 Standard greedy algorithm

Input: the FOM, a training set Ξ composed of parameter samples taken from the parameter domain
P, error tolerance tol< 1, ∆(µ) to estimate the error.

Output: Projection matrix V .
1: Choose initial parameter µ∗ ∈ Ξ.
2: V ← ∅, ε = 1.
3: while ε >tol do
4: Compute the snapshot(s) x(µ∗) by solving the FOM at µ = µ∗.
5: Update V by V = orth{V, x(µ∗)}, (e.g., using the modified Gram-Schmidt process with defla-

tion.)
6: Compute µ∗ such that µ∗ = arg max

µ∈Ξ
∆(µ).

7: ε = ∆(µ∗).
8: end while

after numerical discretization of PDEs describing a physical phenomenon. The proposed algorithms
are also applicable to problems with nI > 1.

The ROM can be obtained via Galerkin projection using a projection matrix V ∈ Rn×r, r � n,
as below,

F̂ (V z(µ), µ) = b̂(µ), (2)

where F̂ (V z(µ), µ) = V T f(V z(µ), µ) ∈ Cr×nI , z(µ) ∈ Cr×nI , and B̂(µ) = V T b(µ) ∈ Cr×nI .
The standard greedy process used to compute the projection matrix V is described in Algorithm 1.

Step 4 in Algorithm 1 solves the FOM at µ∗, and Step 6 computes an error estimator ∆(µ) at all µ in Ξ.
These two steps constitute the most computational expensive part of the greedy algorithm. However,
Step 4 is unavoidable, since x(µ∗) is needed for the reduced basis construction.The computational
complexity of Step 6 could be reduced, if the cardinality of Ξ, i.e., |Ξ| is kept small, so that ∆(µ)
needs not be evaluated at many parameter samples. This is the motivation of the surrogate error
estimator proposed in [13, 14]. We call the surrogate error estimator ∆l(µ) the low-fidelity error
estimator as compared to the original error estimator ∆(µ), since ∆l(µ) is only an approximation to
∆(µ), but is much cheaper to compute.

In the next section, we present a greedy algorithm using bi-fidelity error estimation, where the low-
fidelity error estimator is computed following the method in [13, 14]. Based on this, a greedy algorithm
using multi-fidelity error estimation associated with a particular high-fidelity error estimator for MOR
of linear parametric systems, is proposed.

3 Greedy algorithm with bi-fidelity and multi-fidelity error estima-
tion

This section presents greedy algorithms with bi-fidelity and multi-fidelity error estimation, respectively.

3.1 Greedy algorithm with bi-fidelity error estimation

Algorithm 2 is the greedy algorithm with bi-fidelity error estimation. Its original version using a
different high-fidelity error estimator was firstly proposed in [13]. The key step of Algorithm 2 is Step
8, where the low-fidelity error estimator ∆l(µ) is computed using values of ∆(µ) at the samples of
µ in the small parameter set Ξc. Basically, ∆l(µ) is represented by a weighted sum of radial basis

3

Algorithm 2 Greedy algorithm with bi-fidelity error estimation

Input: the FOM, a training set Ξc composed of a small number of parameter samples taken from the
parameter domain P, a set Ξf composed a large number of parameter samples of µ from P, error
tolerance tol< 1, ∆(µ) to estimate the error.

Output: Projection matrix V .
1: Choose initial parameter µ∗ ∈ Ξc.
2: V ← ∅, ε = 1.
3: while ε >tol do
4: Compute the snapshot(s) x(µ∗) by solving the FOM at µ = µ∗.
5: Update V by V = orth{V, x(µ∗)}, (e.g., using the modified Gram-Schmidt process with defla-

tion.)
6: Compute µ∗ such that µ∗ = arg max

µ∈Ξc

∆(µ).

7: Compute µo such that µo = arg min
µ∈Ξc

∆(µ).

8: Compute the low-fidelity error estimator ∆l(µ) using values of ∆(µ) corresponding to the sam-
ples of µ in Ξc via (3) and (4).

9: Evaluate ∆l(µ) over Ξf and pick out a parameter µc from the large parameter set Ξf corre-
sponding to the largest value of ∆l(µ), i.e., µc = arg max

µ∈Ξf

from Ξf .

10: Update the small parameter set Ξc: if ∆l(µc) >tol, enrich Ξc with µc, i.e., Ξc = {Ξc, µc}, if
∆(µo) <tol, remove µo from Ξc: Ξc = Ξc\µo.

11: ε = ∆(µ∗).
12: end while

functions (RBFs), i.e.,

∆l(µ) =

m∑
i=1

wiΦ(µ− µi), (3)

where Φ(µ) are RBFs, µi are the samples in Ξc, and m is the cardinality of Ξc, which is small. Once wi
are known, the low-fidelity error estimator ∆l(µ) is known. The weights wi are computed via enforcing
∆l(µ) to interpolate ∆(µ) at µj ,∀µj ∈ Ξc, i.e., ∆l(µj) = ∆(µj). Inserting µ = µj ∈ Ξc into (3), the
weights wi can be computed by solving the linear system as below, Φ(µ1 − µ1) . . . Φ(µ1 − µm)

...
...

...
Φ(µm − µ1) . . . Φ(µm − µm)

 w1

...
wm

 =

 ∆(µ1)
...

∆(µm)

 . (4)

Since values of ∆(µ) at µ ∈ Ξc are available, the weights can be easily computed by solving the above
small linear system with m × m being the dimension of the coefficient matrix. As this is a rather
small system, we usually do not observe ill conditioning. Otherwise, we can use a regularized version
of (4) [13, 14].

At each iteration of the bi-fidelity greedy algorithm, the linear system is solved for once (Step
8), then the low-fidelity error estimator ∆l(µ) is evaluated over a larger parameter set Ξf using
the weighted sum in (3) (Step 9). This process of computing the weights and evaluating ∆l(µ) is
much faster than evaluating the high-fidelity error estimator over a training set Ξ whose cardinality
|Ξ| is much larger than |Ξc|. This is usually the case for the standard greedy algorithm, where
|Ξ| > |Ξc|. Finally, at each iteration of the bi-fidelity algorithm, the total computational cost of
Steps 6-8: computing the high-fidelity error estimator ∆(µ) over Ξc, solving the linear system (4) and
evaluating the low-fidelity erorr estimator ∆l(µ) over Ξf is still much cheaper than computing the

4

high-fidelity error estimator ∆(µ) over a training set Ξ, whose cardinality is, e.g., twice that of |Ξc|,
as shown in the numerical tests.

Besides computing µ∗ corresponding to the maximal value of the error estimator ∆(µ) over Ξc,
the minimal value of ∆(µ) is also computed in Step 7. The corresponding parameter µo could be
deleted from Ξc if ∆(µo) is already below the tolerance tol, see Step 10. In this way, the cardinality
of the training set Ξc remains almost constant, and can further save computations as compared with
enriching Ξc only. We will show in the numerical results that adding and removing samples to and
from Ξc gets ROMs with similar accuracy (even smaller) as only adding samples to Ξc, but leads to
even faster convergence of the greedy algorithm.

Remark 3.1 In Step 9, it is also possible to choose more than one parameter from Ξf by modifying
Step 9 as: choose nadd samples from Ξf corresponding to nadd largest values of ∆l(µ). Similarly,
In Step 7, one can also choose ndel > 1 parameter samples corresponding to ndel smallest values of
∆(µ) from Ξc. However, this will more or less increase the computational time at each iteration,
since more computations are needed to choose those samples. Furthermore, to make sure that only
samples at which ∆l(µ) is larger than the tolerance tol are added to Ξc, and only samples at which
∆(µ) is smaller than tol are removed, additional calculations are necessary to check if all the selected
samples meet the above criteria and should be finally selected or removed (see Step 10). Therefore,
adding/removing at most one parameter sample each time should be more efficient. In the numerical
tests, we also show results when nadd = ndel = 2 and nadd = ndel = 5 at each iteration of Algorithm 2.

The bi-fidelity error estimation is general and can be applied to any high-fidelity error estimators.
For example, the high-fidelity error estimator in [13] estimates the error of the ROM for nonlinear
time-dependent parametric systems in the time domain, while the high-fidelity error estimator in [14]
estimates the error of the ROM in the frequency-domain for linear parametric systems.

3.2 Greedy algorithm with multi-fidelity error estimation

The multi-fidelity error estimation we are going to introduce depends on the formulation of the high-
fidelity error estimator ∆(µ). To illustrate the basic concept, we use an error estimator proposed
in [16] as the high-fidelity error estimator and discuss how to further reduce the computational load
by using multi-fidelity error estimation.

3.2.1 An error estimator for linear parametric systems

The error estimator is applicable to estimating the output error of the ROM for FOMs in the following
linear parametric form,

M(µ)x(µ) = B(µ),
y(µ) = C(µ)x(µ).

(5)

Here, M(µ) ∈ Rn×n, B(µ) ∈ Rn×nI , C(µ) ∈ RnO×n , x(µ) ∈ Rn, y(µ) ∈ RnO×nI . We consider the
general case that both B(µ) and C(µ) are matrices, i.e. systems with multiple inputs and multiple
outputs. The ROM of the above linear parametric system can be derived via Galerkin projection
using a projection matrix V composed of the reduced basis. That is,

M̂(µ)z(µ) = B̂(µ),

ŷ(µ) = Ĉ(µ)z(µ),
(6)

where M̂(µ) = V TM(µ)V , B̂(µ) = V TB(µ), Ĉ(µ) = C(µ)V .

5

For the general situation when both B(µ) and C(µ) are matrices, the error of the i, j-th entry of
the output matrix ŷ(µ) is

|yij(µ)− ŷij(µ)|
= |Ci(µ)(M−1(µ)B(µ)− V M̂−1(µ)B̂j(µ))|
= |Ci(µ)M−1(µ)(Bj(µ)−M(µ)V M̂−1(µ)B̂j(µ))︸ ︷︷ ︸

x̂j(µ):=V zj(µ)|
= |Ci(µ)M−1(µ)rj(µ)|,

(7)

where Ci(µ) is the i-th row of C(µ) and Bj(µ) is the j-th column of B(µ). Here, we have defined:
zj(µ) = M̂−1(µ)B̂j(µ), i.e., M̂(µ)zj(µ) = B̂j(µ), x̂j(µ) := V zj(µ) and rj(µ) := Bj(µ) −M(µ)x̂j(µ).
It is clear that

M̂(µ)zj(µ) = B̂j(µ)

is a reduced-order model of
M(µ)xj(µ) = Bj(µ), (8)

and x̂j(µ) ≈ xj(µ), the j-th column of x(µ). Finally, rj(µ) is the residual induced by x̂j(µ).
From the last equation in (7), it is clear that to compute the absolute error of ŷij , we need to solve

a residual system:
M(µ)xrj (µ) = rj(µ). (9)

Instead, we construct a ROM of it:

V T
r M(µ)Vrzrj (µ) = V T

r rj(µ), (10)

so that xrj (µ) ≈ x̂rj (µ) = Vrzrj (µ) . Finally,

|yij(µ)− ŷij(µ)| ≈ |Ci(µ)x̂rj (µ)|.

Note that x̂rj (µ) depends on Bj(µ), since rj(µ) depends on Bj(µ). Each column Bj(µ) is associated
with a x̂rj (µ). The overall error of ŷ(µ) as a matrix can be estimated as:

‖y(µ)− ŷ(µ)‖max := max
i,j
|yij(µ)− ŷij(µ)| ≈ max

i,j
|Ci(µ)x̂rj (µ)| =: ∆̃(µ). (11)

∆̃(µ) defined in (11) is one of the error estimators proposed in [16], where the proposed error
estimators were shown to outperform other existing error estimators in the literature [34, 15] in terms
of both accuracy and computational efficiency. Furthermore, it has been discussed in [16] that ∆̃(µ) is
even more accurate but has less computational complexity than other proposed estimators, including
the one used in [14]. Even with this error estimator, the greedy algorithm could take several hours
to converge for some complex systems, for example, the time-delay systems we consider in this work.
For such systems, although the standard greedy algorithm can already be accelerated by the bi-
fidelity greedy algorithm, we suggest a possibility to further improve the bi-fidelity greedy algorithm
by introducing multi-fidelity error estimation.

We notice that in order to compute ∆̃(µ), an extra projection matrix Vr has to be constructed
for x̂rj (µ). Although x̂rj (µ) is dependent on the individual column of B(µ), the matrix Vr can be
uniformly constructed based on the whole matrix B(µ). Then Vr is valid for any column of B(µ). It
is proved in [16] that taking Vr = V leads to ∆̃(µ) identically zero for all µ. Therefore, Vr should be
additionally computed.

6

3.2.2 Standard greedy algorithm using ∆̃(µ)

For easy understanding of the multi-fidelity error estimation, we first present Algorithm 3, the standard
greedy algorithm using ∆̃(µ) in (11) as the error estimator. There, some additional steps are added
to compute Vr, see Step 5, Steps 7-8. In Step 7 of Algorithm 3, Vr is not only updated by x(µr), but
also by V . This is due to the fact that the solution xrj (µ) to the residual system in (9) can be written
as

xrj (µ) = M(µ)−1rj(µ)
= M(µ)−1(Bj(µ)−M(µ)x̂j(µ))
= M(µ)−1Bj(µ)− V zj(µ)

≈ Ṽrzrj − V zj(µ).

(12)

It is clear that xrj (µ) is a linear combination of (M(µ))−1Bj(µ) and the columns of V . Therefore,
V contributes to the subspace approximating the solution space of xrj (µ) and cannot be neglected.
It is also noticed that (M(µ))−1Bj(µ) is in fact the solution xj(µ) in (8), while V zj(µ) is x̂j(µ)
that approximates xj(µ). This means xrj (µ) is the difference between xj(µ) and x̂j(µ), which is a

nonzero vector. Therefore, we should compute another matrix Ṽr, so that xj(µ) ≈ Ṽrzrj (µ), but

Ṽrzrj (µ) 6= x̂j(µ) = V zj(µ). Finally, xrj is approximated by the difference between Ṽrzrj (µ) and
V zj(µ). In other words, it is approximately represented as the linear combination of the columns of
both Vr and V . This approximation also explains Step 5 and Step 7 of Algorithm 3: Step 5 computes
the reduced basis vectors contributing to Ṽr, Step 7 computes the complete reduced basis vectors
contributing to Vr. New reduced basis vectors for both V and Vr are computed at each iteration of
the greedy algorithm. Step 8 and Step 9 compute the new important parameter samples for Vr and V ,
respectively. In general, µr should be different from µ∗, since ∆̃(µ) 6= max

j=1,...,nI

‖rj(µ)−M(µ)x̂rj (µ)‖.

Here, rj(µ)−M(µ)x̂rj (µ) is nothing but the residual induced by the approximate solution (x̂rj (µ)) to
the residual system (9).

Algorithm 3 Standard greedy algorithm using ∆̃(µ) for linear parametric systems.

Input: the FOM, a training set Ξ composed of parameter samples taken from the parameter domain
µ ∈ P, error tolerance tol< 1.

Output: Projection matrix V .
1: Choose initial parameter µ∗ ∈ Ξ for V , and initial parameter µr 6= µ∗ ∈ Ξ for Vr.
2: V ← ∅, Vr ← ∅, ε = 1.
3: while ε >tol do
4: Compute the snapshot(s) x(µ∗) by solving the FOM, i.e. x(µ∗) = (M(µ∗))−1B(µ∗).
5: Compute the snapshot(s) x(µr) by solving the FOM, i.e. x(µr) = (M(µr))−1B(µr).
6: Update V by V = orth{V, x(µ∗)}, (e.g., using the modified Gram-Schmidt process with defla-

tion.)
7: Update Vr by Vr = orth{V, Vr, x(µr)}.
8: Compute µr such that µr = arg max

µ∈Ξ
max

j=1,...,nI

‖rj(µ) −M(µ)x̂rj (µ)‖, (nI is the total number of

columns of B(µ)).
9: Compute µ∗ such that µ∗ = arg max

µ∈Ξ
∆̃(µ).

10: ε = ∆̃(µ∗).
11: end while

7

3.2.3 Greedy algorithm with multi-fidelity error estimation

The computational complexity of Algorithm 3 using the error estimator ∆̃(µ) comes from Steps 4-9.
Efficiency of Step 9 can be improved by using the bi-fidelity error estimation as shown in Algorithm 2.
The computations in Step 4, 6 are unavoidable, since V is used to compute the ROM of the original
FOM and should be updated till acceptable error tolerance is satisfied. In contrast, Vr in Step 7 needs
not be updated at every iteration. This implies that the ROM of the residual system does not have to
be very accurate, since it is not the ROM that we seek, but an auxiliary ROM aiding the computation
of ∆̃(µ).

An immediate consequence of Theorem 4.2 in [16] for single-input and single-output systems is the
following Lemma for systems with multiple inputs and multiple outputs:

Lemma 3.1 The error of the output ŷ(µ) of the ROM (6) can be bounded as

∆̃(µ)− δ(µ) ≤ ‖y(µ)− ŷ(µ)‖max ≤ ∆̃(µ) + δ(µ), (13)

where δ(µ) := max
i,j
|Ci(µ)(xrj (µ)− x̂rj (µ))| ≥ 0.

Proof From (7), we know

|yij(µ)− ŷij(µ)| = |Ci(µ)xrj (µ)| ≈ |Ci(µ)x̂rj (µ)|.

Then
|yij(µ)− ŷij(µ)| = |Ci(µ)xrj (µ)|+ |Ci(µ)x̂rj (µ)| − |Ci(µ)x̂rj (µ)|

≤ |Ci(µ)x̂rj (µ)|+ |Ci(µ)xrj (µ)− Ci(µ)x̂rj (µ)|︸ ︷︷ ︸
δij(µ)

. (14)

On the other hand,

|Ci(µ)x̂rj (µ)| = |Ci(µ)x̂rj (µ)|+ |Ci(µ)xrj (µ)| − |Ci(µ)xrj (µ)|
≤ |Ci(µ)xrj (µ)|+ δij(µ).

(15)

From (11), (15) and the definition of δ(µ), we have

∆̃(µ) = max
i,j
|Ci(µ)x̂rj (µ)| ≤ ‖y(µ)− ŷ(µ)‖max + δ(µ).

Similarly, from (14), we get
‖y(µ)− ŷ(µ)‖max ≤ ∆̃(µ) + δ(µ).

This completes the proof.

From the definition of δ(µ), it is seen that the more accurate the ROM of the residual system, the
smaller δ(µ) is. As a result, ∆̃(µ) should measure the true error more accurately so that the important
parameters it selects are closer to those selected by the true error, given the same training set Ξ.
On the contrary, if the ROM of the residual system is less accurate, ∆̃(µ) will be less accurate, too.
However, at a certain stage, when ∆̃(µ) is already small, the right-hand side of the residual system
rj(µ) will also be small, so that it can be expected that both xrj (µ) and x̂rj (µ̃) are close to zero. This
leads to a small δ(µ). Variation of a small δ(µ) will not cause big variation of the difference between
∆̃(µ) and the true error ‖y(µ) − ŷ(µ)‖max. The trend, though not the exact route, of error decay
could still be anticipated so that important parameters corresponding to the error peaks can also be
detected. The above analyses are also justified by the numerical results in the next section, see, e.g.,
Figure 3 and Figure 5.

8

This motivates the multi-fidelity error estimation. We set a second tolerance ε >tol, and when
∆̃(µ) < ε < 1, we stop updating the ROM of the residual system, i.e., stop implementing Step 5, Step
7 and Step 8 of Algorithm 3. The error estimator ∆̃(µ) after this stage may not be as accurate as it
would be when keep updating the ROM of the residual system. However, the difference should be small
as ∆̃(µ) is already below a small value ε. Without implementing Step 5, we have saved computations
of simulating the FOM. For large and complex systems, solving the FOM even once is not fast. The
computation in Step 7 is relatively cheap if the system is not very large. The computational cost in
Step 8 is not low for certain complex problems, though some µ-independent parts of rj(µ) and M(µ)
can be pre-computed. For example, this is the case for the time-delay systems in the next section.

Stop updating the ROM of the residual system gives rise to a low-fidelity error estimator at later
iteration steps of the greedy algorithm. When this low-fidelity error estimator is combined with
∆l(µ) in Algorithm 2, we obtain the multi-fidelity error estimation. This is detailed in Algorithm 4.
Compared with the standard greedy algorithm, the overall saving in computational costs is noticeable,
which can be seen from the numerical results in the next section.

The concept of multi-fidelity error estimation could also be applied to other high-fidelity error
estimators. For example, Step 15 could be modified as “Stop updating partial information of ∆(µ)”,
if some parts of the high-fidelity error estimator ∆(µ) are not “essential” for computing ∆(µ).

Algorithm 4 Greedy algorithm with multi-fidelity error estimation

Input: the FOM, a training set Ξc composed of a small number of parameter samples taken from the
parameter domain µ ∈ P, a set Ξf composed of a large number of parameter samples of µ from
P, error tolerance tol< 1.

Output: Projection matrix V .
1: Choose initial parameter µ∗ ∈ Ξc for V , and initial parameter µr 6= µ∗ ∈ Ξc for Vr.
2: V ← ∅, Vr ← ∅, ε = 1.
3: while ε >tol do
4: Compute the snapshot(s) x(µ∗) by solving the FOM, i.e. x(µ∗) = (M(µ∗))−1B(µ∗).
5: Compute the snapshot(s) x(µr) by solving the FOM, i.e. x(µr) = (M(µr))−1B(µr).
6: Update V by V = orth{V, x(µ∗)} (e.g., using the modified Gram-Schmidt process with defla-

tion).
7: Update Vr by Vr = orth{V, Vr, x(µr)}.
8: Compute µ∗ such that µ∗ = arg max

µ∈Ξc

∆̃(µ).

9: Compute µo such that µo = arg min
µ∈Ξc

∆̃(µ).

10: Compute µr such that µr = arg max
µ∈Ξc

max
j=1,...,nI

‖rj(µ)−M(µ)x̂rj (µ)‖, % nI is the total number

of columns of B(µ).
11: Compute the low-fidelity error estimator ∆̃l(µ) using values of ∆̃(µ) corresponding to the sam-

ples of µ in Ξc via (3) and (4).
12: Evaluate ∆̃l(µ) over Ξf and pick out a parameter µc from the large parameter set Ξf corre-

sponding to the largest value of ∆̃l(µ), i.e., µc = arg max
µ∈Ξf

from Ξf .

13: Update the small parameter set Ξc: if ∆l(µc) >tol, enrich Ξc with µc, i.e., Ξc = {Ξc, µc}, if
∆(µo) <tol, remove µo from Ξc: Ξc = Ξc\µo.

14: ε = ∆̃(µ∗).
15: if ε < ε then
16: Stop performing Step 5, Step 7 and Step 10. % stop updating the ROM of the residual

system.
17: end if
18: end while

9

3.3 Application to MOR for time-delay systems

In this section, we consider applying Algorithm 2, the greedy algorithm with bi-fidelity error esti-
mation, Algorithm 3, the standard greedy algorithm and Algorithm 4, the greedy algorithm with
multi-fidelity error estimation to large-scale time-delay systems with many delays. The time-delay
systems are defined as:

d∑
j=0

Ej ẋ(t− τj) =

d∑
j=0

Ajx(t− τj) +Bu(t),

y(t) = Cx(t),

∀ t ≥ 0 (16)

with an initial condition x(t) = Φ(t) ∈ Cn, ∀ t ∈ [−τd, 0]. Here, E0, . . . , Ed, A0, . . . , Ad ∈ Cn×n, B ∈
Cn×nI , C ∈ CnO×n, 0 = τ0 < τ1 < . . . < τd and n is called the order of the delay system. The transfer
function of the delay system is defined as:

H(s) = CK−1(s)B, (17)

where K(s) = s
∑d

j=0Eje
−sτj −

∑d
j=0Aje

−sτj , s = 2π is the variable in the frequency domain, f is
the ordinary frequency with unit Hz and is the imaginary unit.

A ROM of the delay system, which has the same delays as the original system, can be obtained
via Galerkin projection using a projection matrix V ∈ Rn×r, r � n, i.e.,

d∑
j=0

Êj ż(t− τj) =
d∑
j=0

Âjz(t− τj) + B̂u(t),

ŷ(t) = Ĉz(t),

∀ t ≥ 0, (18)

where Êj = V TEjV ∈ Rr×r, Âj = V TAjV ∈ Rr×r, B̂ = V TB ∈ Rr×nI , Ĉ = CV ∈ RnO×r, with
r � n being the order of the ROM. The original state vector x(t) in (16) can be recovered by the
approximation: x(t) ≈ V z(t). The transfer function of the ROM is

Ĥ(s) = ĈK̂−1(s)B̂,

where K̂(s) = s
∑d

j=0 Êje
−sτj −

∑d
j=0 Âje

−sτj . The projection matrix V can be constructed via
approximating H(s) [5] as follows. Note that H(s) is nothing but the output y(µ) of the linear
parametric system in (5), with M(µ) = K(s), B(µ) = B and µ = s, i.e.,

K(s)x(s) = B,
H(s) = C(s)x(s).

(19)

The reduced transfer function Ĥ(s) is the output ŷ(µ) of the ROM in (6) with M̂(µ) = K̂(s) and
B̂(µ) = B̂.

It is easy to see that the projection matrix V that is used to construct the ROM (18) in the time
domain is exactly the same matrix to obtain the reduced transfer function Ĥ(s). Therefore, V can
be obtained by constructing a ROM of system (19) in the frequency domain, i.e., by approximating
the transfer function H(s). This can be done by the standard greedy Algorithm 3 with the error
estimator ∆̃(s), where V is iteratively computed by choosing proper samples of s [5, 1]. In fact, the
reduced transfer function Ĥ(s) interpolates the original transfer function H(s) at the selected samples
of s [1]. The matrix M(µ) in Steps 4-5 of Algorithm 3 is now replaced by K(s). The difference of the
coefficient matrix K(s) from a single matrix M(µ) in the usual case is its high complexity. To solve the
system in (19) is much more expensive than solving the system in (5) where M(µ) is a single matrix.

10

On the one hand, the matrices constituting K(s) must be assembled to get K(s). On the other hand,
the finally assembled matrix has some dense blocks, though each single matrix contributing to K(s)
is sparse.

To further improve the efficiency of the standard greedy algorithm, we propose to apply Algorithm 2
and Algorithm 4 to time-delay systems. The application is straightforward by simply replacing the
FOM in (5) in both algorithms with the system in (19), i.e., the matrix M(µ) is replaced by K(s), the
input matrix B(µ) and the output matrix C(µ) are replaced by B and C in (19), respectively.

4 Numerical tests

We consider three time-delay systems obtained from partial element equivalent circuit (PEEC) mod-
elling and simulation, which transfer problems from the electromagnetic domain to the circuit do-
main [29, 32, 30, 31]. When the propagation delays are explicitly kept for both partial inductances
and coefficients of potential, time-delay systems can be derived [17]. Numerical tests are done with
MATLAB R2016b on a computer server with 4 Intel Xeon E7-8837 CPUs running at 2.67 GHz, 1TB
main memory, split into four 256 GB partitions.

We test the standard greedy Algorithm 3, the bi-fidelity greedy Algorithm 2 and the multi-fidelity
Algorithm 4 on three time-delay systems. To run the algorithms, we need to initialize the algorithms
by doing the following:

• The samples in the training set Ξ, the small set Ξc and the large set Ξf are taken from
the prescribed frequency domain and are generated using the MATLAB function linspace:
linspace(fl, fh, cardi). Here, fl is the lowest frequency, fh is the highest frequency used in
linspace, cardi is the corresponding cardinality of each set. The samples of s are then com-
puted using the relation: s = 2πf .

• For the multi-fidelity error estimation, we set ε = 0.1 in Step 15 of Algorithm 4.

• To compute the low-fidelity error estimator, we choose the inverse multiquadratic RBF (IMQ)
Φ = 1

1+(a‖µ−µi‖)2 with the shape parameter a = 30.

We also need to define some variables uniformly used in all the tables and figures:

• The error ‖H(s)− Ĥ(s)‖max of the transfer function Ĥ(s) of the ROM is finally computed over
1000 samples of s drawn independently of the training sets, resulting in the validated error:
Valid.err in Tables 1-8.

• Runtime, the walltime of each algorithm till convergence.

• Iter., the total number of iterations of each algorithm.

• r, the order of the ROM.

• The high-fidelity error estimator at each iteration of Algorithm 3 is defined as max
µ∈Ξ

∆̃(µ).

• The bi-fidelity error estimator at each iteration of Algorithm 2 is defined as max
µ∈Ξc

∆̃(µ).

• The multi-fidelity error estimator at each iteration of Algorithm 4 is defined as max
µ∈Ξc

∆̃(µ). Here

∆̃(µ) will be different from the bi-fidelity error estimator once Step 15 of the algorithm takes
action.

11

wP1

P3P2

lX,1

lY,1 lY,3

lY

lX

Figure 1: The three-port microstrip power-divider circuit.

• The true error at each iteration of Algorithm 3 is defined as max
µ∈Ξ
‖H(s)− Ĥ(s)‖max.

• The true error at each iteration of Algorithm 2 or Algorithm 4 is defined as max
µ∈Ξc

‖H(s) −

Ĥ(s)‖max.

Note that Ξc could be enriched only by adding samples from Ξf to Ξc. As the high-fidelity error
estimator ∆̃(µ) needs to be computed at every sample in Ξc at each iteration, samples in Ξc whose
corresponding error is already smaller than tol can also be removed from Ξc to keep the cardinality of
Ξc constant, so that more computations can be saved. We consider both cases separately and compare
their efficiency with respect to both runtime and accuracy.

4.1 Test 1: results for a model of three-port divider

The model structure of a three-port microstrip power-divider circuit is shown in Fig. 1 (P1, P2 and
P3 denote the ports). The dimensions of the circuit are [20, 20, 0.5] mm in the [x, y, z] directions and
the width of the microstrips is set as 0.8 mm. Furthermore, the dimensions lX1, lY 1, and lY 3 are 9,
7.2 and 7.2 mm, respectively. The relative dielectric constant is εr = 2.2. All the ports are terminated
on 50 Ω resistances. The order of the FOM is n = 10, 626, and it has d = 93 delays. The interesting
frequency band is [0, 20]GHz.

For this model, we use fl = 1× 106, fh = 2× 1010 in the function linspace. |Ξ| = 30 or |Ξ| = 40
for the standard greedy Algorithm 3. For Algorithm 2 and Algorithm 4, |Ξc| = 15 or |Ξc| = 20 and
|Ξf | = 100. The set Ξc is then updated during the iteration of the greedy algorithm. The 1000
samples for validating the ROM accuracy are created using the MATLAB function logspace, i.e.,
logspace(log10(fl1), log10(fh), 1000). fl1 = 1× 104.

In Table 1, we list the results of the three algorithms. The standard greedy algorithm is the slowest.
The other algorithms are all much faster and take at least 2 hours less than the standard algorithm.
The bi-fidelity greedy algorithm by enriching Ξc only is slower than other bi-(multi-)fidelity algorithms,
this is in agreement with our theoretical analysis in Section 3. The multi-fidelity algorithm by adding
and removing samples to and from Ξc performs the best in terms of runtime and accuracy. Compared
to the standard algorithm, it has reduced the offline runtime from 5.6 hours to 1.8 hours, and almost 4
hours have been saved. Finally, a speed-up factor 3.1 is achieved. Except for the bi-fidelity algorithm
by adding and removing samples, the other algorithms have produced ROMs with validated errors
below the tolerance. The bi-fidelity algorithms perform similarly as the standard algorithm. All three
algorithms converge in 14 iterations, and produce ROMs smaller than the others.

It is worth pointing out that if using fewer samples in Ξ for the standard greedy algorithm, the
ROM has a validated error that is slightly larger than the tolerance, as shown in Table 2, where
|Ξ| = 30. Also, the bi-fidelity greedy algorithms are less accurate if using fewer samples in Ξc, as
shown in Table 2. There, the same Ξc used for the multi-fidelity greedy algorithms are used, but less
accurate ROMs are obtained.

In Table 3, we show the results of the bi-fidelity greedy algorithm and the multi-fidelity greedy
algorithm when nadd = ndel > 1 samples are added or removed from the small training set Ξc at each

12

Table 1: Three-port divider: n = 10, 626, d = 93 delays, tol=0.001, adding/removing a single sample
at each iteration.

Method Iter. Runtime (h) r Valid.err

Alg. 3 (standard, |Ξ| = 40) 14 5.6 84 9.2× 10−4

Alg. 2 (bi-fidelity, add only, |Ξc| = 20) 14 3.6 84 6× 10−4

Alg. 2 (bi-fidelity, add-remove, |Ξc| = 20) 14 2.7 84 0.0022

Alg. 4 (multi-fidelity, add only, |Ξc| = 15) 15 2.4 90 6.2× 10−4

Alg. 4 (multi-fidelity, add-remove, |Ξc| = 15) 15 1.8 90 6.2× 10−4

Table 2: Three-port divider: n = 10, 626, d = 93 delays, tol=0.001, smaller |Ξ| and |Ξc|,
adding/removing a single sample at each iteration.

Method Iter. Runtime (h) r Valid.err

Alg. 3 (standard, |Ξ| = 30) 14 4.2 84 0.0017

Alg. 2 (bi-fidelity, add only,|Ξc| = 15) 13 2.5 78 0.0026

Alg. 2 (bi-fidelity, add-remove, |Ξc| = 15) 13 1.9 78 0.0088

Table 3: Three-port divider: n = 10, 626, d = 93 delays, tol=0.001, adding/removing nadd = ndel > 1
samples at each iteration.

Method Iter. Runtime (h) r Valid.err

Alg. 2 (bi-fidelity, add-remove, |Ξc| = 15, nadd = 2) 14 2.0 84 0.0022

Alg. 2 (bi-fidelity, add-remove, |Ξc| = 20, nadd = 2) 14 2.7 84 0.0022

Alg. 2 (bi-fidelity, add-remove, |Ξc| = 20, nadd = 5) 14 2.7 84 0.0022

Alg. 4 (multi-fidelity, add-remove, |Ξc| = 15, nadd = 2) 14 1.7 84 0.0039

Alg. 4 (multi-fidelity, add-remove, |Ξc| = 15, nadd = 5) 14 1.7 84 0.0039

iteration of the algorithm. In general, they produce similar results as those in Table 1 and Table 2
given the same Ξc. For |Ξc| = 15, the bi-fidelity greedy algorithm with nadd = ndel = 2 converges in 14
iterations, running one more iteration than with nadd = ndel = 1 as shown in Table 2, and generates
a ROM with slightly higher accuracy. On the contrary, given |Ξc| = 15, the multi-fidelity greedy
algorithm with either nadd = ndel = 2 or nadd = ndel = 5 runs one iteration less than in the case
of adding/removing a single sample as shown in Table 1, and constructs ROMs with lower accuracy.
Furthermore, it is seen that increasing nadd = ndel from 2 to 5 did not change the results for both
algorithms. In general, adding/removing a single sample keeps the algorithms simple but efficient.

To illustrate the behavior of the error estimators further, we plot the decay of error estimators and
their corresponding true errors during the greedy iterations. Since different µ∗ are chosen according
to different error estimators, the projection matrix V is updated with different snapshots, leading to
ROMs with different accuracy. Consequently, the true errors of the ROMs are expected to be different.

Figures 2-3 are the results of the algorithms in Table 1. The left part of Figure 2 shows the error
of the high-fidelity error estimator at each iteration of Algorithm 3 and the decay of the corresponding
true error. The error estimator almost exactly matches the true error at all the iterations. The right
part of Figure 2 plots the decay of the bi-fidelity error estimator with respect to the true error. The
bi-fidelity error estimator in both of the two cases: only adding (add-only) samples to Ξc, adding
and removing (add-remove) samples to and from Ξc, can accurately catch the true error. Both cases
converge in 14 iterations, but the case “add-only” is more accurate as can be seen from Table 1.

Figure 3 plots the decay of the multi-fidelity error estimator and the corresponding true error
decay. For clarity, the two cases “add-only” and “add-remove” are plotted in two separate figures.

13

The multi-fidelity error estimator is not as accurate as the bi-fidelity error estimator. This is indicated
by the error decay from the 10-th iteration to the end in both figures. From the 10-th iteration, the
error estimator is below ε = 0.1, the multi-fidelity error estimation at Step 15 of Algorithm 4 begins
to be implemented. For this example, the multi-fidelity error estimator overestimates the true error
more often than the bi-fidelity error estimator, it did not choose the interpolation points that lead to
error decay as fast as those chosen by the bi-fidelity error estimator. Finally, it uses more iteration
steps to converge. Whereas, they still produce ROMs with best accuracy.

Figure 2: Error decay. Left: true error vs high-fidelity error estimator. Right: true error vs bi-fidelity
error estimators.

Figure 3: Error decay. Left: true error vs multi-fidelity error estimator by only adding samples to Ξc.
Right: true error vs multi-fidelity error estimator by adding and deleting samples to and from Ξc.

4.2 Test 2: results for a model of coplanar microstrips

The second example is a model of a three coplanar microstrips structure shown in Fig. 4. The width
of the metal strips is mw = 0.178 mm, the thickness of metal strips and ground plane is mt = 0.035
mm while the left and right wing of the microstrips are wd = 3 mm. Finally, the length of each
strip is ` = 5 cm, the thickness of the dielectric is dt = 0.8 mm, and the spacing between 2 strips is
s = 0.3 mm. The relative dielectric constant is set to be εr = 4 and the conductivity of the metal is
assumed to be σ = 5.87 S/m. The six ports, located between the ends of each strip and the ground

14

wd mw s mw s mw wd

mt

dt

mt

`

P1

Figure 4: Three coplanar microstrips

plane below, are terminated on load resistors Rload = 50 Ω. The order of the FOM is n = 16, 644, and
there are d = 168 delays. The frequency band of interest is [0, 10]GHz.

For this model, we take fl = 1×106, fh = 1×1010. We set 30 samples for Ξ in the standard greedy
Algorithm 3, i.e., |Ξ| = 30. For Algorithm 2 and Algorithm 4, |Ξc| = 10 or |Ξc| = 15, and |Ξf | = 100.
The 1000 samples used for validating the ROM accuracy are generated using the MATLAB function
linspace, with fl = 100 and the given fh.

The results of the three algorithms are listed in Table 4. The standard greedy Algorithm 3 takes
19 hours, resulting in a ROM of order r = 132 with validated error below the tolerance tol. During the
greedy iteration, if the small parameter set Ξc is enriched only (add only), the greedy algorithm with
bi-fidelity error estimation and that with multi-fidelity error estimation converge within the same
number of iterations, producing ROMs with the same sizes and validated errors. But the greedy
algorithm with multi-fidelity error estimation is almost one hour faster. Similar phenomenon happens
to the case “add-remove”. The greedy algorithm with bi-fidelity error estimation and that with multi-
fidelity error estimation also converge within the same number of iterations and construct ROMs with
the same sizes and accuracy. The runtimes of both algorithms are much less as compared to their
“add only” versions. Finally, the greedy algorithm with multi-fidelity error estimation by adding
and deleting samples to and from Ξc (“add-remove”) is most efficient in terms of both runtime and
accuracy. It is more than 3 times faster than the standard greedy algorithm resulting in a speed-up
of 4.2x, and produces a ROM with even the smallest validated error.

We note that using |Ξc| = 10, the ROMs constructed by the bi-fidelity greedy algorithm and the
multi-fidelity greedy algorithm with adding the samples only have validated errors larger than the
tolerance. If we increase |Ξc| from 10 to 15, both algorithms generate ROMs with improved accuracy.
The results are presented in Tabel 5. However, the computational time also increases a lot. Again,
the multi-fidelity greedy algorithm outperforms the bi-fidelity one w.r.t. both accuracy and runtime.
In contrast to the results in Tables 1-2 for the divider model, the results for the coplanar microstrips
model in both Tables 4-5 show that the bi-fidelity greedy algorithm (“add-remove”) is more accurate
than its “add-only” version.

Table 6 shows the results of the bi-fidelity greedy algorithm and the multi-fidelity greedy algorithm
based on adding/removing multiple samples at each iteration. For both cases, i.e., nadd = ndel = 2
and nadd = ndel = 5, the algorithms using |Ξc| = 10, converge in 10 iterations, one less iteration
than they did with nadd = ndel = 1 in Table 4, resulting in ROMs with smaller order r but with
larger validated errors. If we increase |Ξc| to 15, then the multi-fidelity greedy algorithm generates a
ROM with reduced error, but takes longer time to converge. The bi-fidelity greedy algorithm behaves
similarly and its results for |Ξc| = 15 is not presented to avoid repetition. This example again shows
that adding/removing a single parameter at each iteration outperforms the cases with nadd = ndel > 1,
and produces ROMs with desired accuracy.

15

Table 4: Three coplanar microstrips: n = 16, 644, d = 168 delays, tol=0.001, adding/removing a single
sample at each iteration.

Method Iter. Runtime (h) r Valid.err

Alg. 3 (standard, |Ξ| = 30) 11 15 132 8.5× 10−4

Alg. 2 (bi-fidelity, add only, |Ξc| = 10) 11 6.2 132 0.0033

Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10) 11 5.3 132 8.2× 10−4

Alg. 4 (multi-fidelity, add only, |Ξc| = 10) 11 5.3 132 0.0033

Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10) 11 4.5 132 8.2× 10−4

Table 5: Three coplanar microstrips: n = 16, 644, d = 168 delays, tol=0.001, larger |Ξc|,
adding/removing a single sample at each iteration.

Method Iter. Runtime (h) r Valid.err

Alg. 2 (bi-fidelity, add only, |Ξc| = 15) 11 10 132 0.0011

Alg. 4 (multi-fidelity, add only, |Ξc| = 15) 12 9.3 144 4.4× 10−4

Table 6: Three coplanar microstrips: n = 16, 644, d = 168 delays, tol=0.001, adding/removing
nadd = ndel > 1 samples at each iteration.

Method Iter. Runtime (h) r Valid.err

Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10, nadd = 2) 10 4.7 120 0.019

Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10, nadd = 5) 10 4.7 120 0.019

Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10, nadd = 2) 10 4.2 120 0.019

Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10, nadd = 5) 10 4.3 120 0.019

Alg. 4 (multi-fidelity, add-remove, |Ξc| = 15, nadd = 2) 13 7.6 156 0.0027

In Figure 5, we show the important frequency samples of f selected by the greedy algorithms in
Table 4. For the case “add-remove”, we find that the greedy algorithm with bi-fidelity error estimation
and the one with multi-fidelity error estimation select the same important frequency samples. Therefore
we only plot one group of samples for both algorithms, see the plot “bi-(multi-) add-remove” in the
figure. For the case “add-only”, both algorithms also select the same important frequency samples,
see the plot “bi-(multi-) add-only” in the figure. This is in agreement with the results given in
Table 4 where both algorithms for either case produce the same results. The important frequency
samples selected by the high-fidelity error estimator are mostly different from those selected by the
other algorithms. It is seen that the important frequency samples selected by the (bi-)multi-fidelity
estimator could be different from those selected by the high-fidelity estimator. However, both can
derive ROMs with good accuracy.

The left part of Figure 6 gives the error-peak frequencies detected by the multi-fidelity error
estimator and the true error, respectively, at each iteration of the greedy algorithm. Those frequencies
correspond to the largest values of the error estimator/true error. The error-peak frequency detected
by the error estimator at the i-th iteration is then selected as the important frequency sample at the
next iteration to update the reduced basis space. From iteration 5, the error-peak frequencies detected
by the error estimator are exactly the same as those selected by the true error. This can be explained
by the error decay in the right part of the figure. From the 5-th iteration, the error estimator tightly
catches the true error. Although it is less tight at the first 4 iterations, it still follows the overall trend
of the error decay and therefore, can still detect reasonable error-peak frequencies. This example,
once again, supports our theoretical analysis and demonstrates the efficacy of the proposed greedy
algorithms with bi-(multi-) fidelity error estimation.

16

Figure 5: Important parameters selected by the greedy algorithms.

Figure 6: Left: Frequencies causing error/estimator peaks. Right: true error vs multi-fidelity error
estimator.

4.3 Test 3: results for a model of microstrip filter

The third example is a model of a microstrip filter. The 3D structure of a microstrip filter is depicted in
Fig. 7. The physical dimensions for the geometry of the 3D structure are: wzl = 0.5 mm, wz0 = 1.125
mm, wzC = 4 mm, `zl = 18.3 mm, `z0 = 1 mm, `zC = 14.1 mm, w = 2.4 cm, ` = 2`zl + 2`z0 + `zC ,
tm = 100 µm, ts = 100 µm, td = 508 µm. The two ends of the microstrip are terminated on 50 Ω
resistors. The order of the FOM is n = 12, 132, and there are d = 190 delays. The interesting
frequency band is [0, 5]GHz.

We take fl = 1 × 105, fh = 5 × 109 to generate frequency samples in Ξc and Ξ. We use |Ξ| = 30
for the standard greedy Algorithm 3. For Algorithm 2 and Algorithm 4, |Ξc| = 10, and |Ξf | = 100.
The 1000 samples used for computing the validated error are generated using the MATLAB function
logspace, with fl = 10 and the given fh.

The results of the high-fidelity greedy algorithm, and the bi-(multi-)fidelity greedy algorithms by
adding/removing a single sample at each iteration, are listed in Table 7. All the bi-(multi-)fidelity
greedy algorithms produce similar results. The runtime of each is around 1 hour, 3 hours faster than
the high-fidelity greedy algorithm. All the ROMs have similar accuracy, with validated errors below
the tolerance.

Table 8 further shows the performance of the bi-(multi-)fidelity greedy algorithms by adding and
removing multiple samples at each iteration. For this model, all these algorithms behave similarly as

17

w
z
0

w
z
l

w
z
C

`zC `zl `z0

`

w

tm
td

ts

Figure 7: Microstrip filter.

they did by adding/removing a single sample at each iteration. The multi-fidelity greedy algorithm
produces ROMs with slightly larger sizes. The ROMs also have larger validated errors, but still fulfill
the accuracy requirement. All algorithms converge within 8 iterations, much faster than for the first
two examples. This may be due to the much smaller frequency band of interest [0, 5]GHz making the
problem much easier to solve and leading to the most efficient performance of all algorithms.

In summary, for all the tested examples, the multi-fidelity algorithm by adding/removing a single
sample at each iteration behaves the best w.r.t. both runtime and accuracy.

Table 7: Microstrip filter: n = 12, 132, d = 190 delays, tol=0.001, adding/removing a single sample
at each iteration.

Method Iter. Runtime (h) r Valid.err

Alg. 3 (standard, |Ξ| = 30) 8 2.5 32 5.6× 10−4

Alg. 2 (bi-fidelity, add only, |Ξc| = 10) 7 1.1 28 4.6× 10−4

Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10) 7 1.1 28 4.6× 10−4

Alg. 4 (multi-fidelity, add only, |Ξc| = 10) 7 1.0 28 4.6× 10−4

Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10) 8 1.1 32 5.7× 10−4

Table 8: Microstrip filter: n = 12, 132, d = 190 delays, tol=0.001, adding/removing nadd = ndel > 1
samples at each iteration.

Method Iter. Runtime (h) r Valid.err

Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10, nadd = 2) 7 1.1 28 4.6× 10−4

Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10, nadd = 5) 7 1.1 28 4.6× 10−4

Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10, nadd = 2) 8 1.1 32 9.1× 10−4

Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10, nadd = 5) 8 1.1 32 9.1× 10−4

18

5 Conclusions

Concepts of bi-fidelity error estimation and multi-fidelity error estimation are proposed in this work.
The concept of bi-fidelity error estimation is general and can be applied to any high-fidelity estima-
tor. Although the multi-fidelity error estimation is dependent on the high-fidelity error estimation in
consideration, the framework is general to a certain extend and could also be combined with other
high-fidelity error estimators. The robustness of the proposed greedy algorithms with bi-fidelity and
multi-fidelity error estimation is tested on three large time-delay systems with many delays. Although
the standard greedy algorithm converges in a few iterations, the computational complexity in each
iteration is high. As a consequence, the runtime is long for such systems. The proposed (bi-)multi-
fidelity greedy processes have significantly accelerated the standard greedy algorithm with no loss of
accuracy in most cases.

References

[1] D. Alfke, L. Feng, L. Lombardi, G. Antonini, and P. Benner. Model order reduction for delay
systems by iterative interpolation. Internat. J. Numer. Methods Engrg., 122(3):684–706, 2021.

[2] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems, volume 6 of Adv. Des. Control.
SIAM Publications, Philadelphia, PA, 2005.

[3] A. C. Antoulas, C. A. Beattie, and S. Gugercin. Interpolatory Methods for Model Reduction. Com-
putational Science & Engineering. Society for Industrial and Applied Mathematics, Philadelphia,
PA, 2020.

[4] U. Baur, P. Benner, and L. Feng. Model order reduction for linear and nonlinear systems: A
system-theoretic perspective. Arch. Comput. Methods Eng., 21(4):331–358, 2014.

[5] C. A. Beattie and S. Gugercin. Interpolatory projection methods for structure-preserving model
reduction. Systems Control Lett., 58(3):225–232, 2009.

[6] A. Benaceur, V. Ehrlacher, A. Ern, and S. Meunier. Simultaneous empirical interpolation and
reduced basis method for non-linear problems. C. R. Acad. Sci. Paris, 353(12):1105–1109, 2015.

[7] A. Benaceur, V. Ehrlacher, A. Ern, and S. Meunier. A progressive reduced basis/empirical
interpolation method for nonlinear parabolic problems. SIAM J. Sci. Comput., 40(5):A2930–
A2955, 2018.

[8] P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, editors. Model Reduction and Approximation:
Theory and Algorithms. Computational Science & Engineering. SIAM Publications, Philadelphia,
PA, 2017.

[9] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira, edi-
tors. Model Order Reduction, Volume 1: System- and Data-Driven Methods and Algorithms. De
Gruyter, 2021.

[10] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira, editors.
Model Order Reduction, Volume 2: Snapshot-Based Methods and Algorithms. De Gruyter, 2021.

[11] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira, editors.
Model Order Reduction, Volume 3: Applications. De Gruyter, 2021.

19

[12] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduction methods
for parametric dynamical systems. SIAM Rev., 57(4):483–531, 2015.

[13] S. Chellappa, L. Feng, and P. Benner. An adaptive sampling approach for the reduced basis
method. In Realization and Model Reduction of Dynamical Systems - A Festschrift in Honor of
the 70th Birthday of Thanos Antoulas, pages 137–155. Springer, Cham, 2022.

[14] S. Chellappa, L. Feng, V. de la Rubia, and P. Benner. Adaptive interpolatory MOR by learning
the error estimator in the parameter domain. In Model Reduction of Complex Dynamical Systems,
volume 171 of International Series of Numerical Mathematics, pages 97–117. Birkhäuser, Cham,
2021.

[15] L. Feng, A. C. Antoulas, and P. Benner. Some a posteriori error bounds for reduced order
modelling of (non-)parametrized linear systems. ESAIM: M2AN, 51(6):2127–2158, 2017.

[16] L. Feng and P. Benner. On error estimation for reduced-order modeling of linear non-parametric
and parametric systems. ESAIM: Math. Model. Numer. Anal., 55(2):561–594, 2021.

[17] C. Gianfagna, L. Lombardi, and G. Antonini. Marching-on-in-time solution of delayed PEEC
models of conductive and dielectric objects. IET Microwaves, Antennas Propagation, 13(1):42–
47, 2019.

[18] M. Grepl. Reduced-basis approximation a posteriori error estimation for parabolic partial differ-
ential equations. PhD thesis, Massachussetts Institute of Technology (MIT), Cambridge, USA,
2005.

[19] M. A. Grepl. Certified reduced basis methods for nonaffine linear time-varying and nonlinear
parabolic partial differential equations. Math. Models Methods Appl. Sci., 22(3), 2012.

[20] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera. Efficient reduced-basis treatment
of nonaffine and nonlinear partial differential equations. ESAIM: Math. Model. Numer. Anal.,
41(3):575–605, 2007.

[21] M. A. Grepl and A. T. Patera. A posteriori error bounds for reduced-basis approximations of
parametrized parabolic partial differential equations. M2AN Math. Model. Numer. Anal., 39:157–
181, 2005.

[22] D. Grunert, J. Fehr, and B. Haasdonk. Well-scaled, a-posteriori error estimation for model order
reduction of large second-order mechanical systems. Z. Angew. Math. Mech., 100(8):1–43, 2019.

[23] B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume approximations of
parametrized linear evolution equations. ESAIM: Math. Model. Numer. Anal., 42(2):277–302,
2008.

[24] B. Haasdonk and M. Ohlberger. Efficient reduced models and a-posteriori error estimation for
parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn.
Syst., 17(2):145–161, 2011.

[25] S. Hain, M. Ohlberger, M. Radic, and K. Urban. A hierarchical a-posteriori error estimator for
the reduced basis method. Advances in Computational Mathematics, 45(2):2191–221, 2019.

[26] A. Paul-Dubois-Taine and D. Amsallem. An adaptive and efficient greedy procedure for the
optimal training of parametric reduced-order models. Internat. J. Numer. Methods Engrg.,
102(12):1262–1292, 2015.

20

[27] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Differential Equa-
tions, volume 92 of La Matematica per il 3+2. Springer International Publishing, 2016. ISBN:
978-3-319-15430-5.

[28] D. V. Rovas. Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equa-
tions. PhD thesis, Massachussetts Institute of Technology (MIT), Cambridge, USA, 2003.

[29] A. E. Ruehli. Inductance calculations in a complex integrated circuit environment. IBM Journal
of Research and Development, 16(5):470–481, Sept. 1972.

[30] A. E. Ruehli. Equivalent circuit models for three dimensional multiconductor systems. IEEE
Transactions on Microwave Theory and Techniques, MTT-22(3):216–221, Mar. 1974.

[31] A. E. Ruehli, G. Antonini, and L. Jiang. Circuit Oriented Electromagnetic Modeling Using the
PEEC Techniques. Wiley-IEEE Press, 2017.

[32] A. E. Ruehli and P. A. Brennan. Efficient capacitance calculations for three-dimensional mul-
ticonductor systems. IEEE Transactions on Microwave Theory and Techniques, 21(2):76–82,
1973.

[33] A. Schmidt and B. Wittwar, D. Haasdonk. Rigorous and effective a-posteriori error bounds for
nonlinear problems—application to RB methods. Adv. Comput. Math., 46(32):30 pages, 2020.

[34] K. Smetana, O. Zahm, and A. T. Patera. Randomized residual-based error estimators for
parametrized equations. SIAM J. Sci. Comput., 41(2):A900–A926, 2019.

[35] K. Veroy, C. Prud’Homme, D. V. Rovas, and A. T. Patera. A posteriori error bounds for reduced-
basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equa-
tions. In 16th AIAA Computational Fluid Dynamics Conference, Orlando, United States, 2003.

[36] Y. Zhang, L. Feng, S. Li, and P. Benner. An efficient output error estimation for model order
reduction of parametrized evolution equations. SIAM J. Sci. Comput., 37(6):B910–B936, 2015.

21

	1 Introduction
	2 Standard greedy algorithm
	3 Greedy algorithm with bi-fidelity and multi-fidelity error estimation
	3.1 Greedy algorithm with bi-fidelity error estimation
	3.2 Greedy algorithm with multi-fidelity error estimation
	3.2.1 An error estimator for linear parametric systems
	3.2.2 Standard greedy algorithm using ()
	3.2.3 Greedy algorithm with multi-fidelity error estimation

	3.3 Application to MOR for time-delay systems

	4 Numerical tests
	4.1 Test 1: results for a model of three-port divider
	4.2 Test 2: results for a model of coplanar microstrips
	4.3 Test 3: results for a model of microstrip filter

	5 Conclusions

