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ABSTRACT

Motivated by potential applications in cardiac research, we consider the task of reconstructing the dynamics within a spatiotemporal chaotic
3D excitable medium from partial observations at the surface. Three artificial neural network methods (a spatiotemporal convolutional long-
short-term-memory, an autoencoder, and a diffusion model based on the U-Net architecture) are trained to predict the dynamics in deeper
layers of a cube from observational data at the surface using data generated by the Barkley model on a 3D domain. The results show that
despite the high-dimensional chaotic dynamics of this system, such cross-prediction is possible, but non-trivial and as expected, its quality
decreases with increasing prediction depth.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0126824

Despite recent advances in the development of more powerful
measurement devices, there are still quantities of interest that are
difficult or impossible to access experimentally. An example of
this limitation is the electrical activity in the heart muscle, which
drives its pumping function and may be governed by (chaotic) spi-
ral waves in the case of cardiac arrhythmia. A possible approach
to fill this gap could be a reconstruction of the electrophysiologi-
cal dynamics inside the heart (muscle) from available data, e.g., at
the surface of the heart or the body. To address the general ques-
tion of whether such a reconstruction is possible even in the case
of strongly chaotic dynamics, we study a generic case given by a
3D chaotic Barkley model and compare the performance of three
advanced machine learning algorithms used for this task. The
prediction results obtained suggest that reconstruction of hidden
cardiac activity may be feasible in future diagnostics.

I. INTRODUCTION

Observations of spatially extended dynamical systems may be
limited in the sense that there are regions of space where direct
measurements are difficult and expensive, or not possible at all.
Such limitations apply, for example, in geophysics, where more
effort is required to obtain data from deeper layers or remote areas
that are not easily accessible. In medical applications, electrophys-
iology in the heart muscle is another example.1 While mechanical
contractions can be studied in 3D with high-speed ultrasound,2

the corresponding electrical excitation waves cannot be measured
directly, but only by analyzing (multichannel) electrocardiograms
(ECGs) measured on the body surface or, in the case of removed
animal hearts in Langendorff perfusion, by visualizing the electri-
cal activity on the heart surface with the aid of fluorescent dyes in a
process called optical mapping.3,4 Direct experimental observation
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of the electrical excitation waves in the myocardium that con-
trol the mechanical contraction of the heart is not yet possible.
This limitation is particularly a problem in the study of cardiac
arrhythmias such as life-threatening (ventricular) fibrillation, in
which spatiotemporal chaotic dynamics prevents effective pumping.
Therefore, the general question arises whether it is in principle pos-
sible to estimate or reconstruct the dynamics inside the myocardium
from surface data obtained ex vivo by optical mapping, or in vivo
by multichannel ECG time series, or from (ultrasound) measure-
ments of mechanical contraction of the heart.1,5–7 In what follows,
we address the former task in a more abstract dynamical systems
context using simulation data generated using a 3D Barkley model
with chaotic dynamics.

Recent studies of the task of reconstructing the excitation
dynamics in deeper cardiac layers employed and adapted data
assimilation techniques from meteorology where the evolution of a
physics-based model is corrected by incoming observations (here:
from the surface).8–11 This approach was successfully applied to
synthetic data generated by the Fenton–Karma model and the algo-
rithms’ sensitivity to model errors and other perturbations has been
investigated.

Data assimilation methods require a physical model that is used
to evolve the state of the system, which is then corrected using new
observational data. An alternative are purely data-driven models
trained on data sets representing the dynamics of interest to be stud-
ied. Such model-free approaches have proven to be very powerful in
the recent past.12–14 For these approaches, data sets may be generated
by some physical model or, if possible, obtained from experimen-
tal measurements. In general, such a data-driven approach can be
motivated by delay embedding theorems15–17 suggesting that the
measurement of some observables (for our current study: at the sur-
face of a 3D cube) should in principle allow the reconstruction of all
other variables of the system (here: any location within the cube).
In practice, however, it is not clear whether this reasoning applies
to this kind of extended (i.e., infinite dimensional) dynamical sys-
tem and, even if it does, how large the embedding dimensions must
be, if the system is dominated by a rather high-dimensional attractor
(which is the case for the 3D Barkley model used here). Therefore, to
investigate the practical limitations of cross-prediction, we applied
three different machine learning architectures known for their abil-
ity to learn highly complex input–output relationships, using train-
ing and test data generated by a chaotic 3D Barkley model. The
first variable u of the Barkley model corresponds in its dynamical
role to the transmembrane voltage of cardiac cells. Therefore, this
setup can be viewed as an idealized and simplified test case for the
general prediction task “from the surface into depth” in extended
excitable media, which serves to investigate the feasibility and lim-
itations of machine learning methods for this reconstruction task.
Motivated by the ongoing successes of machine learning in many
non-linear dynamics fields: like fluid mechanics,18 protein struc-
ture prediction19 or model reduction and system identification,20 we
investigated three different machine learning approaches, presented
in Sec. II B, as a solution to the prediction task “from the surface into
depth.” We will show that the desired reconstruction is possible in
principle for layers not too far from the surface, but requires sophis-
ticated and high-performance algorithms to achieve this nontrivial
goal.

II. METHODS

In the following Sec. II A, we will describe the data set which
serves as a test case in this study. Then, in Sec. II B, we will intro-
duce the machine learning algorithms used to predict the excitation
dynamics in deeper layers of the data set from surface data.

A. Generation of 3D chaotic excitation waves using

the Barkley model

The data set used in the following for training and testing
different data-driven prediction algorithms was generated by the
(cubic) Barkley model21–23

∂u

∂t
= D · ∇2u +

1

ε
u(1 − u)

(

u −
v + b

a

)

,

∂v

∂t
= u3 − v,

(1)

in 3D with no-flux boundary conditions.17 The fast variable u of this
generic model of an excitable medium is diffusively coupled in space
and corresponds to the transmembrane voltage in a cardiac- or neu-
ral context. Therefore, this variable is in the following assumed to
be observable and sampled in space and time. For parameter val-
ues a = 0.75, b = 0.06, ε = 0.08, and D = 0.02, Eq. (1) generates
chaotic spiral waves as illustrated in Fig. 1.

The 3D-simulations of the Barkley model Eq. (1) were con-
ducted on a cube, discretized by a regular grid. To discretize the
Laplace operator ∇2 in Eq. (1), a 7-point stencil

(

∇2
7 u

)

i,j,k
=

[

ui−1,j,k + ui+1,j,k + ui,j−1,k + ui,j+1,k

+ui,j,k−1 + ui,j,k+1 − 6ui,j,k

]

/1s2

was used where the indices i, j, and k stand for the discrete
positions in the cube and 1s = 0.1 for the spatial discretization.
While detailed studies of particular features of excitable (cardiac)
media would benefit from using higher order approximations of the
Laplace operator using 19-point or 27-point stencils,24,25 the cur-
rent task to generate chaotic scroll-wave data does not require high
fidelity simulations. Therefore, we chose here the 7-point stencil to
keep the generation of data as simple as possible. The resulting sys-
tem of ODEs was solved by the explicit Euler method with time steps
of length 1t = 0.01 and no-flux boundary conditions.

To generate initial conditions that result in a chaotic evolution,
the cube was divided into equilateral sub-cubes of size 6 · 1s in each
dimension, where all grid points in each of the generated sub-cubes
of size 6 × 6 × 6 grid points had the same u- and v-values, respec-
tively. The values for u were randomly chosen between 0 and 1 from
a uniform distribution. If the value exceeded 0.4 in a sub-cube, v
was set to 1.0 in the same sub-cube. If this was not the case, v was
set to 0.

Using this procedure for initialization, 2859 individual simu-
lations were performed to generate training data using randomly
chosen transient times between 3000 and 3500 Euler time steps of
size 1t = 0.01. After that initial phase, the u value was recorded
every 16th time step until 32 of such recordings had taken place.
The effective sampling time was thus tS = 16 · 1t = 0.16 and the
sampled trajectory segments cover a period of time of 32tS = 5.12
which corresponds to 512 Euler steps. Although it is possible that
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FIG. 1. Snapshot of the simulation of the Barkley model equation (1) showing
the u variable on a regular grid of size 120 × 120 × 120. For better visibility, the
voxels with u < 0.5 are not displayed up to a depth of 32 voxels.

the dynamics is not chaotic after the initial phase, we did not observe
this, so no simulations were subsequently discarded.

For a more intuitive understanding of the time span, we intro-
duce a characteristic time Tc. We determine Tc by first calculating
the Fourier transform of the time series of each voxel and average
over all Fourier amplitude spectra. Then, the dominant frequency
of the resulting averaged spectrum is determined which is the fre-
quency with the largest amplitude. The period length corresponding
to the dominant frequency is used as characteristic time scale Tc. For
such calculation, we simulate 16 Barkley systems within the cube,
which last over an extended time of 8192 time steps to reduce statis-
tical fluctuations. This ensures that the simulation time exceeds the
characteristic time by a multiple. The value of Tc can be regarded as
an average period length of the signal in each voxel and corresponds
in the chaotic Barkley system to 585 Euler steps of size 1t. Therefore,
the maximal regarded time, covered by the input time series which
last 512 Euler steps, is slightly shorter than the average period length.

At each sampling point in time from the 3D regular grid with
120 × 120 × 120 nodes, only the first 32 layers in depth were stored

for further use. As a result for each initial condition, we obtained an
array X∗ with 32 × 120 × 120 × 32 elements, where the first dimen-
sion describes the (sampling) time and the last three ones the spatial
resolution (height, width, depth). Due to the reflection symmetries
of the cube, any of its 6 surface can be considered as input and there-
fore, any chaotic trajectory generates six of the sequences X∗ that
were all included in the data set.

A slice at time t and depth d is denoted by xt,d. The input
for the artificial neural networks (ANNs) studied in this work are
time series at the surface x = {xt,0} for t = 0, . . . , 31 where x is an
array with 32 × 120 × 120 elements, representing a delay embed-
ding forward in time. The desired output in a deeper layer y = x0,d

for a given d > 0 is an array with 120 × 120 elements. The task
of the data-driven machine leaning is to find the mapping N : (32
× 120 × 120) → (120 × 120), such that N (x) ≈ y.

B. Neural network architectures

Within the framework of this study, three approaches have
been investigated for the reconstruction task: A spatiotempo-
ral (ST) spatiotemporal convolutional long-short-term-memory26

(called ST-LSTM), an autoencoder27 (AE), and a diffusion model28–30

(DM) based on a U-Net31 architecture. The ST-LSTM reconstructs
individual layers using its internal states and an input representa-
tion, coming from a recurrent encoder. The AE approach predicts a
block of several layers at once and the DM reconstructs exactly one
slice. Therefore, for the ST-LSTM and DM approach, 32 individual
networks are trained, each for one specific layer. By contrast, only
one network needs to be trained for the AE. In the following, the
three ANNs are introduced.

1. ST-LSTM

The ST-LSTM is based on the LSTM neural network
architecture.32 An LSTM is a recurrent neural network, which is
designed to iteratively process temporal sequences. Fundamentally,
it relies on the (so-called) LSTM cell, which is a mathematical func-
tion that outputs “states,” based on individual time steps of the input
time series. States usually divide into the actual cell state C, and
the hidden state h. Those are iteratively updated with each time
step as inputs. In the LSTM, connection weights are updated dur-
ing the learning process such that the network’s behavior represents
the underlying time series. In Fig. 2 (left), the computational graph
of an LSTM is visualized, which is developed with each step of the
time series x. The figure shows an example of a stacked LSTM with
three layers, where, first, the states C and h are developed over time
and then passed on to serve as input of another LSTM cell at the
respective time step. In contrast to the computational graph of the
stacked LSTM, the ST-LSTM has an additional state M, as visualized
in Fig. 2 (right). The M-state is, at first, developed through the layers
of a given time step and then passed from its top layer to the bottom
layer of the next time step. Therefore, in a stacked ST-LSTM, the
M-state is not exclusively evolved in time and then transmitted to the
next layer, such as the h-state. The ST-LSTM is based on the work of
Wang et al.32 who motivate this approach by the fact that memory
cells that belong to a stack of layers are in the original LSTM mutu-
ally independent and updated merely in the time domain. Under
these circumstances, the bottom layer would totally ignore what
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FIG. 2. Comparison of the computational flow within a stacked LSTM and a stacked ST-LSTM. The red arrows (right) mark the additional computations of the M-state and
its computational flow. (a) Long-short-term-memory (LSTM). (b) Spatiotemporal LSTM (ST-LSTM).

had been memorized by the top layer in the previous time step.
This caveat can be mended by propagating M-states. The ST-LSTM
model in this work consists of a decoder and encoder part, where
each of the parts consists of a stacked convolutional neural network
with an ST-LSTM (see Fig. 3). After passing the whole sequence x to
the encoder, a representation in a form of the states h, C and M with
fixed dimensionalities is obtained. The decoder then uses h, C and
M as state inputs and the h state as time step input to reconstruct y
iteratively. The convolutional networks are supposed to down and
upscale the inputs and outputs of the ST-LSTMs.

2. Convolutional autoencoder

The convolutional autoencoder (CAE) is a feed forward net-
work that consists of a fully convolutional encoder and decoder,
connected by dense layers. Given a surface time series {xt}t∈{0,...,31},
the autoencoder learns a low-dimensional representation in the
code-block (Fig. 4, middle), from which the depths {yd}d∈{0,...,31} at
time t = 0 can be reconstructed. A scheme of the architecture is
sketched in Fig. 4.

The encoder and decoder consist of three sub-blocks each,
where each sub-block contains a (de-)convolutional layer, a batch
normalization layer and a ReLU activation. In the encoder, three-
dimensional convolutions take place in one temporal and two spatial

dimensions of the surface time series with a 4 × 4 × 4 kernel and
a 2 × 2 × 2 stride. The decoder then re-generates the three spatial
dimensions of the model output.

3. Diffusion model

For the diffusion model, we consider the reconstruction prob-
lem as an application of Bayes’ rule. Let yd be the non-observable
quantity at some desired depth d and x the observable quantity.
The task is to reconstruct yd based on x. Assuming that there is a
connection between yd and x, an observation distribution p(x|yd) is
considered. If p(x|yd) and p(yd) are known, then yd can be recon-
structed by sampling from p(yd|x). Since the prior distribution p(yd)

is unknown an artificial neural network shall be utilized as a gener-
ative model to approximate the prior distribution by training it on

a dataset {y
(1)
d , . . . , y(N)

d } ∼ p(yd), where N = 15 439 is the number
of training samples. Given the estimation of p(yd) and the observa-
tion distribution p(x|yd), the posterior distribution p(yd|x) can be
determined through using Bayes, s.t.:

p(yd|x) =
p(x|yd)p(yd)

p(x)
.

FIG. 3. Scheme of the LSTM model with an encoder–decoder structure consisting of CNNs and ST-LSTM’s.
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FIG. 4. Scheme of the autoencoder consisting of a fully convolutional encoder and decoder.

In the context of this work x is not a measurement at one fixed time
t but a sequence of measurements xt1 , xt2 , . . . . If this measurements
were independent their joint distribution would be the product of
marginal distributions. However, this assumption would only be
valid if the 1t between two measurements were large enough, which
is not the case here. Instead, a multilayer perceptron with one hidden
layer is used to approximate {p(x1), . . . , p(xT)} 7→ p(x). To approxi-
mate the prior distribution p(yd) a score based generative model33,34

based on the U-Net architecture31 is used. This allows an iterative
sampling with a controllable generation conditioned on x. To learn a
sampling of yd from p(yd), a stochastic process on a fixed time inter-
val [0, 1] is used. By applying the stochastic process to the training
data y, they become successively noisy. This progression is illus-
trated in Fig. 5. A fundamental part of the approach adopted here
is to train the ANN to invert this process. In this way, a generator
is obtained which, starting from a noisy input field generates a field
which looks like a snapshot of the Barkley model. In order not to
generate just any random snapshots of the dynamics, we continue to
condition our network.

For this time information is incorporated via Gaussian random
features, based on a so-called Gaussian Fourier Projection, where for
a time step t ∈ [0, 1] the corresponding Gaussian random feature is
defined as [sin(2πωt); cos(2πωt], where [·; ·] denotes the concate-
nation of two vectors and ω a randomly sampled weight for a normal
distribution with an expected value around a trained expected value
and a trained variance. In this way, the ANN is trained not only
to reconstruct some random snapshot of the Barkley model but
to reconstruct the desired slice according to the input. For sam-
pling, an exponential moving average of weights of the ANN was
implemented. The architecture for the ANN is based on a U-Net31

architecture as shown in Fig. 6, which has been extended to include
Gaussian random features. A further modification compared to the
standard U-Net is the use of smoothed rectified linear unit activa-
tion functions35 (SmeLU). The final sampling from the network is
implemented analogously to Song et al.33

C. Implementation details

1. Spatiotemporal long short-term memory

The ST-LSTM was implemented with PyTorch.36 Considering
each time step when computing the gradient for backpropagation
through time leads to linear growth of the needed memory with the
number of time steps. Therefore, a batch size of 4 was the maxi-
mum possible, while having a memory allocation below the available
32GB. For training, a learning rate scheduler was implemented, such
that the learning rate was reduced by the factor of 3, as soon as the
loss did not decrease during 512 iterations. The loss function was the
mean squared error. The data were augmented by randomly rotat-
ing each sample either 0, 90, 180, or 270 degrees along the normal in
each epoch.

2. Autoencoder

The autoencoder was implemented with PyTorch.36 The net-
work was trained using the general-purpose layer-wise adaptive
large batch optimizer37 (LAMB). Training was stopped when the
validation loss did not improve for five consecutive epochs and the
model state from the epoch with the lowest validation loss was saved.
No data augmentation was used. The training loss function was the
mean squared error.

FIG. 5. Perturbation of yt in the time interval [0, 1] to the point of Gaussian noise.
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FIG. 6. U-Net based architecture for the score based model.

3. Diffusion model

The diffusion model was implemented with Jax,38 using FLAX39

for the ANN implementation, Optax38 for the gradient method and
Chex38 as a utility. For each reconstruction depth, a separate net-
work was trained. For training, early stopping with a patience of
25, CosineDecay40 as learning rate schedule and the general-purpose
layer-wise adaptive large batch optimizer37 (LAMB) were used. No
data augmentation was used. The sampling for inference was limited
to 5 min.

III. RESULTS

To quantify the reconstruction performance of the differ-
ent approaches, we calculate the mean absolute error between the
predicted values N (x) and the true values y, such that the abso-
lute error for some sample i is given by: e(i) = |N (x(i)) − y(i)| and
the mean absolute error for an entire set of data with i samples
(i = 1, . . . , N) by MAE = 1

N

∑N
i=1 e(i). In the following section, we

will show how the performance of the approaches depends on the
input length.

FIG. 7. Reconstruction with the ST-LSTM model approach on the data set with different input lengths T ∈ {1, 8, 32} (rows 2-4). In the first row the ground truth panels for
the different depths can be seen.
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FIG. 8. Reconstruction from the autoencoder model approach on the data set with different input lengths T ∈ {1, 8, 32}.

A. Reconstructing in-depth activity with varying

number of input time steps

To show this, each of the three approaches was trained with
different input lengths, where a completely new network was trained
for each input length. We find that, in general, the reconstruc-
tion performance increases by including more input time steps.
However, performance gain decreases with more input time steps,
while computational costs increases. However, there are a few

special characteristics that should be mentioned, too. Starting with
the ST-LSTM:

Figure 7 visualizes the predictions of several ST-LSTMs, which
are trained with different numbers of time steps (T = 1, T = 8
and T = 32). A trend, that the performance improves with increas-
ing number of time steps, is clearly visible. However, finally all
reconstructions approach some global mean value. This effect starts
early for cases with fewer input time steps and the u values soon
become increasingly blurry. The predictions of the convolutional

FIG. 9. Reconstruction from the diffusion model approach on the data set with different input lengths of T ∈ {1, 8, 32}.

Chaos 33, 013134 (2023); doi: 10.1063/5.0126824 33, 013134-7

© Author(s) 2023

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 10. Each diagram shows the statistical evaluation of reconstruction errors as a function of depth, depending on the input length (from left to right we have an input length
of T = 1, 8, and 32). This evaluation was performed on the test data set which was not used during training. The lines represent the median value of the mean absolute
errors (MAEs) and the bright areas represent the standard deviation.

autoencoder are displayed in Fig. 8. The behavior of the
autoencoder is quite similar to that of the ST-LSTM and the autoen-
coder also tends to predict the mean value of the set with growing
depth, especially for the shorter input time series (T = {1, 8}).

In the case of the diffusion model (DM), it can be seen in Figs. 9
and 10 that it benefits most from a long input and at the same time
reconstructs worst when only a very short input is available. If an
input length of 32 time steps is used, though, the DM approach is
capable of recovering coarse structures even at a depth of 32. At the
same time, one sees that the sampling approach based on33 does not
always lead to all pixels in the images being sampled, which suggests
that the sampling strategy should be further improved. However,
in the context of this work, we do not see this as a big problem,
since one could e.g., replace the non-sampled points by values of
their nearest neighbors. It should also be noted that while the DM
approach generates the highest quality reconstructions when T=32
is used as input length, it also has the highest demands on computa-
tional resources, in the sense of training and inference time. While
all ANNs benefit from a longer input sequence, the performance
boost tends to be very different. Figure 10 illustrates the influence of
the input length on the reconstruction error. For the case where only
one input frame is used [Fig. 10(a)], the ST-LSTM approach outper-
forms the AE and DM approach significantly. With an input length
of T = 8 [Fig. 10(b)] the approaches achieve similar results when
deeper layers are supposed to be reconstructed. However, if an input
length of T = 32 [Fig. 10(c)] is used, the DM approach outperforms
the AE and ST-LSTM approaches. We see this as an indicator that
the DM approach benefits most from long input sequences while the
ST-LSTM approach is preferrable for short input sequences.

B. Computational effort estimates of the three

models

Training the models had different demands on the
computational resources. Considering the cases where 32 time steps

were used as an input the training of the AE is the most econom-
ical, it was done on an NVIDIA GeForce GTX 1660 SUPER with
6GB VRAM in approximately 90–120 min to reconstruct all depths
at once (It should be noted that the AE approach can predict all
depths at once.). In second place is the ST-LSTM model which was
trained on two NVIDIA P100 with 16 GB VRAM. For each case the
model was trained for around 5 h in total. The DM has the highest
demands on the componential resources it was trained on an Nvidia
RTX 3090 and an AMD Threadripper Pro 5995wx where for each
case it took on average 403 h and 17 min ± 6 h and 7 min.

IV. DISCUSSION

In this study, we have shown how surface dynamics can be used
to predict the in-depth activity of a 3D chaotic excitable medium.
While previous attempts to address this dynamical reconstruction
task employed data assimilation techniques, we demonstrate with
our simulations that ANNs are a useful alternative for predicting
hidden chaotic dynamics from partial observations. In detail, the
ANNs we used and evaluated have different features and advantages:
The DM provides the best results for all layers. ST-LSTM and AE
are somewhat similar in performance, although in direct compar-
ison the AE is preferable for deeper layers, while the ST-LSTM is
in our application slightly better than the AE up to a depth of 15.
Common to all ANNs is the fact that deeper layers are more dif-
ficult to reconstruct because the correlation between the input and
the desired output decreases the deeper one wants to predict.

Time efficiency is another aspect in the evaluation of perfor-
mance, in particular for potential real-time reconstruction of cardiac
dynamics. Although the DM shows better performance compared
to the other two approaches, it still has the significant disadvan-
tage that it takes much longer for calculating the reconstruction of a
layer. The DM needs about 5 minutes per layer, while the two other
ANNs with comparable hardware equipment are in the range of less
than one second. Comparing DM, ST-LSTM and AE, the AE has the
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advantage of predicting all layers at once, which could be especially
important for time-critical applications.

To reconstruct a deeper layer at time t we used here future data
from the surface, sampled at times t, t + ts, t + 2ts, . . . , t + (T − 1)ts.
Due to this use of future samples there is a delay (or latency) for the
prediction of the target layer, that is increasing with T. Predictions
with larger T are more precise as shown in Fig. 10, so in practice
there is a trade-off between delay and accuracy of the prediction.
Interestingly, for small T the ST-LSTM provides more exact recon-
structions than the AE or the DM as shown in Fig. 10(a), while for
a larger number of input frames T the DM is superior, in partic-
ular for deeper layers [see Fig. 10(c)]. Of course, for any real-time
application the delay due to the use of future samples from the
surface is a practical disadvantage and an input stream going back-
ward in time would be desirable. While from a theoretical point of
view (Takens theorem) this would in principle provide equivalent
information about the state of the system it turned out that in prac-
tice prediction results are much worse when using past values as
input.

It should also be noted that by using a regular 3D grid, the
geometry on which the reconstruction was performed is very simple.
The generalization of our approaches to a non-regular grid, typical
of a heart geometry, leads to completely new challenges that require
different degrees of adaptation of the architecture for the ANNs
selected here. The ST-LSTM and AE are based (in part) on con-
volutions, which can only be performed in this form on a regular
grid. There are approaches, which deal with the adaptation of con-
volutions to non-regular grids, however, at this time no statements
can be made on the performance of ANNs operating on irregular
heart geometry. Here the DM offers the advantage that it works
with a vector embedding of the lattice coordinates and therefore,
a generalization to an irregular grid is easier than with the AE or
ST-LSTM.

Besides these technical issues, there are still many open ques-
tions to be solved before a reconstruction of electrical excitation
dynamics in the heart can be considered robust and reliable enough
for future clinical applications. The dynamical system used for gen-
erating the data shown here differs in many aspects from a real heart,
because we considered not only a simple 3D grid, but also the ide-
alized case of a homogeneous and isotropic medium which contains
neither blood vessels, fatty tissue, scars, or other heterogeneities nor
conduction fiber directions. These strong simplifications were made
intentionally to first find out how good a reconstruction can be
under ideal constraints at best. On the other hand, from a dynam-
ical point of view the Barkley model seems to be “more chaotic”
than many (realistic) heart models, like the TenTusscher model,41

describing chaotic fibrillation. Furthermore, the fact that we consid-
ered an equilateral cube instead of a more flat slab of tissue made the
reconstruction task probably more difficult compared to a real heart
muscle of 1–2 cm thickness. These aspects need to be further inves-
tigated in future studies. One way to overcome uncertainties due
to unknown heterogeneity and other perturbations of the medium
could be to use a large portfolio of training data obtained with a
variety of geometries, substrates, and different heart models. Such
an approach with an ensemble of data42 may also serve to pro-
vide more reliable estimates of the robustness and correctness of
reconstruction results for deeper layers.
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