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Improved correspondence 
of fMRI visual field localizer 
data after cortex‑based 
macroanatomical alignment
Mishal Qubad  1, Catherine V. Barnes‑Scheufler  1, Michael Schaum  2, Eva Raspor  1,  
Lara Rösler  1,3, Benjamin Peters  4,5, Carmen Schiweck  1, Rainer Goebel  3,6, 
Andreas Reif  1 & Robert A. Bittner  1,7*

Studying the visual system with fMRI often requires using localizer paradigms to define regions of 
interest (ROIs). However, the considerable interindividual variability of the cerebral cortex represents 
a crucial confound for group-level analyses. Cortex-based alignment (CBA) techniques reliably reduce 
interindividual macroanatomical variability. Yet, their utility has not been assessed for visual field 
localizer paradigms, which map specific parts of the visual field within retinotopically organized visual 
areas. We evaluated CBA for an attention-enhanced visual field localizer, mapping homologous parts 
of each visual quadrant in 50 participants. We compared CBA with volume-based alignment and a 
surface-based analysis, which did not include macroanatomical alignment. CBA led to the strongest 
increase in the probability of activation overlap (up to 86%). At the group level, CBA led to the most 
consistent increase in ROI size while preserving vertical ROI symmetry. Overall, our results indicate 
that in addition to the increased signal-to-noise ratio of a surface-based analysis, macroanatomical 
alignment considerably improves statistical power. These findings confirm and extend the utility of 
CBA for the study of the visual system in the context of group analyses. CBA should be particularly 
relevant when studying neuropsychiatric disorders with abnormally increased interindividual 
macroanatomical variability.

The visual system includes a multitude of topographical representations of varying resolution across increasingly 
specialized visual areas1. Functional magnetic resonance imaging (fMRI) offers a variety of methods either to 
map these topographical representations in full, or to localize specific visual areas or retinotopic positions within 
their topography. These approaches are essential not only for the fine-grained study of fundamental properties 
of the visual system1, but also for investigating the role of these areas for higher-order cognitive processes such 
as visual attention and working memory2–6. This also extends to translational studies of visual dysfunction and 
its cognitive consequences in neuropsychiatric disorders7,8.

Methods for fMRI-based visual mapping, i.e., techniques to define regions of interest in the visual system 
based on specific functional properties, fall in in three broad categories: retinotopic mapping, visual field local-
izer and functional localizer paradigms. Retinotopic mapping and the more advanced population receptive 
field (pRF) mapping allow the complete delineation of early visual areas1,9,10. Conversely, visual field localizer 
paradigms can map a circumscribed region within a retinotopically organized visual area11,12. Finally, functional 
localizers can detect higher-order visual areas such as the fusiform face area (FFA), parahippocampal place area 
(PPA), extrastriate body area and lateral occipital complex (LOC), which are clustered and show specializa-
tion for the processing of specific categories of complex visual information1,13,14. In most fMRI studies, high 
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interindividual anatomical variability of cortical areas in terms of both size and location constitutes an impor-
tant challenge15–23. For instance, it has been shown that primary visual cortex (V1) can differ in size by about 
twofold between individuals17. Furthermore, anatomical variability in terms of location has been shown to be 
particularly pronounced in extrastriate visual areas24. This crucial confound reduces the power to reliably map 
visual areas at the group level.

One way to mitigate this problem is to pool single-subject regions of interest (ROIs), while simultaneously 
using the overall group-based probability for that ROI at each point in a Cartesian coordinate system as a 
constraint25–27. While such a single-subject-based analysis improves sensitivity and functional resolution com-
pared to a standard group-based approach, it does not actually reduce macroanatomical variability. Additionally, 
studying the interplay between visual areas and other cortical areas more directly involved in higher-order cogni-
tive processes with whole-brain methods such as functional connectomics network analyses28 might preclude 
a single-subject based strategy.

Group-based analyses typically require spatial normalization of structural and functional imaging data to a 
common Cartesian coordinate system such as Talairach29 or MNI30 space. In its most basic form, volume-based 
spatial normalization employs a linear transformation that matches the overall extent of the brains to a standard 
brain template. While transformation into Talairach space relies on anatomical landmarks, transformation into 
MNI space utilizes fully data-driven registration of structural images to an average template brain30. While these 
spatial normalization approaches inherently result in an alignment of brains, the underlying algorithms are not 
optimized specifically for aligning homologous brain structures. Conversely, more refined methods employ 
non-linear warping algorithms guided by intensity differences to improve macroanatomical alignment31. Thus, 
all of these methods can be categorized as volume-based alignment (VBA) techniques. However, both linear 
and nonlinear VBA mostly disregard the topological properties of the cerebral cortex and its geometric features 
such as sulci and gyri. Consequently, VBA methods result in a considerable amount of residual interindividual 
anatomical variability32,33.

Surface-based procedures constitute an important alternative approach. Surface-based spatial normaliza-
tion typically uses a geodesic coordinate system, which allows for a two-dimensional representation of the cer-
ebral cortex and respects the cortical topography to a much larger degree than traditional Cartesian coordinate 
systems18,34. This approach offers two main advantages over VBA. First, surface-based spatial normalization 
allows to constrain data readout and data pre-processing such as spatial smoothing to cortical tissue. This reduces 
signal contamination by white matter and cerebrospinal fluid substantially and also mostly precludes contamina-
tion from cortical areas proximal in volume space but considerably more distant in surface space. Overall, this 
approach enhances the signal-to-noise ratio (SNR). Consequently, spatial smoothing in surface space is superior 
to spatial smoothing in volume space19,35. The second advantage of surface-based spatial normalization is the pos-
sibility to use individual cortical folding patterns for an additional, fully data-driven macroanatomical alignment 
of the cerebral cortex34. Compared to VBA techniques, these cortex-based alignment (CBA) methods consider-
ably improve anatomical correspondence of cortical structures while respecting cytoarchitectonic boundaries36. 
Thus, CBA leads to a notable reduction of interindividual anatomical variability18,34,37–39.

Importantly, previous studies have often exclusively compared surface-based data before and after macro-
anatomical alignment19,40, essentially using the former approach as a proxy for VBA. Yet, this comparison only 
reflects the second advantage of CBA, namely the use of macroanatomical alignment instead of VBA. However, in 
this case both data sets benefit equally from reduced signal contamination, likely underestimating the full effects 
of CBA. Assessing the impact of this first advantage of surface-based analyses in isolation requires a comparison 
of VBA with a surface-based analysis without macroanatomical alignment. We refer to this intermediate approach 
as a “surface-based analysis using VBA” (SBAV). Thus, assessing both benefits of CBA requires the comparison 
of three approaches: VBA, SBAV and CBA.

Due to the advantageous properties outlined above, CBA methods have been proposed as an alternative 
approach to VBA specifically for the visual system26. Several studies have compared the impact of VBA and 
CBA methods on specific visual mapping techniques. For retinotopic mapping, an improvement of functional 
overlap in both V1 and V2 after CBA has been demonstrated34,41. For functional localizer data, CBA substantially 
increases the overlap of object processing areas LOC, FFA and PPA across subjects19,42–44. Conversely, the effects 
of CBA on visual field localizer paradigms mapping specific retinotopic positions have not been studied. Thus, 
the utility of CBA has been demonstrated for two of the three main categories of visual mapping methods, i.e., 
those methods, which map whole areas, either defined primarily by cytoarchitectonic (e.g. V1) or functional (e.g. 
FFA) properties. Conversely, it remains unclear, to which degree CBA can improve the alignment of ROIs mapped 
by visual field localizer paradigms. Such paradigms are required for the detailed study of the local processing 
of simple visual stimuli in early visual areas11,12,45–47. Flashing checkerboards covering the exact area of interest 
within the visual field are primarily used for this purpose. Checkerboards lead to a particularly strong BOLD-
signal increase in early visual areas (V1–V3)48. To maximize fidelity of the resulting localizer maps, visual field 
localizer paradigms typically utilize the fact that attentional modulation induced by task demands significantly 
enhances response reliability across visual areas. This can be achieved by adding a simple target-detection task49.

We used such an attention-enhanced visual field localizer paradigm to map a circumscribed location in each 
visual quadrant across early visual areas aiming to define ROIs suitable for the study of higher cognitive processes. 
We chose a CBA method using a dynamic group average as the target brain19. Thus, we eliminated the possible 
confound of a static CBA target based on an individual brain, whose cortical folding pattern might by chance 
deviate considerably from the group average.

Our primary goal was to examine the effects of CBA for a visual field localizer paradigm. More specifically, we 
aimed to determine, whether macroanatomical alignment improves the reliability of mapping subregions within 
retinotopically organized visual areas delineated by such a paradigm at the group level. To this end, in addition 
to the analysis of the full single-subject ROIs, we also examined the correspondence of single-subject ROI peak 
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vertices, i.e., single vertices showing the strongest level of activation in each subject for each visual quadrant. We 
conducted this analysis, because peak vertices are a good approximation of the center of a ROI and thus allow 
for a more precise assessment and visualization of the effects of macroanatomical alignment. Based on previous 
findings for other localizer paradigm classes and the relatively good structural–functional correspondence in 
posterior occipital cortex, we expected to observe a benefit of CBA compared to SBAV when aligning subregions 
within early visual cortex for both full ROIs and peak vertices.

Our second goal was to examine the effects of SBAV. More specifically, we aimed to assess the impact of sur-
face-based functional data readout and pre-processing without macroanatomical alignment. Here, we expected 
a general improvement of the SNR for SBAV compared to VBA and a corresponding global increase in group 
ROI size for all visual quadrants. Notably, several studies have shown differential response properties such as 
receptive field size by visual quadrant or hemifield for homologous early visual areas. For instance, previous 
studies reported improved behavioral performance and higher BOLD-signal amplitudes in the lower visual 
hemifield50–53. We were therefore also interested, whether we could observe differences between upper and lower 
visual hemifields in our group analysis after CBA.

Overall, the aim of the study was to close an important gap in the evaluation of CBA for the study of the visual 
system. Since visual field localizers are crucial for investigating contributions of the visual system to higher-order 
cognitive processes, our results should have implications for the study of visual cognition in both basic and 
translational neuroscience research.

Results
Visual quadrant ROIs (group level).  Group-level mapping of the four visual quadrants revealed notable 
differences for the three alignment techniques (VBA, SBAV, CBA) (Fig. 1, Tables 1, 2). For the lower right visual 
quadrant, ROI size increased considerably from VBA to SBAV, but decreased for CBA (Table 2). For the lower 
left visual quadrant, ROI size decreased slightly from VBA to SBAV, but increased considerably for CBA. For the 
upper left visual quadrant, ROI size increased considerably from VBA to SBAV and increased further for CBA. 
For the upper right visual quadrant, ROI size increased slightly from VBA to SBAV and increased considerably 
for CBA. Thus, two out of four visual quadrant ROIs exhibited a pattern of continuously increasing cluster size, 
reflecting an expansion of significant position selectivity across alignment techniques. Additionally, while ROI 
size for the lower left visual quadrant decreased slightly from VBA to SBAV, ROI size for CBA was also by far the 
largest. Furthermore, while ROI size decreased for the lower right visual quadrant after CBA, for SBAV this ROI 
showed by far the greatest extent of any ROI for any alignment technique, even encompassing posterior parts of 
temporal cortex.

Within group ROIs, average time courses showed clear position selectivity, which was not further affected by 
alignment technique as indicated by the negative results of our linear mixed models (Table 3). Notably, asymme-
try indices (AIs) revealed markedly greater vertical symmetry of both upper and lower hemifield ROIs for VBA 
and CBA compared to SBAV (Table 4). After CBA, ROI sizes for the lower visual hemifield were considerably 
larger than for the upper visual hemifield (Table 1).

Probability maps.  For all three data sets, the maximum probability of activation overlap was consistently 
located at the center of each ROI as defined in our previous group analysis (Fig. 1, Tables 1, 5). For VBA data, 
probability maps (PMs) showed a relatively wide spread of functional activation around the core ROIs (Fig. 2a, 
Table 5). Maximum probability of activation overlap was 55%. For SBAV data, PMs showed an even wider spread 
of functional activation around the core ROIs (Fig. 2b, Table 5). Maximum probability of activation overlap 
was 66%. For CBA data, PMs showed a noticeable decrease in the spread of functional activation around the 
core ROIs with a corresponding increase in the maximum probability of overlap at the center of the core ROIs 
(Fig. 2c, Table 5). Maximum probability of activation overlap was 86%.

Probability difference maps.  Probability difference maps (PDMs) revealed a differential impact of the 
individual methodological elements of our macroanatomical alignment approach.

For pure surface-based functional data readout and pre-processing compared to standard volume-based 
alignment, the corresponding PDM (SBAV minus VBA) showed a maximum increase in the probability of acti-
vation overlap of 30% around the central ROIs. Conversely, at the location corresponding to the central group 
ROIs we mostly observed a decrease in the probability of activation overlap of up to 19% (Fig. 3a, Table 6). 
Notably, changes were widespread, partly extending into posterior temporal and parietal cortex. For the addition 
of macroanatomical alignment, the corresponding PDM (CBA minus SBAV) showed a maximum increase in 
the probability of activation overlap of 44% in the central ROIs (Fig. 3b, Table 6). Conversely, more peripheral 
occipital regions showed a maximum decrease in the probability of activation overlap of 32%. Overall, changes 
were considerably less widespread than for the SBAV minus VBA comparison. For the additive impact of both 
methodological elements, the corresponding PDM (CBA minus VBA) showed a maximum increase in the prob-
ability of activation overlap of 52% in the central ROIs (Fig. 3c, Table 6). Conversely, more peripheral occipital 
regions as well as posterior temporal and parietal cortex showed a maximum decrease in the probability of activa-
tion overlap of 36%. Overall, the spatial extent of these effects fell in between that of the other two comparisons.

Spatial variability of ROI peak vertex distribution (single‑subject level).  The rates of success for 
detecting subject-subject ROIs were as follows: lower right visual quadrant 98% (49 out of 50 subjects), lower 
left visual quadrant 94% (47 out of 50 subjects), upper left visual quadrant 98% (49 out of 50 subjects), upper 
right visual quadrant 90% (45 out of 50 subjects). Mirroring group-level PMs, single-subject level peak vertex 
distribution maps (Fig. 4) showed reduced spatial variability for CBA compared to SBAV. Furthermore, for CBA 
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Figure 1.   Group analysis of visual quadrants. (a) VBA results. Maps and average timecourses were computed in volume 
space; maps were projected on the non-aligned average surface representation. (b) SBAV results. Maps and average 
timecourses were computed in surface space; maps were projected on the non-aligned surface representation. (c) CBA 
results. Maps and average timecourses were computed in surface space; maps were projected on the aligned average surface 
representation. Overall, two out of four visual quadrant ROIs exhibited a pattern of continuously increasing cluster size, 
reflecting an increasing extent of significant position selectivity across alignment techniques. Additionally, while ROI size for 
the lower left visual quadrant decreased slightly from VBA to SBAV, ROI size for CBA was also by far the largest. Only the ROI 
of the lower right visual quadrant showed a cluster size decrease after CBA. Average timecourses (incl. standard error of the 
mean) showed clear position selectivity with a strong BOLD signal increase for the position of interest and no BOLD signal 
increase for the other three positions. ROI/graph colors: light-blue = lower right (LR) visual quadrant, orange = lower left (LL) 
visual quadrant, red = upper left (UL) visual quadrant, dark-blue = upper right (UR) visual quadrant.
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Table 1.   Group ROIs. Size and Talairach coordinates of the group ROIs of the corresponding visual quadrants 
for the VBA, SBAV and CBA data sets. For ROI size comparison, we focused exclusively on the number 
of vertices. Importantly, we only provide the number of voxels of each VBA ROI as a reference to ensure a 
comprehensive reporting of our findings. In three out of four visual quadrant ROIs we observed the largest 
cluster size for CBA, which is indicative of the highest degree of position selectivity for the most advanced 
alignment technique.

Region of interest Analysis method Number of vertices Number of voxels

TAL coordinates

x y z

Lower right visual quadrant

VBA 47 953 − 22 − 90 2

SBAV 295 NA − 42 − 64 5

CBA 161 NA − 24 − 91 − 4

Lower left visual quadrant

VBA 46 828 19 − 94 2

SBAV 28 NA 23 − 90 3

CBA 127 NA 9 − 94 − 5

Upper left visual quadrant

VBA 4 55 4 − 87 − 9

SBAV 47 NA 24 − 75 − 14

CBA 82 NA 18 − 77 − 15

Upper right visual quadrant

VBA 3 1 − 5 − 88 − 13

SBAV 6 NA − 18 − 80 − 15

CBA 58 NA − 18 − 80 − 15

Table 2.   Changes of group ROI size compared between alignment methods. We used the following formula: 
{(size_ROIQuad[AMm] − size_ROIQuad[AMn])/size_ROIQuad[AMn]} × 100. For SBAV compared to VBA, we 
observed a group ROI size increase in three out of four visual quadrants. For CBA compared to VBA, we 
observed a group ROI size increase in all four visual quadrants. For CBA compared to SBAV we observed a 
group ROI size increase in three out of four visual quadrants. Quad visual quadrant of interest, AM alignment 
method (VBA, SBAV, CBA). n and m specify AMs, with m referring to the less advanced AM and n referring 
to the comparatively more advanced AM.

VBA → SBAV (%) VBA → CBA (%) SBAV → CBA (%)

Lower right visual 
quadrant 528 243 − 45

Lower left visual 
quadrant − 39 176 354

Upper left visual 
quadrant 1075 1950 74

Upper right visual 
quadrant 100 833 867

Table 3.   Effect of alignment method on position selectivity within group ROIs. To test whether the strength 
of position selectivity within corresponding group ROIs across alignment techniques increases for the more 
advanced alignment techniques, we conducted separate linear mixed models with random intercept for each 
visual quadrant. For each position, we used each subject’s t-values as the dependent variable and the alignment 
techniques (VBA, SBAV and CBA) as the independent variable. We adjusted p-values using Bonferroni 
correction. We did not observe any significant effect (all p adjusted > 0.05), indicating that this measure of 
position selectivity within corresponding group ROIs was not affected by alignment technique. Thus, while for 
each alignment method and visual quadrant the corresponding ROI did show significant position selectivity, 
the strength of within-ROI position selectivity did not increase for more advanced alignment techniques. 
*Random effect variance estimate at the subject-level for the LR ROI was 0, resulting in a singular fit when 
using lmer. Therefore, results for LR were estimated without random intercept are thus equivalent to a regular 
ANOVA. Sum Sq sum of squares, Mean Sq mean square, NumDf degrees of freedom in the numerator, DenDf 
degrees of freedom in the denominator.

visual quadrant Sum Sq Mean Sq NumDF DenDf F value p value p value (corr.)

Lower right visual 
quadrant 183.2 92 2 147* 0.31 0.737 1.000

Lower left visual 
quadrant 2660.2 1330.1 2 98 1.25 0.291 1.000

Upper right visual 
quadrant 2546.2 1273.1 2 98 3.36 0.039 0.156

Upper left visual 
quadrant 73678 36839 2 98 1.19 0.308 1.000
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compared to SBAV we observed an increase in the number of multiple overlapping single-subject ROI peak 
vertices per vertex for each visual quadrant (Table 7).

Discussion
The aim of our study was to evaluate the utility of CBA for an attention-enhanced visual field localizer para-
digm used to map circumscribed regions within retinotopically organized visual areas. Our paradigm mapped 
homologous regions in each visual quadrant reliably across early visual areas. As expected, CBA led to a marked 
reduction in macroanatomical variability with a number of beneficial effects on the functional level, which 
clearly exceeded those observed for SBAV. Compared to VBA and SBAV, CBA resulted in the most consistent 
improvements in the group ROI analysis across visual quadrants (Fig. 1).

For SBAV compared to VBA, we observed a group ROI size increase in three out of four visual quadrants 
(Fig. 1, Tables 1, 2). For CBA compared to VBA, we observed a group ROI size increase in all four visual quad-
rants. For CBA compared to SBAV we observed a group ROI size increase in three out of four visual quadrants.

These results indicate an improved power for CBA to detect subregions of early visual areas, which show 
position selectivity. Conversely, we did not observe an increase of position selectivity within corresponding 
visual quadrant ROIs across alignment techniques in our linear mixed model analysis (Table 3). However, CBA 
was the only approach leading to both an increase in ROI size and a preservation not only of vertical but also of 
horizontal symmetry (Table 4).

Regarding changes in the probability of activation overlap across the three alignment techniques reflected 
by the PMs, a clear pattern emerged. Probability of activation overlap increased gradually with each step, peak-
ing for CBA with a maximum value of 86%. For SBAV, effects were weaker and considerably more widespread, 
mostly affecting more peripheral brain regions. Likewise, for the comparison of CBA and SBAV PDMs showed 
an increase in the probability of activation overlap with a maximum of 44% at the central locations correspond-
ing to the group ROIs. This resulted in considerably more focused activation patterns, while the opposite effect 
emerged at more peripheral vertices (Fig. 3). This is most likely not attributable to a decreased spatial overlap 
in the periphery of early visual areas. Rather, it indicates that CBA consistently reduces spurious spread-out 
activation resulting from poor macroanatomical correspondence after VBA and a generalized SNR increase due 

Table 4.   Vertical and horizontal asymmetry indices (AIs). To assess the impact of the three alignment 
techniques on horizontal and vertical symmetry of our group-level ROIs, we computed a ROI size AI between 
each pair of ROIs. AIs revealed greater vertical symmetry of the upper and lower hemifield ROIs for VBA and 
CBA compared to SBAV. LR lower right visual quadrant, LL lower left visual quadrant, UL upper left visual 
quadrant, UR upper right visual quadrant.

Symmetry ROI comparison AI (VBA) AI (SBAV) AI (CBA)

Vertical
LR and LL 1.1 82.7 11.8

UL and UR 14.3 77.4 17.1

Horizontal
LR and UR 88.0 96.0 47.0

LL and UL 84.0 25.3 21.5

Table 5.   Extent of probability maps. For each visual quadrant and analysis methods, we counted the number 
of vertices in the corresponding probability maps exceeding the threshold of 10% probability of activation 
overlap. For VBA, maximum probability of activation overlap (MPO) was 55%. For SBAV, maximum 
probability of activation overlap was 66%. For CBA, maximum probability of activation overlap was 86%. We 
also extracted the Talairach (TAL) coordinates of the vertex showing MPO for each quadrant and each data set.

Probability map Analysis method Number of vertices MPO (%)

TAL

x y z

Lower right visual quadrant

VBA 1243 55 − 22 − 89 − 2

SBAV 2074 66 − 26 − 87 2

CBA 1391 86 − 20 − 93 − 1

Lower left visual quadrant

VBA 853 53 23 − 89 1

SBAV 1396 56 20 − 93 0

CBA 918 84 20 − 93 1

Upper left visual quadrant

VBA 958 50 15 − 84 − 13

SBAV 1401 60 13 − 78 − 16

CBA 1162 80 18 − 83 − 12

Upper right visual quadrant

VBA 965 47 − 19 − 81 − 14

SBAV 1897 48 − 14 − 83 − 14

CBA 1445 76 − 15 − 87 − 15
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Figure 2.   Probability maps (PMs). PMs indicating the probability of activation overlap across subjects for each 
visual quadrant. The color code gray-to-white indicates the probability of activation overlap of single-subject 
maps, thresholded at a minimum of 10% probability of activation overlap. Single-subject maps were thresholded 
at p < 0.05 (uncorr.). We also applied a cluster level threshold of 100 vertices. (a) PMs for VBA showed a 
maximum probability of activation overlap of up to 55%. (b) PMs for SBAV showed a maximum probability of 
activation overlap of up to 66%. (c) PMs for CBA showed a maximum probability of activation overlap of up to 
86%.
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Figure 3.   Probability Difference Maps (PDMs). PDMs indicating the differential impact of the individual steps of our overall 
macroanatomical alignment approach for each visual quadrant. PDMs were generated using PMs derived from single-subject maps. 
PMs were unthresholded. The color code indicates the difference of activation overlap. The color code brown-to-white indicates a 
higher degree of functional activation overlap for the more advanced alignment method. The color code blue-to-green indicates 
a higher degree of functional activation overlap for the less advanced alignment method. PDMs were thresholded at a minimum 
probability difference of 5%. (a) The impact of surface-based functional data readout and pre-processing compared to standard 
volume-based alignment (SBAV minus VBA) was characterized by a widespread activation with an increase in the probability of 
activation overlap of up to 30% around the central ROIs and a decrease in the probability of activation overlap of up to 19 % at 
the location corresponding to the central ROIs. (b) The additional impact of macroanatomical alignment (CBA minus SBAV) was 
less widespread but characterized by an increase in the probability of activation overlap of up to 44% at the location of the central 
ROIs and a decrease in the probability of activation overlap of up to 32% around the central ROIs. (c) The additive impact of both 
methodological elements (CBA minus VBA) was characterized by an increase in the probability of activation overlap of up to 52% at 
the location of the central ROIs and a decrease in the probability of activation overlap of up to 36% around the central ROIs.
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to SBAV. It also suggests that VBA and SBAV might misrepresent the location and extent of early visual areas. 
This notion is supported by changes of the center of gravity of group ROIs between SBAV and CBA, which were 
particularly pronounced for the lower left visual quadrant (Table 1). Together, these findings indicate that CBA 
substantially increases statistical power when studying early visual areas at the group level. Naturally, this effect 
of CBA should also extend to studies with a more global focus, such as connectivity analyses35,54.

Additionally, the specific advantages of CBA were evident in the markedly decreased variability of single-
subject ROI peak vertex locations for each visual quadrant compared to SBAV (Fig. 4, Table 7). This is indicative 
of a reduction of macroanatomical and functional inter-subject variability achieved by CBA as the main reason 
for the improved group-level results. Our findings confirm that transforming functional data from volume-space 
into surface space already increases statistical power by reducing signal contamination from non-neuronal tissue, 
thus improving the SNR. Consequently, using SBAV as a proxy for VBA would underestimate the actual benefits 
of CBA. Our findings indicate that only the CBA approach benefits from both an improved SNR and reduced 
macroanatomical variability. Thus, our data support the notion that among evaluated methods, CBA is the most 
advantageous alignment technique for studying the visual system. Such an interpretation is also supported by the 
fact that only CBA but not SBAV could preserve the vertical symmetry of group ROIs characteristic of early visual 
areas, which was already evident for VBA (Table 4). This discrepancy is most likely attributable to the unspecific 
SNR increase induced by SBAV, which in combination with its inherently poor macroanatomical alignment does 
not result in a consistent improvement of functional overlap for all visual quadrants.

For VBA, we observed the largest group ROIs for the right and left lower visual quadrants, an effect that 
changed after SBAV and CBA (Fig. 1a, Table 1). For SBAV, we observed the largest group ROIs for the left upper 
and right lower visual quadrants, which did not persist after CBA (Fig. 1b,c, Table 1). Notably, several studies 
reported lateralized effects on neurophysiological parameters in early visual areas55,56. Our observation raises the 
question, whether these findings could at least partly be explained by lateralized differences in macro-anatomical 
variability rather than true functional differences.

Conversely, our CBA-aided group analysis allowed us to compare the response properties of each visual 
quadrant in a more unbiased way. We observed larger group ROIs for the lower visual hemifield. In a CBA-based 
probabilistic atlas of the visual system, which included all regions that could be defined in more than 50% of 
subjects, probabilistic ROIs for dorsal V1 and V2 were also noticeably larger than probabilistic ROIs for ventral 
V1 and V2, whereas this effect was less clear for V343. These results are in line with our own findings and could be 
attributable to higher residual anatomical variability after CBA in ventral occipital cortex representing the upper 
visual hemifield. Alternatively, they could be due to true differences in response properties such as receptive field 
size or overall area size. The latter interpretation is supported by studies showing functional differences between 
upper and lower visual hemifields already at the retinal level in the form of differences in receptor densities 57,58. 
Cone density was higher in the superior parts of the retina, which processes information from lower visual fields. 
Conversely, higher rod density was observed in the inferior parts. Moreover, Eickhoff et al. reported dorso-ventral 
asymmetries in receptor densities in V2 and V357 and higher GABA-A and muscarinic M3-receptor density in 
ventral parts of V2 and V3. Furthermore, there is evidence for fundamental differences in receptive field shape 
from pRF mapping59. Estimating both the aspect ratios and the size of mapped areas, a more elliptical receptive 
field shape was observed for the upper visual hemifield represented by ventral parts of the visual cortex compared 
to the lower visual hemifield represented by dorsal parts of the visual cortex. Additionally, there is evidence for 
a behavioral advantage in the lower visual hemifield for shape discrimination as well as higher BOLD-signal 

Table 6.   Extent of probability difference maps (PDMs) including positive and negative foci. For each visual 
quadrant and comparison between analysis methods (SBAV minus VBA, CBA minus SBAV, CBA minus VBA), 
we counted the number of vertices in the corresponding PDMs exceeding the threshold of plus 5% or minus 
5% difference in probability of activation overlap. Overall, the extent of PDMs was greatest for the CBA minus 
VBA comparison, i.e., the combined effect of surface-based analysis and macroanatomical alignment. We also 
extracted Talairach (TAL) coordinates of the positive and negative foci for each quadrant and each data set. PD 
pos positive value of probability difference, PD neg negative value of probability difference.

Probability difference map Analysis method Number of vertices PD pos (%) PD neg (%)

TAL PD pos TAL PD neg

x y z x y z

Lower right visual quadrant

SBAV minus VBA 1169 30 − 12 − 34 − 76 4 − 16 − 98 − 3

CBA minus SBAV 1341 40 − 28 − 24 − 90 − 3 − 42 − 75 6

CBA minus VBA 739 46 − 15 − 25 − 88 − 3 − 24 − 84 9

Lower left visual quadrant

SBAV minus VBA 570 23 − 16 33 − 80 5 20 − 92 10

CBA minus SBAV 694 38 − 22 22 − 91 5 27 − 77 11

CBA minus VBA 402 43 − 16 22 − 92 − 2 18 − 96 − 8

Upper left visual quadrant

SBAV minus VBA 612 25 − 19 18 − 72 − 14 12 − 89 − 5

CBA minus SBAV 680 44 − 32 17 − 82 − 12 10 − 76 − 15

CBA minus VBA 546 52 − 36 18 − 83 − 12 11 − 86 − 4

Upper right visual quadrant

SBAV minus VBA 689 25 − 13 − 19 − 69 − 9 − 9 − 86 − 7

CBA minus SBAV 964 36 − 32 − 15 − 87 − 15 − 15 − 72 − 12

CBA minus VBA 795 43 − 34 − 15 − 87 − 15 − 7 − 84 − 6
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changes and peak amplitudes of MEG/EEG responses50,52,53,60,61. Together, these findings demonstrate clear dif-
ferences in the functional architecture of early visual areas representing the upper and lower visual hemifield, 
respectively. This has been attributed to the fact that the lower visual hemifield represented by dorsal parts of the 
occipital lobe is more closely linked to the dorsal visual pathway, while the upper visual hemifield represented 
by ventral parts of the occipital lobe is more closely linked to the ventral visual pathway62,63. Furthermore, 
there is evidence for fundamental differences in receptive field shape from pRF mapping59. Here, for the upper 
visual hemifield represented by ventral parts of the visual cortex, an increased size and more elliptical shape of 
receptive fields was observed compared to the lower visual hemifield represented by dorsal parts of the visual 
cortex. This implies that the lower visual field is more specialized for the precise localization and representation 
of space. Our observation of larger ROIs in the lower visual hemifield is in line with these findings. Hence, our 
results imply that CBA is a suitable tool to extend the study of functional and behavioral asymmetries in early 
visual areas to the group-level.

One important limitation of the current study is the lack of complementary retinotopic mapping data due to 
time constraints. This data would have allowed us to delineate the boundaries of early visual areas and pinpoint 
the exact visual area containing each individual single-subject ROI. Retinotopic mapping studies indicate that 
peak activation of single subjects elicited by visual localizers are not consistently located in the same visual area. 
Most localizer paradigms show peak activation not in V1 but rather in V2 or V312. It is therefore highly likely 
that our single-subject peak activation did not consistently belong to the same visual cortical area. With the 
current data set we cannot determine how precisely individual visual areas were aligned with CBA, and whether 
individual levels of the visual cortical hierarchy were affected differentially. However, the position of our group 
ROIs, which bordered the calcarine sulcus and spanned the occipital pole, indicate that they mainly comprised 
V2 and V3. Similarly, after CBA we observed a comparable increase in the probability of overlap in the same part 

Figure 4.   Single-subject peak vertex distribution maps for SBAV and CBA data sets. We mapped single-subject 
peak vertices for each visual quadrant in surface space for SBAV and CBA data. We then calculated the vertex-
wise number of single-subject peak vertices. The color code indicates the number of overlapping single-subject 
peak vertices per vertex. We observed an increase in the number of overlapping single-subject ROI peak vertices 
per vertex after macroanatomical alignment (CBA). The number of single-subject peak vertices per occipital 
vertex for each visual quadrant before and after macroanatomical alignment (SBAV and CBA) ranged between 1 
and 5. Thus, a higher number indicates an improved alignment precision of single-subject ROI peak vertices. LR 
lower right visual quadrant, LL lower left visual quadrant, UL upper left visual quadrant, UR upper right visual 
quadrant.
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of occipital cortex. While this is at least suggestive of a relatively consistent benefit of CBA across visual areas, 
more fine-grained studies including retinotopic mapping are required to address this issue more definitively.

Furthermore, we did not use eye tracking to ensure sufficient fixation. We also did not include an additional 
attentional control task centered on the fixation cross, which would have further encouraged continuous fixation. 
This omission was deliberate in order to keep the difficulty level adequate for psychiatric patient populations. 
Our average success rate for finding reliable activation in early visual areas across all four visual quadrants was 
95 (90–98)%. Insufficient fixation might partly explain our failure to find reliable activation in a small fraction 
of subjects.

Finally, several properties of the VBA data set differed from the SBAV and CBA data sets. We could not match 
volume-based and surface-based pre-processing parameters completely due to inherent differences between the 
three-dimensional and two-dimensional spatial smoothing algorithms employed. Importantly, the number of 
voxels and vertices containing functional data were not identical, differentially affecting Bonferroni correction of 
group results. The smaller analysis space of the VBA data set—69% the size of the SBAV and CBA data set—lead 
to a corresponding less strict Bonferroni-corrected, final statistical threshold for VBA. Due to this bias towards 
the VBA data set, the beneficial effects of the additional processing steps featured in the SBAV and CBA data sets 
should be underestimated. The fact that we could demonstrate the advantages of CBA despite an unfavorable sta-
tistical threshold for confirming this primary hypothesis underscores the superiority of this alignment technique.

Our study also has implications beyond mapping the visual system in healthy populations. Visual processing 
deficits are a prominent feature of neurodevelopmental psychiatric disorders such as ADHD, schizophrenia and 
autism spectrum disorders7,8,64–71, which can also perturb crucial higher-order cognitive processes including 
working memory72–74. The current localizer paradigm will be useful to investigate local impairments of visual 
information processing as well as disturbances in the interplay between early visual areas and brain networks 
supporting higher-order cognitive processes. Here, CBA will be particularly relevant to reduce the confounding 
effects of increased macroanatomical variability in disorders such as schizophrenia in order to measure true 
group differences and true functional variability37,75. On the other hand, CBA might also be crucial for investi-
gating the neurodevelopmental underpinnings of increased macroanatomical variability itself. To this end, the 
inclusion of probabilistic atlases containing information about gene expression profiles76 as well as cyto- and 
receptor architectonics77,78 will be valuable.

Our CBA approach relied solely on cortical curvature information to reduce macroanatomical variability. 
One main advantage of this method is its feasibility for the vast majority of fMRI data sets, since it only requires 
a structural brain scan of sufficient quality and resolution. Among comparable methods, CBA is the most data-
driven and objective approach. However, the achievable reduction of macroanatomical variability is limited by the 
variable and imperfect correlation between brain structure and brain function34,39. Consequently, more advanced 
methods additionally utilize orthogonal functional data to further reduce anatomical variability, including the 
use of functional activation or connectivity patterns to improve macroanatomical alignment across the whole 
brain20,79,80. Additionally, a more complex approach has been proposed, which aligns cortical data using ‘areal 
features’ more closely tied to cortical areas than cortical folding patterns, including maps of relative myelin 
content and functional resting state networks81. These methods have shown to provide a relevant additional 
reduction of macroanatomical variability for a variety of paradigms including visual functional localizers. Future 
studies should also evaluate these methods for retinotopic mapping and visual field localizers. Moreover, it has 
been demonstrated for early auditory areas, that the additional use of a probabilistic atlas of cytoarchitectonically 
defined areas further enhances standard CBA results82. In principle, such an approach should easily be feasible 
for the visual system.

Table 7.   Single-subject ROI peak vertex distribution maps. We mapped all single-subject ROI peak vertices 
per visual quadrant for SBAV and CBA. We quantified alignment precision of these peak vertices by counting 
for each occipital vertex the number of overlapping peak vertices for SBAV and CBA. The number of single-
subject peak vertices per occipital vertex for each visual quadrant before and after macroanatomical alignment 
(SBAV and CBA) ranged between 1 and 5. Thus, a higher number indicates improved alignment precision 
of single-subject ROI peak vertices. After CBA, we observed an increase in the number of multiple, i.e. 
overlapping, single-subject ROI peak vertices per occipital vertex for each visual quadrant and a corresponding 
decrease in the number of non-overlapping single-subject ROI peak vertices per occipital vertex. The last row 
contains the success rate of detecting single-subject ROIs and ergo peak vertices for each visual quadrant. 
Success rates are necessarily equal for SBAV and CBA, because this aspect of our single-subject analysis cannot 
be influenced by alignment method. PV single-subject ROI peak vertex, LR lower right visual quadrant, LL 
lower left visual quadrant, UL upper left visual quadrant, UR upper right visual quadrant.

# of PV per vertex

LR LL UL UR Overall

SBAV CBA SBAV CBA SBAV CBA SBAV CBA SBAV CBA

1 (no overlapping PV) 45 37 47 34 43 38 41 28 176 137

2 overlapping PV 2 6 0 4 3 4 2 1 7 15

3 overlapping PV 0 0 0 0 0 1 0 2 0 3

4 overlapping PV 0 0 0 0 0 0 0 1 0 1

5 overlapping PV 0 0 0 1 0 0 0 1 0 2

PV detection success rate (%) 98 94 98 90 95
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To summarize, we demonstrated clear advantages of CBA compared to VBA for the analysis of visual field 
localizer data at the group-level, signified by a considerable reduction of spatial variability across subjects across 
early visual areas. Our findings extend previous CBA studies evaluating other major categories of visual mapping 
techniques. They underscore the loss of information and statistical power incurred by the use of VBA methods 
in the majority of fMRI studies. Therefore, CBA and comparable methods should be seriously considered as a 
standard procedure for the detailed study of visual information processing and its disturbance in neuropsychi-
atric disorders.

Methods and materials
Participants.  All participants gave their written informed consent to participate in the study in accordance 
with the study protocol approved by the ethical review board of the Faculty of Medicine at Goethe Univer-
sity. We conducted all experimental procedures in conformity with the approved guidelines and the Declara-
tion of Helsinki. Individuals received compensation for their participation. We recruited 51 healthy volunteers 
(female:male = 28:23) with age ranging between 18 and 43 years (mean = 24). All participants were non-smokers, 
had no history of neurological or psychiatric illness and reported normal or corrected-to-normal visual acuity. 
One participant was left-handed as assessed by the German version of the Edinburgh Handedness Inventory83.

Stimuli and task.  Subjects performed an attention-enhanced visual field localizer paradigm (Fig.  5a) 
implemented using Presentation (Neurobehavioral Systems, Version 18.0) as part of a larger study investigating 
the role of visual areas for higher cognitive functions. The task consisted of a series of flickering black-and-
white-colored round shaped checkerboard stimuli (flicker frequency = 7.5 Hz). Checkerboard stimuli appeared 
randomly for 2000 ms at one of four different locations (standard trial). Each location mapped a homologous 
position in one of the four visual quadrants. The regular inter-trial interval (ITI) was 0 ms. However, once every 
10–14 trials (11 times overall), the ITI increased to 2000 ms (prolonged ITI) (Fig. 5b). Our paradigm featured 
a simple target-detection task. During 36 trials, the two centrally located squares of the checkerboard changed 
their color to yellow for 133 ms (target trial). Participants had to press a response box button with their left 
thumb as quickly as possible if they detected a target. The paradigm consisted of a total of 144 trials: 36 target 
trials, 108 standard trials both equally distributed across the four locations (Fig. 5b). This target probability of 
25% resulted in one target trial every fourth trial on average (range 3–5 trials) (Fig. 5b). Throughout the task a 
black, x-shaped fixation cross was displayed at the center of the screen. Participants were instructed to continu-
ously fixate on the fixation cross. Before the first trial, only the fixation cross was displayed for 10 s. After the last 
trial, only the fixation cross was displayed for 20 s. The total duration of the paradigm was 340 s (Fig. 5b). For the 
purpose of our analyses we defined a total of four conditions, one for each of the four stimulus locations. Each 
participant practiced the task prior to the measurement.

Acquisition and analysis of fMRI data.  We acquired functional MRI data on a Siemens 3T MAGNETOM 
Trio scanner at the Goethe University Brain Imaging Centre using a gradient-echo 2D EPI sequence (32 axial 
slices, TR = 2000 ms, TE = 30 ms, FA = 90°, FoV = 192 × 192 mm2, voxel size = 3 × 3 × 3 mm3, gap = 1 mm, effective 
slice thickness = 4 mm). Slices were positioned parallel to the anterior- and posterior commissure. Functional 
images were acquired in a single run comprising the acquisition of 170 volumes. Immediately before each func-
tional run, 6 volumes of this 2D EPI sequence were acquired with identical parameters except for a switch of 
phase encoding direction (posterior to anterior instead of anterior to posterior) for EPI distortion correction. 
Anatomical MRI data for cortex reconstruction and co-registration with functional MRI data was acquired 
with a high-resolution T1-weighted 3D volume using a Magnetization-Prepared Rapid Gradient-Echo (MP-
RAGE) sequence (192 sagittal slices, TR = 1900 ms, TE = 3.04 ms, TI 900 ms, FA = 9°, FoV = 256 × 256 mm2, voxel 
size = 1 × 1 × 1 mm3). Stimulus presentation was constantly synchronized with the fMRI sequence. Head motion 
was minimized with pillows. The task was projected by a beamer onto a mirror attached on the head coil. MRI 
data were pre-processed and analyzed using BrainVoyager 20.684, the NeuroElf Matlab toolbox (www.​neuro​elf.​
net) and custom software written in Matlab. One subject had to be excluded due to excessive intra-scan motion.

Structural image pre‑processing.  Structural data pre-processing included background cleaning, 
brain extraction and bias field correction to minimize image intensity inhomogeneities84. Bias field correction 
employed a “surface fitting” approach using singular value decomposition based least squares low-order (Leg-
endre) polynomials to model low-frequency variations across 3D image space85. We used polynomials with an 
order of three, which we fitted to a subset of voxels labeled as belonging to white matter. The estimated param-
eters of the polynomials were used to construct a bias field, which was removed from the data. Our approach 
comprised of one iteration using automatic white matter labeling86 and four iterations using manual white mat-
ter labeling.

Subsequently, structural data were transformed into Talairach coordinate space29. This comprised manual 
labeling of the anterior commissure (AC) and posterior commissure (PC) as well as the borders of the cerebrum. 
These landmarks were then used to rotate each brain in the AC-PC plane followed by piece-wise, linear transfor-
mations to fit each brain in the common Talairach “proportional grid” system19. Transformation into Talairach 
coordinate space was performed because the subsequent automatic segmentation procedure exploits anatomical 
knowledge for initial brain segmentation including removal of subcortical structures and disconnection of corti-
cal hemispheres 87. To prepare the data for this procedure, we performed a manual filling of the lateral ventricles. 
Based on the automatic segmentation of the structural scans along the white–gray matter boundary87, cortical 
hemispheres were reconstructed into folded, topologically correct mesh representations, which were tessellated 
to produce surface reconstructions and calculate curvature maps reflecting individual cortical folding patterns. 

http://www.neuroelf.net
http://www.neuroelf.net
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Figure 5.   Visual field localizer paradigm. (a) The paradigm consisted of flickering, black-and-white colored 
checkerboards that appeared randomly at homologous positions of the participant’s visual quadrant. In 25% of 
the trials, the two centrally located squares changed their color to yellow for 133 ms. Participants were required 
to press a response box button when noticing that. Participants were instructed to continuously fixate a black, 
x-shaped fixation cross presented at the center of the screen. Checkerboards appeared for 2000 ms. The regular 
inter-trial interval (ITI) was 0 ms. (b) Every 10–14 trials, the ITI extended to 2000 ms. The task comprised 144 
trials (25% target trials). It was preceded and followed by a presentation of the fixation cross for 10 s.
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Surface reconstructions were subsequently morphed into distortion corrected spherical representations. Finally, 
both folded and spherical mesh representations were downsampled to a standard number of vertices (40,962 
vertices per hemisphere, mean vertex distance: 1.5 mm). We used these standardized mesh representations for 
all surface-based processing steps.

Cortex‑based alignment of structural data.  We then applied a high-resolution, multiscale cortex-
based alignment procedure based on the individual curvature maps of all 50 participants for each hemisphere 
separately. This CBA approach, which reliably aligns corresponding gyri and sulci across subjects84, consists of 
an initial rigid and a subsequent non-rigid alignment step19 (Fig. 6a,b). During the initial step, cortical folding 
patterns of each sphere are aligned rigidly to the cortical folding pattern of a single target sphere by global rota-
tion. Rigid CBA operates solely on highly smoothed curvature maps containing only the most prominent ana-
tomical landmarks. We used the rotation parameters with the highest degree of overlap between the curvature of 
each individual sphere and the target sphere as the starting point for the subsequent non-rigid CBA.

Figure 6.   Fully data-driven CBA approach. CBA consisted of a rigid alignment to a single target brain and a 
non-linear alignment to an iteratively updated group average brain. (a) We carried out an initial CBA solely to 
generate an unbiased average target brain for the final CBA. We used a randomly selected brain from among 
all participants for the initial rigid CBA. (b) For the final CBA we used the unbiased average target brain 
created during the initial CBA for rigid CBA. (c) We generated average surface representations before and after 
macroanatomical alignment for each hemisphere, which we subsequently merged, inflated and used for analysis 
and visualization of the appropriate data sets. The upper row depicts group average spherical, folded and inflated 
mesh representations before applying CBA. The lower row depicts group average spherical, folded and inflated 
mesh representations after applying CBA.



15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14310  | https://doi.org/10.1038/s41598-022-17909-2

www.nature.com/scientificreports/

Non-rigid CBA employs a coarse-to-fine matching strategy, which operates sequentially at four levels of 
curvature smoothing, starting with the detail level used during rigid CBA. Each subsequent level includes increas-
ingly finer anatomical details up to almost the full curvature information. Importantly, non-rigid CBA aligns 
each cortical folding pattern to a dynamically updated group average through iterative morphing. This moving 
target approach, which generates the target curvature map from the average curvature across all hemispheres at 
a given alignment stage avoids the possible confounding effects of a suboptimal selection of an individual target 
brain, whose folding pattern might deviate considerably from the cohort average.

Notably, rigid CBA typically utilizes a single brain randomly drawn from the full cohort as its target brain. 
However, the folding pattern of this brain might also deviate considerably from cohort average. To also address 
this potential confound, we first conducted a preliminary CBA encompassing both rigid and non-rigid macro-
anatomical alignment (Fig. 6a). We then conducted a second, final CBA. Here, we used the aligned average brain 
derived from the preliminary CBA as an unbiased target for the rigid alignment step (Fig. 6b). After the final non-
rigid CBA, we merged both hemispheres of each individual brain to create a global surface-based analysis space.

Furthermore, for each hemisphere we created average surface representations from the original, non-aligned 
folded mesh representations, which we subsequently merged, inflated and used for data analysis and visualiza-
tion. We repeated these steps after applying the transformation matrix of the final rigid and non-rigid CBA to 
the folded mesh representations, yielding an accurate representation of the structural effects of macroanatomical 
alignment (Fig. 6c).

Functional image pre‑processing.  The first four volumes of each functional run were discarded to 
allow for T1 equilibration. Initial volume-based pre-processing of functional MRI data comprised slice timing 
correction using sinc interpolation and 3D motion correction using sinc interpolation. Next, we performed 
echo-planar imaging distortion correction using the Correction based on Opposite Phase Encoding method88,89. 
EPI distortion corrected functional data were co-registered to the untransformed extracted brains. This was 
accomplished utilizing a boundary-based registration algorithm optimized for surface-based analyses90. After 
co-registration to the fully cleaned but untransformed structural data, functional data were transformed into 
Talairach coordinate space by applying the transformation matrix generated during Talairach transformation of 
the structural data using sinc interpolation. This transformation preserved the original voxel size of the func-
tional data (3 × 3 × 3 mm3) (Fig. 7).

Surface‑based pre‑processing.  The volumetric functional data were then transformed into surface space 
by sampling on the individual cortical surface reconstructions incorporating data from − 1 to + 3 mm along ver-
tex normals using trilinear interpolation. Subsequent pre-processing of fMRI data in surface space started with 
spatial smoothing using a nearest neighbor interpolation (1 iteration). Based on the standardized vertex distance 
of 1.5 mm this approximates a 2D Gaussian smoothing kernel with a full width at half maximum (FWHM) of 
3 mm. We opted for minimal spatial smoothing to prevent a loss of accuracy for our visual field localizer. Spatial 
smoothing was followed by linear trend removal and temporal high-pass filtering using fast Fourier transforma-
tion (high-pass 0.00903 Hz). Based on the vertex-to-vertex referencing from the folded, topologically correct 
surface reconstructions to the spherical representations, we mapped the fully pre-processed functional data into 
a common spherical coordinate system (Fig. 7). Finally, we applied surface-based anatomical masks that only 
included cortical vertices in our analysis to the functional data. These masks excluded subcortical structures, 
which mapped onto the midline of our surface reconstructions, i.e., parts of thalamus and the basal ganglia. For 
functional data analysis and subsequent Bonferroni correction in surface space, this yielded a total number of 
76,132 vertices.

Full volume‑based pre‑processing.  To generate a purely volumetric data set for the comparison of VBA 
and SBAV, pre-processing after EPI distortion correction was also conducted in volume space mirroring as 
closely as possible the steps and parameters outlined above for surface-based pre-processing. First, we applied 
spatial smoothing using a 3D Gaussian smoothing kernel with a FWHM of 3  mm, which approximates the 
degree of surface-based spatial smoothing. Second, we applied linear trend removal and temporal high-pass 
filtering using fast Fourier transformation (high-pass 0.00903 Hz) using parameters exactly matching surface-
based pre-processing (Fig. 7). This data set was not transformed into surface space and did not include an ana-
tomical mask. For functional data analysis and subsequent Bonferroni correction in volume space, this yielded a 
total number of 52,504 voxels. Thus, the analysis space for VBA was 69% the size of the analysis space for SBAV 
and CBA (52,504 voxels vs. 76,132 vertices). This difference lead to a less strict Bonferroni corrected statistical 
threshold for VBA (p = 0.00000095) compared to SBAV and CBA (p = 0.00000066). Notably, we did not correct 
for this difference, even though it increased the difficulty of confirming the hypothesized superiority of CBA 
compared to VBA at the group-level.

Comparison of functional data sets.  Overall, we generated three different functional data sets: a vol-
ume-based data set, which was entirely pre-processed and aligned in volume-space (VBA); a surface-based data 
set, for which the final pre-processing steps—spatial smoothing and temporal filtering—were only applied after 
transformation in surface space, but without macroanatomical alignment (SBAV); and a surface-based data set, 
which was pre-processed in exactly the same way as the SBAV data set and also utilized macroanatomical align-
ment (CBA) (Fig. 7). Accordingly, the primary analysis of these datasets was carried out in volume space (VBA) 
and surface space (SBAV, CBA) respectively. Planned direct comparisons between these three data sets allowed 
us to evaluate the effects of different steps of our macroanatomical alignment approach. We compared the VBA 
and SBAV data sets to assess in isolation the impact of surface-based pre-processing, while keeping macro-
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Figure 7.   Sequences of functional data pre-processing, coregistration of structural and functional data and 
spatial transformation operations used to generate the three functional data sets used in our study: VBA, SBAV 
and CBA. For VBA we conducted all data pre-processing operations in volume space, including slice-scan-time 
correction, 3D motion correction, echo-planar imaging distortion correction, 3D spatial smoothing and linear 
trend removal with temporal high-pass filtering. Finally, functional data were co-registered to the structural 
data and transformed into Talairach space. For SBAV and CBA, we conducted all data pre-processing operations 
up to echo-planar imaging distortion correction in volume space. Here, co-registration of functional data to 
the structural data and transformation into Talairach space was followed by transformation into surface space. 
We then conducted 2D spatial smoothing and linear trend removal with temporal high-pass filtering in surface 
space. For CBA only, we subsequently applied macroanatomical alignment.
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anatomical alignment constant. We compared the SBAV and CBA data sets to assess in isolation the impact of 
macroanatomical alignment while keeping pre-processing parameters constant. Finally, we compared the VBA 
and CBA data sets to assess the combined impact of both surface-based pre-processing and macroanatomical 
alignment.

fMRI group analysis of visual quadrants.  We performed multi-subject statistical analyses using multi-
ple linear regression of the BOLD signal. The presentation of each checkerboard stimulus sequence at a single 
location was modelled by an ideal box-car function, which covered the volume of each trial, convolved with a 
synthetic two-gamma function. These predictors were used to build the design matrix of the experiment. Indi-
vidual statistical maps were generated by associating each voxel with the beta-value corresponding to the specific 
set of predictors and calculated on the basis of the least mean squares solution of the general linear model. The 
resulting individual statistical maps were entered into a second-level random-effects group analysis using a sum-
mary statistic approach.

We performed analyses focusing on the mapping of the four visual quadrants at the group level. To define 
group-level ROIs for each visual quadrant, we computed separate weighted contrasts for each quadrant 
against the other three quadrants. We assigned a weight of three to the position of interest, e.g. (βQuad_1 × 3)/
(βQuad_2 + βQuad_3 + βQuad_4) (p < 0.05, Bonferroni corrected). This allowed us to detect brain regions showing sig-
nificant position selectivity. For each resulting group-level ROI, we extracted average time courses (incl. stand-
ard errors of the mean) for all four conditions. We conducted this analysis for all three data sets (VBA, SBAV, 
CBA). For the VBA data set, we computed this analysis fully in volume space using the original resolution of the 
functional data (voxel size: 3 × 3 × 3 mm3). We projected the resulting maps on the non-aligned average surface 
representation, i.e. the inflated mesh representations before CBA, as depicted in the upper row of Fig. 6c. To 
this end, volumetric functional maps were transformed into surface space by sampling on the average cortical 
surface incorporating data from − 1 to + 3 mm along vertex normals of the group average surface brain using 
trilinear interpolation.

With this transformation we aimed to achieve a visualization and quantification of VBA results equivalent to 
the SBAV and CBA results. To make all three data sets comparable, this transformation of volumetric functional 
maps closely mirrored the transformation of functional data into surface space conducted for the SBAV and 
CBA data sets during pre-processing. Thus, we were able to assess cluster sizes for all ROIs of all data sets in 
surface space based on the number vertices. We also extracted the number of voxels for the VBA results before 
transformation into surface space. However, this parameter is not suitable for a comparison with the other data 
sets and was only included to ensure a comprehensive reporting of our findings.

We used two approaches to determine, whether position selectivity differed between our three data sets: first, 
to assess differences in the extent of early visual cortex showing significant position selectivity, we compared ROI 
size, i.e. the number of vertices, for each position of interest across data sets. To this end, we compared quantita-
tive changes in group ROI size between alignment methods utilizing the following formula: {(size_ROIQuad[AMm] 
− size_ROIQuad[AMn])/size_ROIQuad[AMn]} × 100. Here, Quad indexes the visual quadrant of interest (LR, LL, 
UL, UR). AM refers to alignment methods (VBA, SBAV, CBA). The subscripted characters n and m specify AMs, 
with m referring to the less advanced AM and n referring to the comparatively more advanced AM. Accordingly, 
a positive value indicates an increase in ROI size—and hence position selectivity—for the more advanced align-
ment method. Second, to test whether the strength of position selectivity within the ROIs of each visual quadrant 
changed across alignment techniques, we conducted separate linear mixed models with random intercept for 
each visual quadrant using R (version R 4.1.2). To calculate the degree of position selectivity within each ROI, we 
contrasted the single-subject t-values of each visual quadrant (“position of interest”) against the single-subject 
t-values of the three other visual quadrants, e.g. (tQuad_1 × 3)/(tQuad_2 + tQuad_3 + tQuad_4), separately for each align-
ment method. We used the results of these contrasts of each subject as the dependent variable and the alignment 
methods (VBA, SBAV and CBA) as the independent variable. To correct for multiple comparisons, p values 
were adjusted using Bonferroni correction. Thus, a significant effect in the linear mixed models would indicate 
a relevant change in position selectivity across alignment methods for a given visual quadrant.

Finally, to assess the impact of the three alignment approaches on horizontal and vertical symmetry of our 
group-level ROIs, we computed an established asymmetry index (AI)91 based on ROI size, i.e. the number of 
vertices, between each pair of ROIs using the following formula: (|sizeROI_1 – sizeROI_2|/sizeROI_1 + sizeROI_2) × 100. 
For calculating the vertical AI, we compared the number of vertices of ROIs facing each other at the vertical 
axis. Thus, for the vertical AI we compared left and right visual quadrants. For calculating the horizontal AI, we 
compared the number of vertices of ROIs facing each other at the horizontal axis. Thus, for the horizontal AI we 
compared upper and lower visual quadrants.

Probability maps.  To quantify and visualize variability of functional activation and possible changes 
induced by macroanatomical alignment, the use of PMs has been proposed. PMs are specifically useful to assess 
inconsistencies, i.e., disparities between individuals regarding the location of a particular (visual) area92,93. To 
quantify the spatial consistency of position selective activation patterns, we generated PMs for each visual quad-
rant for all three data sets (VBA, SBAV, CBA). These maps represent the relative number of subjects showing 
significant task-related activity in our single-subject analysis. To this end, we generated single-subject t-maps 
based on the same weighted contrasts employed in the group analysis but set at a more lenient statistical thresh-
old (p < 0.05 uncorrected). PMs were calculated by counting the number of subjects showing above-threshold 
activation in their individual t-maps at a given vertex, dividing this value by the total number of subjects, and 
multiplying the result by 100. For the VBA data set, we computed all of these steps in volume space and trans-
formed the final PM into surface space using the same parameters outlined above for the volumetric group 
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maps. Finally, we thresholded all PMs at a minimum of 10% probability of activation overlap. We also applied a 
cluster level threshold of 100 vertices to focus on the main areas of interest, i.e., the visual quadrants. Addition-
ally, we counted the number of vertices in the corresponding probability maps exceeding the threshold of 10% 
probability of activation overlap for each visual quadrant and analysis methods. Our goal was to quantify and 
compare the extent of early visual cortex, where each analysis method had a relevant impact on the probability 
of activation overlap.

Probability difference maps.  Additionally, we aimed to quantify changes in spatial consistency of posi-
tion selective activation patterns resulting from the different alignment methods. To this end, we calculated 
PDMs for each visual quadrant, thresholded at a minimum probability difference of 5%, using the original 
unthresholded PMs. The resulting three PDMs capture different aspects of our overall approach: the impact of 
surface-based functional data readout and pre-processing compared to volume-based alignment (SBAV minus 
VBA), the additional impact of applying macroanatomical alignment (CBA minus SBAV) and the additive 
impact of both methods (CBA minus VBA). Moreover, we counted the number of vertices in the corresponding 
PDMs exceeding the threshold of plus five or minus five % difference in probability of activation overlap for each 
visual quadrant. Our goal was to quantify and compare the extent of early visual cortex, where we observed a 
difference in the probability of activation overlap, for a comparison of analysis method.

Single‑subject ROI peak vertex distribution mapping.  For single-subject level analyses, we first 
defined ROIs for each subject independently before and after macroanatomical alignment, i.e., for SBAV and 
CBA, using the same weighted contrasts employed in the group analysis. We applied a more lenient statistical 
threshold (p < 0.05 uncorrected). Next, we determined the peak vertex for each subject’s four visual quadrant 
ROIs, i.e., the vertex with the highest t-value, for SBAV and CBA. To specifically assess the impact of macroana-
tomical alignment on the overlap of single-subject ROI peak vertices for each visual quadrant, we mapped all 
peak vertices per visual quadrant for SBAV and CBA. To quantify changes in the number of precisely overlap-
ping single-subject peak vertices, we counted for each occipital vertex the number of peak vertices for SBAV and 
CBA. We performed this analysis in addition to the PM- and PDM-analysis to provide a more direct assessment 
and visualization of the effects of macroanatomical alignment on the spatial correspondence of single-subject 
ROIs. We restricted this particular analysis to the comparison between SBAV and CBA, because we were specifi-
cally interested in studying in isolation the effect of macroanatomical alignment introduced in the CBA data set 
on the overlap of single-subject ROI peak vertices. Since both VBA and SBAV did not include macroanatomical 
alignment, but both data sets differed in a number of other pre-processing steps, the direct comparison between 
SBAV and CBA is the most appropriate to study this particular issue.

Data availability
The data that support the findings of this study are available from the corresponding author, R.A.B., upon rea-
sonable request.
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