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Abstract

Computational materials science is increasingly benefitting from data
management, automation, and algorithm-based decision-making in con-
trolling simulations. Experimental materials science is also undergo-
ing a change and increasingly more ‘machine learning’ is incorpo-
rated in materials discovery campaigns. The obvious benefits include
automation, reproducibility, data provenance, and reusability of man-
aged data, however, is not widely available. We demonstrate an
implementation of a Gaussian Process Regression directly control-
ling an experimental measurement device in pyiron, a framework
designed for high-throughput simulations, as a first step to increas-
ingly combine experimental and simulated data in one framework.

1

ar
X

iv
:2

21
2.

04
80

4v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  9
 D

ec
 2

02
2



2 Computationally accelerated materials characterization

With data from both in the same framework, a heretofore untapped
and much-needed potential for the acceleration of materials char-
acterization and materials discovery campaigns becomes available.

Keywords: active learning, gaussian process regression, research data
management, automation, autonomous discovery

1 Introduction

Computational materials science has developed from single calculations to
high-throughput (HT) simulation campaigns in recent years. This development
is based on access to increased computational power and the development of
simulation tools that allow for increasingly more complex simulation proto-
cols. But these capabilities present new challenges to managing calculations
and the produced data. In computational materials science, these challenges
are addressed with integrated development environments such as pyiron [1]
or AiiDA [2] and other automation tools [3–8]. Major benefits of such
approaches include automation, reproducibility, data provenance, and ensuring
accessibility and reusability of existing data.

Experimental materials science is currently undergoing a similar shift from
manual, human-guided sample-by-sample synthesis and testing of individual
specimens towards HT (combinatorial) synthesis combined with HT charac-
terization. Materials discovery in particular necessitates the screening of a
technically unlimited amount of compositions and processing routes for specific
functional properties [9].

Samples in HT synthesis and characterization typically come in the form of
composition spread materials libraries (CSML) [10]. Conventionally, CSMLs
are characterized by measuring chemical composition, structure, mechani-
cal, optical, electrical, etc. by (semi-)automated measurement systems on a
given number of pre-defined measurement areas, typically several 100s. This
degree of automation reduces the input of scientists and the time for measure-
ments in the characterization and analysis workflow. Similarly, the analysis
of the resulting relatively large datasets is challenging and often presents a
substantial part of the total time needed for characterization. With several
measurements on one CSML sample, combinatorial synthesis and HT charac-
terization have similar challenges for data management [11] as HT simulation
campaigns and the benefits provided by integrated development environments
(IDEs) are equally desirable for experimental data and workflows. Experimen-
tal data is often generated on distributed measurement instruments without
or with limited metadata or data formatting standards. And, similar to the
approach taken for simulations, increasingly more automation and orchestra-
tion is incorporated into experimental materials science, e.g. BluesSky [12],
ChemOS [13], or HELAO [14], including the benefits valid for HT simulation
campaigns when using integrated development environments. A recent review
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of approaches can be found in [15]. What is, however, still missing from all
existing experiment-focused approaches is an interface to the computational
domain.

Increasingly larger degrees of automation in experimental synthesis and
characterization workflows provide the path to use the same optimization
strategies employed in simulation workflows to accelerate the discovery and
design of materials. Once data from both domains exist in the same frame-
work, leveraging the strengths of both approaches simultaneously becomes
possible and provides further opportunities for acceleration. Instead of trig-
gering a calculation based on a suggestion provided by an optimizer, one can
easily envision alternatively triggering a synthesis [16] and/or characterization
routine to obtain the next (real) material’s properties in a discovery cycle. Ulti-
mately, a global optimizer in a discovery cycle can then autonomously choose
the best next step w.r.t. cost, time, or uncertainty: either trigger a simula-
tion or synthesis plus characterization of a real sample. Further potential for
optimization and acceleration lies in the possibility directly accessing all pre-
viously measured and calculated properties and exploit existing knowledge to
guide the optimization in the current search space.

On the path to fuse data from simulations and experiments in one frame-
work, we present a first demonstrator using pyiron [1] for experimental data
acquisition. pyiron is an integrated development environment (IDE) for cre-
ating workflows [1]. It combines a job management system for automation,
and a hierarchical data management solution originally designed for atomistic
modeling and is implemented in Python. Its modularity allows to add custom
jobs that make use of the built-in data management capabilities with minimal
overhead. Our demonstrator is designed to show that the concept of an IDE,
developed for simulation workflows, can (a) be applied to experimental data
acquisition, (b) directly optimize the measurement using an active learning
strategy based on Gaussian Process Regression (GPR), (c) analyze the data
using automated data processing or data analysis routines [17, 18], and (d)
automatically solve the issue of data management and storage.

Optimizing measurements in our context means decreasing the number
of actual measurements while predicting/interpolating unmeasured regions in
the search space with a defined uncertainty. This directly translates into an
acceleration of a characterization cycle, ultimately accelerating the materials
discovery cycle. pyiron takes the role of an orchestrator running the GPR,
querying the measurement device for the next optimal measurement point as
well as storing and managing data. The application of GPR works because the
composition-structure-property relationships often show smooth trends that
can be approximated by relatively simple functions of the composition, which
is often the case for material systems that form solid solutions over a wide
composition range, such as high entropy alloys [19, 20]. Employment of an
adaptive sampling strategy to approximate (instead of fully measure) a prop-
erty as a function of the composition of CSMLs with a model based on a very
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small number of measurements results in an order of magnitude fewer mea-
surements than brute-force automated approaches need as we show here. The
potential of integrated experimental-computational materials discovery has
been demonstrated for organic materials [21], nuclear materials [22, 23], and
is being considered to accelerate the discovery and optimization of urgently
needed materials, e.g. for catalysis [24].

Recent developments in the experimental field aim to integrate such work-
flows in automated, closed-loop discovery cycles, e.g. by using robotic platforms
with integrated algorithms for data analysis and hypothesis generation [25].
It is envisaged that such platforms will enable fully autonomous research sys-
tems for materials discovery [26–28]. Fully automated robotics platforms may
be used in certain cases, however, it will be a long way to integrate several,
especially high-quality in-depth characterization techniques (e.g. transmis-
sion electron microscopy, atom-probe tomography), and retrofitting existing
equipment. Nevertheless, it is possible and useful to create an integration of
synthesis-characterization-evaluation cycles at the data level to unlock syn-
ergy effects between multiple data sources and to create partially (offline)
autonomous research systems. Ideally, computational and human resources
should work collaboratively in such environments [17]. The main difference
between these systems and our approach, however, is the direct integration of
simulations in the same framework as experimental measurements to benefit
from all accessible knowledge to accelerate the materials discovery cycle.

Our demonstrator first and foremost shows that it is possible to include
an experimental workflow in pyiron. We demonstrate a useful acceleration of
property measurement and benefit from the already-implemented data storage
solution. This is a step towards on-line data fusion from experiments and sim-
ulations with the potential to markedly accelerate materials discovery cycles.
The bigger picture is that an IDE such as pyiron has the potential to become an
integrated platform for materials science with access to data from simulations
and experiments and computer-assisted data analyses.

2 Results

The demonstrator implementation of an active learning loop in pyiron com-
municates with an offline experimental dummy device that provides resistance
measurements based upon query [29]. The implementation has three ingredi-
ents: 1) pyiron as a basis to manage data, 2) a bespoke ResistanceGP “job”1

which steers the experiment, similar to a single simulation, and 3) a custom
interface to a measurement device. pyiron itself is detailed in other publica-
tions [1] and we, therefore, focus on the two other ingredients. A “job” in
pyiron is a single calculation. Concretely, the “job” here is an optimized mea-
surement of the resistance on a CSML. Its input comprises the user name,
an identifier of the measurement device, a sample id, an initial parameter set
including the maximum number of iterations for regression, and in our case

1“job” here is the pyiron-internal name for a defined workflow.
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a file path that points to a completed measurement (composition and resis-
tance) to initialize the dummy measurement device which provides the actual
measured values upon request of the running job. An overview is presented in
Tab. 1. We want to stress that the choice is tailored to demonstrate the func-
tionality and is not final. Since the logging is done automatically we can add
any number of parameters automatically to a job through communication with
a measurement device or a script triggering the characterization. Ideally, each
component communicates its settings at runtime, and all settings needed for
the reproduction of the results are automatically saved along with the acquired
data with minimal manual user intervention. In the future, this could go as far
as adding bar codes or radio-frequency identification (RFID) tags to samples,
devices, and users for minimal manual intervention.

Table 1: List of input parameters for the pyiron experimental job for optimized
resistance characterization of the demonstrator.

Parameter Description

exp_user Name of the scientist
measurement_device A unique name of the measurement device used
sample_id Identifier of the physical sample
measure_indices User-defined coordinates on CSML to initialize the GP
sample_file Path to data to initialize experimental dummy device
max_gp_iterations Maximum iterations for GP

Within the “job”, a custom interface to the measurement device is ini-
tialized and a Gaussian process regression based on GPy [30] is invoked.
Uncertainty sampling is applied in which the algorithm determines the next
measurement as a function of chemical composition which is translated into
spatial x/y coordinates of the physical materials library. The algorithm chooses
the composition for which the model predictions has the highest uncertainty.
Five resistance measurements on the CSML are used to initialize the GPR.
This initial choice is typically defined by user input but if prior data on a sub-
set of the composition space exists, this can serve as a prior without user input.
The job subsequently requests the next measurement on the CSML by eval-
uating the composition for which the GPR predicts the highest uncertainty
in predicting the resistance. It runs until a stopping criterion is reached and
the acquired data is automatically stored using the data management solu-
tion provided by pyiron. Two possible stopping criteria can be envisioned: 1)
maximum value of iterations (currently used); or 2) a threshold for the largest
tolerable uncertainty.

From the perspective of pyiron, the only difference between a simulation
“job” and a measurement “job” is the source of new data. The former source of
data results from computational procedures and high-performance computing
resources, the latter source of data is the output of a measurement device.



6 Computationally accelerated materials characterization

Fig. 1 schematically shows the described extension to pyiron and its seamless
integration to the environment.

exp. resources

specialized
codes

device
interfaces

physical
samples

automation

Fig. 1: Internal structure of a pyiron object with the experimental extension on
the right. The described extension to experimental workflows makes use of the
existing infrastructure and is seamlessly integrated. Adapted from [1] published
under CC BY 4.0 license (http://creativecommons.org/licenses/BY/4.0).

The composition and the measured electrical resistance of each point of
the CSML used here for the demonstrator is shown in Fig. 2 and published on
Zenodo [31].

Composition gradients are created by co-depositing from five pure elemen-
tal targets (Ru, Rh, Pd, Ir and Pt) (cf. Fig. 2 a-e). Electrical resistance was
measured by a four-point probe on a 342 point grid and is shown in Fig. 2
f. The observed resistance trend is a relatively smooth gradient as a function
of the composition, which motivates the use of an active learning scheme to
reduce the number of measurements.

Fig. 3 presents the details of the GP-optimized measurement. The indi-
cated numbers show the chosen measurement positions to initialize the GP
(red) and subsequent choices (black) of measurements based on the highest
covariance value of the update prediction. Mean values and covariance of the
predictions are shown for iterations n = 6 and n = 40. The mean predictions
vs ground truth are shown for iterations n = 6, 12, 24, 36 as well as the mean
absolute error evolution as a function of iterations. It is apparent, that the
prediction improves markedly up until ≈ 40 iterations at which point we stop
the optimization.

3 Discussion

The presented example of a pyiron-controlled experiment with a dummy exper-
imental device in the loop shows the potential for future applications. Instead
of brute-force measuring the resistance of all 342 compositions provided by
the discretization of the materials library, only 40 compositions are measured
and the rest is interpolated including the uncertainty for the interpolation.
Consequently, the saved characterization data of the CSML includes 40 actual
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Fig. 2: Chemical composition of the quinary noble metal system Ir-Pd-Pt-
Rh-Ru CSML (a-e) in atomic % and electrical resistance (f) for the 342
measurement areas.

Fig. 3: Iterations of the Gaussian Process Regression for the prediction of
the electrical resistance as a function of composition for the Ir-Pd-Pt-Rh-Ru
CSML: Mean values and covariance of the prediction for iteration n = 6 (a, d)
and n = 40 (b, e). n = 40 represents the final choice with sufficient confidence.
Red numbers indicate data points used for initialization of the GP, black num-
bers indicate the subsequent iterations based on the maximal uncertainty of the
prediction; mean predictions vs ground truth for iterations n = 6, 12, 24, 36 (c)
and the evolution of the mean absolute error (MAE) as a function of iterations
(f).
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measurements and 302 interpolations (predictions) that are marked as such
including the model used for interpolation, translating into an acceleration of
the process of one order of magnitude. A typical time to obtain one measure-
ment is ≈ 10 s including moving the measurement tip to the position. I.e. the
measurement of one CSML with 342 measurement points is about one hour.
Measuring only 40 points translates to ≈ 7 min. We state this matter-of-factly
but the consequences on how materials data could be used for accelerated char-
acterization in the near future need to be stressed. In the context of materials
discovery for combinatorial problems, this is the quality of acceleration that is
needed.

But the real benefit lies in the central storage and reusability of the data.
Imagine a discovery campaign is started in a compositionally (partially) over-
lapping material system. Any overlap with a previous measurement potentially
accelerates the characterization of new systems. Uncharacterized regions of a
composition space could even be explored autonomously without the need for
measurements at first. Autonomously here refers to an automatable procedure
in the framework which routinely checks overlaps in compositions of stored
measurements to automatically predict property behavior. An example of such
an overlap is schematically shown in Fig. 4a. Two materials libraries exist in
the database, one containing a property measurement of elements A and B,
a second one containing B and C. The overlap is given by element B. These
two measurements in two binary systems comprise the edges of a hypothetical
ternary system A-B-C.

With an increasing number of measurements stored in the same accessible
database, the larger this benefit becomes and actual sample preparation can
then concentrate on “very high uncertainty” regions. A possible pitfall of the
models for predicting unmeasured properties is that they all might use different
local coordinate systems of elements. In our demonstrator the model is

R = f(cRu, cRh, cPd, cIr, cPt), (1)

where R is the resistance and ci the respective compositions. But a GPR,
as presented here, can easily be adapted to different element-based coordinate
systems by treating the measured and interpolated known values as given,
adapting the coordinate system, and setting any additional element cadd to
zero:

R = f(cRu, cRh, cPd, cIr, cPt, cadd = 0) (2)

to fit a model. With such a model, a complete edge or multiple edges new
materials system can be used as priors. Fig. 4b shows this schematically for the
individual two measurements presented in Fig. 4a. Two CSML with elements
A-B and B-C are present as data sets, the characterization of the ternary A-
B-C can then be initialized with known properties on the edges. This could
even be done automatically. E.g. if samples are tagged with an RFID chip,
any existing characterization data and possible priors like energy dispersive X-
Ray (EDX) measurements could be looked up in the database. If EDX data is
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(a) Schematic example property mea-
surements of two materials libraries
with elements A-B and B-C.
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(b) Schematic of a ternary search
space with edge data (A-B and B-C)
already measured and the rest inter-
polated.

Fig. 4: Schematic property measurement (a) for two binary systems with each
two elements A-B and B-C shown both as a function of the elemental of ele-
ment B. The property measurement on the library A-B shows an exponential
dependence on B-concentration, B-C is quadratic for two binary systems. And
(b) the possible property prediction on the ternary prior to any measurements.
The characterization of the full A-B-C compositional space can be initialized
with the existing dataset: The green and orange points would substitute the
initial choice of measurements (marked with red numbers) in Fig. 3. This con-
cept is directly applicable to material systems with more elements. A ternary
was chosen solely for presentation purposes.

present, this can be used as a prior in GPR, if not, some other sample positions
are suggested to be measured first to initialize the GPR.

If characterization data from less complex binary and ternary materials
from CSMLs are present, more property predictions for materials with more
constituents can be assembled. Given sufficient data and limited expectations
about the certainty of a prediction/interpolation, further measurements could
even be unnecessary to explore an unknown composition space. In all cases,
this requires strict bookkeeping of where material properties originated (mea-
surement, prediction, simulation) and propagation of uncertainty for which
frameworks like pyiron are ideal.

Another possibility for informed initialization (improve the “prior”) is to
directly trigger simulations from an experimental job, which provide a first
approximation of the composition-property to be measured and use that as a
prior. More related data available prior to any measurement provides a possi-
bility to accelerate the characterization. And the possibility to either trigger
simulations or other cheap proxy experiments prior to expensive measurements
only exists if both domains are unified in one framework.

Before this can become a standard, several technical, as well as accep-
tance challenges need to be overcome. Practical technical challenges include
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that many experimental devices are controlled by proprietary software without
APIs, effectively rendering them unusable in the outlined approach. Solutions
to this issue are obvious: Either a vendor provides an API through which a
device can be controlled or an open-source operating system is run to control
the device directly. We expect that this will be solved with time. Operationally,
however, and this is a drastic change in how data and data management will
be seen: researchers need to be aware and accept that not every data point
in the database is actually measured, but most of them are interpolation-
s/predictions. This is in part a communication issue but in our view a larger
part an issue of trust in software solutions. Because in the outlined solution a
model provides most of the data; in our demonstrator ≈ 9/10. This model as
a mathematically correct concept and, even more important, its correct imple-
mentation needs to be ensured. The former is a theoretical problem, which
is in principle solved, the latter requires strict standards for implementation
through unit tests, continuous integration tools, and benchmarking during
software and method development [32–35].

The last point shows a current gap between the simulation and experimen-
tal materials science domains. Computational materials scientists are used to
using (legacy) code and routinely test and trust software. Models, their imple-
mentation in computer code, and computational resources are the tools of the
trade. Many computational materials scientists go through formal or informal
training for coding and software development along with their materials sci-
ence training which allows them to check their own as well as others’ codes
and their physical validity. Researchers trained in experimental sciences also
undergo a formal training, e.g. in sample preparation and device control, but
usually, only a few have the necessary background to assess, use, and change
codes and use computational resources which in turn can result in less or no
trust in the interpolated results. But the solution for this is also clear: as the
experimental and simulation domains are merged on a data level, the formal
(or informal) training of researchers also needs to be merged. Experimentalists
who use these tools and frameworks need to be trained. And while the initial
overhead of time spent for training might be seen as a drawback, the poten-
tial for acceleration of this approach in the context of materials discovery is
real and becomes larger as more data is collected in the unified framework.
Further, recent developments in lab automation [23, 28, 36] will lead to less
training spent to operate devices. Adding a new experimental data point will
then ideally be as simple as running a simulation, the call of a function within
a framework like pyiron.

In summary, the use of a unified framework as outlined puts less impor-
tance on how data is acquired (simulation, measurement, prediction) and more
importance on how data is stored and that it can be reused in subsequent
research.
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4 Conclusion

We demonstrate that an integrated development environment designed for use
with high-throughput simulation is also able to control an experimental pro-
cedure, similar to triggering a calculation on a high-performance computing
platform. With this approach, the boundaries between data obtained from
experiments or simulations vanish because data does not care about its source.
This approach allows to leverage computational power to accelerate materials
characterization, here demonstrated by using Gaussian process regression to
reduce the number of measurement points by approximately one order of mag-
nitude while predicting non-measured points with the desired uncertainty. By
embedding experimental workflows in pyiron we automatically benefit from
automation, reproducibility, and data provenance, and at the same time ensure
accessibility and reusability of existing data. Accessibility and reusability are
key ingredients for further acceleration of characterization because an existing
database provides prior knowledge to initialize, e.g., a Gaussian process more
strategically instead of manually or randomly. This is the first step towards
automatically fusing data from different sources, which allows a big-picture
optimization of materials discovery campaigns. Necessary changes in software
and hardware accessibility for this vision to become a reality are APIs to exper-
imental devices and training of researchers to create, trust, and use workflow
managers for data acquisition.

Ultimately, we envision a (software) layer in which a federation of algo-
rithms (sometimes also referred to as “agents”) use results obtained by other
agents as prior information for autonomous characterization, thereby lowering
the number of needed measurements to ultimately speed up characterization
time without compromising (too much) on data precision or sampling. The
final characterization of a given material is then a mix of actual measurements
and predictions each with its associated uncertainty. Reproducibility and con-
fidence in data is ensured because each step of the procedure is automatically
documented by the workflow manager.

5 Methods

pyiron extension We extended pyiron in the following way. First, we added
a new ‘job‘ that inherits the basic functionality and integration to the installed
pyiron instance automatically. Necessary additions include the definition of
user-defined input variables, a recipe for the Gaussian process-based measure-
ment, and functionality to retrieve the measured as well as the interpolated
data along with the model. The input variables currently comprise a user,
a measurement device name, a sample ID, initial measurement points for
the Gaussian process, a sample file, and the maximum number of iterations
(Tab. 1). In a future iteration, this user input will serve as a basis for the auto-
matic generation of metadata for datasets and will grow and change over time
as more devices and measurement routines are implemented. The version used
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in this paper is published here [37] along with an example notebook on how
to use it.

Experimental dummy device and wrapper for GPy
The experimental dummy device simulates an API to an experimental

setup and is implemented as a simple class in Python and can be found in a
utility repository [29]. Its API mimics the call to an actual device and returns
the desired property (here the resistance) of a certain composition on a mate-
rials library value. This API to a dummy device will be replaced by an API
to actual experimental setups once they become available. Additional to the
dummy device, a wrapper for the Gaussian processes framework GPy [30] is
also included here. The wrapper is a class that allows convenient initialization,
update, and prediction of a Gaussian process as implemented in ‘GPy’.

Snythesis and characterization of composition spread materials
libraries

The CSML was fabricated by co-deposition from five pure elemental
targets. The fabrication details are provided elsewhere [38]. The electrical resis-
tance was measured using an automated four-point probe test stand. The setup
is described elsewhere [39]. The chemical composition was measured by energy-
dispersive X-ray spectroscopy in a scanning electron microscopy Jeol 5800 LV
equipped with an Oxford X-act detector. The acceleration voltage was set to
20 kV. The final data set of CSML used in the dummy experimental device
with chemical characterization and resistance measurements is published on
Zenodo [31].

Data availability The experimental data used in the demonstrator is
published on Zenodo [31].
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[24] Batchelor, T.A.A., Löffler, T., Xiao, B., Krysiak, O.A., Strotkötter,
V., Pedersen, J.K., Clausen, C.M., Savan, A., Li, Y., Schuhmann,
W., Rossmeisl, J., Ludwig, A.: Complex-solid-solution electrocatalyst
discovery by computational prediction and high-throughput experimen-
tation. Angewandte Chemie International Edition 60(13), 6932–6937
(2021) https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.202014374.
https://doi.org/10.1002/anie.202014374

[25] King, R.D., Rowland, J., Oliver, S.G., Young, M., Aubrey, W., Byrne, E.,
Liakata, M., Markham, M., Pir, P., Soldatova, L.N., Sparkes, A., Whelan,
K.E., Clare, A.: The automation of science. Science 324(5923), 85–89
(2009) https://www.science.org/doi/pdf/10.1126/science.1165620. https:
//doi.org/10.1126/science.1165620

https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.202014374
https://doi.org/10.1002/anie.202014374
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1165620
https://doi.org/10.1126/science.1165620
https://doi.org/10.1126/science.1165620


16 Computationally accelerated materials characterization

[26] Burger, B., Maffettone, P.M., Gusev, V.V., Aitchison, C.M., Bai, Y.,
Wang, X., Li, X., Alston, B.M., Li, B., Clowes, R., et al.: A mobile robotic
chemist. Nature 583(7815), 237–241 (2020)

[27] Kusne, A.G., Yu, H., Wu, C., Zhang, H., Hattrick-Simpers, J., DeCost, B.,
Sarker, S., Oses, C., Toher, C., Curtarolo, S., et al.: On-the-fly closed-loop
materials discovery via bayesian active learning. Nature communications
11(1), 1–11 (2020)

[28] Seifrid, M., Pollice, R., Aguilar-Granda, A., Morgan Chan, Z., Hotta,
K., Ser, C.T., Vestfrid, J., Wu, T.C., Aspuru-Guzik, A.: Autonomous
chemical experiments: Challenges and perspectives on establishing a
self-driving lab. Acc. Chem. Res. (2022). https://doi.org/10.1021/acs.
accounts.2c00220

[29] Stricker, M., Banko, L., Sarazin, N., Siemer, N., Neugebauer,
J.: Library for interfacing pyiron with experimental devices,
tag: publication accelerated exp materials char (2022). https:
//gitlab.ruhr-uni-bochum.de/stricm9y/autonomous experiments

[30] GPy: GPy: A Gaussian process framework in python. http://github.com/
SheffieldML/GPy (since 2012)

[31] Banko, L., Stricker, M., Ludwig, A.: Composition and electrical resis-
tance results of a Ir-Pd-Pt-Rh-Ru composition spread thin film materials
library. Zenodo (2022). https://doi.org/10.5281/zenodo.7249698. https:
//doi.org/10.5281/zenodo.7249698

[32] Dunn, A., Wang, Q., Ganose, A., Dopp, D., Jain, A.: Benchmark-
ing materials property prediction methods: the matbench test set and
automatminer reference algorithm. npj Computational Materials 6(1),
138 (2020)

[33] Rohr, B., Stein, H.S., Guevarra, D., Wang, Y., Haber, J.A., Aykol, M.,
Suram, S.K., Gregoire, J.M.: Benchmarking the acceleration of materi-
als discovery by sequential learning. Chemical science 11(10), 2696–2706
(2020)
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