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Abstract

Dimensionality reduction tools like t-SNE and UMAP are widely used for high-dimensional

data analysis. For instance, these tools are applied in biology to describe spiking patterns of

neuronal populations or the genetic profiles of different cell types. Here, we show that when

data include noise points that are randomly scattered within a high-dimensional space, a

“scattering noise problem” occurs in the low-dimensional embedding where noise points

overlap with the cluster points. We show that a simple transformation of the original distance

matrix by computing a distance between neighbor distances alleviates this problem and

identifies the noise points as a separate cluster. We apply this technique to high-dimensional

neuronal spike sequences, as well as the representations of natural images by convolutional

neural network units, and find an improvement in the constructed low-dimensional embed-

ding. Thus, we present an improved dimensionality reduction technique for high-dimen-

sional data containing noise points.

Author summary

Biological datasets are often high-dimensional, e.g. the genetic profile of cells or the firing

pattern of neural populations. Dimensionality reduction methods like t-SNE are com-

monly used to represent the high-dimensional data in a low-dimensional embedding

space. The visualization helps us to identify the underlying clustering patterns and shed

light on the information hidden within the data. We show that in situations where there

exist scattering noise points, clustering patterns in the data tend to be heavily distorted.

Here, we show that using a distance-of-distance (DoD) transformation of the dissimilarity

matrix between data points, the influence of scattering noise is effectively removed. This

neighborhood-based transformation is most effective when the dimensionality of the

dataset is high. We show that this technique improves low-dimensional embedding for

several high-dimensional datasets, such as the convolutional neural network representa-

tion of natural images or the neuronal population representation of visual stimuli.
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This is a PLOS Computational Biology Methods paper.

Introduction

A major goal of data science is to extract patterns from high-dimensional data containing mul-

tiple features. It is typically required to construct a low-dimensional representation of high-

dimensional data for the purpose of visualization, noise reduction, or feature extraction. In

fields such as biology, where high-dimensional data sets are common, dimensionality reduc-

tion approaches are widely adopted. For instance, in neuroscience, dimensionality reduction

techniques have been used to study the way in which neuronal populations represent motor

and visual information [1–3]. It is also a standard approach to study the the genetic profiles of

different cell types [4–7]. Dimensionality reduction techniques based on embeddings includ-

ing t-SNE [8, 9] and UMAP [10] have been developed to represent high-dimensional data with

only two or three components. The principle underlying these techniques is to treat data

points as particles that are attracted to their neighbors and repelled by distant data points.

Despite their usefulness, it is known that algorithms like t-SNE have inherent limitations, such

as: sensitivity to hyper-parameters like perplexity; difficulty to capture global structure in the

data especially when there are many clusters [11]. Therefore, it is important to optimize the

pre-processing of the data and application of low-dimensional embedding techniques [7].

Here we show another problem with methods like t-SNE, namely that its performance

strongly deteriorates when the data set contains many noise points. We show that the low-

dimensional embedding space can become crowded due to the presence of noise points. The

basic mechanism is that noise points repel each other and therefore start overlapping with

clusters, even though the noise points have large distances to the clusters. As a result, meaning-

ful patterns in the data can be masked. To our knowledge, there exists no simple solution to

this “scattering noise problem”. Although clustering techniques like HDBSCAN can be used to

identify noise points [12], these techniques do not solve the scattering noise problem in terms

of low-dimensional visualization. Furthermore, although in some situations PCA may aid to

denoise the data, PCA can also remove important information from high-dimensional data

sets. As we will show, PCA does not in general effectively solve the scattering noise problem.

Here, we present a simple technique to solve the scattering noise problem. We show that

scattering noise problem for high-dimensional datasets can be effectively alleviated with a

transformation of the distance matrix. We call this the distance-of-distance (DoD) transforma-

tion, because it considers the differences between distances in a certain neighborhood of the

data points. We apply the DoD transformation to both electrophysiological recordings of neu-

rons in the mouse visual cortex during the presentation of drifting grating stimuli, as well as

representations of natural image patches by convolutional neural network units. We demon-

strate that in both cases, the DoD transformation facilitates the separation between noise

points and cluster points in the low-dimensional embedding space.

Materials and methods

Simulation

We generated high-dimensional cluster points and noise points by randomly sampling from

the multivariate Gaussian distributions with a standard deviation of 0.1. We drew points

within one cluster from the same Gaussian distribution, while noise points were independently

distributed. Then, we calculated the distance matrix between all pairs of data points by using
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either euclidean or city-block metric. To find the low-dimensional embeddings, we applied t-

SNE algorithm with perplexity value ranging from 5 to 50 and initialization with different ran-

dom seed. We used an open implementation of t-SNE algorithm from sklearn (version 0.23.2).

In some settings, we adopted PCA initialization combined with PCA preprocessing (S3 Fig).

To analyze how dimensionality and number of points influenced the performance of DoD

transformation, we simulated cluster points from Gaussian distributions and noise points ran-

domly distributed in a hyper-cube. Next, to compute the cluster-to-cluster distance, we consid-

ered all pairs of points, each from a different cluster, then we calculated the average distance of

all such pairs. To compute the cluster-to-noise distance, we considered all pairs of points, such

that one is a noise point and the other from a cluster, and then calculated the average distance

between all such pairs. To compute the noise-to-noise distance, we considered all pairs of

noise points, then we calculated the average distance of all such pairs. Next, we used DoD

transformation to manipulate the original pairwise distance matrix D. After the manipulation,

we obtained the distance-of-distance matrix F . We measured the distance shrinkage of all

three types of distances (cluster-to-cluster, cluster-to-noise, and noise-to-noise) in two ways:

Either the absolute shrinkage was calculated as D ¼ �d � �f , or the fraction was calculated as

�f =�d. Therefore, a larger delta distance or a smaller fraction indicates a larger shrinkage. In

order to measure the clustering performance, we adopted the commonly used metric Adjusted

Rand Index (ARI).

K nearest neighbor classifier

We used a K nearest neighbor classifier to measure the performance of the DoD transforma-

tion on noise-free datasets. We chose the optimal parameter K of KNN based on cross-vali-

dated classification score. Then with the optimal parameter, we built the KNN model on both

the original distance matrix and the distance matrix after the DoD transformation. We then

compared the 5-fold cross-validated score of the classifiers.

Neural data analysis

We analyzed neural data from area V1 obtained via electrophysiological Neuropixel recordings

(Allen Institute, [13]). The drifting grating visual stimulus consists of a full-field sinusoidal

grating that moves in a direction perpendicular to the orientation of the grating. The spatial-

temporal frequency of the drifting grating stimulus is not considered in our study. In the pub-

lic dataset provided by Allen Institute, the drifting grating stimulus moves in 8 different direc-

tions. They were shown to the animal in a random order (S7(A) Fig). Example raster plots

were taken from drifting grating response of session 754829445. We selected the visual neu-

rons with high signal to noise ratio (snr� 0.3), and the total number of neurons were 191. We

applied SPOTDisClust algorithm [14] on the population spiking patterns within 100 ms after

the stimulus onset. We used the output SPOTDis matrix for the following t-SNE analysis.

Please refer to S7 Fig to find more details.

Image data analysis

Images were obtained from the ImageNet data set. We used the pretrained VGG16 [15] as the

convolutional neural network model. We cropped original images to create image patches that

match the input size expected by VGG16. For each image patch, we extracted the responses of

artificial neurons in the fully connected layer (fc6) as its representation. The dimensionality of

the feature vector is 4096. Code is available at Github.
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Results

Simulation

There are various techniques to construct a low-dimensional embedding of high-dimensional

data, such as t-SNE [8, 9] and UMAP [10]. These unsupervised techniques are commonly used

to visualize the results of clustering and to study the geometry of high-dimensional data. For

some applications, however, a part of the data set could be comprised of noise points that are

randomly scattered in a high-dimensional space. For example, the activity pattern of a high-

dimensional neuron ensemble might show consistent clustering when the neural response is

driven by specific stimuli, but could otherwise exhibit random behavior during spontaneous

activity. When a dataset contains many noise points, the t-SNE and UMAP embedding exhibit

a typical “scattering noise problem” (Fig 1C). That is, the noise points tend to be spread uni-

formly in the low-dimensional embedding space and are located near the clusters, despite the

fact that the noise points are well separated from the cluster points. This scattering noise prob-

lem occurs because the noise points have, on average, a large distance between themselves,

which causes them to repel each other. Thus, noise points can end up near or in a cluster

region and can effectively mask the clusters that are present in the data set. Here, we develop a

technique to address the scattering noise problem using a transformation of the distance

matrix. We will show that the performance of low-dimensional embedding techniques is often

improved by such transformation of the distance matrix. We start from a scenario where there

are clusters, but also noise points that are scattering in a high-dimensional space. Consider the

distance of a noise point P to its nearest neighbors. In a high-dimensional space, we expect

another noise point Q to have a similar distance to the nearest neighbors of P as P itself. In

other words, even though the distance between two noise points P and Q can be large, their

distances to their respective nearest neighbors might in fact be very similar in a high-dimen-

sional space. This is simply due to the fact that scattering points do not have particular cluster-

ing patterns, which makes any point almost identical to others in terms of their neighboring

distance structure. This observation led us to compute the differences between the distances

(i.e. the distance-of-distance), such that the scattering nature of noise points can be better cap-

tured after the transformation. Specifically, for each pair of data points, we consider the joint

set of K neighbors of these two data points, and then compute the distance-of-distance w.r.t.

this set of neighbor points.

Mathematically speaking, given a dataset X 2 RN�D
with N samples and D features, the

distance matrix is constructed as D 2 RN�N
with either L1 or L2 distance metric, where di,j =

kXi − Xjk1 or kXi − Xjk2. For any two data points Xi;Xj 2 R
D, we found their sets of K nearest

neighbors I and J respectively. Then we manipulated the original distance matrix D to yield

another new distance matrix F . We take the average absolute difference between the two

points’ distances to the selected neighborhood as the new distance as following,

fi;j �
1

2K

X

n2I

jdn;i � dn;jj þ
X

m2J

jdm;i � dm;jj

 !

ð1Þ

Subsequently, the distance-of-distance matrix F is used to substitute the original distance

matrix used in the t-SNE algorithm. Applying this transformation, we should be able to obtain

a high similarity between noise points, while retaining the distances from noise points to the

clusters, and the distances between the clusters. Moreover, we expect the method to be rela-

tively insensitive to the choice of neighborhood size K. As long as K is kept smaller than the

cluster size, the average density of the cluster neighborhood should not change much, there-

fore, the shrinkage of noise-cluster and noise-noise distances should in general apply (S1 Fig).
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We illustrate this behavior as an example (Fig 1C), where in the t-SNE embedding, noise

points are located near or in the cluster regions. After the DoD transformation, the noise

points attract each other, and do not randomly scatter over the low-dimensional embedding

anymore (Fig 1D). Consequently, compared with the standard t-SNE, the noise points form a

separate cluster that is isolated from the cluster points, thereby providing a better match with

Fig 1. Scattering noise problem in t-SNE and its alleviation through the DoD transformation. In this simulation, we generated data points for five

clusters and one noise cluster. For each of the five clusters, we sampled 20 points from different multivariate Gaussian distributions in a high-

dimensional space (D = 50). Another 200 noise points were sampled uniformly from the same space. A: The original Euclidean (L2) distance matrix

between the data points. Data points were ordered by clusters. B: The dissimilarity matrix after the DoD transformation. We computed the distance-of-

distances for all pairs of points w.r.t. their nearest 10 neighbors. Red bar on the left indicates cluster points and black bar indicates scattering noise

points. C: t-SNE visualization based on the original dissimilarity matrix. D: t-SNE visualization based on the dissimilarity matrix after the DoD

transformation. Points from different clusters are labelled in different colors, noise points are labelled in grey.

https://doi.org/10.1371/journal.pcbi.1010764.g001
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cluster labels. Even in simulations where there are fewer noise points than cluster points in the

data set, the DoD transformation was still robust (S4 Fig). Furthermore, the DoD transforma-

tion helps to separate the noise cloud from the clusters regardless of which distance metric we

use to construct the original distance matrix D. The results obtained by using L2 metric are

almost identical to those by using L1 metric. Moreover, in situations where the noise labels are

unknown, we can infer their identity based on the DoD transformation. By comparing the

magnitude of the distance changes, it provides us with an automated way of denoising data

(S2 Fig).

Intuitively, we expect the effectiveness of the DoD transformation to be dependent on two

factors, namely the dimensionality of the data set and the number of data points. When the

number of noise data points is relatively large compared to the dimensionality of the data, we

expect that the DoD transformation has a minor effect, because two noise points will show rel-

atively dissimilar distances to their respective neighbors. For example, on a one-dimensional

line, if we take two out of many random noise points, then each noise point will have a nearby

neighbor, and the distance-of-distances will be similar to the original distance. However, when

the dimensionality of the data is relatively high compared to the number of noise points, we

expect that the DoD transformation makes a large difference compared to the original dis-

tance. To investigate this, we performed several simulations with a varying number of cluster/

noise points and dimensionality. In these simulations, we drew noise points and cluster centers

from a Gaussian distribution in a D-dimensional space (with a diagonal covariance matrix).

Cluster points were generated from Gaussian distributions around the cluster centers. We

observed that when the dimensionality of the feature space was low, the DoD transformation

had minor effects on the low-dimensional embedding and on the distance matrix. However,

when the dimensionality of the feature space was relatively high, the DoD transformation was

highly effective in separating the cluster points from the noise points (Fig 2).

There are other techniques, such as principal component analysis (PCA), that are com-

monly used in combination with t-SNE. We showed that the scattering noise problem cannot

be solved by simply using PCA for either initialization or preprocessing (S3 Fig). Furthermore,

perplexity is a parameter in t-SNE algorithm that controls how near a point needs to be in

order to be considered as a neighbor to a given point. We showed that by simply tuning per-

plexity, the scattering noise problem cannot be solved (S5 Fig).

Another degree of freedom in the DoD transformation comes from the parameter K, which

controls the neighborhood size. We showed that our method is generally robust to the choice

of K, even in situations where it is slightly larger than the cluster size. But unsurprisingly, the

method fails when K approaches the total number of points in the data set (S1 Fig). In situa-

tions where there are no scattering noise, applying DoD transformation to only clustering data

introduced very limited distortion (S6(A) Fig). Even in situations where one cluster has lower

density than the others, the DoD transformation did not significantly change the geometry of

the low-dimensional manifolds (S6(B) Fig).

Theoretical analysis

The simulations shown in Fig 2 suggest that the DoD transformation is most effective when

the dimensionality of the feature space is relatively high. In this section, we will formalize the

notion of the DoD transformation and explain why it improves the performance of low-

dimensional embedding techniques such as t-SNE.

Suppose that a data set consists of N points in a D-dimensional feature space. Each data

point can be represented by a D-dimensional vector. Furthermore, suppose that the noise

points are uniformly scattered in a D-dimensional hyper-cube and that there are several
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clusters whose cluster centers are also uniformly scattered. To simplify our analysis, we will

assume that the clusters have infinite density. In other words, points that belong to the same

cluster have a mutual distance of zero. We will use the normalized L1 norm (i.e. the Manhattan

distance metric divided by the dimensionality) to measure the distances between any pair of

Fig 2. Influence of dimensionality and number of noise points on the performance of the DoD transformation. In these simulations, 20 cluster

points were sampled from five different multivariate Gaussian distributions. The dimensionality was, from left to right, 5, 20, 20, and 50. The number of

noise points was, from left to right, 200, 200, 2000 and 2000. distance-of-distances were computed w.r.t. 5 neighbor points. A: The original dissimilarity

matrix. B: The dissimilarity matrix after the DoD transformation. Red bar on the left indicates cluster points and black bar indicates scattering noise

points. C: t-SNE visualization based on original dissimilarity matrix. D: t-SNE visualization based on the dissimilarity matrix after the DoD

transformation. Points from different clusters are labelled in different colors and noise points are labelled in grey.

https://doi.org/10.1371/journal.pcbi.1010764.g002
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data points. Since the distance is normalized by dimensionality, the distance will be finite for a

finite volume, as D!1. The analysis can be generalized to the L2 norm (Euclidean distance

metric), but we use the L1 to make the analytical derivation easier. Consider that we have M
clusters Cm and a set of noise points S. Consider a pair of cluster and noise points j 2 Cm and

σ 2 S with a distance of dj,σ. Let j� be the nearest neighbor such that dj,j� is the L1 distance

between point j and its the first nearest neighbor. We consider a simple case where the DoD

transformation has a joint neighborhood size of 2. Applying the DoD transformation with

neighborhood size of 2, the distance-of-distance fj,σ between a noise and a cluster point can be

expressed as

fj;s ¼
1

2
j dj;j� � ds;j� j þ

1

2
jdj;s� � ds;s� j : ð2Þ

Because we assumed that the cluster is infinitely dense, the equalities dj,j� = 0 and dσ,j� = dσ,j

hold. Hence,

fj;s ¼
1

2
ds;j þ

1

2
jdj;s� � ds;s� j : ð3Þ

If there are in total N points scattering uniformly in a unit volume, the average distance of a

point to its first nearest neighbor can be approximated [16] as

Efds;s�g �
1

3

1

N

� �1
D

; ð4Þ

where the factor 1

3
takes into account that we compute the normalized L1-distance. Note that as

D!1, ds;s� ! 1

3
, the expected (normalized) L1-distance between any two points that are uni-

formly distributed in a hyper-cube.

Because σ� is another random noise point, we have Efdj;s�g � dj;s. Furthermore, dj,σ will be

larger than dσ,σ�, because σ� is the first neighbor of σ (assuming that the first neighbor of the

noise point is not a cluster point). Therefore, we can simplify the expression of the distance-of-

distances fj,σ as

Effj;sg �
1

2
2dj;s �

1

3

1

N

� �1
D

 !

: ð5Þ

Now consider two noise points σ 2 S, � 2 S together with their nearest neighbors ��, σ�,
and apply the same argument there. We have

fs;� �
1

2
jds;�� � d�;�� j þ

1

2
jd�;s� � ds;s� j : ð6Þ

Note that Efds;��g � ds;� and that Efd�;s�g � d�;s. Hence the transformed distance can be

expressed as

Effs;�g �
1

2
2ds;� �

2

3

1

N

� �1
D

 !

: ð7Þ

Finally, we can see that the transformed distance between two points from two different

clusters or from the same clusters will be identical to the original distance, given the assump-

tion that a cluster is infinitely dense.

Thus, compared to the original distance, the distance-of-distance between two noise points

decreases more strongly than the distance between a cluster and a noise point, by the amount
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of 1/6 (1/N)1/D, while the distance between two cluster points is preserved. It can be further

seen that when D!1, (1/N)1/D! 1 and therefore fσ,�! 0. Hence, as D approaches infinity,

we obtain the asymptotes Effs;�g ! 0 and Effj;sg ! 1=6.

Therefore, in very high-dimensional spaces, the DoD transformation preserves the geomet-

rical distances between the cluster points, but pushes the noise points together, while relatively

preserving distance between the clusters and the noise points. For a low-dimensional embed-

ding technique, this means that the noise points will now be attracted to each other and be

repelled by the clusters. Suppose that we want the difference in distance shrinkage between

cluster-to-noise and noise-to-noise point to be greater than a threshold θ. The resulting

inequality shows a linear dependence on D but a logarithmic dependence on N:

1

6

1

N

� �1
D

> y, logN < � 6D log y : ð8Þ

Dimensionality and number of points influence distance-of-distances

We performed further simulations to support these theoretical analyses. In the first simulation,

we examined how the DoD transformation affects the distance between noise and cluster

points. The theoretical analysis above predicts that if the dimensionality D grows, the distance

between pairs of noise points should show a relatively strong decrease, whereas the distance

between a cluster and a noise point should show a relatively small decrease as compared to the

original distance. To test this, we generated data using Gaussian mixture models. We then

examined how the dimensionality and the number of noise points affects the distance-of-dis-

tances between cluster and noise points, two noise points and two points belonging to different

clusters. As predicted, due to the DoD transformation, the distances between data points

shrink. Furthermore, the average shrinkage of the distance between two noise points was larger

than the case for a cluster point and a noise point. In addition, the shrinkage of distances

increased as a function of dimensionality D, and decreased as a function of number of points

N. (Fig 3).

DoD transformation improves clustering

Next, we examined whether the DoD transformation improves clustering performance on the

t-SNE embedding. To study this, we generated high-dimensional data from Gaussian distribu-

tions with different number of data points and different dimensionality. We then created low-

dimensional embeddings and used the K-means algorithm to identify clusters in the t-SNE

embeddings. To measure the clustering performance, we compared the true cluster labels with

the inferred cluster labels using the Adjusted Rand Index (ARI). Fig 4A and 4B show how the

DoD transformation improves the clustering performance and the t-SNE embedding. We

found that the DoD transformation strongly alleviated the scattering noise problem in the

low-dimensional embedding and improved the clustering performance, as measured by ARI.

As the dimensionality D of the data increased, the ARI score strongly increased. Conversely,

the ARI score decreased as a function of the number of noise points (Fig 4C). As predicted

from our theoretical analyses, clustering performance showed an approximately linear depen-

dence on D and a logarithmic dependence on N. This was indicated by the presence of a diago-

nal line in the heat map of ARI changes. This analysis shows that the DoD transformation

improves the performance of clustering with the existence of scattering noise points, especially

for large D and a small number of data points N.
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Fig 3. Influence of dimensionality and number of points on distance-of-distances. A-B: Influence of dimensionality D on distance-

of-distances. A: Absolute shrinkage of Euclidean distance (i.e. original distance minus the distance-of-distances) as a function of

dimensionality D. B: Fraction of original distance (distance-of-distances divided by original distance) as a function of dimensionality

D. The distance between cluster points is unaffected by the Distance-to-Distance transformation (because the clusters had infinite

density). Because of the DoD transformation, the distance between noise points shrinks more than the distance between cluster and

noise points. As a result, noise points become relatively more similar to each other than to other cluster points. C-D. Influence of the

number of points N on distance-of-distances. C: Absolute shrinkage of distance as a function of number of points N. D: Fraction of

original distance as a function of number of pointsN. As the number of data points increases, the noise-to-noise and cluster-to-noise

distance-of-distances become more similar to each other. The dimensionality in this example was D = 20. The number of neighbors w.

r.t which distance-of-distances were computed was 10. The error bar indicates the standard deviation across simulations with different

initialization settings.

https://doi.org/10.1371/journal.pcbi.1010764.g003
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Fig 4. DoD transformation improves K-means clustering, with a linear dependence on dimensionality and a logarithmic

dependence on the number of data points. A: Example of K-means clustering. We sampled 20 cluster points from five different

multivariate Gaussian distributions with dimensionality D = 20. Another 500 noise points were sampled uniformly from the same

space. Left, t-SNE visualization. Right, K-means clustering based on t-SNE embeddings. Colors correspond to the original labels. The

ARI score of clustering was 0.17. B: Distance-of-distance transformation improves the clustering. Left, t-SNE visualization of the

distance-of-distance matrix. Right, K-means clustering. The ARI score of clustering was 0.95. C: Effect of distance-of-distance on ARI

score, as a function of the number of data points and the dimensionality. Data points were sampled accordingly with different number

of noise points and dimensionality D. Dimensionality D varied from 10 to 20 linearly. The number of noise points N varied from 256

to 4096 exponentially with a base of 2. Left, The ARI score of K-means clustering on the t-SNE embeddings of the original distance
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Application of DoD transformation to the representation of drifting

gratings by mouse visual cortex

We then applied the DoD transformation to high-dimensional empirical data. As a first appli-

cation, we applied the DoD transformation to the problem of unsupervised detection of spik-

ing sequences in high-dimensional neural data. Previously, techniques have been developed

for unsupervised detection of high-dimensional spiking sequence patterns, by using a distance

measure between spike trains based on optimal transport (SPOTDist) [14, 17]. By definition,

the SPOTDist measure only considers the temporal relationships between spike trains, but is

invariant to a scaling of the firing rate [14]. We used this technique to analyze the visual corti-

cal data of Allen Institute Brain Observatory [13]. We wondered whether drifting grating sti-

muli moving in opposite directions would be represented by different temporal spiking

sequences (Fig 5A). The drifting grating stimulus consists of a full-field sinusoidal grating that

moves in a direction perpendicular to the orientation of the grating. In the public dataset pro-

vided by Allen Institute, the drifting grating stimulus move in 8 different directions (S7 Fig).

Furthermore, we also wondered if the neural representations of these stimuli would be similar

to the neural vectors of spontaneous activities during the inter-stimulus-interval (Fig 5B). This

was motivated by previous studies suggesting a relationship between spontaneous and stimu-

lus-driven or task-evoked neural activity [18–21]. For each trial, we analyzed the responses in

the first 100 ms after the stimulus onset and then used the SPOTDist method to compute the

pairwise distance between spiking patterns (Fig 5C, Left). Using the SPOTDist distance matrix,

the standard t-SNE algorithm revealed a separation of neuronal spiking patterns responding to

drifting grating stimulus of different orientations. However, with the standard t-SNE, epochs

of spontaneous activities were located in the same region of the low-dimensional embedding

as the stimulus-evoked responses (Fig 5D, Left). This visualization seems to suggest that there

is relatively high similarity between spontaneous activity and stimulus-driven activity, and that

there is some form of replay or preplay of the different stimulus patterns in the inter-stimulus

period. Alternatively, the similarity might have been a consequence of the scattering noise

problem described above. Consistent with the latter interpretation, we found that the DoD

transformation separated the spontaneous activity epochs from the stimulus-evoked epochs.

After the DoD transformation, the low-dimensional embedding contained a region for the

spontaneous activity that was clearly separated from the stimulus clusters (Fig 5D, Right). This

indicates that population vectors during spontaneous activities and activities evoked by drift-

ing gratings are clearly distinguishable, and that the DoD transformation effectively identifies

this separation. It also corresponds with previous findings in rodents that the spontaneous

activities are living in a space orthogonal to the evoked visual response [22]. In addition, we

now observed a clearer separation between the different stimuli. Using KNN to quantify the

classification of stimulus orientations, we found that the performance score was improved

after the DoD transformation (S8 Fig). Moreover, in the absence of scattering noise, we also

showed that the application of DoD transformation did not introduce distortion to the contin-

uous structure in the data (S9 and S10 Figs). However, we observed that the neural response to

gratings moving in different directions were not separated both before and after the DoD

transformation. The lack of direction separation is due to the fact that the majority of recorded

neurons from primary visual cortex have only orientation tuning but not direction tuning

matrix. Middle, The ARI score of K-means clustering on the 2D t-SNE embeddings of the distance-of-distance matrix. Right, The

improvement of ARI score, i.e. difference between the left and middle matrix, which shows the predicted linear dependence on D and

logarithmic dependence on N.

https://doi.org/10.1371/journal.pcbi.1010764.g004
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Fig 5. DoD transformation improves clustering of neural spiking sequences. A: Example raster plot of spiking pattern to drifting

gratings of eight different directions. We analyzed the spiking events in the time window of 100 ms after the stimulus onset. B: Example

raster plot of spontaneous neural response. We analyzed the spiking events in the time window of 100 ms in intertrial intervals (number

of neurons: 191). C: Pairwise distances between all spiking patterns. Left, Original SPOTDist matrix between spiking patterns.

SPOTDist is a distance measure that compares the similarity of the spiking patterns based on optimal transport distance (i.e. the
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(S7(B) Fig). To summarize, we demonstrated that using DoD transformation, we can solve the

scattering noise problem that exists in real neural data.

Application of DoD transformation to the representation of natural images

by convolutional neural network

Next, we analyzed the high-dimensional representations of natural images by VGG16, which

is a common convolutional neural network used for object recognition [15]. By transforma-

tions of input data through multiple convolutional layers, VGG16 represents an image in the

fully connected layer as a high-dimensional feature vector of length 4096. A linear classifier

can be built upon these feature representations in deeper layers to decode the object identity.

We defined our feature vector as the activations of artificial neurons in the fully connected

layer of a pre-trained VGG16 network. We then computed the t-SNE embeddings based on

these feature vectors of image patches. We first analyzed t-SNE embeddings for image patches

that contain 8 out of 1000 different object classes from ImageNet data set. The t-SNE embed-

dings showed a clear clustering for different object classes (Fig 6A). We then randomly selected

250 image patches from the remaining 992 classes. We only took one image from each distinct

class, therefore, it is assumed that these images would scatter in the t-SNE embeddings and

mask the clusters, i.e. creating the scattering noise problem. Indeed, we observed that the t-

SNE embedding coordinates for these randomly chosen image patches overlapped with the

clustered image patches (Fig 6B). Because VGG16 representations live in a high-dimensional

space, we predicted that the DoD transformation should lead to a separation of these noise-

like scattering image patches from the clustered images. Indeed, the DoD transformation relo-

cated the activation patterns into a separate region of the low-dimensional embedding, while

preserving the geometry of object relationships as compared to the original t-SNE (Fig 6C).

Using KNN algorithm, we quantified how classification accuracy of the clustering points var-

ied after the DoD transformation. We calculated distance matrices by using either the high-

dimensional neural network representations, or the low-dimensional t-SNE embeddings. We

found that after the DoD transformation, the cross-validated KNN accuracy increased from

84.3% to 91.2% on high-dimensional neural representations, and it increased from 85.9% to

90.1% on the low-dimensional embeddings. Moreover, applying DoD transformation to data

without scattering noise did not distort the clustering patterns (S11 Fig). Furthermore, we also

showed that the scattering noise problem could also occur even when the clustering points

came from a different image data set (S12 Fig). Therefore, in the case where the clustering data

were masked by the scattering noise data, the DoD transformation can better separate them

from each other.

Discussion

We have presented a technique to improve the performance of low-dimensional embedding

techniques like t-SNE in the presence of scattering noise points. Such a situation can be com-

mon for high-dimensional empirical data where clusters are sparse and a part of the data

points represent noise, which may often be the case in biological data. For example, if we were

to observe brain activity for several hours, then neural activity may form clear patterns only for

minimum energy to transform one spiking pattern into another spiking pattern). Total number of stimulus-driven trials was 630. Right,
Distance matrix after the DoD transformation. D: Low-dimensional embeddings of all spiking patterns. Left, 2D embeddings of t-SNE

on the SPOTDist matrix between spiking patterns. Right, 2D embedding of t-SNE on the distance-of-SPOTDist matrix. Drifting grating

trials with different directions are labelled in different colors as in (A). Spontaneous activities are colored in grey. Trials with missing

labels are colored in black.

https://doi.org/10.1371/journal.pcbi.1010764.g005
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a fraction of time, e.g. when neurons are activated by an external stimulus in the receptive

field. Importantly, the DoD transformation will yield comparable performance when the data

contains only true clusters. Moreover, as we showed, the DoD transformation confers benefits

especially when the dimensionality of the data is high. For high-dimensional data, embedding

techniques like t-SNE have benefits compared to techniques like PCA, because they can create

linear embeddings also for data living on a non-linear manifold, and do not restrict analysis to

a few components representing only a fraction of the total variance. Therefore, this technique

Fig 6. DoD transformation on natural image patch representations by convolutional neural network units. A: Low-dimensional manifold for

images from 8 different classes. Distances were computed based on the high-dimensional feature vectors in the fully connected layer of the VGG16

network. B: Low-dimensional manifold for data included both image from the chosen classes and random images. C: DoD transformation separates

clustering images from randomly scattering images. Left, Dissimilarity matrix. Middle, 2D t-SNE embedding without labeling. Right, 2D t-SNE

embedding with class labeling. 8 classes are labelled in different colors and scattering images are labelled in grey.

https://doi.org/10.1371/journal.pcbi.1010764.g006
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can be useful for analyzing the geometry of neural representations because it yields low-

dimensional coordinates, which can then be related to other behavioral or stimulus

parameters.

A disadvantage of the DoD transformation is its computational cost, because it requires

computation of the entire N × N distance matrix first. Thus, the runtime of the transformation

increases exponentially with the number of data points (S13 Fig). By contrast, efficient algo-

rithms exist for computing t-SNE based on neighborhood distances, avoiding an N × N
computational complexity. Another point of consideration is the hyper parameter of the total

number of neighbors used to compute the DoD transformation. Although we observed strong

improvements with relatively small neighborhood sizes, increasing the neighborhood size

beyond the cluster size may lead to distortions (S1 Fig).

In conclusion, we have presented a simple and theoretically motivated transformation of

the distance matrix by computing distance-of-distances, which improves clustering of high-

dimensional data in the presence of noise points, and have provided several applications to

neural networks and biological data where this technique was useful and led to more accurate

conclusions.
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S1 Fig. Effect of neighborhood size K. A: 5 clusters, each with 20 points; 200 scattering noise

points; dimensionality of 50; Original embedding (left) and DoD transformation with a neigh-

borhood size of 5, 20, 50 and 100. B: 50 clusters, each with 20 points; 1000 scattering noise

points; dimensionality of 50; Original embedding (left) and DoD transformation with a neigh-

borhood size of 10, 50, 1000 and 2000.

(PNG)

S2 Fig. Inference of noise points based on neighborhood overlap. A: Distribution of overlap

rate of neighborhood identity before and after the DoD transformation. B: Points with smaller

overlap rate (< 65%) were identified as scattering noise points (black).

(PNG)

S3 Fig. PCA is limited in terms of solving scattering noise problem. 50 clusters, each with

20 points; 1000 scattering noise points; dimensionality of 50; PCA preprocessing uses the first

10 principal components; DoD transformation uses neighborhood size of 10.

(PNG)

S4 Fig. DoD transformation keeps its performance when there are fewer noise points. 50

clusters, each with 20 points; 500 noise points; dimensionality of 50; DoD transformation with

a neighborhood size of 5. Left, original t-SNE visualization. Right, t-SNE visualization with

DoD transformation.

(PNG)

S5 Fig. Larger perplexity of t-SNE algorithm does not solve scattering noise problem. 50

clusters, each with 20 points; 1000 noise points; dimensionality of 50; DoD transformation

with a neighborhood size of 5; perplexity values are 5, 50, 100, 500, 1000 from left to right.

A: t-SNE on original distance matrix. B: t-SNE on distance matrix after DoD transforma-

tion.

(PNG)

S6 Fig. DoD transformation does not distort the clustering. A: 5 clusters, each with 20

points; dimensionality of 50; DoD transformation with neighborhood size ranging from 5 to

30. B: 5 clusters, each with 20 points; dimensionality of 50; DoD transformation with neigh-

borhood size ranging from 5 to 30. All clusters were generated from multivariate Gaussian dis-

tribution and one of them is with a larger standard deviation (0.5) than the rest (0.2).

(PNG)

S7 Fig. Neural spiking data from Allen Institute. A: Illustration of recording session of

drifting grating visual stimulus. B: Direction tuning curves of recorded units in session

754829445.

(PNG)

S8 Fig. DoD transformation improves KNN classification of neural spiking sequences. For

both the distances in the high-dimensional space and the distances in the low-dimensional

embedding, the cross-validated KNN classification scores are higher after DoD transforma-

tion.

(PNG)

S9 Fig. DoD transformation keeps the ring structure of neural representations of grating

stimulus. Each data point represents the populational firing pattern in a given trial (n = 3200).

Trials with different stimulus orientations are labelled in different colors.

(PNG)
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S10 Fig. Neural manifolds were better separated by DoD transformation. Each data point

represents the populational spiking pattern in a given trial (n = 600). Trials with different stim-

ulus orientations are labelled in different colors.

(PNG)

S11 Fig. Object manifolds were not distorted by the DoD transformation. 2D t-SNE

embeddings for 8 random ImageNet classes maintain clustering patterns after the DoD trans-

formation.

(PNG)

S12 Fig. DoD transformation on sketch images represented by convolutional neural net-

work units. A: Low-dimensional manifold for 634 sketch patches from 5 different classes. Dis-

tances were computed based on the high-dimensional vectors in the fully connected layer of

the pretrained Alexnet network. B: Low-dimensional manifold for data including both sketch

patches and 50 random ImageNet patches. C: DoD transformation separates ImageNet patches

from sketch patches. Left, Euclidean distance matrix. Right, 2D t-SNE embeddings. Sketch

images of different classes are labelled in different colors. ImageNet patches are labelled in

grey.

(PNG)

S13 Fig. Runtime of the DoD transformation.

(PNG)
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