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Abstract
Model order reduction usually consists of two stages: the offline stage and the
online stage. The offline stage is the expensive part that sometimes takes hours
till the final reduced-order model is derived, especially when the original model
is very large or complex. Once the reduced-order model is obtained, the online
stage of querying the reduced-order model for simulation is very fast and often
real-time capable. This work concerns a strategy to speed up the offline stage
of model order reduction for large and complex systems. In particular, it is suc-
cessful in accelerating the greedy algorithm that is often used in the offline stage
for reduced-order model construction. We propose to replace the high-fidelity
error estimator in the greedy algorithm with multi-fidelity error estimation.
Consequently, the computational complexity of the greedy algorithm is reduced
and the algorithm converges more than two times faster without incurring
noticeable accuracy loss.
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1 INTRODUCTION

Model order reduction (MOR) has achieved much success in many areas of computational science with its capability
of realizing real-time simulation and providing accurate results. Different MOR methods, their applications, and the
promising results they produce can be found in the survey papers1-3 and books.4-9

MOR usually needs an offline stage for constructing the reduced-order model (ROM). For many intrusive MOR meth-
ods that are based on projection, the offline stage is realized via a greedy algorithm.10-15 The greedy algorithm is used to
properly select important parameter samples that contribute most to the solution space. The offline computational time is
basically the runtime of the greedy algorithm. For large-scale systems, the offline computation is expensive and the run-
time could be longer than several hours.16 Sometimes, the system is not very large, for example, the number of degrees
of freedom is only O(105), but the system structure is complicated, so that the greedy algorithm still takes long time to
converge, see, for example, the third example in Section 4 of this work.

It is known that an efficient error estimator makes the greedy algorithm successful in producing an accurate ROM
without running many iterations.10,12,17,18 Therefore, many efforts have been made in this direction to develop computable
error estimators for different problems.12,14,17,19-29 However, more attention has been paid to improve the effectivity or
accuracy of the error estimator than to develop more efficient strategies to accelerate the greedy process.26,28-31 Recently,
some techniques are proposed to improve the adaptivity of the greedy algorithm.30,32-34
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In References 30 and 35, we proposed a surrogate model for error estimation, and proposed an adaptive greedy
algorithm by alternatively using this surrogate error estimator and the original error estimator during the greedy
algorithm. The focus in References 30 and 35 was to make the greedy process adaptive by starting from a coarse train-
ing set of a small number of parameter samples, and adaptively update the coarse training set with the aid of a surrogate
error estimator. The original error estimator is computed only over the coarse training set, while the surrogate error esti-
mator helps to pick out candidates of important parameter samples from a fine training set, which are then collected in
the coarse training set.

In this work, we emphasize the role of the surrogate error estimator and propose the concept of bi-fidelity error esti-
mation and multi-fidelity error estimation. In fact, a bi-fidelity error estimation has been used in the adaptive greedy
algorithm proposed in References 30 and 35 without being formally defined, that is, the original (high-fidelity) error esti-
mator, and the surrogate (low-fidelity) error estimator. To further improve the convergence speed of the greedy algorithm,
we propose multi-fidelity error estimation built upon the bi-fidelity error estimation. Here, we use a more efficient
high-fidelity error estimator than the two different high-fidelity error estimators used in References 30 and 35. Although
the proposed multi-fidelity error estimation is dependent on the original high-fidelity error estimator, the idea of using
multi-fidelity error estimation is general and can be extended to develop multi-fidelity error estimation associated with
other high-fidelity error estimators.

Unlike the problems considered in References 30 and 35, whose ROMs can be constructed by standard greedy algo-
rithms within seconds to minutes, we consider in this work much more complicated problems. The standard greedy
algorithm takes up to several hours to converge for such problems (see the third example in Section 4). By using the pro-
posed multi-fidelity error estimation, the greedy algorithm achieves more than 2.5× speed-up and produces ROMs with
little loss of accuracy. The speed-up is also higher than using the bi-fidelity error estimation.

In the next section, we present the greedy algorithm in the standard form. Then we analyze some ingredients of the
algorithm, which contribute most to the computational cost. Starting from those computationally expensive parts, we
develop possible strategies to reduce the computational complexity in Section 3. As a consequence, it becomes clear that
the resulting strategy develops a greedy algorithm with multi-fidelity error estimation. The proposed algorithm is then
applied to large time-delay systems with many delays. The numerical tests on three large time-delay systems with more
than 100 delays are demonstrated in Section 4. Conclusions are given in the end.

2 STANDARD GREEDY ALGORITHM

The standard greedy algorithm was first proposed for steady systems without time evolution.10,14 Then it was extended to
proper orthogonal decomposition (POD)-greedy for dynamical systems,12 which is used to construct the ROM using snap-
shots in the time domain. Later the greedy algorithm found its capability in adaptively choosing interpolation points for
frequency-domain MOR methods.19,20 The greedy algorithm for steady systems and frequency-domain MOR has the same
formulation, whereas POD-greedy for time-domain MOR of time-dependent systems needs an singular value decompo-
sition step at each greedy iteration. In this work, we focus on the greedy algorithm, though the proposed scheme can be
easily extended to POD-greedy (Algorithm 1).

Algorithm 1. Standard greedy algorithm

Input: the FOM, a training set Ξ composed of parameter samples taken from the parameter domain  , error tolerance
tol<1, Δ(𝜇) to estimate the error.

Output: Projection matrix V .
1: Choose initial parameter 𝜇∗ ∈ Ξ.
2: V ← ∅, 𝜀 = 1.
3: while 𝜀> tol do
4: Compute the snapshot(s) x(𝜇∗) by solving the FOM at 𝜇 = 𝜇∗.
5: Update V by V = orth{V , x(𝜇∗)}, (e.g., using the modified Gram–Schmidt process with deflation.)
6: Compute 𝜇∗ such that 𝜇∗ = arg max

𝜇∈Ξ
Δ(𝜇).

7: 𝜀 = Δ(𝜇∗).
8: end while
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We consider constructing a ROM for the following full-order model (FOM) using the greedy algorithm,

F(x(𝜇), 𝜇) = B(𝜇). (1)

Here, F(x(𝜇), 𝜇) ∈ Cn×nI , x(𝜇) ∈ Cn×nI , and B(𝜇) ∈ Cn×nI . 𝜇 ∈  is a parameter in the parameter domain . The variable n
is the order of the FOM, which can be the number of degrees of freedom after numerical discretization of PDEs describing
a physical phenomenon. The proposed algorithms are also applicable to problems with nI > 1.

The ROM can be obtained via Galerkin projection using a projection matrix V ∈ Rn×r, r ≪ n, as below,

̂F(Vz(𝜇), 𝜇) = ̂B(𝜇), (2)

where ̂F(Vz(𝜇), 𝜇) = V Tf (Vz(𝜇), 𝜇) ∈ Cr×nI , z(𝜇) ∈ Cr×nI , and ̂B(𝜇) = V TB(𝜇) ∈ Cr×nI .
The standard greedy process used to compute the projection matrix V is described in Algorithm 1. Step 4 in Algorithm 1

solves the FOM at 𝜇∗, and Step 6 computes an error estimator Δ(𝜇) at all 𝜇 in Ξ. These two steps constitute the most
computational expensive part of the greedy algorithm. However, Step 4 is unavoidable, since x(𝜇∗) is needed for the
reduced basis construction.The computational complexity of Step 6 could be reduced, if the cardinality of Ξ, that is, |Ξ| is
kept small, so that Δ(𝜇) needs not be evaluated at many parameter samples. This is the motivation of the surrogate error
estimator proposed in References 30 and 35. The surrogate error estimator can be seen as a low-fidelity error estimator as
compared to the original error estimatorΔ(𝜇), since it is only an approximation toΔ(𝜇), but is much cheaper to compute.

In the next section, we present a greedy algorithm using bi-fidelity error estimation, where a low-fidelity error estima-
tor is computed following the method in References 30 and 35. Based on this, a greedy algorithm using multi-fidelity error
estimation associated with a particular high-fidelity error estimator for MOR of linear parametric systems, is proposed.

Remark 1. In a strict sense, Algorithm 1 should be called standard weak greedy algorithm in contrast to
the strong greedy algorithm that employs the true error over the whole parameter domain.15 When a finite
training set including samples of 𝜇 and/or an error estimator are/is employed to select the parameter 𝜇∗, the
greedy process is then called the weak greedy algorithm.11 In fact, “greedy process,” “greedy algorithm,” or
“greedy sampling” are also frequently used for the weak greedy setting in the literature.10,13,14 The aim of this
paper is to propose multi-fidelity error estimation to accelerate the weak greedy process. For simplicity, we
just omit “weak” in the following discussions. Furthermore, when bi-fidelity or multi-fidelity error estimation
is used in the greedy process, the weak greedy algorithm is not in its standard form any more. However, the
process of selecting the parameter 𝜇∗ is similar, that is, the one corresponding to the largest value of an error
indicator is selected at each iteration. From this aspect, it can still be seen as a greedy process. Therefore, the
greedy algorithms discussed in the following sections are in the general and loose senses.

3 GREEDY ALGORITHM WITH BI-FIDELITY AND MULTI-FIDELITY
ERROR ESTIMATION

This section presents greedy algorithms with bi-fidelity and multi-fidelity error estimation, respectively.

3.1 Greedy algorithm with bi-fidelity error estimation

Algorithm 2 is the greedy algorithm with bi-fidelity error estimation. Its original version using a specific high-fidelity
error estimator was firstly proposed in Reference 30.

The key step of Algorithm 2 is Step 8, where the RBF surrogateΔrbf(𝜇) is computed using values ofΔ(𝜇) at the samples
of 𝜇 in the small parameter set Ξc. Basically, Δrbf(𝜇) is represented by a weighted sum of RBFs, that is,

Δrbf(𝜇) =
m∑

i=1
wiΦ(𝜇 − 𝜇i), (3)

where Φ(𝜇) are RBFs, 𝜇i are the samples in Ξc, and m is the cardinality of Ξc, which is small. Once wi are known,
the surrogate error estimator Δrbf(𝜇) is known. The weights wi are computed via enforcing Δrbf(𝜇) to interpolate
Δ(𝜇) at 𝜇j,∀𝜇j ∈ Ξc, that is, Δrbf(𝜇j) = Δ(𝜇j). Inserting 𝜇 = 𝜇j ∈ Ξc into (3), the weights wi can be computed by solving
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FENG et al. 5315

Algorithm 2. Greedy algorithm with bi-fidelity error estimation

Input: the FOM, a training set Ξc composed of a small number of parameter samples of 𝜇 taken from the parameter
domain , a setΞf composed a large number of parameter samples of𝜇 from , error tolerance tol<1,Δ(𝜇) to estimate
the error.

Output: Projection matrix V .
1: Choose initial parameter 𝜇∗ ∈ Ξc.
2: V ← ∅, 𝜀 = 1.
3: while 𝜀>tol do
4: Compute the snapshot(s) x(𝜇∗) by solving the FOM at 𝜇 = 𝜇∗.
5: Update V by V = orth{V , x(𝜇∗)}, (e.g., using the modified Gram-Schmidt process with deflation.)
6: Compute 𝜇∗ such that 𝜇∗ = arg max

𝜇∈Ξc
Δ(𝜇).

7: Compute 𝜇o such that 𝜇o = arg min
𝜇∈Ξc

Δ(𝜇).

8: Compute the radial basis function (RBF) surrogate Δrbf(𝜇) using values of Δ(𝜇) corresponding to the samples of 𝜇
in Ξc via∼(3) and (4).

9: Evaluate Δrbf(𝜇) over Ξf and pick out a parameter 𝜇c from the large parameter set Ξf corresponding to the largest
value of Δrbf(𝜇), that is, 𝜇c = arg max

𝜇∈Ξf
Δrbf(𝜇) from Ξf .

10: Update the small parameter set Ξc: ifΔrbf(𝜇c)>tol, enrich Ξc with 𝜇c, that is, Ξc = {Ξc, 𝜇c}, ifΔ(𝜇o)<tol, remove 𝜇o

from Ξc: Ξc = Ξc∖𝜇o.
11: 𝜀 = Δ(𝜇∗).
12: end while

the linear system as below,

⎡
⎢
⎢
⎢
⎣

Φ(𝜇1 − 𝜇1) … Φ(𝜇1 − 𝜇m)
⋮ ⋮ ⋮

Φ(𝜇m − 𝜇1) … Φ(𝜇m − 𝜇m)

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

w1

⋮

wm

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

Δ(𝜇1)
⋮

Δ(𝜇m)

⎤
⎥
⎥
⎥
⎦

. (4)

Since values of Δ(𝜇) at 𝜇 ∈ Ξc are available, the weights can be easily computed by solving the above small linear system
with m ×m being the dimension of the coefficient matrix. As this is a rather small system, we usually do not observe ill
conditioning. Otherwise, we can use a regularized version of (4).30,35

At each iteration of the bi-fidelity greedy algorithm, the linear system is solved for once (Step 8), then the surrogate
estimator Δrbf(𝜇) is evaluated over a larger parameter set Ξf using the weighted sum in (3) (Step 9). This process of
computing the weights and evaluating Δrbf(𝜇) is much faster than evaluating the high-fidelity error estimator over a
training set Ξ whose cardinality |Ξ| is much larger than |Ξc|. This is usually the case for the standard greedy algorithm,
where |Ξ| > |Ξc|. Finally, at each iteration of the bi-fidelity algorithm, the total computational cost of Steps 6–8: computing
the high-fidelity error estimatorΔ(𝜇) overΞc, solving the linear system (4) and evaluating the surrogate estimatorΔrbf(𝜇)
overΞf is still much cheaper than computing the high-fidelity error estimatorΔ(𝜇) over a training setΞ, whose cardinality
is, for example, twice that of |Ξc|, as shown in the numerical tests.

Besides computing 𝜇∗ corresponding to the maximal value of the error estimator Δ(𝜇) over Ξc, the minimal value
of Δ(𝜇) is also computed in Step 7. The corresponding parameter 𝜇o could be deleted from Ξc if Δ(𝜇o) is already below
the tolerance tol, see Step 10. In this way, the cardinality of the training set Ξc remains almost constant, and can further
save computations as compared with enriching Ξc only. We will show in the numerical results that adding and removing
samples to and from Ξc gets ROMs with similar accuracy (even smaller) as only adding samples to Ξc, but leads to even
faster convergence of the greedy algorithm.

Remark 2. In Step 9, it is also possible to choose more than one parameter from Ξf by modifying Step 9 as:
choose nadd samples from Ξf corresponding to nadd largest values ofΔrbf(𝜇). Similarly, In Step 7, one can also
choose ndel > 1 parameter samples corresponding to ndel smallest values of Δ(𝜇) from Ξc. However, this will
more or less increase the computational time at each iteration, since more computations are needed to choose
those samples. Furthermore, to make sure that only samples at which Δrbf(𝜇) is larger than the tolerance
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5316 FENG et al.

tol are added to Ξc, and only samples at which Δ(𝜇) is smaller than tol are removed, additional calculations
are necessary to check if all the selected samples meet the above criteria and should be finally selected or
removed (see Step 10). Therefore, adding/removing at most one parameter sample each time should be
more efficient. In the numerical tests, we also show results when nadd = ndel = 2 and nadd = ndel = 5 at each
iteration of Algorithm 2.

The bi-fidelity error estimation is general and can be applied to any high-fidelity error estimators. For example, the
high-fidelity error estimator in Reference 30 estimates the error of the ROM for nonlinear time-dependent parametric
systems in the time domain, while the high-fidelity error estimator in Reference 35 estimates the error of the ROM in the
frequency-domain for linear parametric systems.

3.2 Greedy algorithm with multi-fidelity error estimation

The multi-fidelity error estimation we are going to introduce depends on the formulation of the high-fidelity error esti-
mator Δ(𝜇). To illustrate the basic concept, we use an error estimator proposed in Reference 20 as the high-fidelity error
estimator and discuss how to further reduce the computational load by using multi-fidelity error estimation.

3.2.1 An error estimator for linear parametric systems

The error estimator is applicable to estimating the output error of the ROM for FOMs in the following linear parametric
form,

M(𝜇)x(𝜇) = B(𝜇),
y(𝜇) = C(𝜇)x(𝜇). (5)

Here, M(𝜇) ∈ Rn×n, B(𝜇) ∈ Rn×nI , C(𝜇) ∈ RnO×n, x(𝜇) ∈ Rn×nI , y(𝜇) ∈ RnO×nI . We consider the general case that both B(𝜇)
and C(𝜇) are matrices, that is, systems with multiple inputs and multiple outputs. The ROM of the above linear parametric
system can be derived via Galerkin projection using a projection matrix V composed of the reduced basis. That is,

̂M(𝜇)z(𝜇) = ̂B(𝜇),

ŷ(𝜇) = ̂C(𝜇)z(𝜇), (6)

where ̂M(𝜇) = V TM(𝜇)V , ̂B(𝜇) = V TB(𝜇), ̂C(𝜇) = C(𝜇)V .
For the general situation when both B(𝜇) and C(𝜇) are matrices, the error of the i, jth entry of the output matrix ŷ(𝜇) is

|yij(𝜇) − ŷij(𝜇)|

= |Ci(𝜇)(M−1(𝜇)B(𝜇) − V ̂M−1(𝜇) ̂Bj(𝜇))|

= |Ci(𝜇)M−1(𝜇)(Bj(𝜇) −M(𝜇)V ̂M−1(𝜇) ̂Bj(𝜇))
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

x̂j(𝜇)∶=Vzj(𝜇)|

= |Ci(𝜇)M−1(𝜇)rj(𝜇)|, (7)

where Ci(𝜇) is the ith row of C(𝜇) and Bj(𝜇) is the jth column of B(𝜇). Here, we have defined: zj(𝜇) = ̂M−1(𝜇) ̂Bj(𝜇), that is,
̂M(𝜇)zj(𝜇) = ̂Bj(𝜇), x̂j(𝜇) ∶= Vzj(𝜇) and rj(𝜇) ∶= Bj(𝜇) −M(𝜇)x̂j(𝜇). It is seen that

̂M(𝜇)zj(𝜇) = ̂Bj(𝜇),

is a reduced-order model of

M(𝜇)xj(𝜇) = Bj(𝜇), (8)

and x̂j(𝜇) ≈ xj(𝜇), the jth column of x(𝜇). Finally, rj(𝜇) is the residual induced by x̂j(𝜇).
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FENG et al. 5317

From the last equation in (7), we see that to compute the absolute error of ŷij, the following residual system needs to
be solved:

M(𝜇)xrj(𝜇) = rj(𝜇). (9)

Instead, we construct a ROM of it:

V T
r M(𝜇)Vrzrj(𝜇) = V T

r rj(𝜇), (10)

so that xrj(𝜇) ≈ x̂rj(𝜇) = Vrzrj(𝜇). Finally,

|yij(𝜇) − ŷij(𝜇)| ≈ |Ci(𝜇)x̂rj(𝜇)|.

Note that x̂rj(𝜇) depends on Bj(𝜇), since rj(𝜇) depends on Bj(𝜇). Each column Bj(𝜇) is associated with a x̂rj(𝜇). The overall
error of ŷ(𝜇) as a matrix can be estimated as:

||y(𝜇) − ŷ(𝜇)||max ∶= max
i,j

|yij(𝜇) − ŷij(𝜇)| ≈ max
i,j

|Ci(𝜇)x̂rj(𝜇)| =∶ ̃Δ(𝜇). (11)

̃Δ(𝜇) defined in (11) is one of the error estimators proposed in Reference 20, where the proposed error esti-
mators were shown to outperform other existing error estimators in the literature19,29 in terms of both accuracy
and computational efficiency. Note that ̃Δ(𝜇) in (11) is not guaranteed to be an error bound, therefore we use ≈
instead of ≤. Lemma 1 in Section 3.2.3 shows the accuracy of ̃Δ(𝜇). Furthermore, it has been discussed in Ref-
erence 20 that ̃Δ(𝜇) is even more accurate but has less computational complexity than other proposed estimators,
including the one used in Reference 35. Even with this error estimator, the greedy algorithm could take several
hours to converge for some complex systems, for example, a large-scale time-delay system presented in Section 4.3.
For such systems, although the standard greedy algorithm can already be accelerated by the bi-fidelity greedy
algorithm, we suggest a possibility to further improve the bi-fidelity greedy algorithm by introducing multi-fidelity error
estimation.

We notice that in order to compute ̃Δ(𝜇), an extra projection matrix Vr has to be constructed for x̂rj(𝜇). Although x̂rj(𝜇)
is dependent on the individual column of B(𝜇), the matrix Vr can be uniformly constructed based on the whole matrix
B(𝜇). Then Vr is valid for any column of B(𝜇). It is proved in Reference 20 that taking Vr = V leads to ̃Δ(𝜇) identically zero
for all 𝜇. Therefore, Vr should be additionally computed.

3.2.2 Standard greedy algorithm using ̃Δ(𝜇)

For easy understanding of the multi-fidelity error estimation, we first present Algorithm 3, the standard greedy algorithm
using ̃Δ(𝜇) in (11) as the error estimator. There, some additional steps are added to compute Vr, see Steps 5, 7, and 8. In
Step 7 of Algorithm 3, Vr is not only updated by x(𝜇r), but also by V . This is due to the fact that the solution xrj(𝜇) to the
residual system in (9) can be written as

xrj(𝜇) = M(𝜇)−1rj(𝜇)

= M(𝜇)−1(Bj(𝜇) −M(𝜇)x̂j(𝜇))
= M(𝜇)−1Bj(𝜇) − Vzj(𝜇)
≈ ̃V rzrj − Vzj(𝜇). (12)

It is clear that xrj (𝜇) is a linear combination of (M(𝜇))−1Bj(𝜇) and the columns of V . Therefore, V contributes to the
subspace approximating the solution space of xrj(𝜇) and cannot be neglected. It is also noticed that (M(𝜇))−1Bj(𝜇) is in
fact the solution xj(𝜇) in (8), while Vzj(𝜇) is x̂j(𝜇) that approximates xj(𝜇). This means xrj(𝜇) is the difference between
xj(𝜇) and x̂j(𝜇), which is a nonzero vector. Therefore, we should compute another matrix ̃V r, so that xj(𝜇) ≈ ̃V rzrj(𝜇), but
̃V rzrj(𝜇) ≠ x̂j(𝜇) = Vzj(𝜇). Finally, xrj is approximated by the difference between ̃V rzrj(𝜇) and Vzj(𝜇). In other words, it is
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5318 FENG et al.

Algorithm 3. Standard greedy algorithm using ̃Δ(𝜇) for linear parametric systems

Input: the FOM, a training set Ξ composed of parameter samples taken from the parameter domain 𝜇 ∈  , error
tolerance tol<1.

Output: Projection matrix V .
1: Choose initial parameter 𝜇∗ ∈ Ξ for V , and initial parameter 𝜇r

≠ 𝜇
∗ ∈ Ξ for Vr.

2: V ← ∅, Vr ← ∅, 𝜀 = 1.
3: while 𝜀>tol do
4: Compute the snapshot(s) x(𝜇∗) by solving the FOM, that is, x(𝜇∗) = (M(𝜇∗))−1B(𝜇∗).
5: Compute the snapshot(s) x(𝜇r) by solving the FOM, that is, x(𝜇r) = (M(𝜇r))−1B(𝜇r).
6: Update V by V = orth{V , x(𝜇∗)}, (e.g., using the modified Gram-Schmidt process with deflation.)
7: Update Vr by Vr = orth{V ,Vr, x(𝜇r)}.
8: Compute 𝜇r such that 𝜇r = arg max

𝜇∈Ξ
max

j=1,…,nI
‖rj(𝜇) −M(𝜇)x̂rj(𝜇)‖, (nI is the total number of columns of B(𝜇)).

9: Compute 𝜇∗ such that 𝜇∗ = arg max
𝜇∈Ξ

̃Δ(𝜇).

10: 𝜀 = ̃Δ(𝜇∗).
11: end while

approximately represented as the linear combination of the columns of both Vr and V . This approximation also explains
Steps 5 and 7 of Algorithm 3: Step 5 computes the reduced basis vectors contributing to ̃V r, Step 7 computes the complete
reduced basis vectors contributing to Vr. New reduced basis vectors for both V and Vr are computed at each iteration of
the greedy algorithm. Steps 8 and 9 compute the new important parameter samples for Vr and V , respectively. In general,
𝜇

r should be different from 𝜇

∗, since ̃Δ(𝜇) ≠ maxj=1,… ,nI ||rj(𝜇) −M(𝜇)x̂rj(𝜇)||. Here, rj(𝜇) −M(𝜇)x̂rj(𝜇) is nothing but the
residual induced by the approximate solution (x̂rj(𝜇)) to the residual system (9).

3.2.3 Greedy algorithm with multi-fidelity error estimation

The computational complexity of Algorithm 3 using the error estimator ̃Δ(𝜇) comes from Steps 4–9. Efficiency of Step
9 can be improved by using the bi-fidelity error estimation as shown in Algorithm 2. The computations in Steps 4 and
6 are unavoidable, since V is used to compute the ROM of the original FOM and should be updated till acceptable error
tolerance is satisfied. In contrast, Vr in Step 7 needs not be updated at every iteration. This implies that the ROM of the
residual system does not have to be very accurate, since it is not the ROM that we seek, but an auxiliary ROM aiding the
computation of ̃Δ(𝜇).

An immediate consequence of theorem 4.2 in Reference 20 for single-input and single-output systems is the following
lemma for systems with multiple inputs and multiple outputs:

Lemma 1. The error of the output ŷ(𝜇) of the ROM (6) can be bounded as

̃Δ(𝜇) − 𝛿(𝜇) ≤ ||y(𝜇) − ŷ(𝜇)||max ≤ ̃Δ(𝜇) + 𝛿(𝜇), (13)

where 𝛿(𝜇) ∶= max
i,j

|Ci(𝜇)(xrj (𝜇) − x̂rj(𝜇))| ≥ 0.

Proof. From (7), we know

|yij(𝜇) − ŷij(𝜇)| = |Ci(𝜇)xrj(𝜇)| ≈ |Ci(𝜇)x̂rj(𝜇)|.

Then

|yij(𝜇) − ŷij(𝜇)| = |Ci(𝜇)xrj (𝜇)| + |Ci(𝜇)x̂rj(𝜇)| − |Ci(𝜇)x̂rj(𝜇)|

≤ |Ci(𝜇)x̂rj(𝜇)| + |Ci(𝜇)xrj (𝜇) − Ci(𝜇)x̂rj(𝜇)|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛿ij(𝜇)

. (14)

 10970207, 2023, 23, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7348 by M
PI 335 D

ynam
ics of C

om
plex T

echnical System
s, W

iley O
nline L

ibrary on [07/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FENG et al. 5319

On the other hand,

|Ci(𝜇)x̂rj(𝜇)| = |Ci(𝜇)x̂rj(𝜇)| + |Ci(𝜇)xrj (𝜇)| − |Ci(𝜇)xrj (𝜇)|

≤ |Ci(𝜇)xrj(𝜇)| + 𝛿ij(𝜇). (15)

From (11), (15) and the definition of 𝛿(𝜇), we have

̃Δ(𝜇) = max
i,j

|Ci(𝜇)x̂rj(𝜇)| ≤ ||y(𝜇) − ŷ(𝜇)||max + 𝛿(𝜇).

Similarly, from (14), we get

||y(𝜇) − ŷ(𝜇)||max ≤ ̃Δ(𝜇) + 𝛿(𝜇).

This completes the proof. ▪

From the definition of 𝛿(𝜇), it is seen that the more accurate the ROM of the residual system, the smaller 𝛿(𝜇)
is. As a result, ̃Δ(𝜇) should measure the true error more accurately so that the important parameters it selects
are closer to those selected by the true error, given the same training set Ξ. On the contrary, if the ROM of the
residual system is less accurate, ̃Δ(𝜇) will be less accurate, too. However, at a certain stage, when ̃Δ(𝜇) is already
small, the right-hand side of the residual system rj(𝜇) will also be small, so that it can be expected that both
xrj(𝜇) and x̂rj(�̃�) are close to zero. This leads to a small 𝛿(𝜇). Variation of a small 𝛿(𝜇) will not cause big varia-
tion of the difference between ̃Δ(𝜇) and the true error ||y(𝜇) − ŷ(𝜇)||max. The trend, though not the exact route,
of error decay could still be anticipated so that important parameters corresponding to the error peaks can also
be detected. The above analyses are also justified by the numerical results in the next section, see, for example,
Figures 4 and 11.

This motivates the multi-fidelity error estimation. We set a second tolerance 𝜖 >tol, and when ̃Δ(𝜇) ≤ 𝜖 < 1, we stop
updating the ROM of the residual system, that is, stop implementing Steps 5, 7, and 8 of Algorithm 3. The error esti-
mator ̃Δ(𝜇) after this stage may not be as accurate as it would be when keep updating the ROM of the residual system.
However, the difference should be small as ̃Δ(𝜇) is already below a small value 𝜖. Without implementing Step 5, we have
saved computations of simulating the FOM. For large and complex systems, solving the FOM even once is not fast. The
computation in Step 7 is relatively cheap if the system is not very large. The computational cost in Step 8 is not low for
certain complex problems, though some 𝜇-independent parts of rj(𝜇) and x̂rj(𝜇) can be precomputed. For example, this is
the case for the time-delay systems in the next section.

Stop updating the ROM of the residual system leads to Vr remaining unchanged. As Vr is a part of the high-fidelity error
estimator ̃Δ(𝜇), this means that part of ̃Δ(𝜇) is not updated at later iteration steps of the greedy algorithm (see (10), (11),
and (21)). Once Vr is not updated, ̃Δ(𝜇) automatically becomes a low-fidelity estimator ̃Δl(𝜇). When ̃Δl(𝜇) is combined
with its RBF surrogate ̃Δl

rbf(𝜇), we obtain multi-fidelity error estimation in the greedy process. The multi-fidelity error
estimation means that during the greedy process we use error estimators with different levels of fidelity to estimate the
ROM error ( ̃Δ(𝜇), ̃Δl(𝜇)) and enrich Ξc ( ̃Δrbf(𝜇), ̃Δ

l
rbf(𝜇)). This is detailed in Algorithm 4 and illustrated in Figure 1.

Compared with the standard greedy algorithm, the overall saving in computational costs is noticeable, which can be seen
from the numerical results in the next section.

The concept of multi-fidelity error estimation could also be applied to other high-fidelity error estimators. For example,
Step 15 could be modified as “Stop updating partial information ofΔ(𝜇),” if some parts of the high-fidelity error estimator
Δ(𝜇) are not “essential” for computing Δ(𝜇).

3.3 Application to MOR for time-delay systems

In this section, we consider applying Algorithm 2, the greedy algorithm with bi-fidelity error estimation, Algorithm 3,
the standard greedy algorithm and Algorithm 4, the greedy algorithm with multi-fidelity error estimation to large-scale
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5320 FENG et al.

Algorithm 4. Greedy algorithm with multi-fidelity error estimation

Input: the FOM, a training set Ξc composed of a small number of parameter samples taken from the parameter domain
𝜇 ∈  , a set Ξf composed of a large number of parameter samples of 𝜇 from  , error tolerance tol<1, a second larger
tolerance 1>𝜖>tol.

Output: Projection matrix V .
1: Choose initial parameter 𝜇∗ ∈ Ξc for V , and initial parameter 𝜇r

≠ 𝜇
∗ ∈ Ξc for Vr.

2: V ← ∅, Vr ← ∅, 𝜀 = 1.
3: while 𝜀>tol do
4: If 𝜀 ≤ 𝜖 stop performing Steps 6, 8, and 10, such that ̃Δ(𝜇) is automatically degraded to a low-fidelity error estimator

̃Δl(𝜇) and ̃Δ(𝜇) in the later iterations is replaced by ̃Δl(𝜇).
5: Compute the snapshot(s) x(𝜇∗) by solving the FOM, that is, x(𝜇∗) = (M(𝜇∗))−1B(𝜇∗).
6: Compute the snapshot(s) x(𝜇r) by solving the FOM, that is, x(𝜇r) = (M(𝜇r))−1B(𝜇r).
7: Update V by V = orth{V , x(𝜇∗)} (e.g., using the modified Gram-Schmidt process with deflation).
8: Update Vr by Vr = orth{V ,Vr, x(𝜇r)}.
9: Compute 𝜇∗ = arg max

𝜇∈Ξc

̃Δ(𝜇), compute 𝜇o = arg min
𝜇∈Ξc

̃Δ(𝜇).

10: Compute 𝜇r such that 𝜇r = arg max
𝜇∈Ξc

max
j=1,…,nI

‖rj(𝜇) −M(𝜇)x̂rj(𝜇)‖, % nI is the total number of columns of B(𝜇).

11: Compute RBF surrogate ̃Δrbf(𝜇) of ̃Δ(𝜇) using values of ̃Δ(𝜇) corresponding to the samples of 𝜇 in Ξc via (3) and
(4). Note that when ̃Δ(𝜇) is degraded to ̃Δl(𝜇), we actually compute the RBF surrogate ̃Δl

rbf(𝜇) of ̃Δl(𝜇).
12: Evaluate ̃Δrbf(𝜇) over Ξf and pick out a parameter 𝜇c from the large parameter set Ξf corresponding to the largest

value of ̃Δrbf(𝜇), that is, 𝜇c = arg max
𝜇∈Ξf

̃Δrbf(𝜇).

13: Update the small parameter set Ξc: if ̃Δrbf(𝜇c)>tol, enrich Ξc with 𝜇c, that is, Ξc = {Ξc, 𝜇c}, if ̃Δ(𝜇o) ≤tol, remove
𝜇

o from Ξc: Ξc = Ξc∖𝜇o.
14: 𝜀 = ̃Δ(𝜇∗).
15: end while

F I G U R E 1 The multi-fidelity error estimation in Algorithm 4.

time-delay systems with many delays. The time-delay systems are defined as:

d∑

j=0
Ejẋ(t − 𝜏j) =

d∑

j=0
Ajx(t − 𝜏j) + Bu(t),

y(t) = Cx(t),
∀ t ≥ 0 (16)

with an initial condition x(t) = Φ(t) ∈ Cn
,∀ t ∈ [−𝜏d, 0]. Here, E0, … ,Ed,A0, … ,Ad ∈ Cn×n

,B ∈ Cn×nI
,C ∈ CnO×n

,

0 = 𝜏0 < 𝜏1 < · · · < 𝜏d and n is the order of the delay system. The transfer function of the delay system is defined as:

H(s) = C−1(s)B, (17)

where (s) = s
∑d

j=0 Eje−s𝜏j −
∑d

j=0 Aje−s𝜏j , s = 2𝜋𝚥 is the variable in the frequency domain, f is the ordinary fre-
quency with unit Hz and 𝚥 is the imaginary unit. If the system has multiple input ports and output ports, then
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FENG et al. 5321

nI > 1, nO > 1, H(s) is actually a matrix. The i, jth entry of H(s) is the transfer function corresponding to input port j and
output port i.

A ROM of the delay system, which has the same delays as the original system, can be obtained via Galerkin projection
using a projection matrix V ∈ Rn×r, r ≪ n, that is,

d∑

j=0
Êjż(t − 𝜏j) =

d∑

j=0
Âjz(t − 𝜏j) + ̂Bu(t),

ŷ(t) = ̂Cz(t),
∀ t ≥ 0, (18)

where Êj = V TEjV ∈ Rr×r
,Âj = V TAjV ∈ Rr×r

,

̂B = V TB ∈ Rr×nI
,

̂C = CV ∈ RnO×r, with r ≪ n being the order of the
ROM. The original state x(t) in (16) can be recovered by the approximation: x(t) ≈ Vz(t). The transfer function of the
ROM is

̂H(s) = ̂C ̂
−1(s) ̂B, (19)

where ̂(s) = s
∑d

j=0Êje−s𝜏j −
∑d

j=0Âje−s𝜏j . The projection matrix V can be constructed via approximating H(s)36 as follows.
Note that H(s) is nothing but the output y(𝜇) of the linear parametric system in (5), with M(𝜇) = (s), B(𝜇) = B and
𝜇 = s, that is,

(s)x(s) = B,
H(s) = C(s)x(s). (20)

The reduced transfer function ̂H(s) is the output ŷ(𝜇) of the ROM in (6) with ̂M(𝜇) = ̂K(s) and ̂B(𝜇) = ̂B.
It is easy to see that the projection matrix V used to construct the ROM (18) in the time domain is exactly the same

matrix to obtain the reduced transfer function ̂H(s). Therefore, V can be obtained by constructing a ROM of system (20)
in the frequency domain, that is, by approximating the transfer function H(s). This can be done by the standard greedy
Algorithm 3 with the error estimator ̃Δ(s), where V is iteratively computed by choosing proper samples of s.16,36 In fact,
the reduced transfer function ̂H(s) interpolates the original transfer function H(s) at the selected samples of s.16 The
matrix M(𝜇) in Steps 4 and 5 of Algorithm 3 is now replaced by (s). The difference of the coefficient matrix (s) from
a single matrix M(𝜇) in the usual case is its high complexity. To solve the system in (20) is much more expensive than
solving the system in (5) where M(𝜇) is a single matrix. On the one hand, the matrices constituting(s) must be assem-
bled to get (s). On the other hand, the finally assembled matrix has some dense blocks, though each single matrix
contributing to(s) is sparse.

To further improve the efficiency of the standard greedy algorithm, we propose to apply Algorithms 2 and 4 to
time-delay systems. The application is straightforward by simply replacing the FOM in (5) in both algorithms with the
system in (20), that is, the matrix M(𝜇) is replaced by(s), the input matrix B(𝜇) and the output matrix C(𝜇) are replaced
by B and C in (20), respectively.

3.3.1 Analysis on computational complexity

In this section, we present some analyses on computational complexity of a FOM solve, a ROM solve and that of esti-
mating the error at a single parameter sample for the time-delay systems we considered. The matrix (s) ∈ Rn×n in
(17) consists of 2d matrices Ej and Aj, j = 1, … , d. For the corresponding reduced-order model, the reduced matrix
̂(s) ∈ Rr×r

, r ≪ n in (18) consists of the corresponding reduced matrices Êj, Âj, j = 1, … , d. Here, r ≪ n is the size of
the ROM. To solve the FOM in (20) and get H(s) = C−1(s)B at each single sample of s, (s) is first assembled by Ej,Aj.
This costs O(n2) operations. Then −1(s)B is computed with complexity O(n3), as (s) is not sparse, though each Ej,
Aj is sparse. Finally, it is multiplied by C with O(n) complexity. The total computational complexity is: O(n2 + n3). The
complexity of solving the corresponding ROM ̂(s)z(s) = ̂B at each sample of s and getting the reduced transfer function
̂H(s) = ̂C ̂

−1(s) ̂B is straightforward to know, that is, O(r2 + r3), including O(r2) operations of assembling the reduced
matrix ̂(s) from the reduced matrices Êj,Âj.
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5322 FENG et al.

To assess the complexity of computing the error estimator at each single sample of s, we first see that the error estimator
is defined in (11). It can be expanded in the form as below:

̃Δ(s) = ||CVr(Vr(s)Vr)−1V T
r
[
B −(s)V(V T

(s)V)−1V TB
]
||max.

Here, || ⋅ ||max is the matrix max-norm defined as the maximal magnitude of matrix entries. Note that (s) is affinely
dependent on the s-independent terms Ei,Ai. The above expansion can be further written as

̃Δ(s) = ||CVr(Vr(s)Vr)−1 [V T
r B − V T

r (s)V(V T
(s)V)−1V TB

]
||max, (21)

where the s-independent terms VEiV ,VrEiV ,VrEiVr,VAiV ,VrAiV ,VrAiVr, i = 1, … , d in V(s)V , Vr(s)V , Vr(s)Vr can
be precomputed, so that later, V(s)V ,Vr(s)V ,Vr(s)Vr need only be assembled by the precomputed s-independent
terms at each s sample. CV , CVr, V T

r B, V TB are also s-independent and can be precomputed. The cost of computing
the error estimator ̃Δ(s) at a single sample of s is then counted given the above already precomputed reduced matrices.
Finally, evaluating the error estimator at each sample of s has O(r3) complexity. Note that the error estimator is computed
only during the offline greedy process of constructing the reduced basis V for the ROM. After V is constructed, the final
ROM can be computed from the projected reduced matrices Êj = V TEjV ,Âj = V TAjA. During each iteration of the greedy
algorithm, the error estimator ̃Δ(s) or its low-fidelity version ̃Δl(s) is evaluated at all the samples in the training set Ξ (for
standard greedy) or Ξc (for multi-fidelity greedy), depending on which algorithm is used. In summary,

• complexity of one FOM solve: O(n3).
• complexity of one ROM solve: O(r3).
• complexity of one estimation of the error: O(r3).

Numerical results in Figure 9 in Section 4.1 show the corresponding computational cost (runtime) of one ROM solve
and one ̃Δ(𝜇) or ̃Δl(𝜇) evaluation w.r.t the ROM size. The cost of one FOM solve is also given.

4 NUMERICAL TESTS

We consider three time-delay systems obtained from partial element equivalent circuit modeling and simulation, which
transfer problems from the electromagnetic domain to the circuit domain.37-40 When the propagation delays are explicitly
kept for both partial inductances and coefficients of potential, time-delay systems can be derived.41 Numerical tests are
done with MATLAB R2021a on a computer server with two AMD EPYC 7763 64-core processors (each core has 32kB
L1-cache, 512kB L2-cache, eight core share 32MB L3-cache) with hyper-threading. 1TB main memory, split into two 512
GB. Each CPU socket controls one part (NUMA architecture), SSD RAID 1 with 1TB. The code and data are available at:
https://zenodo.org/record/7892188.

We test the standard greedy Algorithm 3, the bi-fidelity greedy Algorithm 2 and the multi-fidelity Algorithm 4 on
three time-delay systems. The high-fidelity error estimator for all algorithms is ̃Δ(𝜇) in (11). To run the algorithms, we
need to initialize the algorithms by doing the following:

• The samples in the training set Ξ, the small set Ξc and the large set Ξf are taken from the prescribed frequency domain
and are generated using the MATLAB function linspace: linspace(f0, f1, cardi). Here, f0 is the lowest frequency,
f1 is the highest frequency used in linspace, cardi is the corresponding cardinality of each set. The samples of s are
then computed using the relation: s = 2𝜋𝚥f .

• For the multi-fidelity error estimation, we set 𝜖 = 0.1 in Step 15 of Algorithm 4. For all algorithms, the error tolerance
𝜀 = 0.001.

• To compute the RBF surrogate, we choose the inverse multiquadratic RBF (IMQ) Φ = 1
1+(a||𝜇−𝜇i||)2

with the shape
parameter a = 30.

We also need to define some variables uniformly used in all the tables and figures:

• The error maxs∈Ξtest ||H(s) − ̂H(s)||max of the transfer function ̂H(s) of the ROM is finally computed over samples of
s ∈ Ξtest drawn independently of the training sets, resulting in the validated error: Valid.err in Tables 1–7.
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FENG et al. 5323

T A B L E 1 Three-port divider: n = 10,626, d = 93 delays, tol= 0.001, adding/removing a single sample at each iteration.

Method Iterations Runtime (min) r Valid.err

Algorithm 3 (standard, |Ξ| = 40) 14 14.7 84 9.2 × 10−4

Algorithm 2 (bi-fidelity, add only, |Ξc| = 20) 14 11.5 84 6 × 10−4

Algorithm 2 (bi-fidelity, add-remove, |Ξc| = 20) 14 10.5 84 0.0022

Algorithm 4 (multi-fidelity, add only, |Ξc| = 15) 14 7.3 84 0.0013

Algorithm 4 (multi-fidelity, add-remove, |Ξc| = 15) 15 6.7 90 3.4 × 10−4

T A B L E 2 Three-port divider: n = 10,626, d = 93 delays, tol = 0.001, smaller |Ξ| and |Ξc|, adding/removing a single sample at each
iteration.

Method Iterations Runtime (min) r Valid.err

Algorithm 3 (standard, |Ξ| = 30) 14 12.9 84 0.0017

Algorithm 2 (bi-fidelity, add only, |Ξc| = 15) 13 10.1 78 0.0026

Algorithm 2 (bi-fidelity, add-remove, |Ξc| = 15) 13 9.0 78 0.0088

T A B L E 3 Three-port divider: n = 10,626, d = 93 delays, tol= 0.001, adding/removing nadd = ndel > 1 samples at each iteration.

Method Iterations Runtime (min) r Valid.err

Algorithm 2 (bi-fidelity, add-remove, |Ξc| = 15, nadd = 2) 14 9.6 84 0.0039

Algorithm 2 (bi-fidelity, add-remove, |Ξc| = 20, nadd = 2) 14 10.6 84 0.0022

Algorithm 2 (bi-fidelity, add-remove, |Ξc| = 20, nadd = 5) 14 10.6 84 0.0022

Algorithm 4 (multi-fidelity, add-remove, |Ξc| = 15, nadd = 2) 12 6.2 84 0.0092

Algorithm 4 (multi-fidelity, add-remove, |Ξc| = 15, nadd = 5) 12 6.2 84 0.0092

T A B L E 4 Three coplanar microstrips: n = 16,644, d = 168 delays, tol= 0.001, adding/removing a single sample at each iteration.

Method Iterations Runtime (min) r Valid.err

Algorithm 3 (standard, |Ξ| = 30) 11 50.7 132 8.5 × 10−4

Algorithm 2 (bi-fidelity, add only, |Ξc| = 10) 11 27.6 132 0.0033

Algorithm 2 (bi-fidelity, add-remove, |Ξc| = 10) 11 26.5 132 8.2 × 10−4

Algorithm 4 (multi-fidelity, add only, |Ξc| = 10) 11 21.6 132 0.0033

Algorithm 4 (multi-fidelity, add-remove, |Ξc| = 10) 11 20.1 132 8.2 × 10−4

T A B L E 5 Three coplanar microstrips: n = 16,644, d = 168 delays, tol= 0.001, larger |Ξc|, adding/removing a single sample at each
iteration.

Method Iterations Runtime (min) r Valid.err

Algorithm 2 (bi-fidelity, add only, |Ξc| = 15) 11 33.7 132 0.0011

Algorithm 4 (multi-fidelity, add only, |Ξc| = 15) 12 24.9 144 0.0027

T A B L E 6 Three coplanar microstrips: n = 16,644, d = 168 delays, tol= 0.001, adding/removing nadd = ndel > 1 samples at each iteration.

Method Iterations Runtime (min) r Valid.err

Algorithm 2 (bi-fidelity, add-remove, |Ξc| = 10, nadd = 2) 10 22.0 120 0.019

Algorithm 2 (bi-fidelity, add-remove, |Ξc| = 10, nadd = 5) 10 22.1 120 0.019

Algorithm 4 (multi-fidelity, add-remove, |Ξc| = 10, nadd = 2) 10 19.6 120 0.019

Algorithm 4 (multi-fidelity, add-remove, |Ξc| = 10, nadd = 5) 10 19.0 120 0.019

Algorithm 4 (multi-fidelity, add-remove, |Ξc| = 15, nadd = 2) 11 21.3 156 0.010
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5324 FENG et al.

T A B L E 7 Microstrip filter: n = 50,904, d = 192 delays, tol= 0.001, adding/removing a single sample at each iteration.

Method Iterations Runtime (h) r Valid.err

Algorithm 3 (standard, |Ξ| = 30) 12 4.9 48 3.2 × 10−4

Algorithm 4 (multi-fidelity, add-remove, |Ξc| = 15) 13 3.0 52 5.7 × 10−4

Algorithm 4 (multi-fidelity, add-remove, |Ξc| = 10) 10 2.2 40 0.0024

F I G U R E 2 The three-port microstrip power-divider circuit.

• Runtime, the walltime of each algorithm till convergence.
• Iter., the total number of iterations of each algorithm.
• r, the order of the ROM.
• The true error at each iteration of Algorithm 3 is defined over Ξ, that is, maxs∈Ξ ||H(s) − ̂H(s)||max.
• The true error at each iteration of Algorithm 2 or Algorithm 4 is defined over Ξc, that is, maxs∈Ξc ||H(s) − ̂H(s)||max.

Note thatΞc could be enriched only by adding samples fromΞf toΞc. As the high-fidelity error estimator ̃Δ(𝜇) needs to
be computed at every sample in Ξc at each iteration, samples in Ξc whose corresponding error is already smaller than tol
can also be removed from Ξc to keep the cardinality of Ξc constant, so that more computations can be saved. We consider
both cases separately and compare their efficiency with respect to both runtime and accuracy.

4.1 Test 1: results for a model of three-port divider

The model structure of a three-port microstrip power-divider circuit is shown in Figure 2 (P1,P2 and P3 denote the ports).
The dimensions of the circuit are [20, 20, 0.5] mm in the [x, y, z] directions and the width of the microstrips is set as 0.8
mm. Furthermore, the dimensions lX1, lY1, and lY3 are 9, 7.2, and 7.2 mm, respectively. The relative dielectric constant is
𝜀r = 2.2. All the ports are terminated on 50 Ω resistances. The system has three input ports and three output ports with
order n = 10,626, and it has d = 93 delays. The interesting frequency band is [0, 20] GHz.

For this model, |Ξ| = 30 or |Ξ| = 40 for the standard greedy Algorithm 3. For Algorithm 2 and Algorithm 4, |Ξc| = 15
or |Ξc| = 20 and |Ξf | = 100. The set Ξc is then updated during the iteration of the greedy algorithm. The samples in Ξ,
Ξc or Ξf are generated using the MATLAB function linspace, with f0 = 1 × 106 Hz, f1 = 2 × 1010 Hz for Algorithms 2
and 3 and f0 = 1 × 108 Hz or 1 × 105 Hz, f1 = 2 × 1010 Hz for Algorithm 4. The 1000 samples for validating the ROM
accuracy are created using the MATLAB function logspace, that is, logspace(log10(fl), log10(fh), 1000). fl = 1 × 104

Hz and fh = 2 × 1010 Hz.
In Table 1, we list the results of the three algorithms. The standard greedy algorithm is the slowest. The other

algorithms are all faster. The bi-fidelity greedy algorithm by enriching Ξc only is slower than other bi-(multi-)fidelity
algorithms, this is in agreement with our theoretical analysis in Section 3. The multi-fidelity algorithm by adding and
removing a single sample to and from Ξc performs the best in terms of runtime and accuracy. Compared to the standard
algorithm, it has reduced the offline runtime from 14.7 to 6.7 min. Finally, a speed-up factor 2.2 is achieved. Except for the
bi-fidelity algorithm by adding and removing samples, the other algorithms have produced ROMs with validated errors
below the tolerance or very close to the tolerance.

It is worth pointing out that if using fewer samples in Ξ for the standard greedy algorithm, the ROM has a validated
error that is slightly larger than the tolerance, as shown in Table 2, where |Ξ| = 30. Also, the bi-fidelity greedy algorithms
are less accurate if using fewer samples in Ξc, as shown in Table 2. There, the same Ξc for the multi-fidelity greedy
algorithms is used, but less accurate ROMs are obtained.
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FENG et al. 5325

In Table 3, we show the results of the bi-fidelity greedy algorithm and the multi-fidelity greedy algorithm when nadd =
ndel > 1 samples are added or removed from the small training set Ξc at each iteration of the algorithm. The bi-fidelity
algorithms produce similar results as those in Tables 1 and 2 given the same Ξc. For |Ξc| = 15, the bi-fidelity greedy
algorithm with nadd = ndel = 2 converges in 14 iterations, running one more iteration than with nadd = ndel = 1 as shown
in Table 2, and generates a ROM with slightly higher accuracy. On the contrary, given |Ξc| = 15, the multi-fidelity greedy
algorithm with either nadd = ndel = 2 or nadd = ndel = 5 runs three iterations less than in the case of adding/removing a
single sample as shown in Table 1, and constructs ROMs with lower accuracy. Furthermore, it is seen that increasing
nadd = ndel from 2 to 5 did not change the results for both algorithms. In general, adding/removing a single sample keeps
the algorithms simple but efficient.

In Tables 1–3, except for the multi-fidelity greedy process with “add-remove” in Table 1, all other multi-fidelity greedy
processes use f0 = 1 × 108 Hz and f1 = 2 × 1010 Hz to generate the course training setΞc. We find that using f0 = 1 × 105 Hz
instead of f0 = 1 × 108 Hz, the multi-fidelity greedy process by adding/removing a single sample gives even more accurate
results, as shown in Table 1. If f0 = 1 × 108 Hz is used instead, it can still achieve the accuracy with maximal error 0.0013
over the 1000 validation samples, which is already very close to the tolerance.

To illustrate the behavior of the error estimators further, we plot the decay of error estimators and their corresponding
true errors during the greedy iterations. Since different𝜇∗ are chosen according to different error estimators, the projection
matrix V is updated with different snapshots, leading to ROMs with different accuracy. Consequently, the true errors of
the ROMs are expected to be different.

Figures 3 and 4 are the results of the algorithms in Table 1. The left part of Figure 3 shows the error of the high-fidelity
error estimator at each iteration of Algorithm 3 and the decay of the corresponding true error. The error estimator almost

F I G U R E 3 Error decay for divider model. Left: true error versus high-fidelity error estimation. Right: true error versus bi-fidelity error
estimation.

F I G U R E 4 Error decay for divider model. Left: True error versus multi-fidelity error estimation (add only). Right: True error versus
multi-fidelity error estimation (add/remove a single sample each iteration).
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5326 FENG et al.

exactly matches the true error at all the iterations. The right part of Figure 3 plots the decay of the bi-fidelity error estimator
with respect to the true error. The bi-fidelity error estimator in both of the two cases: only adding (add-only) samples to
Ξc, adding and removing (add-remove) samples to and from Ξc, can accurately catch the true error. Both cases converge
in 14 iterations, but the case “add-only” is more accurate as can be seen from Table 1.

Figure 4 plots the decay of the multi-fidelity error estimator and the corresponding true error decay. For clarity, the
two cases “add-only” and “add-remove” are plotted in two separate figures. The multi-fidelity error estimation with
“add-remove" is not as accurate as multi-fidelity error estimation with “add-only” at the last two iterations.

In Figure 5, we compare the prediction error of the standard greedy algorithm (Algorithm 3) with the multi-fidelity
greedy procedure (Algorithm 4) as well as with a random sampling (with uniform distribution) procedure. The predic-
tion error of each method is the error of the ROM generated at each iteration of the corresponding process. The error is
computed over a test set Ξtest including the same 1000 frequency samples used for error validation in Tables 1–3, that
is, Errorpred = maxs∈Ξtest ||H(s) − ̂H(s)||max. For the random sampling procedure, we add samples of frequency one after
another to enrich the reduced basis. Each time of adding one new random sample, we generate a new ROM and check
the error of the ROM as compared to the original system. At the 15-iteration, both greedy procedures converge. But the
random sampling process more or less stagnates. A most important advantage of greedy process over random sampling
is that there is a stopping criterion given by a reliable error estimator. For random sampling, we never know when to stop
or in other words, we never know how many samples should we use.

We do not expect that RBF surrogate ̃Δrbf(𝜇) can accurately generalize the error estimator ̃Δ(𝜇), rather it is sufficient
that it can detect some samples in Ξf corresponding to peaks of the high-fidelity error estimator ̃Δ(𝜇). Those samples
corresponding to the ̃Δ(𝜇)-peaks are exactly what we want to include into the training set Ξc and to enrich it. We plot the
prediction error of RBF over Ξf at some individual iteration steps of the multi-fidelity greedy algorithm (Algorithm 4) in
Figures 6–8. We can see that the frequency locations corresponding to the peaks of the RBF interpolation are often close
to those locations corresponding to the peaks of the error indicator. That means RBF could choose meaningful frequency
samples corresponding to peaks of ̃Δ(𝜇). In particular, when we add only a single frequency sample at each iteration, only
the one corresponding to the highest peak is chosen to enrich Ξc. It also happened that at a certain iteration step, the RBF
interpolation could not correctly detect the highest error peak, then it may not contribute to the efficiency at this iteration.
However, the overall contribution of RBF during the whole greedy iterations can still be seen from those figures.

The wall time of solving the FOM at a single parameter sample is around 11 s, including 6–7.2 s for assembling the
matrix (s) from the s-independent matrices Ei,Ai, i = 1, … , d and 5.5–7.8 s for solving the multiple right-hand-side
linear system(s)x(s) = B and getting H(s) = C(s)−1B. This is somehow different from the cost analysis in Section 3.3.1.
Theoretically, assembly (s) would be less expensive than solving the linear system (s)x(s) = B. However, the runtime
gives a slightly different conclusion. In Figure 9, we present the wall time of one ROM solve, one high-fidelity error
estimator ( ̃Δ(s)) evaluation in the standard greedy process, as well as one ̃Δ(s) or ̃Δl(s) evaluation in the multi-fidelity
greedy process w.r.t. the ROM size r. The runtime of estimating the error is a bit longer, as can be seen from the above

F I G U R E 5 Divider model: prediction error over a testing frequency set of 1000 samples: prediction error of the standard greedy
algorithm with high-fidelity error estimation versus prediction error of the greedy algorithm with multi-fidelity error estimation and
prediction error of random sampling.
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FENG et al. 5327

F I G U R E 6 Divider model: radial basis function (RBF) surrogate estimator ̃Δrbf(s) versus the high-fidelity estimator ̃Δ(s) over the fine
parameter set Ξf at the first (left) and fourth (right) iteration step of the multi-fidelity greedy algorithm by add-removing a single sample at
each iteration.

F I G U R E 7 Divider model: radial basis function (RBF) surrogate estimator ̃Δrbf(s) versus the high-fidelity estimator ̃Δ(s) over the fine
parameter set Ξf at the sixth (left) and seventh (right) iteration step of the multi-fidelity greedy algorithm by add-removing a single sample at
each iteration.

F I G U R E 8 Divider model: radial basis function (RBF) surrogate estimator ̃Δrbf(s) vs the high-fidelity estimator ̃Δ(s) over the fine
parameter set Ξf at the eighth (left) and 12th (right) iteration step of the multi-fidelity greedy algorithm by add-removing a single sample at
each iteration.
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5328 FENG et al.

F I G U R E 9 Divider model: runtime of solving the ROM, evaluating the high-fidelity error estimator, and runtime of evaluating the
multi-fidelity error estimator during each iteration of the corresponding greedy algorithm. The ROM is the one generated by the
multi-fidelity greedy algorithm: Algorithm 4.

F I G U R E 10 Three coplanar microstrips.

expansion of ̃Δ(s), where two small matrix inverses need to be computed. To solve the ROM, only one small system
with size r needs to be solved. Moreover, the column size of Vr is usually double of the column size of V , leading to a
larger matrix Vr(s)Vr than V(s)V for the ROM solve. In the beginning stage of the multi-fidelity greedy algorithm,
the high-fidelity error estimator ̃Δ(s) is computed at each iteration. At the later stage, Vr in ̃Δ(s) needs not be updated, so
that ̃Δ(s) is degraded to ̃Δl(s). Evaluating the low-fidelity error estimator ̃Δl(s) is cheaper, as the affine terms in Vr(s)Vr
need not be updated. Moreover, the size of Vr(s)Vr does not increase anymore. This reduces the cost of evaluating the
estimator during multi-fidelity greedy algorithm.

4.2 Test 2: results for a model of coplanar microstrips

The second example is a model of a three coplanar microstrips structure shown in Figure 10. The width of the metal strips
is mw = 0.178 mm, the thickness of metal strips and ground plane is mt = 0.035 mm while the left and right wing of the
microstrips are wd = 3 mm. Finally, the length of each strip is 𝓁 = 5 cm, the thickness of the dielectric is dt = 0.8 mm,
and the spacing between two strips is s = 0.3 mm. The relative dielectric constant is set to be 𝜀r = 4 and the conductivity
of the metal is assumed to be 𝜎 = 5.87 S/m. The six ports, located between the ends of each strip and the ground plane
below, are terminated on load resistors Rload = 50 Ω, resulting in a system with six input ports and six output ports. The
order of the FOM is n = 16,644, and there are d = 168 delays. The frequency band of interest is [0, 10] GHz.

We set 30 samples for Ξ in the standard greedy Algorithm 3, that is, |Ξ| = 30. For Algorithms 2 and 4, |Ξc| = 10
or |Ξc| = 15, and |Ξf | = 100. The samples in Ξ, Ξc or Ξf are generated using the MATLAB function linspace, with
f0 = 1 × 106 Hz and f1 = 1 × 1010 Hz for all Algorithms. The 1000 samples used for validating the ROM accuracy are
generated using the MATLAB function logspace, with fl = 100 Hz and fh = 1 × 1010 Hz.
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FENG et al. 5329

The results of the three algorithms are listed in Table 4. The standard greedy Algorithm 3 takes 50.7 min, resulting in
a ROM of order r = 132 with validated error below the tolerance tol. During the greedy iteration, if the small parameter
set Ξc is enriched only (add only), the greedy algorithm with bi-fidelity error estimation and that with multi-fidelity error
estimation converge within the same number of iterations, producing ROMs with the same sizes and validated errors.
But the greedy algorithm with multi-fidelity error estimation is 6 minutes faster. Similar phenomenon happens to the
case “add-remove.” The greedy algorithm with bi-fidelity error estimation and that with multi-fidelity error estimation
also converge within the same number of iterations and construct ROMs with the same sizes and accuracy. The runtimes
of both algorithms are less compared to their “add only” versions. Finally, the greedy algorithm with multi-fidelity error
estimation by adding and deleting samples to and from Ξc (“add-remove”) is most efficient in terms of both runtime and
accuracy. It is more than two times faster than the standard greedy algorithm resulting in a speed-up of 2.5×, and produces
a ROM with even the smallest validated error.

We note that using |Ξc| = 10, the ROMs constructed by the bi-fidelity greedy algorithm and the multi-fidelity greedy
algorithm with adding the samples only have validated errors larger than the tolerance. If we increase |Ξc| from 10 to
15, both algorithms generate ROMs with improved accuracy. The results are presented in Table 5. However, the compu-
tational time also increases a lot. Again, the multi-fidelity greedy algorithm outperforms the bi-fidelity one w.r.t. both
accuracy and runtime. In contrast to the results in Tables 1 and 2 for the divider model, the results for the coplanar
microstrips model in both Tables 4 and 5 show that the bi-fidelity greedy algorithm (“add-remove”) is more accurate than
its “add-only” version.

Table 6 shows the results of the bi-fidelity greedy algorithm and the multi-fidelity greedy algorithm based on
adding/removing multiple samples at each iteration. For both cases, that is, nadd = ndel = 2 and nadd = ndel = 5, the algo-
rithms using |Ξc| = 10, converge in 10 iterations, one less iteration than they did with nadd = ndel = 1 in Table 4, resulting
in ROMs with smaller order r but with larger validated errors. If we increase |Ξc| to 15, then the multi-fidelity greedy
algorithm generates a ROM with reduced error, but takes longer time to converge. The bi-fidelity greedy algorithm behaves
similarly and its results for |Ξc| = 15 is not presented to avoid repetition. This example again shows that adding/removing
a single parameter at each iteration outperforms the cases with nadd = ndel > 1, and produces ROMs with desired accuracy.

In Figure 11, we show the important frequency samples of f selected by the greedy algorithms in Table 4. For the case
“add-remove,” we find that the greedy algorithm with bi-fidelity error estimation and the one with multi-fidelity error
estimation select the same important frequency samples. Therefore we only plot one group of samples for both algorithms,
see the plot “bi-(multi-) add-remove” in the figure. For the case “add-only,” both algorithms also select the same important
frequency samples, see the plot “bi-(multi-) add-only” in the figure. This is in agreement with the results given in Table 4
where both algorithms for either case produce the same results. It is seen that the important frequency samples selected
by the (bi-)multi-fidelity estimation could be different from those selected by the high-fidelity estimator. However, both
can derive ROMs with good accuracy.

The left part of Figure 12 gives the error-peak frequencies detected by the multi-fidelity error estimation and the
true error, respectively, at each iteration of the multi-fidelity greedy Algorithm 4: those frequencies correspond to the
largest values of the error estimator/true error. The error-peak frequency detected by the error estimator at the ith iter-
ation is then selected as the important frequency sample at the next iteration to update the reduced basis space. From

F I G U R E 11 Important parameters selected by the greedy algorithms.
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5330 FENG et al.

F I G U R E 12 Left: Frequencies causing error/estimator peaks. Right: true error versus multi-fidelity error estimator.

F I G U R E 13 Microstrip filter.

iteration 5, the error-peak frequencies detected by the error estimator are exactly the same as those selected by the true
error. This can be explained by the error decay in the right part of the figure. From the fifth iteration, the error esti-
mator tightly catches the true error. Although it is less tight at the first 4 iterations, it still follows the overall trend of
the error decay and therefore, can still detect reasonable error-peak frequencies. This example, once again, supports
our theoretical analysis and demonstrates the efficacy of the proposed greedy algorithms with bi-(multi-) fidelity error
estimation.

4.3 Test 3: results for a model of microstrip filter

The third example is a model of a microstrip filter. The three-dimensional (3D) structure of a microstrip filter is
depicted in Figure 13. The physical dimensions for the geometry of the 3D structure are: wzl = 0.5 mm, wz0 = 1.125 mm,
wzC = 4 mm, 𝓁zl = 18.3 mm, 𝓁z0 = 1 mm, 𝓁zC = 14.1 mm, w = 2.4 cm, 𝓁 = 2𝓁zl + 2𝓁z0 + 𝓁zC , tm = 100 𝜇m, ts = 100 𝜇m,
td = 508 𝜇m. The two ends of the microstrip are terminated on 50 Ω resistors, leading to a system with two input ports
and two output ports. The order of the FOM is n = 50,904, and there are d = 192 delays. The interesting frequency band
is [0, 10]GHz.
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FENG et al. 5331

Since results for first two examples have shown that the multi-fidelity error estimation by adding and removing a
single sample outperforms the other proposed methods, we only compare the this multi-fidelity greedy process with
the standard greedy algorithm. We use |Ξ| = 30 for the standard greedy Algorithm 3. For Algorithm 4, |Ξc| = 15, and
|Ξf | = 100. The samples inΞ,Ξc orΞf are generated using the MATLAB the functionlinspace, with f0 = 1 × 106 Hz and
f1 = 1 × 1010 Hz for Algorithm 3 and f0 = 1 × 108 Hz and f1 = 1 × 1010 Hz for Algorithm 4. The order of the FOM is much
larger than the sizes of the first two examples leading to much slower FOM simulation at each frequency sample: around 8
min per FOM simulation. Therefore, we use 200 instead of 1000 samples to compute the validated error. The 200 samples
are generated using the MATLAB function logspace, with fl = 100 Hz and fh = 1 × 1010 Hz. The corresponding results
are listed in Table 7, which show that using multi-fidelity error estimation has saved at least 1.9 h of offline computation
time. This indicates that for larger systems, the multi-fidelity error estimation could save more offline time. If we use a
even smaller Ξc with |Ξc| = 10, a ROM with validated error 0.0024 is obtained. Over the 200 validated frequency samples,
the error of the ROM is larger than the tolerance at 14 samples, with 7% failure. The runtime is reduced from 4.9 to 2.2 h as
compared to the standard greedy algorithm with high-fidelity error estimation. In Figures 14 and 15, we plot the transfer
functions (17) of the original system corresponding to different input–output ports and the transfer functions (19) of the
ROM. Due to the symmetry of the device, the transfer function corresponding to the input port 2 and output port 2 is the
same as the one corresponding to the input port 1 and output port 1. Similarly, the transfer function corresponding to the
input port 1 and output port 2 is the same as the one corresponding to the input port 2 and output port 1. Consequently,
we only plot two transfer functions. From those figures, it is evident that the transfer function ̂H(s) reproduces the original
H(s). The ROMs of the other two examples also have accurate transfer functions. To avoid repetition, we only show these
results for the third example.

F I G U R E 14 Comparison of the transfer functions from input port 1 to output port 1. Left: Magnitudes. Right: Phases.

F I G U R E 15 Comparison of the transfer functions from input port 1 to output port 2. Left: Magnitudes. Right: Phases.
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5 CONCLUSIONS

Concepts of bi-fidelity error estimation and multi-fidelity error estimation are proposed in this work. The concept of
bi-fidelity error estimation is general and can be applied to any high-fidelity estimator. Although the multi-fidelity error
estimation is dependent on the high-fidelity error estimation in consideration, the framework is general to a certain extend
and could also be combined with other high-fidelity error estimators. The robustness of the proposed greedy algorithms
with bi-fidelity and multi-fidelity error estimation is tested on three large time-delay systems with many delays. Although
the standard greedy algorithm converges in a few iterations, the computational complexity at each iteration is high. As a
consequence, the runtime is long for such systems. The proposed (bi-)multi-fidelity greedy processes have significantly
accelerated the standard greedy algorithm with little loss of accuracy in many cases.
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