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We propose that weak continuous probing may be exploited to determine and define quantum
phases of complex many-body systems based on the measurement record alone. We test the re-
sulting phase criterion in numerical simulations of measurements on the Bose-Hubbard model and
the quantum Ising chain. This yields a phase transition point in reasonable agreement with the
quantum phase transition in the ground state of the closed system in the thermodynamic limit,
despite the system being highly excited through the measurement dynamics. At high measurement
strengths, the system’s response enters a Zeno regime suppressing transitions between eigenstates
of the measurement operator.

I. INTRODUCTION

Quantum phases allow descriptions of complex systems
in simpler terms than a microscopic description [1]. Dis-
tinct phases span wide areas in parameter space charac-
terized by the fundamental excitations, which govern the
system’s equilibrium properties and response to pertur-
bations. They are used to characterize a wide range of
physical phenomena, including electronic, magnetic and
optical properties of solid state systems [2, 3], nuclear
physics [4] and cosmological topological defects [5, 6].

We consider a closed system described by a Hamilto-
nian

Ĥ = Ĥ0 + αĤ1 (1)

that exhibits a single quantum phase transition with an
abrupt change in the order parameter at the critical value
α = αc. The change is often due to an avoided crossing
in the energy spectrum, and the location is uncovered by
a change of the ground state expectation value of an ap-
propriate order parameter that becomes infinitely sharp
in the thermodynamic limit.

In dynamical phase transitions [7–12], the situation is
considerably richer than the exploration of ground state
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Detector #2

FIG. 1. The experimental setup shows a balanced homodyne
measurement setup, realizing the signal and dynamics repre-
sented by Eqs. (2) and (3). The cavity (the gray shaded box)
contains strongly interacting Hamiltonians engineered using
cold atoms in optical lattices. We depict the 50:50 beam split-
ter as the slanted straight line.

properties since the entire spectrum contributes to the
dynamics. This leads to intricate questions about excited
state phase transitions [13, 14] and accidental dynamical
phase transitions [15]. Rather than suddenly changing
the Hamiltonian, another way to quench a quantum sys-
tem is to perform a measurement [16–19].

When studying phase transitions experimentally, a
measurement typically destroys the system. One per-
forms the experiment several times to acquire signal or
statistics. Such averaging introduces variances into oth-
erwise well-defined parameters, e.g., particle number [20].
Although modifications of complex systems by measure-
ment have been studied [21–24], the fundamental ques-
tion – if the quantum phase of a complex system can
be determined from the measurement record alone – re-
mains, to the best of our knowledge, unanswered.

In this article, we propose a criterion for the determi-
nation of quantum phases based solely on the measure-
ment record of a single experimental run. This proposal
relies on continuous dispersive measurements. It is well
known that even weak and continuous measurements in-
duce a back action through the noisy measurement record
that builds up to a substantial perturbation of the sys-
tem [17]. Here, we exploit this to disturb the system and
simultaneously record its response. Similar to dynami-
cal phase transitions, the entire spectrum contributes to
the response. The measurement strength sets the magni-
tude of the disturbance. At low measurement strength,
we numerically demonstrate that we can extract infor-
mation about the system’s phase transition.

After introducing our criterion, we apply it to the
Bose-Hubbard model and the quantum Ising chain. We
show that our criterion agrees reasonably with the known
phase transition in the thermodynamic limit, despite the
system is not in the ground state. We also demonstrate
how the measurement strength itself becomes a parame-
ter in the open system’s phase diagram revealing (poten-
tially controllable) properties of strongly probed systems.
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II. PHASE DETERMINATION

Let M̂0 be a Hermitian operator satisfying [Ĥ0,M̂0] =

0 and [Ĥ1,M̂0] 6= 0, where Ĥ0 and Ĥ1 are the non-
commuting Hamiltonians in Eq. (1). Consider a probe

that dispersively measures M̂0 with strength γ. The
probe yields a measurement record I(t) and disturbs the
system through the measurement back-action. The ex-
perimental setup is shown in Fig. 1.

For concreteness, we assume a homodyne measurement
signal given by

I(t) = 2γ〈M̂0〉+
√
γ dW/dt (2)

where 〈·〉 denotes the expectation value and dW is a
Wiener increment. The state of the system conditioned
on the measurement outcome evolves according to the
Itô stochastic Schrödinger equation (SSE)

d|ψ̄(t)〉 =
[
−iĤ − γ

2
M̂2

0 + I(t)M̂0

]
dt|ψ̄(t)〉, (3)

where h̄ = 1 and |ψ̄〉 denotes a non-normalized state
[18, 25–27]. The first term in Eq. (3) describes the uni-
tary evolution. The second and third terms include the
dissipation associated with the measurement. This ap-
proach is experimentally appealing, since it allows ex-
tracting phase information from a single continuous mea-
surement.

Here we do a simulation of such an experiment. We
calculate the power spectral density (PSD)

S(ω) = (2πT )−1E
[
|
∫ T

0

e−iωtI(t)dt|2
]

(4)

by numerically integrating the SSE, see Appendices E
and G. In order to sample the typical behavior away from
the initial state, we discard the initial part of the quan-
tum trajectories. We divide the considered quantum tra-
jectory into several parts and calculate the average PSD
to obtain the noise average E.

The average dynamics, on the other hand, over dif-
ferent Wiener increments with dW 2 = dt is given
by the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)

master equation ρ̇ = L[ρ] = −i[Ĥ, ρ] + γD[M̂0]ρ with

D[Ô]ρ = ÔρÔ† − 1
2

{
Ô†Ô, ρ

}
[25–30]. Our goal is to

relate the phase properties of the system to the measure-

ment signal’s autocorrelation function F
(1)
hom(t, t + τ) =

E[I(t)I(t + τ)] where E denotes a classical expectation
value over the noise realizations. This correlation is given

by the quantum regression theorem as F
(1)
hom(t, t + τ) =

2γ2 Tr
[
M̂0e

Lτ
{
M̂0, ρ

st
}]

, where ρst is the stationary

state, such that L[ρst] = 0 [31], see also Appendix C for
details. The identity is always a stationary state since
M̂0 is Hermitian. To verify this, one replaces ρst = 1/N
in the GKLS master equation and uses D[M̂0]1 = 0.
Here N is the dimension of the Hilbert space. This can

be understood as the measurement back-action acting as
an infinite temperature heat-bath in the long-time limit
[32, 33].

Considering ρst = 1/N , the stationarity of the noise
process, and making use of the quantum regression the-
orem, we obtain

S(ω) =
4γ2

N

∫ ∞
−∞

Tr[M̂0e
LτM̂0]e−iωτdτ

=
8γ2

N
Re

[∫ ∞
0

Tr[M̂0e
LτM̂0]e−iωτdτ

]
, (5)

where Re is the real part. The front factor is particular
to homodyne measurements [25], see also Appendices C

and D for details. Since D[M̂0]M̂0 = 0, we have

L[M̂0] = −i[Ĥ,M̂0]. (6)

After expanding eLτ in Eq. (5) and utilizing Eq. (6), we
conclude that the PSD is determined by the commutation
relations of Ĥ and M̂0.

Assuming L is diagonalizable with eigenvalues λm and
right (left) eigenmatrices rm (lm), Eq. (5) is decomposed
as S(ω) = Sd(ω) + S0(ω) with

Sd(ω) =
8γ2

N

∑
Re(λm)<0

−Re(λm)Re(tm) + [ω − Im(λm)] Im(tm)

[ω − Im(λm)]
2

+ [Re(λm)]
2 ,

(7a)

S0(ω) =
8γ2

N

∑
Re(λm)=0

[
πRe(tm)δ (ω − Im(λm))

+ P
(

Im(tm)

ω − Im(λm)

)]
, (7b)

where tm = Tr[M̂0rm]Tr[l†mM̂0], Im the imaginary part,
P the Cauchy principal value, and δ the Dirac-delta func-
tion, see Appendix D. Here Sd(ω) (S0(ω)) is the part
from all of the decaying (decay-free) eigenvalues of L. We
observe that the peaks in the spectra will be located at
Im(λm). If Im(tm) = 0, the eigenvalue λm will contribute
with a Lorentzian to the spectrum. The eigenmatrices
with non-vanishing Im(tm) give rise to non-Lorentzian
contributions in the spectrum.

As we change the parameter α, the system (1) under-
goes a phase transition at α = αc. For second order
quantum phase transitions, this is attributed to the level
crossings at α = αc [1]. If γ = 0, the unperturbed L has
eigenvalues and vectors λij = −i(Ei − Ej) = −iωij and

rm = lm = |ψi〉〈ψj |, where Ĥ|ψi〉 = Ei|ψi〉. For a weakly
probed system, the eigenvalues and eigenvectors of L are
obtained perturbatively. Therefore, the PSDs – which
are related to the level statistics via λij , rm, and lm, cf.
Eqs. (7a) and (7b) – for the two different phases are also
qualitatively different. Using this, one can identify the
two distinct phases in Figs. 2 and 5. Note, we have plot-
ted the normalized PSD S̃(ω) = S(ω)/

∫∞
−∞ S(ω)dω in

the aforementioned panels for numerical convenience.
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FIG. 2. We plot normalized PSDs S̃(ω) for the Bose-Hubbard model, where we measure two observables: M̂pop =

mpop

∑
j b̂
†
2j b̂2j and M̂coh = mcoh

∑
j b̂
†
j b̂j+1 + h.c. The spectra in (a) and (c) are obtained by simulating the SSE (indi-

cated as ‘SSE’ in the figures), whereas (b) and (d) (indicated as ‘GKLS’) are obtained with Eq. (5), where L is the Liouvillian
appearing in the GKLS master equation – see also Appendices C and D for details. For the SSE calculations, we considered 6
sites with 6 particles and measurement strength γ = 0.01 for the measurement of M̂coh and γ = 0.1 for the measurement of
M̂pop. The computations based on the master equation are harder to do and hence we have used 4 sites and 4 particles and
kept the same γ values in (b) and (d). The figures shown as insets into (b) and (d) are rotated versions of the main plots and
show the abrupt change near 1 < U/J < 10. Compare this with the order parameter vs U/J plot in Fig. 3(a).

One can use two different choices of measurements –
M̂0 and M̂1 – that commute with different parts of Ĥ.
The PSD corresponding to one phase for the M̂0 mea-
surement is qualitatively similar to the PSD correspond-
ing to the other phase for the M̂1 measurement. In par-
ticular, we obtain from Eq. (5) that S(ω) ∝ δ(ω) when
the measured operator commutes with the Hamiltonian.

The criterion for determining a phase transition, there-
fore, is detecting changes in the PSD corresponding to a

particular measurement M̂i. Using different M̂i, one
can also detect multiple phase transitions. Assuming nα
phase transitions in a Hamiltonian Ĥ(α), one obtains rep-

resentative Hamiltonians Ĥ(αi) with i = 1, 2, . . . , nα+ 1,
where αi is a parameter value corresponding to a par-
ticular phase. We consider nα + 1 distinct measuring
operators satisfying [Ĥ(αi),M̂i] = 0. Note that since

[M̂i, Ĥ(α)] 6= 0, our continuous measurement scheme is
not a quantum non-demolition measurement [34, 35].
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FIG. 3. We show the order parameters vs the parameter α in the Hamiltonian (1) for the Bose-Hubbard and the transverse-field
Ising model in Figs. (a) and (b), respectively. The order parameter for the transverse-field Ising model is |〈ψ0|

∑
i σ

z
i /N |ψ0〉|

with |ψ0〉 being the ground state, whereas for the Bose-Hubbard model we plot the condensate fraction (9). For the Bose-
Hubbard model in (a) the parameter α is the ratio between the interaction strength U and the hopping strength J , whereas α is
the transverse-field strength λ for the transverse-field Ising model in (b). We have also included the plot of |〈ψ0|

∑
i σ

x
i /N |ψ0〉|

vs λ as an inset of (b). Since this is not the order parameter of the transverse-field Ising model, it does not show any abrupt
change similar to the main plot in panel (b).

In the following, we implement this scheme to study
the phase transitions in an ergodic (Bose-Hubbard) sys-
tem and in an integrable (transverse-field Ising chain)
Hamiltonian.

III. PROBED BOSE-HUBBARD MODEL

The 1D Bose-Hubbard model provided the first demon-
stration of a quantum phase transition in ultracold atoms
[36], and it is a powerful tool for the experimental study
of quantum phases [37–41], including studies of driven-
dissipative quantum systems [22, 23, 42]. The Hamilto-
nian reads

Ĥ = −J
∑
〈j,k〉

(b̂†j b̂k + b̂†k b̂j) +
U

2

∑
j

b̂†j b̂j(b̂
†
j b̂j − 1), (8)

where the bosonic field operators are expanded in Wan-

nier functions Ψ̂(x, t) =
∑
j b̂j(t)wj(x), and J and U are

the hopping and the on-site interaction, respectively. For
α = U/J below the critical value, the system’s ground
state exhibits long range phase-coherence and it is a su-
perfluid. Above that critical value, the ground state fea-
tures Fock-states on each site and the system is in the
Mott-insulator phase.

Let us now dispersively probe this system with an op-
tical cavity field aligned with the trapping lattice. The
probe light is described as â(t)fa(x, ωL)e−iωLt with ωL

the probe frequency and fa(x, ωL) the spatial mode func-
tion. Here we treat the system in 1D. For a Fabry-Pérot

cavity, we have fa(x, ωL) ∝ cos(kLx) with kL being the
wavenumber for the probe light.

We focus on two relevant cases, namely where the
probe has twice the period of the trapping potential and
when the probe and the lattice have the same periodicity,
but a π/2 phase shift. In the former case, this leads to

a measurement operator M̂pop = mpop

∑
j b̂
†
2j b̂2j , where

mpop is a constant calculated from the Wannier func-
tions, see Appendix F. This operator commutes with the
interaction term in (8) but not with the hopping. In
the second case, we measure the sum over coherences,

M̂coh = mcoh

∑
j b̂
†
j b̂j+1 + h.c. (see Appendix F), which

commutes with the hopping term but not the interaction.

We numerically calculate the PSDs for both M̂pop

and M̂coh. To perform the numerical integrations of the
SSE (3) in Fig. 2(a,c), we considered a system with six
sites and six particles. We used a system with a smaller
Hilbert space – four sites and four particles – to obtain
the PSDs using Eq. (5) in Fig. 2(b,d). For all the PSDs,
the spectral range is rescaled to 20 in dimensionless units.
The PSDs for a particular measurement – e.g., Fig. 2(a,b)
– obtained from Eqs. (3) and (5) appear similar. This is
because of the ergodicity of the Bose-Hubbard model.

We observe large values of the PSD at ω = 0 (ω 6= 0)
when the measurement operator and Hamiltonian is (is

not) compatible with the quantum phase. The M̂coh

PSDs in the superfluid (Mott-insulator) part is qualita-
tively similar to the Mott-insulator (superfluid) part of

the M̂pop PSDs. The measurement for both operators
gives the transition within the same order of magnitude,
which is also in agreement with its value in the thermo-
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FIG. 4. Quantum Zeno regime for the M̂coh measurement in
the Bose-Hubbard model. We derive the spectrum using Eq.
(5). When the measurement strength is very high (γ = 100.0),
the nature of the PSD does not change over a broad range of
U/J . This is unlike Fig. 2(a,b).

dynamic limit [43–45]. Additionally, we point out that
the phase transition point from the PSDs are consistent
with the behaviour of the order parameter (condensate
fraction [46])

fc = λ1/N (9)

in Fig. 3(a), where λ1 is the largest eigenvalue of the
single-particle density matrix ρ(1) and N is the number
of particles. The matrix elements of ρ(1) are given by

ρ
(1)
ij = 〈ψ0|b̂†i b̂j |ψ0〉, (10)

where |ψ0〉 is the ground state of the Hamiltonian (8).
While comparing with the above critical value of the pa-
rameter, one needs to, however, keep in mind the sig-
nificant finite size effects [46], see also Fig. 3(a). The
numerical results for the thermodynamic limit [44, 45]
are obtained by calculating the energy gap between the
ground state and first excited state for different system
sizes, and extrapolating to the infinite system.

A. Strong Measurement

The measured system has phase transitions defined
and/or controlled by the measurement itself. That tran-
sition due to strong measurement is also witnessed by
the record. The measurement strength is considered a
free parameter and an additional dimension of the phase
diagram, which then depends on the operator being mea-
sured. Figure 4 shows the PSD for measuring M̂coh

with γ � 1 in the Bose-Hubbard model using Eq. (5).
The figure shows that the measurement forces the system
to evolve into eigenstates of the probed operator over a
broad range of U/J . Since M̂coh commutes with the
Bose-Hubbard hopping term, the PSD implies a super-
fluid phase throughout. This has been identified previ-
ously as a dynamical phase transition into a Zeno regime

[47–50]. In the given example, we demonstrate how a
strong measurement of coherence turns a Mott-insulator
into a superfluid. Performing strong measurements with
other operators yield similar results.

IV. PROBED TRANSVERSE-FIELD ISING
CHAIN

We now show that the change in the PSD reveals the
phase transition in the transverse-field Ising chain, which
is exactly solvable using the Jordan-Wigner transforma-
tion and is a paradigm for quantum phase transitions [1].
This model was implemented with trapped ions [51, 52],
where a dynamical phase transition was observed [53].
The Hamiltonian is

Ĥ = −
N∑
i=1

σzi σ
z
i+1 − λ

N∑
i=1

σxi , (11)

where σx,zi are Pauli operators, we use periodic boundary
conditions, and λ is a dimensionless parameter. As λ is
varied, the system exhibits a quantum phase transition
at λc = 1 in the thermodynamic limit from a ferromag-
netic λ < λc to a paramagnetic λ > λc phase. We con-
sider a homodyne measurement of the coupling M̂ZZ =∑N
i=1 σ

z
i σ

z
i+1 and transverse-field M̂X =

∑N
i=1 σ

x
i .

The PSDs obtained by numerically integrating the SSE
(3) for a system with N = 10 and measurement opera-

tors M̂X and M̂ZZ are shown in Fig. 5(a,c), respectively.
We also obtain the PSDs using Eq. (5) for a system with
N = 6 spins for the same measurement operators in Fig.
5(b,d). In order to compare the PSDs for different val-
ues of λ, we always rescale the Hamiltonian such that its
spectrum spans the same frequency range (20 in dimen-
sionless units).

Similar to the Bose-Hubbard PSDs, the qualitative na-
ture of the PSDs change when we go from the ferromag-
netic to the paramagnetic phase. We note that the M̂X

PSDs in the ferromagnetic part is qualitatively similar to
the paramagnetic part of the M̂ZZ PSDs. This is true
for all the PSDs. The ferromagnetic part of M̂ZZ PSD
obtained using Eq. (5) in Fig. 5(d) is similar to the para-

magnetic M̂X PSDs.
To obtain the PSDs using the SSE (3), we start with

the ground state of the Hamiltonian (1) at t = 0. More-

over, if [Ĥ,M̂i] = 0 – e.g., when λ = 0 (1/λ = 0)

in the M̂ZZ (M̂X) measurement in the transverse-field
Ising model – the measurement process does not change
the initial wavefunction. This leads to a flat PSD with
no features. This is unlike the GKLS PSDs assuming
ρst = 1/N , where [Ĥ,M̂i] = 0 results in S(ω) ∝ δ(ω).

We have [Ĥ,M̂i] 6= 0 for the parameter ranges con-
sidered in Figs. 2 and 5. Therefore, the measurement
process is equivalent to an exploration of the phase space
even if we start with an eigenstate of Ĥ. However, we
believe that the integrability of the transverse-field Ising
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FIG. 5. We plot normalized PSDs S̃(ω) for the transverse-field Ising model, where we measure the observables: M̂X =
∑N

i=1 σ
x
i

and M̂ZZ =
∑N

i=1 σ
z
i σ

z
i+1. As in Fig. 2, the spectra in (a) and (c) are obtained by simulating the SSE, whereas (b) and

(d) are obtained with Eq. (5). The PSDs for the transverse-field Ising model were obtained for N = 10 spins for the SSE
calculations and N = 6 spins for the ones with Eq. (5). For all these four PSDs, we kept γ = 0.01. The insets in (b) and (d)
are rotated versions of the main plots. The abrupt change – cf. the order parameter vs λ plot in Fig. 3(b) – in the PSDs near
10−2 < λ < 10−1 is clearly visible. The height of the peak at ω = 0, however, changes continuously near 10−1 < λ < 1.

model is responsible for the absence of any peaks in the
ferromagnetic M̂ZZ PSD Fig. 5(c) obtained using Eq. (3).
Since we start with a mixed state ∝ 1 while using Eq. (5),

the M̂ZZ PSD still has a peak even in the ferromagnetic
phase.

V. CHANGE IN PSD DUE TO THE
COMMUTATION RELATION [Ĥ,M̂0]

In the foregoing analysis, we considered a Hamiltonian
that depended on a single parameter α. The measure-
ment operator M̂0 is chosen such that it commutes with
one part of the Hamiltonian Ĥ0 while not commuting
with the other: Ĥ1. Writing the commutation relation
between the Hamiltonian and the measurement operator
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FIG. 6. We plot |〈ψ0|
∑

i σ
z
i /N |ψ0〉| and |〈ψ0|

∑
i σ

x
i /N |ψ0〉| vs the parameter λ for the Hamiltonian (13) that does not have

a phase transition in Figs. (a) and (b), respectively. Here |ψ0〉 is the ground state of the Hamiltonian. Unlike the abrupt
transition (albeit in the log scale) in the order parameter for the transverse-field Ising model in Fig. 3(b), here we observe
a continuous change. Moreover, as we change the system size, the plots do not change as much as they did for the order
parameter in Fig. 3(b). In fact, the behavior of these expectation values is more akin to the inset of Fig. 3(b).

as [
Ĥ,M̂0

]
=
[
Ĥ0,M̂0

]
+ α

[
Ĥ1,M̂0

]
, (12)

we observe that M̂0 evolves from commuting with Ĥ to
not commuting as we change α. However, it is important
to note that [Ĥ,M̂0] 6= 0 for the range of α considered
in Sec. III with the identification α ≡ U/J and in Sec.
IV with α ≡ λ.

Nevertheless, one needs to be careful while discerning
the changes in PSDs due to phase transitions since in
the finite sized systems one expects to see some changes
in the PSDs simply because of the commutation proper-
ties (e.g., [Ĥ,M̂0] being equal or unequal to zero). To
illustrate this, we consider the Hamiltonian

Ĥ = −
N∑
i=1

σzi − λ
N∑
i=1

σxi , (13)

which does not go through a phase transition. The

ground state of Ĥ0 = −∑N
i=1 σ

z
i is connected to the

ground state of Ĥ1 = −∑N
i=1 σ

x
i by continuous rota-

tions. This is demonstrated by the ground state expec-
tation values of

∑
i σ

z
i /N and

∑
i σ

x
i /N in Figs. 6(a) and

6(b), both of which are similar to the inset of Fig. 3(b).
Similar to Sec. IV, we show the PSDs obtained for the

measurements M̂Z =
∑N
i=1 σ

z
i and M̂X =

∑N
i=1 σ

x
i in

Fig. 7 for the Hamiltonian (13) by using Eq. (5). Here
we see a continuous change in the PSDs between λ ≈ 0.1
and λ ≈ 1. Interestingly, this change appears at the same
interval in λ for six as well as for four spin PSDs. The
position of the peaks in ω are slightly different in the
four and the six spin PSDs, whereas the heights remain
almost unchanged.

We note that the changes in the PSDs due to the
commutation relations are not as abrupt as the ones
caused by the change in the Hamiltonian spectrum due
to a phase transition. We believe that the commuta-
tion relations change the PSDs trivially compared to the
changes occurring due to a phase transition, and these
two types of changes in the PSDs can indeed be differen-
tiated. However, to confirm this hypothesis peremptorily,
one either needs to independently verify with an exper-
iment or to perform numerics on a thermodynamically
large system.

VI. SUMMARY AND OUTLOOK

We show that it is possible to detect phase transitions
in the 1D Bose Hubbard model and the transverse-field
Ising model by discerning the qualitative changes in the
measurement signals of weak continuous measurements.
To observe these changes, one need not prepare the state
in a particular way or be confined to the ground state. We
believe that this method of detecting the phase transition
can be applied to various strongly interacting systems for
a range of experimentally realizable measurement opera-
tors.

We have focused on the situation where the system
Hamiltonian is known. In other situations of interest, this
might not be the case. It will be interesting to investigate
what can be deduced about a system’s Hamiltonian from
measurement records. Furthermore, our criterion may be
generalized to topological [54] and dynamical phase tran-
sitions [53], which have also been implemented success-
fully. Further exploration and, in particular, experiments
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FIG. 7. We plot normalized PSDs S̃(ω) for the Hamiltonian (13) with no phase transitions, where we measure the observables:

M̂X =
∑N

i=1 σ
x
i and M̂Z =

∑N
i=1 σ

z
i . In panels (a) and (b), we consider six spins, whereas in panels (c) and (d) we consider

four spins. All the PSDs are obtained with Eq. (5). Similar to Figs. 5(b,d), the heights of the three peaks change continuously
near 10−1 < λ < 1.

will be needed to assess the broader applicability of con-
tinuous measurements as a probe of phase transitions.
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ORGANIZATION OF THE APPENDICES

We start by reviewing a few important properties of
the Liouvillian and vectorization (the latter is also known
as the Choi-Jami lkowski isomorphism [55, 56]), which is
used extensively in the following calculations. We then
write the stochastic master equation keeping terms up
to order

√
dt. In the process, we compare the notations

of Refs. [25], [49], [27] and [26]. We go over the deriva-
tion for the autocorrelation function of the measurement
record F

(1)
hom(t, t + τ). Starting from the expression for

F
(1)
hom and making use of the quantum regression theo-

rem, we derive the expression for the PSD – Eq. (5) in
the main text. We further simplify this using the Choi-
Jami lkowski isomorphism and obtain Eqs. (7a) and (7b)
of the main text. We describe the numerical procedure
for obtaining the PSDs in Figs. 2(b,d), 5(b,d) and 4 in
the main text. We provide an expression and examples of
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pictorial representations of the matrix elements Mjk nec-

essary for constituting the measurement operator M̂0.
Finally, we describe the numerical integration procedure
for obtaining the PSDs in Figs. 2(a,c) and 5(a,c).

Appendix A: Liouvillian and Vectorization

Markovian dynamics of a linear and completely posi-
tive open quantum system can be described by a Gorini-
Kossakowski-Lindblad-Sudarshan (GKLS) master equa-
tion [25–30]

ρ̇ = −i[Ĥ, ρ] +
∑
i

γiD[L̂i]ρ(t), (A1)

where

D[L̂]ρ = L̂ρL̂† − 1

2

(
L̂†L̂ρ+ ρL̂†L̂

)
. (A2)

The GKLS master equation is linear in ρ, which allows
us to associate it with the so-called Liouvillian superop-
erator L satisfying ∂tρ = Lρ. The superoperator L is
trace preserving and generates the following completely
positive trace preserving map eLt describing the time evo-
lution of the system:

ρ(t) = eLtρ(0) =
∑
i

K̂i(t)ρ(0)K̂†i (t), (A3)

such that ∑
i

K̂†i (t)K̂i(t) = 1, (A4)

where the set of operators {K̂i} are called Kraus op-
erators. The above way of representing the completely
positive trace preserving map is called the operator-sum
representation.

Superoperators such as L act on the Liouville space
B(H) consisting of all the linear operators acting on
the Hilbert space. This space can itself be treated as
a Hilbert space with the Hilbert-Schmidt inner-product
〈〈Â|B̂〉〉 = Tr(Â†B̂). We use the notation |ρ〉〉 for a vec-
torized state that is created by stacking the columns of ρ.
In order to ease the calculations, we apply this vectorized
notation here [57]. The vectorized representation of L is

L = −i(1⊗ Ĥ − ĤT ⊗ 1)

+
∑
i

γi
2

(
2L̂∗i ⊗ L̂i − 1⊗ L̂†i L̂i − L̂Ti L̂∗i ⊗ 1

)
, (A5)

where AT denotes the transpose. Note that generally L
is a non-Hermitian matrix.

In this paper, we are only concerned with diagonal-
izable Liouvillians. For non-diagonalizable Liouvillians,
one needs to consider the Jordan normal form. Unlike the
Hamiltonian, the Liouvillian is generally not Hermitian,

i.e., the adjoint superoperator L† is not equal to L. For
this reason, the eigenvalues of L are generally complex
and it has different right and left eigenstates satisfying

L|rm〉〉 = λm|rm〉〉, (A6a)

L†|lm〉〉 = λ∗m|lm〉〉. (A6b)

We fix the normalization such that the left and right
eigenstates are orthonormal 〈〈rm|ln〉〉 = δmn, which is
called the biorthogonality. Enumerating the eigenstates
according to Eqs. (A6a) and (A6b), we obtain the follow-
ing completeness relation:∑

m

|rm〉〉〈〈lm| = 1. (A7)

We assume that the open system dynamics are due to a
continuous weak measurement of a single Hermitian op-
erator L̂ = M̂0. At long times, the unmonitored system
will reach a steady state of L defined by L[ρst] = 0, i.e., a
member of the kernel of the operator L. For a Hermitian
operator, we make the simple observation that

L[1] = −[Ĥ,1] + γM̂01M̂0

− γ

2

(
M̂2

01 + 1M̂2
0

)
= 0, (A8)

which shows that 1/N is always a stationary state where
N is the dimension of the Hilbert space. In general, there
is no guarantee that this is the only stationary state, but
we assume

ρst = 1/N (A9)

for simplicity.

Appendix B: Stochastic Master Equation

We write the stochastic master equation (SME) cor-
responding to the stochastic Schrödinger equation (SSE)
considered in the main text. In the SME, we only keep
the terms upto order

√
dt. In the process, we reconcile

the derivations and notations of Refs. [25], [26], [27] and
[49].

The definition of homodyne current in Refs. [49], [27]
and [26] is as follows:

λt[Ô] =
〈
Ô
〉
ρ

dt+
dWt√

8K
. (B1)

The corresponding SSE is

d
∣∣ψ̄ (t)

〉
=
{
−iHdt−KÔ2dt

+4KÔλt[Ô]
} ∣∣ψ̄ (t)

〉
, (B2)
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where
∣∣ψ̄ (t)

〉
symbolizes the non-normalized wavefunc-

tion. We obtain the homodyne current and the SSE of
the main text from Eqs. (B1) and (B2) as follows:

define: I(t)dt =
γ

2
λt[Ô]; (B3a)

replace: Ô → 4M̂0, K →
γ

32
. (B3b)

While applying the prescription (B3b) in Eq. (B2), one
does not change the wavefunction

∣∣ψ̄ (t)
〉
.

We now apply the prescription (B3b) to the SME of
Ref. [49]. Before we do so, we clarify the different defini-
tions of the Lindblad superoperator appearing in different
references. We list all the definitions below as

Refs. [25], [26], [27] and the current manuscript: D[Ô]ρ = ÔρÔ† − 1

2

{
Ô†Ô, ρ

}
, (B4a)

Ref. [49]: D[Ô]ρ = 2ÔρÔ† −
{
Ô†Ô, ρ

}
. (B4b)

For the rest of the discussion, we will be using the definition (B4a). The SME conditioned on the random measurement
outcome (B1) is

dρ = − i
h̄

[H, ρ] dt+ 2KD[Ô]ρ dt+ 4KH[Ô]ρ

(
λt[Ô]−

〈
Ô
〉
ρ

dt

)
︸ ︷︷ ︸

=
√

2KH[Ô]ρdWt

, (B5)

where H[Ô]ρ = Ôρ+ ρÔ† −
〈
Ô + Ô†

〉
ρ
ρ. All the references agree on the definition of H[Ô]ρ. Here, we consider the

detector to be 100% efficient. Also, since we are using the definition (B4a), the coefficient of the second term is 2K
instead of K (cf. Eq. (5) of [49]).

Using the prescription (B3b) we replace
√

2K by
√
γ/4 and Ô by 4M̂0. Additionally, we write 〈· · · 〉ρ as 〈· · · 〉 for

notational convenience. Finally, we obtain

ρ(t+ dt) = ρ(t) +

(
− i
h̄

[H, ρ] + γD[M̂0]ρ

)
dt+

√
γH[M̂0]ρ dWt

≈ ρ(t) +
√
γ
(
M̂0ρ(t) + ρ(t)M̂†0

)
dWt −

√
γ
〈
M̂0 + M̂†0

〉
dWt,

(B6)

where we have retained terms only upto order
√

dt. Later in this manuscript, we consider ρ(t) is a priori known to
be ρst = 1/N . In the above equation, ρ(t+ dt) is conditioned on the homodyne current until time t.

Appendix C: Output Field Correlation Function

We revisit the derivation for the autocorrelation function of the measurement record F
(1)
hom(t, t+τ) = E[I(t+τ)I(t)].

Note that we write the autocorrelation function as F (1). This is because of its relation to Glauber’s first-order
coherence function. Here we follow Ref. [25] closely. The steps are as follows:

F
(1)
hom(t, t+ τ)(dt)2 = E [I(t+ τ)I(t)] (dt)2

=
γ2

4
E
[
λt+τ [Ô]λt[Ô]

]
=
γ2

4
E

[(
4
〈
M̂0

〉
(t+ τ) dt+

dWt+τ√
γ/4

)(
4
〈
M̂0

〉
(t) dt+

dWt√
γ/4

)]

=
2γ2

√
γ

E
[〈
M̂0

〉
(t+ τ) dWt

]
dt+ γE [dWt+τ dWt]︸ ︷︷ ︸

=γδ(τ)(dt)2

+4γ2E
[〈
M̂0

〉
(t+ τ)

] 〈
M̂0

〉
(t)(dt)2.

(C1)

While obtaining
〈
M̂0

〉
(t + τ), the trace is calculated with the density operator of Eq. (B6) and by identifying dt

with τ . The factorization in the last term of the last line is justified because ρ(t) is given. Using similar argument we
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have

E
[
dWt+τ

〈
M̂0

〉
(t)
]

= E [dWt+τ ]︸ ︷︷ ︸
=0

〈
M̂0

〉
(t) = 0. (C2)

We explicitly calculate the first term of the last line in Eq. (C1) as follows:

E
[〈
M̂0

〉
(t+ τ) dWt

]
dt = Tr

[
M̂0e

LτE
[{

1 +
√
γ dWtH[M̂0]

}
ρ(t) dWt

]]
dt

=
√
γ Tr

[
M̂0e

Lτ
(
M̂0ρ(t) + ρ(t)M̂0

)]
(dt)2 − 2

√
γ Tr

[
M̂0e

Lτρ(t)
] 〈
M̂0

〉
(t)(dt)2.

(C3)

In the first line, eLτ provides the noise averaged time evolution between t + dt and t + τ . In the final line, we used
the Itô rule. While expanding the superoperator H[M̂0], we also used the fact that M̂0 is self-adjoint. Substituting
Eq. (C3) into Eq. (C1), we obtain

F
(1)
hom(t, t+ τ)(dt)2 = 2γ2 Tr

[
M̂0e

Lτ
(
M̂0ρ(t) + ρ(t)M̂0

)]
(dt)2 − 4γ2 Tr

[
M̂0e

Lτρ(t)
] 〈
M̂0

〉
(t)(dt)2

+ γδ(τ)(dt)2 + 4γ2E
[〈
M̂0

〉
(t+ τ)

] 〈
M̂0

〉
(t)(dt)2.

(C4)

To simplify the last term of Eq. (C4), we note the following:

E
[〈
M̂0

〉
(t+ τ)

] 〈
M̂0

〉
(t) = Tr

[
M̂0e

LτE
{(

1 +
√
γ dWtH[M̂0]

)
ρ(t)

}]〈
M̂0

〉
(t)

= Tr
[
M̂0e

Lτρ(t)
] 〈
M̂0

〉
(t) +

√
γ Tr

M̂0e
Lτ E

(
dWtH[M̂0]ρ(t)

)
︸ ︷︷ ︸

=0

〈M̂0

〉
(t)

= Tr
[
M̂0e

Lτρ(t)
] 〈
M̂0

〉
(t),

(C5)

where in the second to last line while performing the E operation, we recall that dWt and H[M̂0]ρ(t) are statistically
independent. Using Eq. (C5) into Eq. (C4) and substituting ρ(t) = ρst = 1/N , we finally obtain the autocorrelation
function as

F
(1)
hom(t, t+ τ) = γ2 Tr

[(
M̂0 + M̂†0

)
eLτ

(
M̂0ρ

st + ρstM̂†0
)]

+ γδ(τ) =
4γ2

N
〈〈M̂0|eLτ |M̂0〉〉+ γδ(τ), (C6)

where we have used vectorization and that M̂0 is self-adjoint to write the final expression. The δ-function in this
formula arises due to the local oscillator shot noise or vacuum noise.

Appendix D: Homodyne Spectrum: Exact Analytical Result

The power spectral density is the Fourier transformation of F
(1)
hom(t, t + τ) with the δ-function dropped. First,

note that the result of eLτ acting on the Hermitian operator M̂0ρ
st + ρstM̂†0 can be written using the operator-sum

representation, see Eq. (A3). As a result, the autocorrelation function (without the δ-function) is the trace of a
Hermitian operator, which is real. Moreover, the autocorrelation function is an even function in τ . Using these
properties, we obtain

S(ω) =
8γ2

N
Re

[∫ ∞
0

〈〈M̂0|eLτ |M̂0〉〉e−iωτdτ

]
=

8γ2

N
h(ω,M̂0,M̂0), (D1)

where

h(ω, Â, B̂) = Re

[∫ ∞
0

〈〈Â|eLτ |B̂〉〉e−iωτdτ

]
= Re

[∑
m

〈〈Â|rm〉〉〈〈lm|B̂〉〉
∫ ∞

0

e[Re(λm)+i(Im(λm)−ω)]τdτ

]
. (D2)

Here we have inserted unity (A7) and used that |rm〉〉 is a right eigenstate.
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For calculating the integral we must consider two special cases∫ ∞
0

e[Re(λm)+i(Im(λm)−ω)]τdτ =
1

iω − λm
for Re(λm) < 0, (D3a)∫ ∞

0

ei(Im(λm)−ω)τdτ = πδ (ω − Im(λm)) + P
(

1

iω − iIm(λm)

)
for Re(λm) = 0, (D3b)

where P denotes the Cauchy principal value. We do not need to consider the case for Re(λm) > 0 since L cannot
have eigenvalues with positive real part. Notice the Cauchy principal value is similar to the result in Eq. (D3a) but
there is an additional δ-function contribution in the second integral. Plugging this into Eq. (D2) gives the result

h(ω,A,B) =
∑

Re(λm)<0

−Re(λm)Re(tm) + [ω − Im(λm)] Im(tm)

[ω − Im(λm)]
2

+ [Re(λm)]
2

+
∑

Re(λm)=0

[
πRe(tm)δ (ω − Im(λm)) + P

(
Im(tm)

ω − Im(λm)

)]
(D4)

where tm = Tr[A†rm]Tr[l†mB]. This is also the result given in the main text in Eqs. (7a) and (7b).

Appendix E: Homodyne Spectrum: Numerical
Computation

In this section, we describe how we compute S(ω) nu-
merically. In principle, we could diagonalize L and utilize
Eqs. (7a) and (7b) of the main text. However, this is not
feasible due to the large dimensionality of the Liouville
space. Instead, from Eq. (D2) we observe that

S(ω) =
8γ2

N
Re
[
〈〈M̂0|(iω1− L)−1|M̂0〉〉

]
=

8γ2

N
Re
[
〈〈M̂0|ξ̂〉〉

]
. (E1)

For numerical convenience, we have introduced |ξ̂〉〉 as
the solution to the linear equation system

(iω1− L)|ξ̂〉〉 = |M̂0〉〉. (E2)

This equation must be solved for each value of ω. The
matrix (iω1 − L) preserves the sparsity of the original
Hamiltonian. Even then, we could only compute the nu-
merical spectrum for the 1D Bose-Hubbard model with
four sites and four particles, and for the transverse-field
Ising model with N = 6 spins. Recall that we could sim-
ulate the SSE for the 1D Bose-Hubbard model with six
sites and six particles, and for the transverse-field with
N = 10 spins.

We observe from Eqs. (D1) and (D4) that S(ω) is sin-
gular if Re(λm) = 0 and Im(λm) = ω. The system cannot
be solved for ω = 0, since L is singular. In the transverse-
field Ising (Bose-Hubbard) model, we solve Eq. (E2) for
204 (818) linearly spaced values of ω between 0.04 (0.01)
and 8.00 in dimensionless units. We do not encounter any
singularities for these frequency grids. However, in our
numerical experience, the system becomes much harder
to solve as ω → 0.

Appendix F: The Measurement Operators in the
Bose-Hubbard Model

We write a dispersive measurement operator as

M̂0 =
∑
j,k

Mjk b̂
†
j b̂k, (F1)

where b̂†i creates a boson at the ith optical lattice site.
One obtains the matrix elements in terms of the Wannier
functions as

Mjk =
g2

∆

∫
|fa(x, ωL)|2w∗j (x)wk(x)dx, (F2)

where g denotes the coupling strength between the probe
laser and the ultracold atomic system, fa(x, ωL) is the
spatial mode function, and ∆ is the detuning of the probe
from the atomic transition [58–60]. For the two measure-
ment operators considered in the main text, the entries
of the matrices are displayed as images in Fig. 8. From
there we have

M̂pop : Mjk ≈ mpopδj,kδmod(j,2),0, (F3a)

M̂coh : Mjk ≈ mcoh (δj,k−1 + δj,k+1) + dcohδj,k, (F3b)

where mod() denotes the modulo operation. We ignore
the term dcohδj,k in our numerical integration. This is

because this term leads to a constant shift Ĉ = dcohNb in
M̂coh with Nb = 6 being the total number of bosons in
the system, and the normalized Itô SSE

d|ψ(t)〉 =
[
−iĤ − γ

2

(
M̂0 −

〈
M̂0

〉)2

dt

+
√
γ
(
M̂0 −

〈
M̂0

〉)
dW

]
|ψ(t)〉 (F4)

remains unchanged under the transformation M̂0 →
M̂0 + Ĉ, where Ĉ is a constant operator.
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FIG. 8. Entries of Mjk. On the left, we have M̂pop when the probe wavelength is twice the lattice one and there is no phase
difference between the probe and the optical lattice. A π/2 phase shift between the probe and the lattice, while keeping the

periodicity the same, leads to M̂coh on the right. The lattice depth equals five recoil energies.

Appendix G: Numerical Integration of the
Stochastic Schrödinger Equation

We start with the Itô SSE

d|ψ̄(t)〉 =
[
−iĤ − γ

2
M̂2

0 + I(t)M̂0

]
dt|ψ̄(t)〉 (G1)

that describes the time evolution of a non-normalized
wavefunction |ψ̄〉. We have written the homodyne mea-
surement signal I(t) as

I(t) = 2γ〈M̂0〉+
√
γ dW/dt. (G2)

To obtain the PSDs in Figs. 1(b,d,f,h) of the main text,
we use the Stratonovich form of the SSE [25, 61]

d|ψ̄(t)〉 =
[
−iĤ − γM̂2

0 + I(t)M̂0

]
dt|ψ̄(t)〉. (G3)

We need this form because the chain rule for Stratonovich
equations is equivalent to the chain rule of conventional
calculus.

Discretizing the full time interval (0, tfin], we write the
wavefunction at the (j + 1)th step as

|ψ̄(tj+1)〉 ≈ |ψ(tj)〉+ eĜ(tj) |ψ(tj)〉 , (G4)

where

Ĝ(tj) =
[
1− iĤδt

+ γ
(

2M̂0 〈ψ(tj)| M̂0 |ψ(tj)〉 − M̂2
0

)
δt

+
√
γM̂0

√
δtSj

]
, (G5)

δt = tj+1 − tj is the infinitesimal time increment, and
Sj is a random number drawn from a standard normal
distribution. To compute eĜ(tj) |ψ(tj)〉, we use a Krylov
subspace projection technique. Instead of computing the
matrix exponential in isolation, this technique directly
computes the action of the exponential operator on the
wavefunction. Although we used the normalized wave-
function |ψ(tj)〉 on the right-hand side of Eq. (G4), we
need to normalize the wavefunction again at the (j+1)th

step using |ψ(tj+1)〉 = |ψ̄(tj+1)〉/
√
〈ψ̄(tj+1)|ψ̄(tj+1)〉.

Model tin tfin l

Bose-Hubbard 1.9× 105 2.0× 105 50

Transverse-field Ising 4.0× 104 5.0× 104 50

TABLE I. Numerical values of tin, tfin and l.

After numerically obtaining the trajectories
{|ψ(tj)〉 , I(tj)} for all the time steps in the interval
(0, tfin], we discard the initial transients corresponding
to the part (0, tin]. To obtain a noise averaged smoother
PSD, we divide the considered quantum trajectory into
l parts and calculate the average PSD. The values of
tin, tfin and l for Bose-Hubbard and the transverse-field
Ising model are given in Table I. We have considered
the infinitesimal time increment δt to be 0.01 for all the
trajectories. We also show how the PSD depend on l in
Fig. 9.
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FIG. 9. The dependence of a PSD on the noise averaging. We show the PSDs for the Bose-Hubbard model, where we measure
M̂coh. The value of l is 1, 20 and 50 in (a), (b) and (c), respectively. In the inset of (a), we restrict the S̃(ω) range to
[0, 4× 10−3] for the l = 1 PSD, to have a better comparison with the PSDs in panels (b) and (c). All the PSDs predict similar
values for the transition point.

[1] S. Sachdev, Quantum Phase Transitions, 2nd Edition,
Cambridge University Press, Cambridge (2011).

[2] M. Vojta, Quantum phase transitions, Rep. Prog. Phys.
66, 2069 (2003).

[3] T. Vojta, Quantum phase transitions in electronic sys-
tems, Ann. Phys. (Leipzig) 9, 403 (2000).

[4] S. Elhatisari, N. Li, A. Rokash, J. M. Alarcón, D. Du, N.
Klein, B.-N. Lu, U.-G. Meißner, E. Epelbaum, H. Krebs,
T. A. Lähde, D. Lee, and G. Rupak, Nuclear Binding
Near a Quantum Phase Transition, Phys. Rev. Lett. 117,
132501 (2016).

[5] T. W. B. Kibble, Some implications of a cosmological
phase transition, Phys. Rep. 67, 183 (1980).

[6] W. H. Zurek, Cosmological experiments in condensed
matter systems, Phys. Rep. 276, 177 (1996).

[7] S. Diehl, A. Tomadin, A. Micheli, R. Fazio, and P.
Zoller, Dynamical Phase Transitions and Instabilities in
Open Atomic Many-Body Systems, Phys. Rev. Lett. 105,
015702 (2010).

[8] M. Heyl, A. Polkovnikov, and S. Kehrein, Dynamical
Quantum Phase Transitions in the Transverse-Field Ising
Model, Phys. Rev. Lett. 110, 135704 (2013).

[9] H. Weimer, Variational Principle for Steady States of Dis-
sipative Quantum Many-Body Systems, Phys. Rev. Lett.
114, 040402 (2015).

[10] A. Patra, B. L. Altshuler, and E. A. Yuzbashyan, Driven-
dissipative dynamics of atomic ensembles in a reso-
nant cavity: Nonequilibrium phase diagram and periodi-
cally modulated superradiance, Phys. Rev. A 99, 033802
(2019).

[11] A. Patra, B. L. Altshuler, and E. A. Yuzbashyan, Chaotic
synchronization between atomic clocks, Phys. Rev. A
100, 023418 (2019).

[12] A. Patra, B. L. Altshuler, and E. A. Yuzbashyan, Driven-
dissipative dynamics of atomic ensembles in a resonant
cavity: Quasiperiodic route to chaos and chaotic synchro-
nization, Ann. Phys. 417, 168106 (2020).
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