Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mutual remodeling of interacting nanodroplets and vesicles

MPG-Autoren
/persons/resource/persons204558

Satarifard,  Vahid       
Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121584

Lipowsky,  Reinhard       
Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Satarifard, V., & Lipowsky, R. (2023). Mutual remodeling of interacting nanodroplets and vesicles. Communications Physics, 6: 6. doi:10.1038/s42005-022-01104-w.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-80CE-B
Zusammenfassung
Liquid-liquid phase separation within the cytosol leads to the formation of  protein-enriched droplets inside cells. These droplets known as biomolecular condensates have ultra-low interfacial tensions and fulfill a vast range of functions inside cells. Biomolecular condensation can take place at the plasma membrane and generate mechanical forces on membranes as a result of membrane wetting. But little is known about the wetting of membranes by biomolecular condensates. In this study, we utilize energy minimization to explore a wide range of parameters and determine the dependence of membrane wetting phenomena on interfacial tension, bending rigidity, line tension, and spontaneous curvature. We observe that interacting nanodroplets and vesicles mutually remodel one another. In addition, we determine the parameter regimes for which the droplet-membrane systems exhibit axisymmetric and non-axisymmetric contact lines. Our results provide insights into understanding intracellular processes and physical mechanisms based on the mutual remodeling of droplets and membranes.