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Continuous-variable codes are an expedient solution for quantum information processing and quantum
communication involving optical networks. Here we characterize the squeezed comb, a finite superposition of
equidistant squeezed coherent states on a line, and its properties as a continuous-variable encoding choice for a
logical qubit. The squeezed comb is a realistic approximation to the ideal code proposed by Gottesman et al. [D.
Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001)], which is fully protected against errors
caused by the paradigmatic types of quantum noise in continuous-variable systems: damping and diffusion. This
is no longer the case for the code space of finite squeezed combs, and noise robustness depends crucially on the
encoding parameters. We analyze finite squeezed comb states in phase space, highlighting their complicated
interference features and characterizing their dynamics when exposed to amplitude damping and Gaussian
diffusion noise processes. We find that squeezed comb states are more suitable and less error prone when exposed
to damping, which speaks against standard error-correction strategies that employ linear amplification to convert
damping into easier-to-describe isotropic diffusion noise.
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I. INTRODUCTION

Classical and quantum information is stored and accessed
in discrete units, i.e., bits and qubits [1], respectively, but
the actual physical encoding can be embedded in continuous,
infinite-dimensional systems. Continuous-variable encoding
of quantum information, in particular, may have a practical
advantage in communication and computation implementa-
tions, given the readily available toolbox of linear optics and
coherent states of light [2]. Moreover, the encoding of a finite
set of distinct logical states in terms of a higher-dimensional
system facilitates quantum error correction [3].

Gottesman, Kitaev, and Preskill (GKP) introduced a
continuous-variable code that represents quantum states of
finite-dimensional Hilbert space by infinite “comblike” su-
perpositions of displaced position or momentum quadrature
states in harmonic oscillator systems [4]. As quadrature eigen-
states are inherently unphysical, a realistic approximate GKP
code based on squeezed coherent states was proposed for
practical implementations. The GKP proposal for realizing
a cubic phase state, in particular, was analyzed in a case
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study [5], showing that feasible levels of squeezing could not
facilitate a close approximation to the ideal cubic phase state.

Despite practical limitations, superpositions of Gaussian
wave packets with limited squeezing can serve as a viable
encoding for quantum information processing in experiments
[6–10]. Recently, physical realizations of GKP encoding with
squeezed coherent states were achieved for a qubit in a
trapped-ion experiment [11] and with a superconducting mi-
crowave cavity [12]. The use of GKP codes for universal
fault-tolerant quantum computing on a protected code sub-
space was also investigated in broad survey studies [13–15].

In this paper, we study a realistic GKP encoding with finite
resources based on squeezed comb states: finite superpositions
of teeth, i.e., equidistant, distinct wave packets with a finite
amount of squeezing. We characterize these states with the
help of the Wigner-Weyl phase-space representation [16,17],
and we assess the impact of standard noise channels on the
code space and on code errors. Whereas the detrimental influ-
ence of noise and the counteracting error-correction protocols
are usually described in terms of discrete operations [18–23],
here we consider a more natural dynamical framework and
focus on the stability of GKP-like encodings under continuous
noise channels. It turns out that a squeezed comb encoding
grows more robust against amplitude damping noise with
increasing teeth, whereas it becomes less robust against dif-
fusion noise.

The outline is as follows. In Sec. II, we introduce GKP
encoding of a qubit in terms of squeezed comb states and
we discuss their phase-space representation in terms of the
Wigner function, which illustrates their intricate interference
features. In Sec. III, we study the evolution of the squeezed
comb state in the presence of two paradigmatic noise models:

2469-9926/2021/103(1)/012408(9) 012408-1 Published by the American Physical Society



SHUKLA, NIMMRICHTER, AND SANDERS PHYSICAL REVIEW A 103, 012408 (2021)

the amplitude damping channel describing pure loss of energy
quanta to a zero-temperature bath, and the isotropic Gaussian
noise channel describing pure diffusion resulting from a pure
loss channel and the equivalent amount of linear amplifica-
tion. Both cases can be treated analytically in phase space. We
evaluate various figures of merit characterizing the sensitivity
of the encoding to noise, including the state distinguishability
that is a direct measure of code errors. Our findings suggest
that GKP codes are more robust against the damping channel
than against the diffusion channel. In Sec. IV, we summarize
our findings and conclude.

II. SQUEEZED COMB STATE

We first introduce the basis states for the finite GKP encod-
ing of a qubit into superpositions of N equidistant squeezed
coherent states along the position quadrature axis of a single-
mode oscillator. Consider a Gaussian wave packet displaced
by the coherent amplitude α and squeezed to an amount char-
acterized by the squeezing parameter r [24]. It can be obtained
by applying first the squeezing operator Ŝ(r) and then the
displacement operator D̂(α) to the vacuum state |vac〉, with

D̂(α) = exp(α∗â − αâ†), Ŝ(r) = exp
(

r
â2 − â†2

2

)
. (1)

We use the convention of dimensionless position and momen-
tum quadratures defined via â = (q̂ + i p̂)/

√
2, such that the

free Hamiltonian of the mode and the displacement operator
become

Ĥ = h̄ω

(
â†â + 1

2

)
= h̄ω

p̂2 + q̂2

2
, (2)

D̂(α) = exp
(

α∗ − α√
2

q̂ + i
α∗ + α√

2
p̂
)

, (3)

which implies that position displacement of a wave function
by +q0 is represented by D̂(−q0/

√
2). All of the following are

formulated in the rotating frame with respect to Ĥ , in which
the states do not evolve.

We now define the squeezed comb state encoding the
computational basis of a qubit as a uniform superposition
of equally spaced and equally squeezed coherent states on a
line, the teeth of the comb; the two basis states differ by a
displacement of half the teeth spacing d ,

|0̄〉 := 1√
N

N∑

n=1

D̂
(

− q̄n√
2

)
Ŝ(r)|vac〉,

|1̄〉 := D̂
(

− d

2
√

2

)
|0̄〉. (4)

For minimal average energy, we choose the comb state repre-
senting the logical state |0〉 to be centered around the origin in
phase space,

∑
N q̄n = 0. The positions of the N teeth are then

q̄n = q̄0 + nd, n = 1, . . . , N, q̄0 = −N + 1
2

d. (5)

As the teeth have an exponentially suppressed but finite
overlap, the normalization factor N in the above definition is

N =
N∑

n,m=1

exp
[
−e2r (q̄n − q̄m)2

4

]

≈ N + 2(N − 1) exp
(

−e2r d2

4

)
. (6)

Here the last line shows the leading-order correction in the
limit erd & 1 of nonoverlapping teeth, in which N '→ N .
Another consequence of the overlap is that the two comb
states are not perfectly orthogonal. We find

〈0̄ |1̄〉 = 1
N

N∑

n,m=1

exp
[
−e2r

4

(
q̄n − q̄m − d

2

)2]

≈ 2N − 1
N

exp
(

−e2r d2

16

)
, (7)

once again with the lowest-order term for almost nonoverlap-
ping teeth.

For large combs, the scalar product is mainly determined
by (r, d ) and no longer depends much on N . It is directly
related to the distinguishability of the basis states and to code
errors, as we discuss in Sec. III C. The ideal GKP code (with
perfectly orthogonal basis states) would be reached asymp-
totically in the limit of infinitely large squeezing and tooth
number, r, N → ∞.

We proceed to analyze the features of the encoding, em-
ploying the Wigner-Weyl phase-space representation. The
Wigner function for a given single-mode state ρ is

w(q, p) = 1
2π

∫
dx eipx

〈
q − x

2
|ρ|q + x

2

〉
. (8)

Its marginals yield the state’s position and momentum distri-
bution,

f (q) =
∫

d pw(q, p), f (p) =
∫

dq w(q, p), (9)

respectively.
The comb-state Wigner function for ρ = |0̄〉〈0̄| is given

analytically as

w0̄ (q, p) = exp(−e−2r p2)
Nπ

N∑

n,m=1

cos p(q̄n − q̄m)

× exp
[
−e2r

(
q − q̄n + q̄m

2

)2]
. (10)

This expression is real-valued, and the double summation
separates the purely positive terms resulting from a classical
mixture of the teeth (n = m) from the interference terms os-
cillating along the momentum axis (N ,= m). The other basis
state is encoded with w1̄(q, p) = w0̄ (q − d/2, p). For the po-
sition marginals, we obtain

f0̄ (q) = er

N
√

π

N∑

n,m=1

exp
[
−e2r

(
q − q̄n + q̄m

2

)2]

× exp
[
−e2r

( q̄n − q̄m

2

)2]
(11)
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FIG. 1. (a) Wigner function of the squeezed comb state |0̄〉, with
N = 8 teeth at spacing d = 4 and squeezing r = 0.4. The blue and
red shades mark regions of positive and negative values, respectively.
(b) Corresponding position marginal distribution. (c) Momentum
marginal distribution.

≈ er

N
√

π

{
N∑

n=1

exp[−e2r (q − q̄n)2]

+2
N−1∑

n=1

exp
[
−e2r

(
q − q̄n − d

2

)2

− e2r d2

4

]}

,

and f1̄(q) = f0̄ (q − d/2), respectively.
The approximation in the last two lines of Eq. (11) gives the

relevant contributions in the limit of almost nonoverlapping
teeth: a sum of N individual Gaussian teeth and a sum over
small Gaussian side peaks in between the teeth. The momen-
tum marginal for both basis states is

f0̄,1̄(p) = e−r

N
√

π
exp(−e−2r p2)U 2

N−1

(
cos

pd
2

)
(12)

for

Un(cos θ ) = sin[(n + 1)θ ]
sin θ

, (13)

the Chebyshev polynomial of the second kind. The marginal
(12) describes the Fraunhofer diffraction pattern emerging
from a grating of N Gaussian slits, which reflects the non-
classical features of GKP encoding.

Figures 1 and 2 depict exemplary plots of the Wigner func-
tion and its marginals for the comb state |0̄〉 with N = 8 teeth
at two different levels of squeezing. Oscillatory fringe patterns
with negativities appear along the vertical p axis, centered
around the 2N − 1 positions q = (q̄n + q̄m)/2 at p = 0, as

FIG. 2. (a) Wigner function of |0̄〉, with N = 8 teeth at d = 4 and
antisqueezing r = −0.1. Blue and red indicate positive and negative
values, respectively. (b) Position marginal distribution. (c) Momen-
tum marginal distribution.

described by Eq. (10). The central fringe pattern at q = 0
has the highest amplitude, as it comprises all teeth interfering
in phase, and the amplitudes decrease symmetrically to both
sides. Decreased separation or squeezing along the position
axis results in a greater overlap between the Gaussian teeth
and a washed-out interference pattern as in Fig. 2. Similar
phase-space interference features are analyzed for quantum
tetrachotomous states [25].

III. NOISE CHANNELS

For the most common scenario in which GKP codes are
realized with optical modes, and also for vibrational modes
in a cold trapped-ion setting, the encoded states are most
likely to be subject to amplitude damping [18,19], i.e., energy
loss to an effectively zero-temperature bath. With the help of
linear parametric amplification, the damping channel can be
converted to pure diffusion noise, i.e., random isotropic and
Gaussian-distributed displacement errors acting on the code
in a finite-time interval. Ideal GKP states were shown to be
robust against this type of noise provided the time intervals,
or average displacements, between discrete error-correction
steps are small. The errors could then be detected nondestruc-
tively and corrected by controlled displacements.

In a realistic GKP encoding with a finite number of
finite-sized teeth, however, the displacement errors caused
by damping and diffusion processes cannot be perfectly sup-
pressed and the code space is not stable. Reliable operation
of GKP codes is therefore a matter of competing timescales:
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processing time versus characteristic error accumulation. In
the following, we assess the dynamics of GKP qubit encoding
under damping and diffusion noise, which can be formulated
analytically in phase space.

The time evolution of a GKP state under the influence of
amplitude damping is described by the usual dissipator,

ρ̇ = Lρ = γ âρâ† − γ

2
(â†âρ + ρâ†â), (14)

in the interaction picture with respect to the free Hamilto-
nian (2). The corresponding Fokker-Planck equation for the
Wigner function is

ẇ(q, p; t ) =
[
γ

4

(
∂2

p + ∂2
q

)
+ γ

2
(∂qq + ∂p p)

]
w(q, p; t ),

(15)
which can be solved with the help of a Fourier transform
between the Wigner function and its associated characteristic
function.

The solution to Eq. (15) is a Gaussian convolution with
rescaled arguments,

w(q, p; t ) =
∫

dq0d p0 eγ t

π (1 − e−γ t )
w

(
q0eγ t/2, p0eγ t/2)

× exp
[

(q − q0)2 + (p − p0)2

1 − e−γ t

]
. (16)

For the two basis states, it yields Gaussians in the position and
momentum quadratures with time-evolved width parameters,

σ 2
q (t ) = 1 − e−γ t + e−2r−γ t , (17)

σ 2
p (t ) = 1 − e−γ t + e2r−γ t , (18)

and time-rescaled displacements,

w0̄ (q, p; t ) = e−p2/σ 2
p (t )

Nπσq(t )σp(t )

N∑

n,m=1

cos
[

(q̄n − q̄m)p
σ 2

p (t )e−2r+γ t/2

]

× exp
[
− 1

σ 2
q (t )

(
q − e−γ t/2 q̄n + q̄m

2

)2]

× exp
[
− 1 − e−γ t

σ 2
p (t )e−2r

( q̄n − q̄m

2

)2]
, (19)

and

w1̄(q, p; t ) = w0̄

(
q − e−γ t/2 d

2
, p; t

)
. (20)

Systematic decay towards the vacuum caused by amplitude
damping (14) can be eliminated by adding a linear amplifier
at the same rate [13], which converts the damping channel
to a Gaussian diffusion channel (i.e., an effectively infinite-
temperature bath). The associated master equation is

˙̃ρ = L̃ρ̃ = γ
[
âρ̃â† + â†ρ̃â − 1

2 {â†â + ââ†, ρ̃}
]

= γ
[
q̂ρ̃q̂ + p̂ρ̃ p̂ − 1

2 {q̂2 + p̂2, ρ̃}
]
. (21)

Mitigating the damping comes at the price of doubling the
diffusion rate, but the noise that one needs to error-correct
simplifies to isotropic random phase-space displacements, as

FIG. 3. Time-evolved Wigner function and marginals subject
to amplitude damping at γ t = 0.2, starting from the initial comb
state of Fig. 1. (a) Wigner function. Blue and red indicate positive
and negative values, respectively. (b) Position marginal distribution.
(c) Momentum marginal distribution.

described by the Fokker-Planck equation

∂t w̃(q, p; t ) = γ

2

(
∂2

q + ∂2
p

)
w̃(q, p; t ). (22)

The latter is solved by a Gaussian convolution with linearly
growing spread,

w̃(q, p; t ) =
∫

dq0d p0

2πγ t
w(q − q0, p − p0)e−(q2

0+p2
0 )/2γ t .

(23)
For the two basis states, we arrive at

w̃0̄ (q, p; t ) =
N∑

n,m=1

cos [p(q̄n − q̄m)/(1 + 2γ te−2r )]

Nπ
√

(e2r + 2γ t )(e−2r + 2γ t )

× exp
[
− 1

e−2r + 2γ t

(
q − q̄n + q̄m

2

)2]

× exp
[
−2p2 + γ te2r (q̄n − q̄m)2

2(e2r + 2γ t )

]
, (24)

and

w̃1̄(q, p; t ) = w̃0̄

(
q − d

2
, p; t

)
. (25)

Figures 3 and 4 show the time-evolved Wigner functions
and marginals associated to the initial squeezed comb state |0̄〉
with (N, d, r) = (8, 4, 0.4) subject to amplitude damping and
diffusion, respectively. Both cases are evaluated at γ t = 0.2,
which amounts to twice as much noise in the diffusion case.
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(b) (c)

FIG. 4. Time-evolved Wigner function and marginals subject
to Gaussian diffusion at γ t = 0.2, starting from the initial comb
state of Fig. 1. (a) Wigner function. Blue and red indicate positive
and negative values, respectively. (b) Position marginal distribution.
(c) Momentum marginal distribution.

Most of the interference features are already washed out com-
pared to the initial Wigner function plotted in Fig. 1, but the
leading-order diffraction peaks in the momentum marginal
distribution (as well as the associated negative parts of the
Wigner function) are still visible. At the evaluated time, the
error probability for distinguishing the two basis states |0̄〉
and |1̄〉, initially at 1.0%, has grown to 2.7% and 9.1% for
the damping case and for the diffusion case, respectively.

When code states are exposed to a damping or diffusion
channel, they are affected in two ways: First, the states leave
the code space spanned by the squeezed combs (4), and sec-
ond, the basis states become less distinguishable, leading to
increased code errors. Both effects crucially depend on the
comb parameters: the tooth number N , the spacing d , and the
squeezing parameter r. In the following sections, we assess
this parameter dependence in terms of time-evolved fideli-
ties, orthogonality, and distinguishability between the code
states. For practical purposes, the distinguishability discussed
in Sec. III C is the most relevant quantity. It gives the lowest
attainable error in measurements that discriminate the two
computational states under noise.

A. Fidelity

The fidelity between an initial code state and its time-
evolved counterpart in the presence of a noise channel is a
simple figure of merit that captures the departure from code
space. Analytic results can be obtained, noticing that the ex-
pression for fidelity [26] between two states ρ, σ reduces to

the simple Hilbert-Schmidt scalar product if one of the states
is pure,

F (ρ, σ ) = (tr
√√

ρσ
√

ρ )2 ρ=|ψ〉〈ψ |−−−−−→ 〈ψ |σ |ψ〉 = tr(ρσ ).
(26)

Here, |ψ〉 represents a comb state and σ = eLt (|ψ〉〈ψ |) rep-
resents the same state after time t under damping (14). We
denote the corresponding fidelity as Fψ (t ), which can be con-
veniently expressed as an overlap integral of the respective
Wigner functions,

Fψ (t ) = 2π

∫
dqd pwψ (q, p)wψ (q, p; t ). (27)

From the initial Fψ (0) = 1 onwards, the fidelity will decay
and, for the case of the damping channel, it will eventually
reach the much lower final value Fψ (∞) = |〈ψ |vac〉|2 in the
limit γ t & 1.

In order to stabilize the initial code space spanned by the
pure comb states |0̄〉, |1̄〉 in a practical implementation, one
would have to monitor and counteract already small changes
of fidelity as quickly as possible. A figure of merit for the
required frequency of monitoring and stabilization operations
would be the initial decay rate of the fidelity. For the damping
channel generated by (14), we arrive at

−Ḟψ (0) = −〈ψ |L(|ψ〉〈ψ |)|ψ〉 = γ
*q2

ψ + *p2
ψ − 1

2
. (28)

The quadrature variances for the basis states are

*q2
0̄,1̄ = e−2r

2N

N∑

n,m=1

[
1 + e2r

2
(q̄n + q̄m)2

]

× exp
[
−e2r

( q̄n − q̄m

2

)2]
, (29)

*p2
0̄,1̄ = e2r

2N

N∑

n,m=1

[
1 − e2r

2
(q̄n − q̄m)2

]

× exp
[
−e2r

( q̄n − q̄m

2

)2]
. (30)

The growth of the initial fidelity decay rate (28) with the
position variance of the code states suggests that it becomes
increasingly taxing to stabilize comb states with many teeth,
as they exhibit a greater spread in phase space. In other words,
the greater the average energy of a state |ψ〉 compared to a
vacuum state with the same average displacement, the faster
fidelity decays. Indeed, we observe a quadratic growth of
fidelity decay with the number of teeth.

Explicitly, the leading-order contribution to the above vari-
ances comes from the diagonal summands (n = m),

*q2
0̄,1̄ ≈ e−2r

2
+ 1

N

N∑

n=1

q̄2
n = e−2r

2
+ N2 − 1

12
d2, (31)

whereas *p2
0̄,1̄ ≈ e2r/2. Off-diagonal terms are exponentially

suppressed by exp(−e2rd2/4), which leaves us with

−Ḟ0̄,1̄(0) ≈ γ

2

(
N2 − 1

12
d2 + cosh 2r − 1

)
. (32)
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FIG. 5. Variation of fidelity between the initial and final code
states |0̄〉 with time in the presence of a damping channel (blue)
and a diffusion channel (red) for N = 8 teeth. (a)–(c) Parameters
(d, r) = (4.0, 0.5), (5.0,0.3), and (7.0, −0.1), respectively.

We note that the growing decay rate is not related to the chan-
nel’s actual damping of the coherent amplitude to zero. If we
instead work with diffusion noise described by the generator
(21), the corresponding rate of fidelity decay would exhibit
the same growth with the spread of the initial state in phase
space,

− ˙̃Fψ (0) = γ
(
*q2

ψ + *p2
ψ

)
,

− ˙̃F0̄,1̄(0) ≈ γ

(
N2 − 1

12
d2 + cosh 2r

)
. (33)

We plot the fidelity of a GKP basis state as a function of
time in Fig. 5, comparing the damping channel (solid lines)
to the diffusion channel (dashed lines) for three exemplary
parameter sets at N = 8. They are chosen such that the error
probability in distinguishing the basis states is less than 1%.
After a fast initial decay, the damping channel leads to a
fluctuating behavior as the eight displaced teeth slowly ap-
proach the vacuum state. The diffusion channel results in an
initial decay at twice the rate, followed by a slow monotonous
decrease as the comb diffuses.

The initial decay of fidelity is also shown in Fig. 6 for the
parameter set (a) at varying tooth number N , comparing once
again the damping channel (circles) to the diffusion channel
(squares). The latter case leads to an approximately doubled
decay rate, which is also well described by the scaling formu-
las (32) and (33). The observed growth with N indicates the
short-lived initial code space spanned by large comb states.
However, this does not equally determine the rate of noise-
induced code errors, i.e., the ability to decode the logical qubit
from the noisy comb state.

FIG. 6. Derivative of fidelity between the initial and final code
states |0̄〉 at t = 0 with N in the presence of damping (blue) and diffu-
sion (red) noise channels for (r, d ) = (0.5, 4.0). The corresponding
solid lines indicate the scaling formulas (32) and (33).

B. Orthogonality

The growth of code errors over time in the presence of
noise will manifest itself in a deteriorating orthogonality of
the basis states. Consider the operator scalar product between
the time-evolved mixed code states,

O(t ) = tr[ρ0̄ (t )ρ1̄(t )] = tr[eLt (|0̄〉 〈0̄|)eLt (|1̄〉 〈1̄|)]

= 2π

∫
dqd pw0̄ (q, p; t )w1̄ (q, p; t ). (34)

Its initial value O(0) = 〈0̄ |1̄〉2 is determined by Eq. (7). Code
errors are therefore already present in the absence of noise,
but their probability grows with time. The damping channel,
in particular, would drive the comb states towards |vac〉 and
O(∞) = 1, i.e., total loss of the logical qubit.

Again we focus on the rate of change relative to the initial
value, which, in the case of damping, is

Ȯ(0) = γ (〈1̄|â |0̄〉2 + 〈0̄|â |1̄〉2 − 2〈0̄ |1̄〉 〈0̄|â†â |1̄〉)

= γ (〈0̄|q̂ |1̄〉2 −〈0̄| p̂ |1̄〉2 +〈0̄ |1̄〉2 −〈0̄ |1̄〉 〈0̄|q̂2+p̂2 |1̄〉).

(35)
Here we use the fact that the wave functions 〈q|0̄〉, 〈q|1̄〉 ∈ R.
Approximating the lengthy exact expression in the limit of
nonoverlapping teeth, we find, to leading order,

− Ȯ(0)
O(0)

≈ γ

{
cosh 2r − 1 + d2

4

[
N (N − 1)

12

−e4r 2N2 − 2N + 1
2(2N − 1)2

]}
. (36)

Notice that this rate of change is negative for large combs
(N & 1), which implies that the operator scalar product de-
creases and the basis states initially become more orthogonal.
This is mainly due to the loss of purity: in terms of the oper-
ator scalar product, the two pure comb states |0̄〉 and |1̄〉 are
less orthogonal than the corresponding incoherent mixtures
of teeth. Specifically, we find that O(0) = 〈0̄|1̄〉2 exceeds the
operator scalar product of the respective mixtures by the factor
(2N − 1) in the limit of almost nonoverlapping teeth.

For diffusion, we obtain
˙̃O(0) = 2γ (〈0̄|q̂ |1̄〉2 − 〈0̄| p̂ |1̄〉2 − 〈0̄ |1̄〉 〈0̄|q̂2 + p̂2 |1̄〉)

(37)
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FIG. 7. Variation of orthogonality between the code states |0̄〉
and |1̄〉 with time in the presence of the damping channel (blue) and
diffusion channel (red) for the same parameter sets as in Fig. 5.

and a corresponding leading-order approximation similar to
Eq. (36). We compare the time dependence of the scalar
product for damping and diffusion at the same three parameter
settings as before in Fig. 7. The damping curves would even-
tually converge to unity, but only at much longer times. In all
cases, the scalar product initially decreases and then increases
again.

Figure 8 shows the negative initial derivative as a function
of N , once again well approximated by the respective scaling
formulas (solid lines). Any comb with more than two teeth re-
sults in an initially decreasing scalar product between the basis
states. However, this must not be interpreted as a transient
improvement of the encoding. As we will see in the following,
code errors are related to the scalar product only in the case of
pure code states.

FIG. 8. Derivative of orthogonality between the code states |0̄〉
and |0̄〉 at t = 0 with N in the presence of damping (blue) and
diffusion (red) noise channels for the same parameter values as in
Fig. 6. The corresponding solid lines indicate the scaling formulas
(36) and (37).

FIG. 9. Variation of state distinguishability with time in the pres-
ence of the damping channel (blue) and diffusion channel (red), using
the same parameters as in Fig. 5.

C. State distinguishability

A reliable measure for code errors with a clear operational
meaning is the state distinguishability. Given two quantum
states ρ, σ , state distinguishability is defined in terms of the
trace distance [27],

D(ρ, σ ) := 1
2 tr|ρ − σ | = 1

2 tr
√

(ρ − σ )2. (38)

Quantum channels that describe continuous noise processes
are contractive and thus imply a monotonous decay of D
for any pair of states. The Holevo-Helstrom theorem [28,29]
states that the error probability for two-state discrimination by
measurement is at least ε = (1 − D)/2. For the two initially
pure basis states here, or for any two pure nonorthogonal
states in fact, we can express the state distinguishability in
terms of the scalar product as

D(|0̄〉 〈0̄|, |1̄〉 〈1̄|) =
√

1 − |〈0̄ |1̄〉 |2 ≡ D(0). (39)

Demanding a faithful initial encoding with a given error
bound,

1 − D(0)
2

! εmax / 1, (40)

constrains the choice of comb parameters (d, r, N ) to the
regime of almost nonoverlapping teeth. By virtue of Eq. (7),
we then obtain the approximate constraint

ε ≈ 〈0̄|1̄〉2

4
≈

(
2N − 1

2N

)2

exp
(

−e2rd2

8

)
! εmax, (41)

which requires, in particular, a wide tooth spacing and/or
strong squeezing with erd & 1. The three exemplary con-
figurations plotted in the three panels of Figs. 5, 7, and 9
correspond to (a) ε ≈ 0.4%, (b) 0.3%, and (c) 0.6%.
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Under the influence of noise, we will have a lower distin-
guishability D(t ) of the two mixed code states ρ0̄ (t ) and ρ1̄(t )
at a later point in time,

D(0) " D(t ) = 1
2 tr

√
[ρ0̄ (t ) − ρ1̄(t )]2 t→∞−−−→ 0. (42)

The values D(t ) for t > 0 are no longer a simple expres-
sion of the operator scalar product; they must be evaluated
by numerical diagonalization of the difference between the
time-evolved code states in the square root. We can retrieve
the corresponding density matrices in position representation
from the time-evolved Wigner functions. Given the damping
channel (14), we arrive at〈

Q + q
2

∣∣∣ρ0̄ (t )
∣∣∣Q − q

2

〉

=
∫

d pw0̄ (Q, p; t )eipq

= 1√
πNσq(t )

N∑

n,m=1

exp

{

− [2Q − e−γ t/2(q̄n + q̄m)]2

4σ 2
q (t )

−
σ 2

p (t )q2 + 2q(q̄n − q̄m)e2r−γ t/2 + (q̄n − q̄m)2e2r

4

}
,

(43)
and replacing Q by Q − e−γ t/2d/2 yields the density matrix
for ρ1̄ (t ). Alternatively, for the Gaussian diffusion channel
(21), we obtain〈

Q + q
2

∣∣∣ρ̃0̄ (t )
∣∣∣Q − q

2

〉

= 1
√

πN
√

e−2r + 2γ t

N∑

n,m=1

exp
{
−

(q̄n + q̄m − 2Q)2

4(e−2r + 2γ t )

−2γ tq2 + e2r (q̄n − q̄m + q)2

4

}
. (44)

Taking only the diagonal terms in the double sum, we can
evaluate the distinguishability of the incoherent counterparts
to the comb states |0̄〉 and |1̄〉. Remarkably, and in contrast
to the discrepancy of the scalar products in Sec. III B, we
find that incoherent combs are as distinguishable as coherent
ones at initial time, within numerical accuracy in the three
parameter cases considered.

Variation of the distinguishability with time is plotted in
Fig. 9 for the damping (solid line) and the diffusion (dashed
line) channels. We observe a monotonous behavior in both
cases, but, surprisingly, the initial slope in the diffusion case
is significantly (and not just by the factor of two) steeper than
in the damping case. The detrimental influence of damping
exceeds that of the diffusion channel only at a later point in
time, when the accumulated code error is no longer tenable.

To clarify this further, we also plot the negative derivative
of the distinguishability at time t = 0 as a function of N in
Fig. 10. In the limiting case N = 1 of a coherent-state encod-
ing, the difference between damping (circles) and diffusion
(squares) is indeed roughly a factor of two. With growing
N , however, the disparity quickly rises to more than an order
of magnitude, highlighting a strikingly different sensitivity of
GKP codes to damping and diffusion—a property that does
not reflect in the analytically tractable scaling behavior of
initial-state fidelity and orthogonality. In fact, the opposite

FIG. 10. Derivative of state distinguishability at t = 0 with N in
the presence of damping (blue) and diffusion (red) noise channels for
the same parameters as in Fig. 6.

scaling of the distinguishability with N suggests that it is
detrimental to compensate the systematic effect of damping
by linear amplification when implementing error correction
on GKP codes. Apparently, it is easier to stabilize comb states
under the damping channel than under the diffusion channel.

IV. CONCLUSION

We have studied properties of squeezed comb states, with
a realistic implementation of GKP encoding using superposi-
tions of a finite number of squeezed coherent states arranged
equidistantly along the position quadrature axis. With the help
of the Wigner function representation, we have characterized
the peculiar interference features of these states, as well as
their time evolution under the influence of two important
noise processes: amplitude damping and Gaussian diffusion.
This dynamical phase-space framework can help to clarify the
noise sensitivity of GKP encoding as a function of its consti-
tuting parameters: the number of comb teeth, the spacing, and
the squeezing. To this end, we have assessed the behavior of
several figures of merit for the stability of GKP encoding in
the presence of noise.

Specifically, we have evaluated the distinguishability
between encoded computational basis states subjected to
damping and diffusion noise, which directly measures the sus-
ceptibility to code errors. We have found that GKP states are
substantially more robust against the initial buildup of errors
due to amplitude damping (pure loss) than due to diffusion.
The discrepancy grows with the comb size, and it suggests
that one should avoid error-correction strategies based on the
conversion of damping to diffusion noise by means of linear
amplification [13]. An alternative scheme to stabilize GKP
states against amplitude damping is proposed in Ref. [30]. Our
phase-space approach based on the explicit time evolution of
GKP states subject to noise puts a spotlight on the dynamical
description of code errors and, potentially, continuous online
protocols for code stabilization.
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