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Abstract:

The design of gfomplex multi-component superalloys has always been challenging due to the
interaction of multiple elements and stringent requirements for various properties. In this study, an
integrated approach to designing the high-component (>7) y'-strengthened Co-based superalloys with
well-balanced propeities is developed by combining the diffusion-multiples and machine-learning
models. A “cross-component” prediction is achieved by the machine-learning models, where two
types of novenaryssuperalloys are screened out for aero-engine and industrial gas turbine blades,
respectively, based on the experimental database mainly consisting of 6-7 elements. The method is
verified to be effective or slightly more favorable than the Calculation of Phase Diagram

(CALPHAD) in predicting the y" solvus temperature (Ty,) and phase constituent of the high-
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component alloys when reasonable data of low-component alloys is just provided. Furthermore, the
oxidation resistance and hardness of polycrystal superalloys as well as the compressive strength of
single crystal superalloys are tested. Finally, some factors affecting the accuracy of “cross-component”
prediction are discussed. Expanding the compositional range and supplementing the critical
interaction data of multiple elements in the database are beneficial for improving the accuracy of the

“cross-component” ptediction.

1. Introduction

The discovery of ordered y’ precipitates in the system of Co-Al-W-based alloys paves a new pathway
for the development-of high-temperature superalloys applied at high temperatures.!'?l Compared to
the widely used Ni-based superalloys, the potential for higher temperature capability is expected with
Co-based superalloystdue to the higher melting temperature of the major matrix component, Co.14]
This is very attractive for hot-end components in advanced aero-engines to further improve the fuel
efficiency and meehanical properties. In addition, Co-based superalloys usually have a higher sulfide
melting temperature than Ni-based superalloys, which is beneficial for the long-term service in an
environment containing sulfur, such as industrial gas turbines.'¥! However, due to the complexity of
the actual service“environment, commercial superalloys need to fulfill a variety of physical and
chemical propetties simultaneously, such as creep, fatigue, oxidation, corrosion and density, which
is done by tailoring the alloy composition typically comprising of more than 9 components. !

Until now, the,research of y'-strengthened Co-based superalloys has gradually evolved from
exploring alloying principles, considering individual or multiple elements,[*I®] to the optimization
of different propétties in an alloy with complex components (> 7).l Many researchers have
demonstrated that:Nisaddition can significantly expand the y+y’ phase region,!?l!*l which contributes
to the tailoring (of the microstructure by the addition of other refractory elements. Thus, a series of
CoNi-based superalloys have been developed in recent years. Ta, Ti and Nb improve the y’ solvus
temperature (Ty) and/the temperature capability,['*1!) while they also promote the precipitation of
TCP phases, whichsare harmful to mechanical properties..!’!8] Cr is beneficial for improving the
oxidation and @orrosion resistance, but it reduces the Ty and area fraction of y' precipitates (Ay).!71120]
Mo, W and Re provide good solid solution strengthening effects in Ni-based superalloys with a
negative misfit (ay < ay). In contrast, Mo lowers the misfit of y'-strengthened Co-based superalloys,
which generally exhibit a positive misfit (a,>ay), by increasing the lattice constant of the y matrix.
This normally results in a transition of the y’ precipitate morphology from cuboidal to spherical,!]
which is beneficial for the microstructural stability during the long-term service process. W is the y'-
forming element in y'-strengthened Co-based superalloys,??! and its solution effect is lower than that
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in Ni-based superalloys. Moreover, the addition of W will greatly increase the density. Although Re
can significantly improve the creep resistance of Ni-based superalloys by strongly segregating to the
vy matrix, lowering the effective diffusion coefficients and leading to a large lattice distortion, no
obvious improvement of creep property is detected in the y'-strengthened Co-based superalloys
containing Re.l?3] Thus, it is essential to understand the synergetic effects of multiple elements when
making compositional optimization of y’-strengthened Co-based superalloys.

In the early'days'of CoNi-based superalloy research, conventional methods were used to prepare
a series of individual alloys and further screened them by their Ty, phase constituents, density,

(101211241 Dye to the limitation of experimental methods and databases, it was

oxidation and so_on.
difficult to realizesassynergistic consideration and optimization of multiple physical and chemical
properties. Toaccelerate the design process, calculation methods like density functional theory (DFT)
and thermodynamierealculation were applied based on the materials knowledge. Even so, the DFT
calculation of superalloys within a complex system would consume extended time and be costly.
Thermodynamic “calculation can efficiently navigate the relationship among the complex
compositions and some physical properties, such as the Ay, Ty and phase constituents. But the
accuracy of the Calculation of Phase Diagram (CALPHAD) is strongly affected by the accuracy and
size of the thermodynamic database. Until now, significant amount of experimental or simulative
works have been performed to improve the effectiveness of the thermodynamic database, especially
for the high-component alloys. Even so, the CALPHAD method was ineffective at predicting phase
equilibria behaviorswhen Cr is introduced to Co-Ni-Al-W, as reported by Lass (>, Similar results
were also reported in‘the high-component y’-strengthened Co-based superalloys containing W, Ta,
Mo or Nb.MIZHR27 Fhys, it is important to develop a novel approach for efficiently predicting the
complex system’s,properties.

Machine-learning has been recently introduced into the design of y'-strengthened Co-based
superalloys due_to the superiority and high efficiency in processing a large amount of multi-

dimensional data.[!1121127

1281 One or more properties have been simultaneously considered in these
studies. Moreovergall of these researches show that the prediction accuracy strongly depends on the
quality and quantity of the database, although multiple algorithms were employed and carefully
optimized to build the machine-learning models. However, it is difficult and costly to produce a large
amount of high-quality data using traditional experimental approaches. Thus, Liu et al.l'!l integrated
the composition-microstructure data calculated by the CALPHAD into the machine-learning model,
and predicted the behavior of some septenary y'-strengthened Co-based superalloys. However, as
mentioned the low accuracy of thermodynamic databases, especially around phase boundaries, is still

a hurdle and the deleterious phases precipitated in predicted alloys. Additionally, experimental
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databases were also built to predict the Co-Ti-V-X!>’) or CoNi-based alloy systems!?’! based on the
individual traditional experimental approaches and published results. This has been verified to be
available for the quick search for the y'-strengthened Co-based superalloys with high T,. However,
large deviations were exhibited in the machine-learning predictions of phase constituents and
A, [METIB01 A]] the methods mentioned above cannot compensate for the insufficient high-quality
data. Thus, the prediction is normally carried out within a selected database to find a local maximum
or minimum.BNt 4§ difficult to extrapolate outside the database, let alone perform the “cross-
component” prediction, wherein the prediction has higher components than the alloys in the database.
In fact, the “black box” in machine-learning models also involves calculations, which may not be
understandable pof thessynergetic effects of multiple elements. As such, it is theoretically possible for
the machine-learning model to make a “cross-component” prediction, when the database is accurate
enough and thercorreet algorithms are selected and trained properly.

Multicompenent diffusion-multiple is a high-throughput experimental method, which can
quickly obtain a large amount of quantitative experimental data in a wide range of compositions.*?/3%!
Moreover, compared to the underpopulated CALPHAD databases, the diffusion multiples have an
obvious advantage in'determining the phase boundaries in y’-strengthened Co-based superalloys. The
high accuracy of eXperimental data around the phase boundaries can also be used to supplement the
CALPHAD databases, as reported in our previous works.!?8!1*# Therefore, it is expected to improve
the accuracy of prediction within the database and allow for “cross-component” predictions by
integrating the diffusion-multiple with the machine-learning model.

In this study, a large database on the relationship between the compositions and microstructures
was established by two multicomponent diffusion-multiples. Additionally, some data, including the
microstructure and Ty, was obtained from individual experiments in our previous works and related
literature. Subsequently, a machine-learning framework was constructed to perform “cross-

component” predictions of y’-strengthened Co-based superalloys containing up to 9 elements, based

on domain knowledge-driven empirical design criteria for the aero-engines and industrial gas turbines.

Polycrystal and single crystal alloys were produced to verify some critical physical and chemical
properties. Optimization strategies for the “diffusion-multiple + machine-learning” method are
further proposed based on the experimental results of the prediction superalloys. This work will be

significant for accelerating the development of alloys with complex components.

2. Results and Discussions

2.1. Workflow of Machine-Learning Strategy
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The upper temperature capability strongly depends on the Ty, i.e., ¥’ strengthening is provided below
this temperature. In addition, the microstructural stability (phase constituent) and Ay at the service
temperature are the critical parameters affecting the mechanical performance, viz.
tensile/compressive, creep and fatigue properties. Therefore, the above three fundamental physical
properties/parameters are mainly optimized in this study.

Figure 1 shows'the workflow of multi-performance optimization for y'-strengthened Co-based
superalloys by “untegrating experimental data and machine-learning models. First, a large
experimental database consisting of the relationship among the alloy composition with the phase
constituents, Tyrand Ay, was established. The data for the phase constituent and A, mainly comes
from the diffusion=multiples (data set), individual experimental alloys (single data) of our group and
published literature. In contrast, the data of T,» was mainly obtained through individual experiments
from our previoussworks and other published results. It should be noted that all data in the database
comes from 7y’-stfengthened Co-based superalloys with 8 or less components, and most of them
consist of 6~7 elements. This will be further detailed in the following sections.

A classification model was applied to predict the output values of phase constituent: “0” for y

single phase, “1” for y/y" two-phase microstructure, and ‘“2” denoting the existence of detrimental

phases. A regressionumodel was used to predict a numeric outcome (T and Ay) of the input alloy
composition. After that, several widely used machine-learning algorithms were further screened out
by the exhaustive"method to determine the optimal algorithm for the investigated composition-
physical properties (phase constituents, Ty and Ay) relationships. Random Forest (RF), XGBoost
(eXtreme Gradient Boosting, also known as GBDT), Deep Neural Network (DNN), K-Nearest
Neighbor (KNN) and Logistic Regression (LR) algorithms were employed to build the phase
constituent classification model, and the validity was evaluated by the value of Macro-F;.**! Linear
regressions (Lin), RF, GBDT, DNN and Support Vector Regression (SVR) with a radial basis
function kernelfwere applied to build the T, and the Ay regression models, and the validity was

evaluated by the value of the root-mean-square error (RMSE) and the explained variance (R?).

1
RMSE:\/;Z?zl(YaCt - Ypre)2 (1)

_ Z?=1(Yact_ypre)2

2:
R 1 Z?zl(yact_yave)z

2

where Yact is the true value, Ypre is the predicted value, Yave is the average of Yact, and n is the number
of the predicted data in the dataset. The responses of Macro-F; and R? range from 0 to 1, where the
better the model performance, the closer the value is to 1, and the RMSE value is smaller. Models

were adjusted until the optimal model performance was obtained.!!''l2!l Then, the models were
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employed to predict the phase constituent, T, and Ay after the elements (up to nine) of y’-strengthened
Co-based superalloys were input. Finally, several objective alloy compositions were screened out
based on the design criteria for different types of superalloys, and the reliability of the model was

evaluated by systematic experiment investigations.
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Figure 1. Workflow of multi-performance optimization for y'-strengthened Co-based superalloys by

integrating experimental data and machine-learning models.

2.1.1. DiffusionyMultiple and Design Criteria

Figure 2 exhibitssthe schematic of two multicomponent diffusion-multiples and the quantitative
relationship between€ompositions and microstructures. The first diffusion-multiple shown in Figure
2(a) was used fof theyfirst-round alloy screening based on the microstructure. The base alloyl was
determined by ourprévious works on the single crystal Co-Al-W-based superalloy (Co-7Al-8W-4Ti-
1Ta (at. %)), which has a comparable creep resistance with first-generation Ni-based single crystal
superalloys.*¢17] Subsequently, Ni was added to expand the y+y’ phase region. The Co-20Ni-7Al-
8W-4Ti-1Ta (at, %) alloy was selected as the base alloy to further tailor other elements considering
the microstructuralsstability (Ni, W), creep resistance (Ti, Ta, Mo, Nb), density (Al) and oxidation
resistance (Cr)"Of note is that the maximum number of components is 7 in this diffusion-multiple.
Combined with the first diffusion-multiple, some individual tests were performed to further verify
the microstructural stability and oxidation resistance of the screened alloys. Then, a single crystal
superalloy (Co-30Ni-11A1-4W-4Ti-1Ta-5Cr (at. %)) was obtained with a good combination of
density, creep and oxidation resistance.*®! To further optimize the microstructural stability and
oxidation resistance, the individual effects of Al, Cr, Ti, Ta, Mo and Ni on base alloy2 (Co-30Ni-

11A1-4W-2Ti-1Ta-5Cr (at. %)) were investigated with a second diffusion-multiple, and the maximum
This article is protected by copyright. All rights reserved

SaPIME SS90 U 104 3d3X3 ‘PaIIWIAd JOU AJIDLIS S| UOIINGUISIP PUB 9SN-3Y "£202 JBNIGaS "Z0 UO - YdJeasay Uod| Z£€ |dIA Ag "WO ASIM AJRIqI[2UI|UO//:Sd11Y WOy papeojumod ‘0 ‘€202 '8¥92.2S1



WILEY-VCH

component is 8 (Figure 2(b)). Additionally, the interaction of two or three elements can be
investigated by analyzing the diffusion-couples around the base alloy2, such as +2Ta-+2Mo and
+10Ni-+2Ti. Figure 2(c) shows the typical microstructural evolution with the variation in the
concentrations of Mo and Ta in the +2Mo-+2Ta diffusion couple after being annealed at 1000 °C for
1000 h. The cerulean and purple circles present the variation of Mo and Ta contents, respectively.
The y/y" micros was observed throughout the +2Mo-+2Ta diffusion couple. The morphology
of'y’ precipitatemes from being more spherical to being more angular or cuboidal (viewed from
other crystallographic directions, not shown here) with the increase of Ta (1—3 at. %) and
simultaneous decrease of Mo (2—0 at. %). Meanwhile, the Ay was measured to increase from the

alloy +2Mo (=80%)te +2Ta (~87%) (Figure S1, Supporting Information). Accordingly, 81 datasets
of the phase Mt and the A, associated with compositions were obtained from each diffusion

couple. Thus, by ating the two diffusion couples and references?!391-41) 2275 datasets were
provided for se constituent and Ay models mentioned in Figure 1. For the Ty model, 238
datasets were co from references!!H13I2IBNA0I46I53] and our individual experiments.

(b)

+20Ni

Figure 2. Schematienof two multicomponent diffusion-multiples and the quantitative relationship
between compositions and microstructures. Diffusion-multiple used for the (a) first and (b) second

rounds of the alloy screening. (c) Typical microstructural evolution with the variation of the
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concentrations of Mo and Ta in the +2Mo-+2Ta diffusion couple after being annealed at 1000 °C for
1000 h.

As mentioned in Figure 1, the final database was established by integrating the dataset from the
diffusion-multiples (phase constituents, Ay) and independent data from individual experiments (Ty,
phase constituents, Ay). Different machine-learning models were applied to the aforementioned three
types of data. Mereover, the validity was evaluated and optimized by the value of Macro-F1 (phase
constituent classification models), RMSE and R? (Ty and Ay regression models). Among the eight
typical algorithms introduced in Figure 1, the GBDT algorithm had the best performance for
predicting the phase constituents, Ty, and Ay of the new y’-strengthened Co-based superalloys with a
number of components up to 9 (details of values Macro-F1, RMSE and R? for each model are shown
in Figure S2).

Besides the"Tygsphase constituent and Ay, additional properties like density and oxidation
resistance need.to'be considered due to the requirements for different service environments. As such,
combined with the . domain knowledge and experience, two types of design criteria of superalloys
were set for aero-engine and industrial gas turbine blades, respectively, as shown in Table 1. For the
aero-engine, the superalloys generally work at a higher temperature (1000~1100 °C) than the
industrial gas turbifie (900~1000 °C). Thus, higher T, (>1190 °C), good microstructural stability (y+y’)
and Ay (70~80%) at 1000 °C were preliminary set based on the existing experience.l**>] The above
three fundamental physical properties/parameters were predicted by the corresponding machine
learning models..The design criteria for density and oxidation resistance were set as <8.8 g/cm?,
calculated by the empirical formula, and AI+Cr> 16 at. % based on our previous experience.!!?I1>¢]
Similarly, the design'eriteria of Ty, phase constituent and Ay, density as well as oxidation resistance
for the superalloys.ifi industrial gas turbine blades®’1°%) were also listed respectively in Table 1.
Moreover, an additional criterion of high Cr content (>12 at. %) was proposed to meet the requirement
for the corrosion enyironment in industrial gas turbines.

According to the above criteria and microstructure results in the database, the search space of
superalloys in the.aero-engines, CoaNipbAlcWTicTasfCrgMonNb; (at. %), was determined as follows:
26%=<b<32%, 8%=c<13%, 1%=<d<4%, 1%=<e<4%, 1%=<1<4%, 4%=<g<8%, 0%=<h=<1.5%, 0%<i<1.5%,
a>b, ct+g>16, and at+b+c+d+e+f+g+h+i=100%. A composition variation step of 1 at. % was set for
c~g, 2 at. % for b, and 0.5 at. % for h~i, which results in a total of 81920 candidates containing up to
9 elements. In contrast, the search space of the industrial gas turbine superalloys is characterized by
the lower and upper limits of Al and Cr content (6%=<Al<11%, 12%=<Cr<16%). The search space for
other elements and composition variation step are the same as the aero-engine, which gives a total of
122880 candidates to be explored.
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Table 1. Two types of design criteria of superalloys set for the aero-engine and industrial gas turbine

blades based on the existing experience, respectively.

Property Aero-engine  Industrial gas turbine
v’ solvus temperature (°C) >1190 >1100 Machine learning
Phase constituent at 1000 °C Vand Vand Machine learning
y' area fractioft at 1000 °C 70~80% 60~70% Machine learning
Density (g/em®) <8.8 <9 Empirical
Oxidation(at; %) Al+Cr>16 Al+Cr>16, Cr>12 Empirical

2.2. Experimental Verification

Based on the machine-learning models and design criteria, a total of 183 and 238 candidate alloys
were screened out for the aero-engines and industrial gas turbines, respectively. To further guarantee
microstructuralsstability, objective alloys with a higher T, and lower density were further screened
with the Pareto frontier method. Table 2 lists the nominal compositions of four novenary alloys,
where alloys 9CoNi-A and 9CoNi-B were designed for the aero-engines, while alloys 9CoNi-C and
9CoNi-D for th¢ industrial gas turbines.

Table 2. Nominal compositions of four novenary alloys designed for the aero-engines and

industrial gas turbines, respectively (at. %).

Allloy Co Ni Al Ti Ta Cr Mo Nb

w
9CoNi-A Bal. 32 12 2 1 3 4 0.5 0.5
2
3
2

Aero-engine
9CoNi-B Bal. 32 10 3 7 05 05

Industrial gas/ 9CoNi-C Bal. 32 7 1.5 14 05 05
turbine 9CoNi-D Bal. 32 9 3 1205 05

N W N

2.2.1. Microstructural Stability

Figure 3 shows thé scanning electron microscopy images of microstructures in the four novenary
alloys after aging at different temperatures and hours. Both alloys 9CoNi-A and 9CoNi-B remain y/y’
microstructure afterfaging at 1000 °C/500 h, and no detrimental phases were observed, as shown in
Figures 4(a) and (b), respectively. The morphology of ¥’ precipitates was cuboidal with an equivalent
diameter (Dy) of 877 = 266 nm in alloy 9CoNi-A, while in alloy 9CoNi-B, it was transformed into
rounded-edge rectangles through a coarsening and connecting process. Thus, the Dy, was not
calculated due to the irregular shape of y’ precipitates. The Ay of alloy 9CoNi-A (73.8 + 1.2%) is
higher than that of alloy 9CoNi-B (53.5 & 3.2%), which is lower than the value set by the design
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criterion (70~80%) for the aero-engines (Table 1). The industrial gas turbine alloys 9CoNi-C and
9CoNi-D keep typical the y/y" microstructure after aging at 950 °C/600 h, and the corners of the y’
precipitates are smooth. The Ay of alloys 9CoNi-C and 9CoNi-D were measured to be 51.1 = 0.5%

and 57.4 + 0.8%, respectively. No noticeable difference of Dy was found between alloys 9CoNi-C
(373 + 86 nm) and 9CoNi-D (388 + 80 nm).

(a) A,r=738i12% oY A | A,.=535+31%

(ASSLIE0S% (d) b =S A ~57.4108%
e D 373i86nm- Dr—388+80nm

at different tem es and hours. (a) 9CoNi-A at 1000 °C/500 h; (b) 9CoNi-B at 1000 °C/500 h;
(c) 9CoNi-C at °C/600 h; (d) 9CoNi-C at 950 °C/600 h.

2.2.2. Oxidation echanical Properties

Figure 4 shows, the oxidation and mechanical properties of the predicted novenary alloys. The
oxidation weigh shown in Figure 4(a) indicates that all four novenary alloys have better
oxidation re than the Cr-free y’-strengthened Co-based superalloys with a fewer components
after 1000 °C/100 h. The weight gain of the four novenary alloys decreases in the order of 9CoNi-
C>9CoNi-A>9CoNi-D~9CoNi-B. The oxidation resistance of alloys 9CoNi-B and 9CoNi-D is close
to that of typical Ni-based superalloys CMSX-4 and CMSX-6. The oxidation behavior strongly
depends on the interaction of Al and Cr, which has been studied and shown in our previous
works.!'I%] The Vickers hardness of the four novenary alloys at room temperature increases in the
order of 9CoNi-A<9CoNi-B<9CoNi-C<9CoNi-D, as shown in Figure 4(b). Interestingly, the
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variation of Vickers hardness seems to not be closely related to the Ay. For example, although the
alloy 9CoNi-A has the highest Ay, among the four novenary alloys, its Vickers hardness is lower than
the other three alloys. In contrast, for the industrial gas turbine alloys 9CoNi-C and 9CoNi-D, the
variation of Vickers hardness is positively correlated with the A,. This will be further discussed in
the following sections.

Figure 4(c) shows 0:2% flow stress curves as a function of temperature for single crystal alloys
9CoNi-A and 9CeNi=D, together with other single crystal CoNi-based alloys with fewer components
(<6),13316% and Co-Al-W-based alloy.!*" In the whole temperature range, the flow stresses of alloy
9CoNi-D are higher than that of 9CoNi-A. Alloy 9CoNi-A presents an anomalous yield behavior and
has a higher or comparable yield strength at 800 °C compared to the CoNi- and Co-Al-W-based alloys
with high W content (>4 at. %). Above 800 °C, its flow stress decreases rapidly as it does for other
CoNi- and Co-Al=W=based alloys. In contrast, with the increase of temperature, the flow stresses of

alloy 9CoNi-D.decrease without the anomalous yield behavior. Even so, the alloy 9CoNi-D shows

higher flow stresses.at temperatures below 800°C than other reported CoNi- or Co-Al-W-based alloys.

e 500 - L
Co-9A19W-28i-0. 281 _— il
- \_
Co-30Ni-10A1SW-2si | T T 400} ’ 1"
n 0,\1-("
R 300} 1% =
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Figure 4. The oxidation and mechanical properties of four novenary alloys. (a) Comparison of
oxidation weight gains between 7v'-strengthened Co-based and Ni-based superalloys after

1000 °C/100 h; (b) Vickers hardness and the corresponding Ay; (c) 0.2% flow stress curves as a
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function of temperature for single crystal alloys 9CoNi-A and 9CoNi-D, together with other single
crystal CoNi-based alloys with lower components (<6),>31°1 and Co-Al-W-based alloy!*?l.

2.3. Comparison between Machine-Learning and CALPHAD

The synergetic effects of multiple elements have always been one of the key issues for the design of
superalloys. The'rapid and accurate establishment of a quantitative relationship between multiple
elements and microstructure will greatly accelerate the development of new alloys. Therefore, many
researches have been done to build thermodynamic and kinetic databases of y'-strengthened Co-based

[61

superalloys.l!®] Moreover, some CoNi-based superalloys with good microstructural stability and

I Even so, due to the

mechanical properties have been developed through the CALPHAD.!
complexity of'the'synergetic effects of multiple elements, the existing CALPHAD cannot effectively
predict all the mierostructural properties, especially for the (y+y')/(y+y'+TCP) phase boundaries in
multicomponentalloys.!*$! Compared with the CALPHAD, multicomponent diffusion-multiples can
quickly obtain experimental data for the composition and corresponding microstructure. This brings
an advantage in determining the phase boundaries of an alloy system.!?8*] The machine-learning
method can establish the digital or functional relationship among multiple elements, microstructures
and properties. However, its extrapolation is limited due to the lack of an understandable physical
metallurgy prin€iple. In addition, high-quality data is required during the model training process to
ensure the accuracy of predictions. Therefore, combined with the large high-quality experimental
database providedsby the multicomponent diffusion-multiple, it is expected to significantly improve
the accuracy of machine-learning predictions.

Figure 5 showsrthéypseudo ternary isothermal section of alloy Co-Al-W-20Ni-1Ta-4Ti (at. %)
calculated by phasesdiagram at 1000 °C and a comparison between the experimental data from the
diffusion-multiples and the predicted data by the machine-learning model. The CALPHAD result
shows that four phase regions, including vy, y+y’, y+y'+p and y+f, exist in the composition range of
7%< Al < 15%,0%<W < 8% (at. %). The y/y+y' phase boundary is similar between the experimental
data and CALPHAD. However, there exists an apparent deviation (~2at. %) for the y+y'/y+y+p
boundary, as shewn in Figure 5(a). In contrast, the machine-learning prediction results (Figure 5(b))
show a better fitness with the actual experimental results (Figure 5(a)) than the CALPHAD. Thus, it
can be summarized that the machine-learning model based on the experimental data is more accurate
than CALPHAD in predicting the phase constituent, especially when the phase boundary is contained.
Besides the prediction of phase constituent, taking advantage of experimental data, the machine-
learning model also has higher accuracy than CALPHAD when predicting the Ty and Ay in the
database (not shown in this study).
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Figure S. Thespseudo ternary isothermal section of alloy Co-Al-W-20Ni-1Ta-4Ti (at. %) calculated
by phase diagram at 1000 °C and a comparison between (a) the experimental data from the diffusion-

multiples and (b).the predicted data by the machine-learning model.

Despite high-aceuracy databases, the limited extrapolation out of the database has always been
a critical issue fommachine-learning models. To solve this problem, additional key experimental tests
are generally performed and fed into the database, then the machine-learning models are re-
trained.!' 12720 A similar process will be repeated until an acceptable predicted result is obtained.
For example, the range of A element in a database of the machine-learning models is 0~10 at. %. It
is difficult to ensure good accuracy for predicting the alloys with a content of 10~20 at. %A unless
the supplement of extra experimental data, like alloys with >20 at. %A, into the previous database.

Meanwhile, to aveidoverfitting, some experimental data of alloys with 10~20 at. %A is also required.

2.4. “Cross-Component” Prediction from Low to High-Component y'-Strengthened Co-Based
Superalloys

Based on the aforemeéntioned principles, the alloys in the database and predictions of the machine-
learning models typically contain the same number of components. Thus, it seems impossible to make
a “cross-component” prediction, in which the high-component alloys are predicted based on data
from the low-component alloys in the database. However, the volume of extra experiments may be
unacceptable because of the complexity of the synergetic effects of multiple elements, especially for

the prediction of high-component (>7) alloys. Moreover, it is difficult for researchers to handle the
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data about simultaneous variations of complex elements. On the other hand, the prediction results of
CALPHAD or “CALPHAD + machine-learning” strongly depend on the accuracy of built-in
thermodynamic databases, which are uncertain or unavailable for 7y’-strengthened Co-based

superalloys with high components (>7) for now!!!l.

2.4.1. Feasibility'of “diffusion-multiple + machine-learning” method to Make “Cross-Component”
Prediction

The diffusion-multiple has a unique advantage in establishing the experimental database.
Theoretically, any synergetic effects of multiple elements can be easily obtained by designing the
corresponding diffusion couples. Thus, it is ideal for the combination of diffusion-multiple and
machine-learning ‘models to improve the reliability of prediction for the high-component y'-
strengthened Co=based superalloys. In addition, to make full use of the advantage of machine learning
in processing multi-dimensional data and reduce the costs of experiments, in the current research, the
high-precision experimental data provided by the diffusion-multiple mainly came from alloys with
6~7 components. All the elements of the novenary alloys shown in Table 2 are contained by
overlapping two or mere diffusion couples, thus realizing a “pseudo coverage” to meet the principle
of machine-learning prediction. Therefore, novenary alloys can be predicated by simulating or fitting

the synergetic effects of multiple elements using machine-learning models.

In this study, the four novenary alloys shown in Table 2 have a y+y’ configuration at 950~1000 °C

and good oxidatien,resistance at 1000 °C. These mean a good accuracy in the phase constituent
prediction and validity of the criterion set for the oxidation property (Table 1). Figure 6 shows the
comparisons of Fyrand A, values among the CALPHAD, machine-learning (MC) and experimental
(TEST) results offour novenary superalloys. In terms of the Ty, the machine-learning results show
comparable or slightly higher accuracy than CALPHAD, as shown in Figure 6(a). The absolute
deviations of Ty between the machine-learning and experimental results are lower than 20 °C, while
the minimum deyiation of CALPHAD results is 24 °C for alloys 9CoNi-A, 9CoNi-B, and 9CoNi-C.
For the Ty of alloy#9CoNi-D, both methods show a lower accuracy, a deviation larger than 30 °C
compared to theseXperimental value.

The Ay results of the four novenary alloys shown in Figure 6(b) indicate that the trends predicted
by the two methods are similar to the variation of experimental values. At the same time, their
prediction accuracy is different. The machine-learning result of alloy 9CoNi-A is comparable or
slightly closer to the experimental value than the CALPHAD. On the contrary, CALPHAD tends to
be favorable for the other three novenary alloys. However, all the experimental A, values of alloys
9CoNi-B, 9CoNi-C and 9CoNi-D are lower than the design criteria shown in Table 1. This is closely
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related to the database used for the A, prediction. The diffusion couples shown in Figures 2(a) and
(b) mainly (>80%) have a lower Cr content (<6 at. %). As such, the database for the machine-learning
model is sufficient to make a good “cross-component” prediction on the Ay of alloy 9CoNi-A with 4
at. %Cer. In contrast, the machine-learning predicts the Ay of alloys 9CoNi-B~D (7~14 at. %Cr) with
a large deviation due to the lack of A, data with high Cr content. In contrast, the thermodynamic
database-dependént CALPHAD is equipped with simulation data from high to low Cr contents.
Although it is noteenough to give a high-precise prediction, the trend is still meaningful for the design

of novel alloys, especially when no experimental data is available.
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Figure 6. Comparison of (a) Ty and (b) Ay values among the CALPHAD, machine-learning and

experimental results of four novenary y'-strengthened Co-based superalloys.

2.4.2. Features of “diffusion-multiple + machine-learning” Method

Based on thesabove comparison, it can be summarized that the accuracy of the “diffusion-
multiple + machine-learning” method strongly depends on the experimental data. Although all the
individual diffusion couples have been combined to improve the “cross-component” predictable
capability, a compositional boundary still exists. The prediction accuracy near or outside the
boundary decreasestrapidly, such as alloys 9CoNi-B~D. Even so, it should be noted that the
aforementioned composition range is in the alloys with fewer components (6~7), not the novenary
alloys. The predietion results of alloy 9CoNi-A have proved the feasibility for the “cross-component”
prediction by the*diffusion-multiple + machine-learning” method based on a large number of high-
quality experimental data and searching for the candidates that match the designing criteria.
Additionally, as discussed in Figure 5, the diffusion couple has the advantage of determining the
(y+y")/(y+y'+detrimental phase) boundary more accurately than the CALPHAD method, which is
highly important for the design of high-component alloys. This has been further evidenced by a design
process based on the “CALPHAD + machine-learning” method in our previous work, where most

predicted 7-component alloys precipitated the detrimental phases due to the low accuracy of the phase
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boundaries only using thermodynamic calculation data.l'!l For the prediction of A, shown in Figure
6(b), the “diffusion-multiple + machine-learning” method shows a lower accuracy than the
CALPHAD and only maintains a trend prediction. However, it should be noted that building the
thermodynamic database is a giant project, especially for the high-component alloy with refractory
elements. Many thermodynamic parameters, such as Gibbs free energy, Entropy and Enthalpy, are
required to obtain d'reasonable accuracy. Moreover, for different thermodynamic databases and
objective alloy ‘systems, the deviation between the experimental and prediction results may be
unacceptable. In_this study, besides the advantage in determining phase boundaries, the “diffusion-
multiple + machine-learning” method is mainly constructed from multiple algorithms, which can
rapidly buildsthesmapping relation between multiple elements and thermodynamic properties based
on the sufficient experimental dataset instead of the sluggish calculation for the fundamental
thermodynamiceparameters from numerous low-component alloys. Complex synergetic effects of
multiple elements’can be predicted by machine-learning algorithms, and optimal selections can be
screened based on‘the existing experimental results. This has been verified to be feasible for designing

(29139 or widely reported Ni-based superalloys.?®!

novel alloy systems!?”]

Even so, some critical issues still need to be pointed out for the “cross-component” prediction
method in this study. (1) Similar to the other machine-learning method, the quality and quantity of
data are the most ecritical factors for prediction accuracy. (2) The composition of predicted alloys
should be included within the composition range of the database as far as possible, especially for the
elements having assignificant impact on the microstructure and properties, such as Cr. (3) Compared
with CALPHAD, the predictions beyond the scope of the database, and the interaction between
multiple elementsTare, the key problems for the machine-learning method. Making full use of the
advantage of diffusion-multiples and supplementing the critical experimental data of the low-
component alloys should be a solution to improve the accuracy and capability of “cross-component”
prediction. For example, only four novenary alloys are verified in this study, and the content of Mo
and Nb may be _too/low to affect the phase constituent of the novenary alloy. Therefore, the
supplementary datas€ontaining both Mo and Nb elements will be helpful to improve the validity of
machine-learning,models for predicting the existing four novenary alloys and the high-component
alloys with higher Mo and Nb contents in the future. Moreover, the advantage of the diffusion-couple
in predicting the detrimental phase boundaries will be more critical when more or higher content of
refractory elements are considered in the design criteria. A large number of alloys with lower Cr
contents in the diffusion-multiple contribute to the high prediction accuracy for the alloy 9CoNi-A.
For the other three alloys, it is expected to be able to improve the performance of the machine-learning
model for the Ay by supplementing the database with more data of high Cr alloys.
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2.5. Relationship between the Composition and Mechanical Properties

Vickers hardness and compressive strength are two important and widely studied mechanical
properties, which can be easily obtained and reflect other mechanical performances of superalloys to
a certain extent. They represent a comprehensive effect of various strengthening mechanisms in the
alloy, such as solfition and precipitation.[?®! Thus, it can sometimes be used as one of the criteria for
evaluating superalloys. The strengthening of Yy’ precipitation is one of the most important
strengthening mechanisms in superalloys. To improve its stability, the question of how to expand the
y+y' phase region and improve the T, has always been a key issue for the development of y’-
strengthenediCo=based superalloys. Combined with the results in this study, during the design process
of alloys 9CoNi-A"and 9CoNi-B, higher Ty is demanded to obtain a higher Ay at high temperatures.
In contrast, for alloys®9CoNi-C and 9CoNi-D, the corrosion resistance seems to be more important
than the T, duesto the severe corrosion environment and lower service temperature than the aero-
engines. Thus, a high.Cr content (>12 at. %) is set as the design criteria of industrial gas turbine alloys
(Table 1). In addition, the effect of solution strengthening is also a critical factor that cannot be
neglected. As shown'in Figure 4(b), although the A, of alloy 9CoNi-A (~70%) is obviously higher
than that of 9CoNi=B (~58%), the variation of Vickers hardness shows the opposite trend. This can
be ascribed to the comprehensive effect between the solution and precipitation strengthening. In terms
of composition,the aloy 9CoNi-B is different from alloy 9CoNi-A by the lower Al+Ti and higher
Cr contents. The fermer contributes to the precipitation strengthening effect as y’-forming elements,
while the latter enhances the solution strengthening of the matrix, due to the larger atomic radius
compared to Coyiand decreases the Ay. Therefore, the effect of solution strengthening is more
dominant on thewVickers hardness than the y' precipitation for alloys 9CoNi-A and 9CoNi-B. In
contrast, the précipitation strengthening seems to be dominant for the Vickers hardness of alloys
9CoNi-C and 9CoNi-D. Although the solution strengthening elements in alloy 9CoNi-C
(W+Mo+Cr=17.5 at. %) is higher than that in alloy 9CoNi-D (14.5 at. %), the Vickers hardness of
alloy 9CoNi-D (HV=~414) with a higher A, (~62%) was slightly higher than that of alloy 9CoNi-C
(Ay=~52%, HV=~395). Indeed, for the four novenary alloys, the variation of Vickers hardness is
more related to the sum of solution strengthening elements in order of 9CoNi-Aw+Mo+cr=6.5
at. %<9CONI-BwMo+Cr=9.5 at. % <ICONI-C wiMo+Cr=14.5 at. % <ICONi-DwMotcr=17.5 at. %. A similar trend was
also observed when comparing the compressive flow stress of alloys 9CoNi-A and 9CoNi-D (Figure

4(c)). Especially, the solution strengthening effect plays a more critical role than the A, at the

temperatures below 800 °C. While at higher temperatures (>800 °C), the influence of precipitation
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strengthening on the mechanical property increases and the deviation of flow stress between the alloys
9CoNi-A and 9CoNi-D decreases.

Based on the relationship between the content of solution strengthening elements, Ay, Vickers
hardness and compressive property, to obtain good mechanical properties, the solution strengthening
effect should also be contained in the design criteria besides the A,. For example, the impact of
solution strengthening in alloy 9CoNi-A needs to be enhanced when higher values of Vickers
hardness and flowsstréss are expected. In addition, the misfit between y and y’ phases is not considered
in this study, which has a significant influence on the coarsening of y’ precipitates and creep resistance
at high temperatures. For example, alloy 9CoNi-B may have a higher misfit value compared to the
alloy 9CoNi+A aswestimated by the coarsening of y’ precipitates at 1000 °C/500 h (Figures 3(a) and
(b)). Therefore, thisis another factor that needs to be considered for optimizing the design criteria in
the future. Accordingly, the corresponding machine-learning models should also be developed and

applied.

3. Conclusions

We propose a “erosss=component” prediction method for the high-component (>7) y’-strengthened
Co-based superalloys by integrating the experimental data from diffusion-multiples assembled by a
series of diffusion couples with low number of components and machine-learning models. Four
novenary alloys,were screened out according to the different design criteria for the aero-engine and
industrial gas turbine blades. These alloys show good microstructural stability at 950~1000 °C and
oxidation resistance at 1000 °C. Compared with a CALPHAD approach, the “diffusion-multiple +
machine-learning” method has been verified to reach a comparable or slightly higher accuracy for
the Ty of high-cemponent alloys, such as alloy 9CoNi-A, when enough related data from low-
component diffusion couples is provided. In contrast, the trend prediction by the CALPHAD is still
meaningful, especially when the related experimental data is deficient. Expanding the compositional
range in the database and supplementing the critical interaction data of multiple elements are
beneficial for impreving the prediction accuracy of the “cross-component” machine-learning models.
As indicated bynthe microstructural stability, compression test, and Vickers hardness results, the
influence of solution strengthening and y/y’" misfit should also be considered for the establishment of

machine-learning model and design criteria to further improve mechanical properties in the future.

4. Experimental Section
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Thermodynamic analysis: All the thermodynamic calculations of phase constituent, T, and
Ay=(Vy)?3B763] in this study were performed using the PANDAT software with the commercial Co-
based thermodynamic database PanCo02018.

Machine-learning model fitting: Widely used 10-fold cross validation®* was used to avoid
overfitting of the selected models. First, the whole dataset was scrambled and divided randomly into
10 subsets. Then; on€subset would be used as the testing set, while the other nine subsets would be
used as the trainingsset. Finally, the training set was fed into different algorithms to build machine-
learning models. This process would cycle 10 times, where each subset would be used as testing set
exactly once. The brute-force grid search algorithm was employed to optimize and tune parameters
for machine-learningsmodels.

Diffusion-multiple preparations: All the individual experimental alloys in the diffusion-multiple
were prepared byware-melting high-purity (>99.9 wt. %) elements in an argon atmosphere and
sectioned into blo€ks to assemble a collection of diffusion couples. Then, the diffusion-multiple was
treated by hot 1sostatic pressing (HIP) at 1200 °C/160 MPa for 5 h to achieve good interfacial contact
among the alloy pieces. After that, the diffusion-multiple was heat treated in the following process:
1250 °C/24 h +1000©C/1000 h. More details can be referred to the literature.?!11261(34]

Single crystal'superalloys preparations: All the single crystal alloys were melted in a vacuum
induction furnace, and subsequently directionally solidified into [001]-oriented single crystal rods
with a diameter,of 15 mm and a length of ~170 mm, using the conventional Bridgman method. Then
the heat-treatmentsprocess of single crystal rods was set as 1230 °C/12 h +1000 °C/24 h+800 °C/16
h for the alloy 9€oNi<A, and 1250 °C/12 h +1000 °C/4 h+800 °C/16 h for the alloy 9CoNi-D.

Compositional measurements: Composition profiles across the diffusion couple were obtained
using quantitative eléctron probe microanalysis (EPMA) on a JEOL JXA8230 microprobe at an
accelerating voltage of 20 kV with a probe current of 10 nA. The beam spot diameter and the step
size of each EPMA spot were both set as 5 pm.

Physical, Oxidation and Mechanical properties: Cylindrical samples of 3 mm diameter and 1.5
mm thickness wereseut for differential scanning calorimetry (DSC) experiments. Then, the Ty was
determined by'the NETZSCH STA 449C thermal analyzer under high purity Ar flow with a heating
rate of 10 °C min™'. The hardness was measured using an HXD-1000TM Vickers hardness testing
system with a load of 200 g and a dwell time of 10 s. The final value of Vickers hardness (HV) was
obtained by averaging the results from five cycles. The density was measured using a water
displacement approach based on the Archimedes principle. Isothermal oxidation tests were carried
out at 1000 °C/100 h in air. Mass gains were measured by analytical balance with an accuracy of 10
4 g. Compressive specimens with [001] orientation (<10° deviation) were machined from heat-treated
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samples with a gauge length of 7.5 mm and a diameter of 5 mm. Compressive tests were conducted
at room temperature, 600 °C, 700 °C, 800 °C, 900 °C, 950 °C and 1000 °C with a strain rate of 10 s~
1.

Microstructural characterizations: The metallographic specimens of diffusion couples and
ingots were prepared using standard metallographic sample preparation techniques and etched in a
solution of 1% HF +33% HNO;3 + 33% CH3COOH + 33% H>O (by volume). The microstructure
was characterizediby'the ZEISS SUPRA 55 field-emission scanning electron microscope. The y' area

fraction (Ay) corresponding to each composition spot was measured within a rectangle having a size

of 5 um X 400 pm.(the length is parallel to the interface of the diffusion couple) by the standard point

count method.
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