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All things are difficult before they are easy.

— Thomas Fuller



A B S T R A C T

The Arctic is one of the regions most vulnerable to climate change. Its climate
is governed by self-reinforcing feedback mechanisms that amplify temperature
variability and trends. As a result, Arctic surface temperatures have increased
almost four times faster than the global average in recent decades and, alongside,
the Arctic sea ice is declining. Not only the trends but also the variability of these
two key variables are closely linked. In this dissertation, I examine two aspects of
the internal variability of sea ice and surface air temperature in a warming Arctic
climate using the powerful tool of large ensemble climate simulations.

The first part of this thesis focuses on the persistence/memory of Arctic sea
ice on seasonal to inter-annual timescales. This is relevant for sea-ice predictions,
which are of growing socio-economic interest due to the retreat of sea ice in the
warming Arctic. Previous studies have identified a substantial gap between the
operational forecast skill and model-based estimates of the potential predictability
of Arctic sea ice. By analyzing lagged correlations of sea-ice area anomalies in
large model ensembles and multiple observational products, I show that climate
models significantly overestimate the memory of pan-Arctic sea-ice area from the
summer months into the following year, which cannot be explained by internal
variability. I further show that the overestimation arises from how the seasonal ice
zone "remembers" preceding summer sea-ice area anomalies. My results suggest
that there is likely a misrepresentation of processes related to the memory of sea
ice in climate models, which could explain part of the gap between potential and
operational forecast skill of Arctic sea-ice area.

The second part of this thesis addresses the response of daily Arctic surface
air temperature to global warming. While the average temperature is rapidly
increasing, previous studies have shown that the variability and the amplitude of
the seasonal cycle of Arctic surface air temperature are decreasing, all of which
can alter temperature extremes. I provide the first quantitative assessment of the
projected changes in the distribution of daily Arctic surface air temperatures as a
function of global warming in multiple large ensembles. Thereby, I show that the
reduction in daily temperature variations throughout the year is mainly caused
by the weakened seasonal temperature cycle and complemented by decreasing
sub-seasonal temperature variability in the cold seasons (autumn, winter, spring). I
further show that the reduced temperature variations dampen the increase in warm
extreme temperatures that would be caused only through mean warming by nearly
50% in the cold seasons and amplify the decrease in cold extreme temperatures at
even higher rates. My results show that a warmer Arctic climate will be subject to
fewer temperature variations and less extreme relative to its new mean temperature,
which may ease adaptation to a new Arctic climate state.

Overall, this dissertation contributes to a better understanding of climate vari-
ability in the Arctic, its representation in climate models, and its changes under
global warming.
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Z U S A M M E N FA S S U N G

Die Arktis ist eine der am stärksten vom Klimawandel betroffenen Regionen. Ihr
Klima wird von sich selbst verstärkenden Rückkopplungsmechanismen bestimmt,
die Schwankungen und Trends in der Temperatur verstärken. Infolgedessen sind
die Oberflächentemperaturen in der Arktis in den letzten Jahrzehnten fast viermal
schneller angestiegen als im globalen Mittel und gleichzeitig zieht sich das arktische
Meereis zurück. Nicht nur die Trends, sondern auch die Schwankungen dieser
beiden Schlüsselvariablen sind eng miteinander verknüpft. In dieser Dissertation
untersuche ich zwei verschiedene Aspekte der internen Variabilität des Meereises
und der Oberflächentemperatur in einem sich erwärmenden arktischen Klima unter
Verwendung großer Ensembles von Klimasimulationen.

Der erste Teil dieser Arbeit befasst sich mit der Persistenz bzw. dem Gedächtnis
des arktischen Meereises auf saisonalen bis zwischenjährlichen Zeitskalen. Dies
ist relevant für Meereisvorhersagen, die aufgrund des Rückzugs des Meereises in
der sich erwärmenden Arktis von wachsendem sozioökonomischem Interesse sind.
Frühere Studien haben eine beträchtliche Lücke zwischen der operativen Vorhersa-
gefähigkeit und modellbasierten Schätzungen der potenziellen Vorhersagbarkeit
des arktischen Meereises festgestellt. Durch die Analyse verzögerter Korrelationen
von Anomalien der Meereisfläche in großen Ensembles von Klimasimulationen und
mehreren Beobachtungsdatensätzen zeige ich, dass Klimamodelle das Gedächtnis
der pan-arktischen Meereisfläche von den Sommermonaten bis ins folgende Jahr
deutlich überschätzen, was nicht durch interne Variabilität erklärt werden kann.
Außerdem zeige ich, dass die Überschätzung darauf zurückzuführen ist, wie sich
die saisonale Eiszone an Anomalien der sommerlichen Meereisfläche „erinnert“.
Meine Ergebnisse deuten auf eine falsche Darstellung von Prozessen im Zusammen-
hang mit dem Gedächtnis des Meereises in Klimamodellen hin, was einen Teil der
Diskrepanz zwischen der potenziellen und der operationellen Vorhersagefähigkeit
der arktischen Meereisfläche erklären könnte.

Der zweite Teil dieser Arbeit befasst sich mit der Reaktion der täglichen arkti-
schen Oberflächenlufttemperatur auf die globale Erwärmung. Während die mittlere
Temperatur schnell ansteigt, haben frühere Studien gezeigt, dass die Variabilität
und die Amplitude des saisonalen Zyklus der arktischen Oberflächentemperatur
abnehmen, was sich auf Temperaturextreme auswirken kann. Ich liefere die erste
quantitative Einschätzung der projizierten Veränderungen in der Verteilung der
täglichen arktischen Oberflächenlufttemperaturen in Abhängigkeit der globalen
Erwärmung in mehreren großen Ensembles von Klimasimulationen. Dabei zeige
ich, dass die Verringerung der täglichen Temperaturschwankungen über das ganze
Jahr hinweg hauptsächlich durch den abgeschwächten Jahresgang der Temperatur
verursacht wird und durch die abnehmende sub-saisonale Temperaturvariabilität
in den kalten Jahreszeiten (Herbst, Winter, Frühling) ergänzt wird. Ferner zeige
ich, dass die verringerten Temperaturschwankungen den Anstieg der warmen
Extremtemperaturen, der nur durch die mittlere Erwärmung verursacht würde, in
den kalten Jahreszeiten um fast 50% abschwächen und den Rückgang der kalten
Extremtemperaturen sogar noch mehr verstärken. Meine Ergebnisse zeigen, dass
ein wärmeres arktisches Klima geringeren Temperaturschwankungen und weniger
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extremen Temperaturen im Vergleich zu seiner neuen Durchschnittstemperatur un-
terworfen sein wird, was die Anpassung an einen neuen arktischen Klimazustand
erleichtern könnte.

Insgesamt trägt diese Dissertation zu einem besseren Verständnis der Klimava-
riabilität in der Arktis, ihrer Darstellung in Klimamodellen und ihrer Änderungen
im Zuge der globalen Erwärmung bei.
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Part I

U N I F Y I N G E S S AY





1
I N T E R N A L VA R I A B I L I T Y O F S E A I C E A N D S U R FA C E A I R
T E M P E R AT U R E I N A WA R M I N G A R C T I C C L I M AT E

This dissertation is about the internal variability of climate in the Arctic - a region
where climate change occurs faster than anywhere else. Two key variables that
characterize the Arctic climate are its surface temperature and the sea ice covering
the Arctic Ocean. As they feed back on each other, the trends and variability of
these two variables are closely intertwined. In this dissertation, I investigate two
aspects of the internal variability of sea ice and surface air temperature (SAT) in a
warming Arctic climate, ultimately aiming to advance our current understanding
of present and future Arctic climate variability.

The structure of this dissertation is as follows: First, I introduce the essential
background to my work, starting with the Arctic climate system and its changing
state under global warming (section 1.1.1), continuing with the concept of internal
variability and its role in the Arctic climate (section 1.1.2), and ending with large
ensemble simulations as the main tool I use to study the research questions of
my dissertation (section 1.1.3). I then present the key findings of the two research
contributions contained in this dissertation, the first dealing with the persistence of
Arctic sea ice (section 1.2, appendix B) and the second with the changing variability
of Arctic SAT under global warming (section 1.3, appendix A). Finally, I discuss my
findings and their implications in the broader context of a warming Arctic climate
(section 1.4).
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1.1 introduction

1.1.1 The Arctic: a region under massive climatic change

"The Arctic is a barometer for the health of the world. If you want to know
how healthy the world is, come to the Arctic and feel its pulse."

— Sheila Watt-Cloutier

The Arctic, that is, the northern circumpolar region, is often perceived as a
remote, barren, and unpopulated place covered in ice and snow - a romanticized
image that does not reflect the complexity of the Arctic region (Brode-Roger, 2021).
Geographically, at the core of the Arctic lies the Arctic Ocean, surrounded byDefinition and

geography of the
Arctic region

continental land masses and islands (Fig. 1.1). The Arctic Ocean is connected to
the North Atlantic via the Fram Strait (passage between Greenland and Svalbard),
the Barents Sea, and the Canadian Archipelago, and to the North Pacific via
the Bering Strait. Southward, the Arctic has no strict geographical boundaries
and therefore is not clearly defined. Various definitions have been proposed over
time (e.g., Przybylak, 2003), for example, climatological criteria such as the 10°C
summer isotherm or geobotanical criteria such as the tree line. The simplest but still
commonly applied definition is the astronomical definition, defining the Arctic as
all latitudes north of the Arctic Circle at 66.5°N. Due to the Earth’s declination, this
latitude marks the boundary north of which continuous summer daylight (polar
day) and continuous darkness in winter (polar night) are experienced. Climatically,Characteristics of the

Arctic climate however, "Arctic conditions" can occur well south of the Arctic Circle (Serreze
and Barry, 2014). The Arctic climate is characterized by cold surface temperatures,
which exhibit strong regional and seasonal variability (e.g., Johannessen et al.,
2016). Precipitation is typically low and mostly falls as snow. A large part of
the Arctic Ocean is covered by sea ice, varying in its extent throughout the year.
Besides the Greenland ice sheet, most Arctic land areas are underlain by permafrost
(perennially frozen ground; Obu et al., 2019). Despite its harsh conditions, the
Arctic is home to a variety of plant and animal species as well as to about 4 million
people, including indigenous communities (Einarsson et al., 2004).

Arctic amplification

As the Earth is warming due to anthropogenic greenhouse gas emissions, theAmplified climate
change in the Arctic Arctic is facing drastic changes and is shifting to a new climate state (Landrum and

Holland, 2020; Jeffries et al., 2013). The Arctic is one of the regions most sensitive
to climate change and, therefore, often regarded as an early warning system for
the rest of the planet. While global mean surface temperatures have risen by 1.1°C
since the pre-industrial period (IPCC, 2021d), the Arctic has warmed more than
twice as fast (Fig. 1.2a; Serreze and Barry, 2011) - faster than any other region in the
world. Considering the recent decades since the beginning of satellite observations
in 1979, the Arctic has even warmed nearly four times faster than the global average
(Rantanen et al., 2022). This so-called Arctic amplification (Serreze and Francis, 2006)
of global warming is a fundamental characteristic of the Earth’s climate system,
hypothesized already by Arrhenius, 1896 and found in early climate simulations
(Manabe and Wetherald, 1975; Manabe and Stouffer, 1980).
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Figure 1.1: Map of the Arctic region with geographic labels. Background image from
Natural Earth (naturalearthdata.com).

The Arctic amplification is strongest in late autumn/early winter and weakest Processes causing
Arctic amplificationin summer (Serreze and Barry, 2011; Rantanen et al., 2022). It is caused by an

interplay of different physical processes, most importantly temperature and surface-
albedo feedbacks1 (e.g., Previdi et al., 2021; Pithan and Mauritsen, 2014). The role
of the surface-albedo feedback (or ice-albedo feedback) is well-established (e.g.,
Holland and Bitz, 2003; Serreze and Francis, 2006; Screen and Simmonds, 2010;
Crook et al., 2011): As sea ice and snow cover retreat in a warming climate, the
surface albedo (or reflectivity) decreases. This means that a larger fraction of the
incident solar radiation is absorbed, amplifying surface warming. The surface-
albedo feedback can act only when sunlight is present (i.e., in late spring and
summer), which is the time of year when the Arctic amplification is weakest. This
apparent contradiction is resolved by the heat storage of the Arctic Ocean, taking
up heat during summer and releasing it in autumn/winter (Chung et al., 2021;
Dai, 2021). The surface-albedo feedback only partly explains Arctic amplification.
Another and arguably the most important contribution arises from temperature

1 Climate feedbacks are processes in which a perturbation in one climate quantity causes a change in a
second quantity, which ultimately leads to an additional change in the first. In a positive feedback the
initial perturbation is enhanced, in a negative feedback the initial perturbation is weakened (IPCC,
2021b).

5

naturalearthdata.com


feedbacks (e.g., Pithan and Mauritsen, 2014; Graversen et al., 2014; Zhang et al.,
2018; Previdi et al., 2020). The total temperature feedback can be decomposed into
contributions from vertically-uniform warming (Planck feedback) and changes in
the vertical temperature gradient in the troposphere (lapse-rate feedback). The
Planck feedback results from the Earth’s outgoing long-wave radiation being
proportional to the 4th power of its surface temperature (Stefan-Boltzmann law).
While it acts as a stabilizing feedback mechanism on the global scale, it is weaker in
the colder Arctic than at lower latitudes and therefore reinforces Arctic amplification.
The lapse-rate feedback is negative in the tropics, where convection leads to a
stronger warming of the upper than the lower troposphere, and positive in the
Arctic, where surface-based warming is confined to a shallow, stable atmospheric
boundary layer. Other processes that play a smaller role in Arctic amplification are
cloud and water vapor feedbacks and the poleward energy transport (Previdi et al.,
2021).

Local effects of Arctic warming

The sharp rise in Arctic temperatures causes further changes in the Arctic climateSea-ice decline and
other climatic

changes
system. Most prominently, the sea ice is declining. Arctic sea-ice area (SIA) has
decreased by about 40% in September (Fig. 1.2b) and by about 10% in March
comparing the decadal averages of 1979-1988 and 2010-2019 (IPCC, 2021d). Not
only is the area of the sea-ice cover decreasing, but so is its thickness (Kwok and
Rothrock, 2009), resulting in an estimated decrease in September sea-ice volume
of 72% over the period 1979-2016 (Schweiger et al., 2019). As less sea ice survives
the melting season, the fraction of multi-year ice decreases, and the area only
seasonally covered by sea ice (seasonal ice zone) is expanding (Bliss et al., 2019).
Climate projections suggest that the Arctic will become practically sea-ice-free in
September for the first time before 2050 (Notz and SIMIP Community, 2020). A
hotspot of warming and sea-ice loss in the Arctic is the Barents Sea (Isaksen et al.,
2022; Lind et al., 2018), which is experiencing a so-called Atlantification - a transition
of Arctic waters to an oceanographic state resembling warmer and saltier Atlantic
waters. Moreover, the Arctic warming causes an increase in precipitation and in
the fraction of rainfall compared to snowfall (AMAP, 2021). Snow cover on both
land and sea ice is decreasing (AMAP, 2021).

The changing climate in the Arctic has far-reaching impacts on local ecosystemsEcological and
socio-economic

impacts
and human communities (Constable et al., 2022). Sea ice is an integral part of marine
ecosystems. Its decline leads to a loss of sea-ice algae and sub-ice phytoplankton,
which are responsible for more than half of the Arctic Ocean’s primary production
and underpin the entire marine food web of the Arctic (Post et al., 2013). The loss
of sea-ice habitat also threatens Arctic mammals, such as polar bears, walruses, and
ringed seals, which rely on the sea ice for foraging, breeding, or resting. This, in
turn, affects the food security of indigenous communities. Furthermore, permafrost
thaw and enhanced coastal erosion threaten people, villages, and infrastructure
and can force relocations (e.g., Jeffries et al., 2013). Despite the high vulnerability
of Arctic human communities, they also have a high adaptive capacity (Ford et al.,
2015). In addition, the changes in the Arctic create new economic interests in the
region, for example, regarding shipping, tourism, and natural resources.
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Figure 1.2: a) Time series of global and Arctic (64-90°N) mean annually averaged surface
temperature anomaly with respect to the 1951-1980 means. The data are the
NASA’s Goddard Institute for Space Studies Surface Temperature version 4

(https://data.giss.nasa.gov/gistemp/, accessed on 2022-11-04, Lenssen et
al., 2019). b) Time series of September Arctic sea-ice area. The data are the
National Snow and Ice Data Center’s Sea Ice Index version 3 (accessed on
2022-11-04, Fetterer et al., 2017).

Global and remote effects of Arctic warming

"You know how they say, ’What happens in Vegas stays in Vegas?’
What happens in the Arctic doesn’t stay in the Arctic."

— Kumi Naidoo

Arctic climate change has not only local consequences, but also substantial im-
pacts on the global climate. First, the reduced sea ice and snow covers amplify Albedo changes

global warming through the previously explained surface-albedo feedback. Esti-
mates of radiative forcing suggest that the amplification of global warming induced
by the loss of Arctic sea ice ranges between 14% and 25% (Donohoe et al., 2020;
Pistone et al., 2014).

Second, vast amounts (∼1700 Pg; Miner et al., 2022) of organic carbon are stored Release of organic
carbonin Arctic permafrost soils. With rising temperatures, the permafrost thaws and

releases carbon dioxide and methane to the atmosphere, further accelerating climate
change (permafrost carbon feedback; Schuur et al., 2015; Miner et al., 2022). The
carbon release can either occur gradually through decomposition by soil microbes
or abruptly, for example, through coastal erosion (e.g., Nielsen et al., 2022).

Third, the melting of Arctic land ice significantly contributes to sea-level rise. In Sea-level rise

the period 1971-2018, the contribution of melting glaciers to global-mean sea-level
rise was 22% (with a dominant contribution from Arctic glaciers; Zemp et al., 2019)
and that of the Greenland ice sheet 13% with a rising tendency (Fox-Kemper et al.,
2021). Regardless of future warming scenarios, the already committed Greenland
ice loss will raise sea levels by at least 27 cm (Box et al., 2022). The Greenland
ice sheet further is considered a tipping element in the Earth’s climate system
(Armstrong McKay et al., 2022), meaning that its mass loss may become irreversible
after reaching a certain threshold. Its complete meltdown could occur on millennial
timescales and raise global sea levels by 7.2 m (Aschwanden et al., 2019).

Finally, the Arctic warming could affect ocean and atmospheric circulation. Changes in the ocean
and atmospheric
circulation

The increased freshwater flux from the melting Greenland ice sheet may reduce
convective deep water formation in the Labrador Sea and thereby weaken the
Atlantic Meridional Overturning Circulation (Rahmstorf et al., 2015; Böning et al.,
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2016; Yang et al., 2016), which would strongly impact global and European climate
(Jackson et al., 2015). Furthermore, many studies suggest that Arctic warming and
sea-ice loss impact Northern Hemisphere mid-latitude weather and climate through
changes in atmospheric circulation. Different mechanisms have been proposed,
involving changes in storm tracks, the jet stream, and planetary waves and affecting,
for example, the occurrence of extremes and the persistence of weather patterns
(e.g., Cohen et al., 2020, 2014; Overland et al., 2016). However, these linkages
between Arctic and mid-latitudes are highly uncertain, and, as of yet, there is no
clear scientific consensus (Doblas-Reyes et al., 2021; Cohen et al., 2020).

1.1.2 Internal variability in the Arctic climate system

"Predictability: does the flap of a butterfly’s
wings in Brazil set off a tornado in Texas?"

— Edward N. Lorenz, 1972

External forcing versus internal variability

The changes in the Arctic and global climate system described above are forcedChaotic processes in
the climate system

generate internal
variability

externally, in this case by anthropogenic greenhouse gas emissions. External forcing
refers to a forcing agent outside the climate system, which can be natural (e.g.,
volcanic eruptions and solar activity) or anthropogenic, that is, caused by human
activities (e.g., emissions of greenhouse gases or aerosols, and land use). In contrast,
the climate also varies due to processes intrinsic to the climate system - the so-
called internal variability, which is the focus of this dissertation. Because of the
chaotic2 nature of the climate system, slightly differing initial states can evolve
into considerably different states (Lorenz, 1963), generating internal variability
and limiting predictability. Internal variability occurs on all timescales: Nonlinear
dynamical processes in the atmosphere cause short-term fluctuations on weather
timescales (i.e., days to weeks) that feed into more slowly responding components
of the climate system, such as the ocean, cryosphere, and land vegetation, creating
fluctuations on longer climate timescales ranging from years to decades, centuries,
and even longer (Hasselmann, 1976). An overview of typical timescales of selected
components in the climate system is shown in Figure 1.3.

Externally driven trends in climate variables are overlaid and can be eitherThe role of external
forcing and internal

variability in climate
predictions

dampened or enhanced by internal variability (e.g., Chen et al., 2021). A prominent
example is the global warming hiatus in the first decade of the 21st century when
global-mean surface temperatures warmed considerably slower than expected
(see Fig. 1.2a), which can be explained by internal variability (Hedemann et al.,
2017; Marotzke and Forster, 2015). When making predictions, knowledge of either
external forcing or internal variability can be more important, depending on
the variable and timescale of interest. At one end of the scale are numerical
weather predictions, in which the state of the atmosphere is predicted several
days ahead, which is mainly a question of internal variability. Weather predictions,

2 Chaos theory describes the behaviour of deterministic nonlinear systems. As these systems are
deterministic, their trajectory can theoretically be predicted. However, due to a high sensitivity on the
initial conditions, slightly different initial states can evolve into considerably different states, making
the behaviour appear "chaotic". In practice, such a system is predictable only for a certain time due
to uncertainties of the initial state.
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Figure 1.3: Scheme of indicative timescales of selected components in the climate system
and climate prediction timescales. Adapted from Meincke and Latif, 1995;
Brayshaw, 2018; Meehl et al., 2021.

therefore, require a good knowledge of the initial condition of the atmosphere and
are considered an initial value problem. At the other end of the scale are climate
projections, in which long-term statistical averages of climate variables are predicted
multiple decades ahead, which is mainly a question of the external forcing, such as
greenhouse gas emissions. Climate projections, therefore, are considered a boundary
value problem. In between, there is a large range of prediction timescales from sub-
seasonal to seasonal, inter-annual, and decadal, which are a combination of initial
and boundary value problem (e.g., Brayshaw, 2018; Meehl et al., 2021), as illustrated
in Figure 1.3. Generally, the uncertainty from internal climate variability, as opposed
to that from external forcing, is increasingly important at shorter timescales and
smaller spatial scales, differing for different variables (Hawkins and Sutton, 2009;
Deser et al., 2012; Marotzke and Forster, 2015; Maher et al., 2020).

Internal variability can be measured in terms of its magnitude and its persistence Magnitude and
persistence of
variability have
major impacts

(e.g., Lenton et al., 2017). The magnitude of variability, typically measured as
the standard deviation of the variable’s probability distribution3, determines the
range of experienced climate fluctuations and has substantial socio-economic and
ecological impacts (e.g., Stenseth et al., 2002; Thornton et al., 2014). The intensity
and frequency of extreme events are very sensitive to changes in the magnitude of
variability (Fig. 1.4), which therefore can be considered even more important than
changes in the mean (Katz and Brown, 1992). The persistence, measured in terms
of auto-correlation/lagged correlation, describes how long climatic fluctuations
persist in time. It is a measure of the variable’s memory, which differs substantially
for different components in the climate system (Fig. 1.3). Persistence is not only
important in the context of climate predictions, as detailed above. It also affects
the duration of extreme events, which can have strong impacts on society and
ecosystems, thinking, for example, of long-lasting heat waves (Gasparrini and
Armstrong, 2011) or multi-year droughts (Moravec et al., 2021).

3 The probability distribution is the mathematical function that gives the probabilities of occurrence of
the various possible values of a variable.
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Figure 1.4: The effect of changes in temperature distribution on extremes. Different changes
in temperature distributions between present and future climate and their
effects on extreme values of the distributions: (a) A simple shift of the entire
distribution towards a warmer climate; (b) an increase in temperature variability
with no shift in the mean; (c) a decrease in temperature variability with no shift
in mean; (d) an altered shape of the distribution, in this example a change in
asymmetry toward the hotter part of the distribution. Adapted from IPCC, 2012.

Arctic climate variability

In the Arctic, internal variability is stronger than at lower latitudes as the prevailingVariability of Arctic
surface temperature positive climate feedbacks (section 1.1.1) not only amplify externally forced global

warming but also internal variability of surface temperatures (see Fig. 1.2a; Serreze
and Barry, 2011). Similar to the seasonality of Arctic amplification, the internal
temperature variability is highest in winter and lowest in summer (Johannessen
et al., 2016). As an atmospheric variable, SAT exhibits variability on short weather
timescales but also on longer climate timescales. The tempo-spatial patterns of
Arctic temperature variability can be associated with large-scale modes of climate
variability4 (e.g., Johannessen et al., 2016), especially with the Arctic Oscillation5

(Thompson and Wallace, 1998). On longer timescales, Arctic surface temperatures
are influenced by Atlantic and Pacific multi-decadal variability, which jointly drove
a warming of the Arctic in the early 20th century at rates comparable to those of
recent decades (Fig. 1.2a, Tokinaga et al., 2017).

In a warming climate, the magnitude of internal variability of Arctic SAT on
various different timescales decreases (e.g., Chen et al., 2019; Dai and Deng, 2021;
Olonscheck et al., 2021). In addition, the amplitude of the seasonal cycle of Arctic
SAT also decreases (Dwyer et al., 2012; Chen et al., 2019), further reducing the

4 Modes of climate variability are recurrent space-time structures of variability of the climate system
with intrinsic spatial patterns, seasonality and timescales, arising through the dynamical characteris-
tics of atmospheric circulation and/or coupling to other components of the climate system (IPCC,
2021a).

5 The Arctic Oscillation is also known as the Northern Annular Mode and is closely related to the
North Atlantic Oscillation (Hurrell et al., 2003). It is characterized by opposite pressure anomalies
between Northern Hemisphere high- and mid-latitudes.
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temperature variations experienced throughout the year. The resulting narrowing in
the Arctic temperature distribution counteracts the intensification of warm extreme
events and reinforces the reduction in cold extreme events caused by the mean
warming (see Fig. 1.4a,c). In section 1.3, I give more insight into how the interplay
of mean warming, seasonality changes, and internal variability changes on different
timescales impact the intensity of Arctic temperature extremes, by providing the
first quantitative assessment of projected changes in the Arctic SAT distribution as
a function of global warming.

The internal variability of SAT and of sea ice are closely linked. In fact, the Variability of Arctic
sea icevariability of Arctic SIA is driven primarily by atmospheric temperature fluctuations

(Olonscheck et al., 2019). Conversely, the presence or absence of sea ice also impacts
the variability of SAT above (e.g., Borodina et al., 2017 and section 1.3), making the
interaction bidirectional. It is therefore not surprising that the decline of Arctic sea
ice, similar to the trend in surface temperature, has not been uniform over time
(e.g., Swart et al., 2015). Internal variability is estimated to contribute up to 50% of
the observed sea-ice decline in recent decades (Stroeve et al., 2007; Kay et al., 2011;
Zhang, 2015; Ding et al., 2017, 2019), varying seasonally and regionally (England
et al., 2019).

However, while SAT as an atmospheric variable has considerable variability on
short weather timescales, the sea ice responds more slowly to these perturbations
(Fig. 1.3). This is because it is connected and partly driven by the slow ocean
underneath and further governed by internal thermodynamic processes (growth
and melt of sea ice) with their own characteristic timescales. Anomalies in Arctic
SIA persist for about 2-5 months depending on the season, while anomalies in
total Arctic sea-ice volume persist for several years (Blanchard-Wrigglesworth et al.,
2011b; Day et al., 2014b; Guemas et al., 2016). Moreover, sea ice exhibits memory
beyond its persistence timescale through mechanisms that lead to a reemergence
of SIA anomalies up to a year later. Sea-ice conditions are therefore predictable
on timescales of a few months to a few years (depending on the variable, season,
and region) and also provide a source of predictability for seasonal forecasts of the
atmosphere in high- to mid-latitudes (Chevallier et al., 2018). Predictions of sea ice
conditions are of high societal and economic value for various stakeholders (e.g.,
Jung et al., 2016), in particular with regard to the opening of shipping routes in the
Arctic as sea ice is declining (Smith and Stephenson, 2013). In section 1.2, I compare
the memory of Arctic sea ice based on observations and model simulations and
give new evidence that climate models overestimate the potential predictability of
sea ice.

1.1.3 Large ensemble simulations as a tool to study internal variability

Having now a good understanding of internal variability in general and in the Challenges in
studying internal
variability

Arctic, it is time to talk about methods used to examine internal variability. Indeed,
quantifying internal variability in a robust way is a challenging task. Estimating
internal variability directly from observations is complicated for several reasons
(e.g., Olonscheck, 2018): First, observational records are often too short to infer
robust estimates of internal variability, particularly on longer timescales (e.g., Notz,
2015). For example, a consistent time series of SIA (Fig. 1.2b) is available only from
1979 onwards with the beginning of satellite observations. Second, the evolution of
an observed variable is a result of both internal variability and external forcing, as
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seen in the previous section, and disentangling the two is difficult. Additionally,
one should note that also observations are subject to uncertainty. In the example of
sea ice concentration, the observational uncertainty is particularly large as it cannot
be measured directly and the post-processing through satellite-retrieval algorithms
adds to the uncertainty (e.g., Bunzel et al., 2016).

Earth system models are a more flexible tool for studying internal variability.
Two different approaches exist, which can also usefully be combined (Olonscheck
and Notz, 2017). The first approach is to infer internal variability from a multi-
century control simulation with constant external forcing, typically representing
pre-industrial conditions. However, with regard to climate change, it is desirable to
quantify internal variability also under a changing external forcing. This is possi-Single-model initial

condition large
ensembles

ble with the second approach, namely single-model initial-condition large ensembles
(SMILEs), in which a large number (typically 30-100) of climate simulations with
identical external forcing and model configuration but slightly perturbed initial
conditions are performed (e.g., Maher et al., 2021; Deser et al., 2020; Milinski et al.,
2020). The individual ensemble members then represent different possible realiza-
tions of the climate under the same external conditions. This allows for a separation
of the externally forced signal (ensemble mean) and internal variability (ensemble
spread) (Frankcombe et al., 2015), making it possible to derive robust and continu-
ous estimates of internal variability under a changing external forcing (Olonscheck
et al., 2021). With increasing computational power, an increasing number of SMILEs
have been produced and made available in the past years (e.g., Deser et al., 2012;
Kay et al., 2015; Maher et al., 2019; Deser et al., 2020). The SMILEs are used in
various ways, for example, to quantify internal variability (e.g., Suarez-Gutierrez
et al., 2018; Dai et al., 2019; Olonscheck et al., 2021), to assess the likelihood of ex-
treme events (e.g., Fischer et al., 2013; Suarez-Gutierrez et al., 2018, 2020; Wiel et al.,
2019), to determine the time of emergence of global warming signals from internal
variability (e.g., Landrum and Holland, 2020; Holland and Landrum, 2021), and to
partition the uncertainty in climate projections (e.g., Lehner et al., 2020; Maher et al.,
2020; Bonan et al., 2021; Schwarzwald and Lenssen, 2022). Beyond their scientific
value, these applications make SMILEs a valuable tool for assessing climate impacts
(Schwarzwald and Lenssen, 2022) and robust adaptation decision-making (Mankin
et al., 2020). As every single climate model is subject to model uncertainties, large
ensembles become particularly powerful when combining multiple SMILEs into a
multi-model large ensemble (Deser et al., 2020), which is increasingly being done
in recent studies (e.g., Landrum and Holland, 2020; Olonscheck et al., 2021).

I also take advantage of the growing number of large ensemble climate simula-Scope of this
dissertation tions to answer the research questions outlined in the following two sections. First,

I analyze the persistence of Arctic sea ice on seasonal to inter-annual timescales
in the recent past and point out discrepancies between observations and model
simulations (section 1.2). Second, I study the magnitude of variability in Arctic SAT
on daily timescales in projections of the future and quantify the changes in the
temperature distribution as a function of global warming (section 1.3). Although
the questions raised in the two parts are different in nature and may seem far apart,
they both contribute from different angles to the overarching goal of advancing our
understanding of the internal variability of sea ice and SAT in a warming Arctic
climate.
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1.2 persistence of arctic sea ice : discrepancies between simula-
tions and observations

The first contribution of this dissertation addresses the persistence/memory of A predictability gap
in Arctic sea ice
predictions

Arctic sea ice (Giesse et al., 2021; appendix A). Previous studies have identified a
substantial gap between the operational forecast skill and the potential predictability
of Arctic sea ice (e.g., Bushuk et al., 2019). The potential predictability is a model-
based estimate of the upper limit of predictability, in which the skill of a model
ensemble in predicting an individual ensemble member is evaluated ("perfect-
model" framework). Pan-Arctic SIA has been shown to be potentially predictable
at lead times of 1-3 years (depending on the season), whereas operational sea-ice
forecasts can make skillful predictions only a few months ahead (3-5 months for
summer sea ice and up to a year for winter sea ice; Bushuk et al., 2019; Guemas
et al., 2016). While this substantial "predictability gap" indicates great potential for
improvements in operational sea-ice forecasts, it could also hint at a systematic
overestimation of sea-ice predictability in climate models, as previously suggested
by Notz, 2017 and Blanchard-Wrigglesworth and Bushuk, 2019.

A way forward to test this hypothesis is to compare the persistence of SIA, a Discrepancies in
observed and
simulated lagged
correlations of sea-ice
area

measure of its inherent predictability, in models and observations through lagged
correlation analysis. As previous studies (Blanchard-Wrigglesworth et al., 2011b;
Day et al., 2014b; Krikken and Hazeleger, 2015; Bushuk et al., 2015; Bushuk and
Giannakis, 2015; Bushuk et al., 2017; Ordoñez et al., 2018) show, lagged correlations
of monthly pan-Arctic SIA in climate model simulations are characterized by an
initial persistence of 2-5 months and two distinct modes of memory reemergence,
that is, an increase of correlation after an initial drop (Fig. 1.5a). The first mode,
named melt-to-growth season reemergence, is related to an imprint of SIA anomalies on
sea surface temperature anomalies in the vicinity of the sea-ice edge, which persist
over the summer season. The second mode, named summer-to-summer reemergence
or growth-to-melt season reemergence, is caused by a similar exchange of anomalies
between SIA and thickness (Blanchard-Wrigglesworth et al., 2011b). In comparison,
observations show lower persistence of SIA as well as differences in the pattern
of reemergence, in particular, they lack a significant signal of summer-to-summer
reemergence (Blanchard-Wrigglesworth et al., 2011b; Day et al., 2014b; Krikken and
Hazeleger, 2015).

The two main factors that could cause the discrepancies between observed Research questions

and simulated Arctic SIA are model errors (inadequate representation of physical
processes or low-frequency variability) and internal variability, as the short obser-
vational record starting in 1979 might not be representative of the mean climate
(Day et al., 2014b). This motivates my first research question:

1. Can the discrepancies between observed and simulated persistence of
Arctic sea-ice area be explained by internal variability?

Showing that this is not the case (section 1.2.1) immediately raises the question of
what else is causing or contributing to the discrepancies between model simulations
and observations. This is not a straightforward question to answer, but I shed some
light on this problem by posing the following research question (section 1.2.2):

2. Where do the discrepancies between observed and simulated persistence of
Arctic sea-ice area occur regionally and what can we learn from that about
potential causes?
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I answer these questions (Giesse et al., 2021; appendix A) by performing aMethods

comprehensive lagged correlation analysis of detrended, monthly pan-Arctic and
regional SIA anomalies in the period 1979-2018 based on observational and model
data. Using a SMILE, the Max Planck Institute Grand Ensemble (MPI-GE, Maher
et al., 2019) with 100 ensemble members, I investigate for the first time whether
the observed persistence lies within the range simulated by individual ensemble
members. Moreover, I use a multi-model ensemble from the Coupled Model
Intercomparison Project phase 6 (CMIP6; Eyring et al., 2016) to ensure that results
are robust across different global climate models. To further take into account the
uncertainty in observed sea-ice concentration, I use three observational products
based on different satellite retrieval algorithms.

1.2.1 Memory of pan-Arctic sea-ice area

My analysis of lagged correlations of pan-Arctic SIA (Fig. 1.5a,b and Fig. A.1a-c)Discrepancies in
observed and

simulated summer
long-term memory

cannot be explained
by internal
variability

confirms the finding of previous studies that observations lack a significant signal
of summer-to-summer reemergence and, generally, show a lower persistence of
summer SIA anomalies into the following year compared to the ensemble mean
of single- or multi-model large ensemble simulations. Beyond that, I show that
the observed persistence of SIA anomalies in summer/autumn into the following
year, particularly into the spring season, is consistently within or below the 5th
percentile of the persistence of individual MPI-GE ensemble members (Fig. A.1d).
Defining four different memory regimes (winter persistence, winter long-term
memory, summer persistence, and summer long-term memory; see Fig. A.2a),
I show that the observed summer long-term memory of all three observational
data products is below the model ensemble range of both the MPI-GE and the
CMIP6 multi-model ensemble (Fig. 1.5c and Fig. A.2e). This clearly shows that the
discrepancies between observed and simulated summer long-term memory of SIA
anomalies cannot be explained by internal variability alone.

1.2.2 Regional memory of sea-ice area

To investigate whether the discrepancies between observed and simulated memoryObserved summer
memory can be

disentangled
regionally into

reemergence and
negative correlations

of pan-Arctic SIA have a certain spatial origin, I performed a lagged correlation
analysis of regional SIA anomalies. A preliminary analysis of regional SIA anoma-
lies based on geographic location (also provided by Ordoñez et al., 2018) showed
that the dominating factor in determining the memory properties of SIA within
a certain region is the seasonal cycle of its variability. Therefore, I focus on the
auto- and cross-correlations between the seasonal ice zone and the perennial ice
zone (see appendix A and Fig. A.3a for definition). I find that the melt-to-growth
season reemergence (associated with sea surface temperature anomalies near the
sea-ice edge) is primarily a feature of the seasonal ice zone (Fig. A.3f,o), whereas
the summer-to-summer reemergence (associated with sea-ice thickness anomalies
of multi-year ice) shows up in the perennial ice zone (2nd column of Fig. A.3).
More precisely, the summer SIA anomalies of both ice zones, especially those of
the seasonal ice zone, reemerge in the perennial ice zone in the following summer.
The regional signal of summer-to-summer reemergence is not only a feature of
the model simulations but also is present in the observations, implying that it is a
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Figure 1.5: a,b Lagged correlations of monthly pan-Arctic sea-ice area anomalies in the MPI
Grand Ensemble (a) and the observational products combined to a "3-member
ensemble" (b). Correlation coefficients of individual ensemble members or data
products are combined using a Fisher‘s z-transformation. Black dots indicate
statistical significance on the 99 % level. c Distribution of average correlation
coefficients within the summer long-term memory regime shown as histograms
for the CMIP6 multi-model ensemble (gray) and the MPI Grand Ensemble
(blue), and as lines for observational datasets (orange). The black and blue
lines show normal distribution fits to the CMIP6 and MPI-GE data, respectively.
Shadings indicate the 2σ-range. Adapted from Giesse et al., 2021.

real-world phenomenon and not just a model artifact. The discrepancies between
models and observations rather are caused by an overlaying signal of significant
negative correlations between summer SIA anomalies, particularly in the perennial
ice zone, and following-year spring and summer SIA anomalies in the seasonal ice
zone (Fig. A.3r). With my approach of separating seasonal and perennial ice zones,
I could disentangle the observed signals of summer-to-summer reemergence and
negative correlations regionally.

My findings hint at a misrepresentation of processes in the climate models. How- Discussion of
potential causesever, it remains unclear what causes the negative correlations in the observations.

While stabilizing, negative feedback mechanisms such as the ice growth-thickness
feedback (thin ice growing faster than thick ice; e.g., Notz, 2009; Notz and Marotzke,
2012; Goosse et al., 2018; Petty et al., 2018) could be involved, the expected effect
would rather be a zero than a negative correlation. There are further factors of
uncertainty, such as the observational uncertainty, which is particularly large for
summer sea-ice concentration due to the presence of melt ponds (e.g., Kern et al.,
2020), or the detrending of the observed SIA time series, which could remove parts
of the low-frequency internal variability. It is conceivable that the discrepancies
between models and observations stem from a combination of factors, in which
also internal variability could play a role, albeit not the only one.

In summary, my findings show that climate models systematically overestimate
the observed persistence of summer SIA anomalies, which cannot be explained
solely by internal variability. The regional analysis shows that the discrepancies
between observations and simulations arise from how the seasonal ice zone "re-
members" preceding summer SIA anomalies.
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1.3 variability of arctic surface air temperature : changes under

global warming

The second contribution of this dissertation addresses changes in the distributionReduced temperature
variations in a

warming Arctic
climate

of Arctic SAT with global warming (appendix B). Along with its rapid warming
(see section 1.1.1), the Arctic has experienced increasingly more heat extremes in
the past years (Walsh et al., 2020; Dobricic et al., 2020; Graham et al., 2017; Moore,
2016), while cold extreme events occur less frequently (Matthes et al., 2015; Sui
et al., 2017). Moreover, previous studies have shown that in a warming climate, the
magnitude of internal variability in Arctic SAT is decreasing, particularly in the cold
season and on different timescales ranging from daily (Ylhäisi and Räisänen, 2014;
Chen et al., 2019; Dai and Deng, 2021) to monthly (Holmes et al., 2016; Bathiany
et al., 2018) to inter-annual (Olonscheck et al., 2021; Borodina et al., 2017). This is
primarily a consequence of the sea-ice decline increasing the exposure to the open
ocean with a larger heat capacity (e.g., Stouffer and Wetherald, 2007; Huntingford
et al., 2013; Olonscheck et al., 2021). Likewise, the amplitude of the seasonal cycle
of SAT in the Arctic is decreasing (Dwyer et al., 2012; Chen et al., 2019) due to the
seasonality of the Arctic amplification.

Knowing that global warming is amplified in the Arctic and, at the same time, theResearch questions

variability and seasonality of Arctic surface temperatures decreases, the question
arises of how the distribution of Arctic SAT changes with different levels of global
warming. In appendix B, I provide a comprehensive, quantitative assessment of the
projected response of daily Arctic SAT to global warming, considering changes in
the mean temperature, temperature variability on different timescales, and extreme
temperatures. Here, I want to focus on two more specific research questions that I
answer within the broader context of my analysis and that remained unclear from
previous studies focusing only on individual aspects of the temperature response.
As previous studies considered internal variability on different timescales and
did not consider the combined effect of reductions in internal variability and the
seasonal cycle of Arctic SAT in decreasing the range of experienced temperatures,
the first research question of this part arises:

3. What are the relative contributions of changes in seasonality, sub-seasonal
variability, and inter-annual variability to changes in the total daily vari-
ability of Arctic surface air temperature with global warming?

The second research question concerns the tails of the temperature distribution.
The amplified warming in the Arctic is expected to intensify warm extremes and
reduce cold extremes (Fig. 1.4a). However, the decreasing temperature variability
counteracts the intensification of warm extremes and reinforces the reduction in
cold extremes (Fig. 1.4c), and further changes in higher-order moments of the
distribution can asymmetrically affect the intensity and frequency of extreme
temperatures (Fig. 1.4d). This motivates my second research question:

4. What is the relative importance of mean warming and changes in the shape
of the temperature distribution in altering seasonal extremes of daily Arctic
surface air temperature with global warming?

I answer these two questions by analyzing the projected changes in daily ArcticMethods

SAT, over the entire year and in each season, in five SMILEs of CMIP6 Earth system
models. I assess the temperature response as a function of the global warming
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level (Fig. 1.6), providing results that are independent of timing and warming
scenario (Seneviratne et al., 2021). To answer the first question, I decompose
the total variability of daily Arctic SAT into its components from inter-annual
variability (year-to-year variations), sub-seasonal variability (day-to-day variations),
and variability induced by the seasonal cycle, following Fischer and Schär, 2009.
For the second question, I analyze the changes in the intensity of warm and cold
extreme temperatures (based on seasonal maxima/minima of daily mean SAT)
and the respective values if only the mean or only the variability/shape of the
distribution were changed. I further study the spatial signals of the projected
changes, providing more detail on the heterogeneous Arctic temperature response
than previous studies that usually considered the entire globe or the Northern
Hemisphere.

Figure 1.6: Arctic daily temperatures at different global warming levels (GWLs). (a) Time-
series of annual global-mean surface air temperature (GSAT) anomaly of each
Max Planck Institute Earth System Model (MPI-ESM-LR) ensemble member
(thin gray lines), their 20-year rolling averages (gray lines), and their ensemble
mean (black line). The colored lines mark the different GWLs (pre-industrial,
1°C, 1.5°C, 2°C, 3°C global warming). Right edge: distributions of detrended
GSAT anomalies for each GWL. (b) Distributions of detrended and deseason-
alized annual, winter (DJF), spring (MAM), summer (JJA), and autumn (SON)
daily Arctic-mean SAT anomalies for each GWL. (c) Seasonal cycle of detrended
daily Arctic-mean SAT for each GWL. Lines show the mean seasonal cycle,
shadings show the ensemble spread based on the 2.5th and 97.5th percentiles.
The circles/squares mark the average day of minimum/maximum daily mean
temperature.

1.3.1 Decomposition of changes in daily temperature variability

My analysis confirms that the total variability of daily SAT, in the Arctic mean, The weakened
seasonal cycle is the
main contributor to
reductions in daily
temperature
variability
throughout the year

is decreasing with global warming in all seasons except summer, in which the
models project no changes or slight increases of variability (Fig. B.3). The decrease
is fastest in autumn but ceases as the seasonal sea ice is lost completely. Over the
entire year, the daily temperature variations (measured as the standard deviation
of the distribution) decrease by 6 to 10% of their pre-industrial value per degree
of global warming in the different models. Most of the reduction in daily temper-
ature variability throughout the year is due to the decreasing amplitude of the
seasonal cycle, complemented by reductions in sub-seasonal variability, while the
contribution from changing inter-annual variability is negligible. The same holds
for the shoulder seasons of autumn and spring. In winter, the daily temperature
variability and its reduction are dominated by sub-seasonal variability. Decreasing
inter-annual variability adds to the reduction, whereas the temperature variations
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experienced in winter due to changes in the seasonal cycle increase. This is because
the seasonal temperature cycle is delayed in a warming climate and shifts its turn-
ing point towards the end of the winter season. Spatially, the temperature variations
throughout the year and in the cold seasons decrease practically everywhere in
the Arctic region, with the largest local decrease over the ocean areas where sea
ice is lost, particularly in the Barents Sea (Fig. B.4). In summer, the Arctic-mean
sub-seasonal variability is equally reduced, but increases in the inter-annual vari-
ability and the seasonal cycle (again due to a phase delay) lead to a net increase in
daily temperature variations. The signal is spatially heterogeneous, with variability
increasing over some land areas and over ocean areas of seasonal ice loss.

1.3.2 Effect on temperature extremes

Along with increasing average temperatures, both warm and cold extreme temper-Reduced temperature
variability

substantially
dampens cold-season

extreme
temperatures

atures (Fig. B.5) are projected to increase in a warming climate in all seasons and
everywhere in the Arctic. However, only in summer do warm, cold, and average
temperatures increase at similar rates. In the cold seasons of autumn, winter, and
spring, cold extreme temperatures are projected to increase substantially faster (2 to
3.5 times in the Arctic mean) than the respective warm extremes due to the reduced
variability of daily Arctic SAT. For example, in autumn, when the reductions in
variability are strongest, cold extremes warm by 4.6°C to 7.2°C per degree of global
warming (depending on the model), while warm extreme temperatures increase
only by 1.3 to 1.9°C/°C. I find that the increase in warm extreme temperatures
that would be caused solely through a shift in mean temperature is dampened by
nearly 50% in the cold seasons, while increases in cold extreme temperatures are
amplified by 74% in autumn, 60% in spring, and only 13% in winter. In summer,
increases in both warm and cold extremes are amplified by about 12% through
changes in variability. This shows that seasonal warm and cold extremes are not
affected symmetrically by changes in the variability as not only the width but also
the skewness of the temperature distribution changes, particularly in summer and
winter. I further show that both changes in the seasonal temperature cycle and the
sub-seasonal variability contribute to altering the intensity of extreme temperatures,
while the inter-annual variability is negligible for the occurrence of extremes. Spa-
tially, the changes in extreme temperatures are largest over the areas of sea-ice loss
in the cold seasons, such as the Barents Sea, where mean temperature increases
and variability decreases strongest. As a result, local cold extreme temperatures
increase substantially (by more than 10°C per degree of global warming), while
warm extreme temperatures do not increase more than in other parts of the Arctic
(Fig. B.6). Despite the dampening of extremes through reduced variability, it should
be noted that Arctic warm extreme temperatures still warm faster than the global
average temperature and the strong mean warming will continue to give rise to
unprecedentedly hot temperatures in the Arctic.

In summary, my study shows that a warmer Arctic climate will be subject to
fewer temperature variations and less intense extremes relative to its new mean
temperature. This might ease the adaptation to a warmer Arctic climate.
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1.4 conclusion

In this dissertation, I investigated two different aspects of internal variability in the
Arctic climate system using the powerful tool of large ensemble climate simulations.
In the first contribution, I examined the persistence of Arctic sea ice on seasonal
to inter-annual timescales, considered the recent past, and evaluated observations
against model simulations to gain insights into the inherent predictability of sea ice.
In the second contribution, I examined the magnitude of variability in Arctic SAT
on daily timescales, considered projections of the future, and gave a quantitative
assessment of changes in the temperature distribution with global warming, which
can be relevant for political decision-making. Although I analyzed the variability
of sea ice and surface temperatures from two different angles, my results implicitly
demonstrate the close interconnectedness of these two key variables of Arctic
climate. To conclude, I discuss the implications of my findings in the broader
context of a warming Arctic climate and give some outlook on potential future
research.

1.4.1 Predicting sea ice in a warming Arctic climate

In the first part of this dissertation (Giesse et al., 2021, appendix A), I found Key findings and
remaining questionsthat the memory of Arctic summer SIA into the following year is significantly

overestimated in state-of-the-art climate models and that this cannot be explained
solely by internal variability. I further show that the models do show some summer-
to-summer reemergence of memory in the perennial ice zone, but the discrepancies
between models and observations arise from the relation between SIA anomalies
in the seasonal ice zone and preceding summer SIA anomalies. The puzzle of
what exactly is causing the discrepancies remains unsolved. My findings suggest
that likely model errors in the representation of physical processes and/or the
low-frequency variability of sea ice are involved. Identifying the cause(s) of the
discrepancies could help the understanding of sea-ice memory and predictability.
It is, however, a challenging undertaking and, considering that additional factors
such as internal variability, the detrending of the time series, and observational
uncertainties may play a role in generating the discrepancies, it is questionable how
desirable and achievable a perfect agreement between models and observations
actually is (Notz, 2015).

The results of my study are relevant in the context of sea-ice predictions. As previ- Implications and
prospects for sea-ice
prediction

ously suggested by Blanchard-Wrigglesworth and Bushuk, 2019, the overestimation
of the memory of Arctic summer SIA could explain a part of the predictability
gap between perfect-model experiments and operational forecasts (Bushuk et al.,
2019). This would imply that the upper limit of sea-ice predictability is lower
than model studies suggest. Nevertheless, the potential to improve operational
sea-ice predictions, for instance, through better initialization and exploiting further
sources of predictability, is not yet exhausted. In practice, summer pan-Arctic and
regional sea-ice conditions, which are of particular interest for marine shipping,
can be predicted about four months ahead (e.g., Guemas et al., 2016; Bushuk et al.,
2022). Hence, the limiting factor for prolonging the skill horizon of summer sea-ice
forecasts currently is not the lack of summer-to-summer memory of SIA but rather
a spring predictability barrier that causes forecasts initialized before May to be
less skillful (Bonan et al., 2019; Bushuk et al., 2020). Besides the inherent memory
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of Arctic SIA or extent, additional predictability arises from the upper ocean heat
content and the sea-ice thickness (e.g., Chevallier and Salas-Mélia, 2012; Day et al.,
2014a). The initialization of sea-ice thickness has been shown to be key in improving
sea-ice forecasts (Collow et al., 2015; Dirkson et al., 2017; Blockley and Peterson,
2018). Satellite observations of sea-ice thickness are available since the launch of
CryoSat-2 in 2010. However, only recently, a year-round sea-ice thickness record
from CryoSat-2, which uses deep learning and numerical simulations to generate
sea-ice thickness data also in the crucial melt period from May to September, has
been released and offers promising opportunities to improve sea-ice predictions
(Landy et al., 2022).

The above statements on sea-ice predictability concern the past and presentChanging sea-ice
predictability in a

warming Arctic
climate

state of Arctic sea ice. As the sea ice is declining rapidly, its variability (e.g.,
Goosse et al., 2009) and predictability (Holland et al., 2011; Cheng et al., 2016;
Holland et al., 2019) are changing. The variability of Arctic summer sea-ice extent
increases as the ice cover becomes thinner and more seasonal, up to a certain point
(of about 3 million km2 sea-ice extent), after which the variability decreases as
the summer sea ice is lost completely (Goosse et al., 2009). Lagged correlation
analyses of SIA anomalies in future climate projections show that the summer-to-
summer reemergence, related to long-lived ice-thickness anomalies, is enhanced
in the period 2000-2020 compared to earlier periods (Holland et al., 2019) but
decreases as climate warming and sea-ice thinning continue, indicating decreasing
predictability of summer sea-ice conditions (Cheng et al., 2016; Holland et al., 2019).
This implies that the summer-to-summer memory and the associated discrepancies
between observations and simulations will be less relevant in a warming Arctic
climate. Perfect-model experiments support the existence of a sweet spot for the
predictability of summer sea ice in the early 21st century (Holland et al., 2019).
Due to its non-stationarity and increasing relevance, the prediction of sea ice in the
Arctic will likely remain a topic of high research interest in the coming decades.
As sea ice continues to retreat, the focus might shift to predictions of winter sea
ice. The melt-to-growth season reemergence, which can facilitate the prediction of
winter sea ice and, as I show, is well represented in climate models (Giesse et al.,
2021), is expected to intensify as the climate warms (Cheng et al., 2016).

1.4.2 Mitigation versus adaptation to a warming Arctic climate

In the second part of this dissertation (appendix B), I analyzed how the distributionKey findings and
remaining questions of daily Arctic SAT is changing with global warming. I showed that while the Arctic

is warming rapidly, particularly in winter and in areas of sea ice loss, temperatures
in a warmer Arctic climate will also be less variable and less extreme relative to the
new mean temperature. Both a weakening of the seasonal temperature cycle and
a decrease in sub-seasonal temperature variability in the cold seasons contribute
to a substantial dampening of seasonal extreme temperatures. Moreover, I show
that warm and cold extremes are not affected in the same way, indicating changes
in the symmetry of the temperature distribution. While I chose to focus on the
joint impact of mean warming and variability changes on maximum and minimum
temperatures, the sensitivity of Arctic temperature extremes to global warming
could be analyzed more extensively in future research. One could, for instance,
apply different definitions of extreme events and assess further parameters, such
as the frequency, which in contrast to the intensity tends to change non-linearly
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with global warming (Seneviratne et al., 2021), and the duration. The duration of
temperature extremes is less a matter of the magnitude of temperature variability
than its persistence, which may increase in the Arctic as sea-ice decline increases
the exposure to the open ocean (Bathiany et al., 2018).

Besides providing new insights into the prevailing timescales of changing Arctic Quantifying the
climate response to
global warming
levels is relevant for
political
decision-making

temperature variability and their role in altering extremes, the added value of my
study lies in providing a quantitative assessment of the controllability of mean and
extreme temperatures with global warming forcing. This is relevant for political
decision-making and setting climate targets such as the 1.5°C and 2°C limits on
global warming stated in the Paris Agreement of 2015. Since then, studies have
increasingly focused on the climate response to specific global warming levels
(see, e.g., James et al., 2017) and the Intergovernmental Panel on Climate Change
(IPCC) applies this framework throughout its Sixth Assessment Report (IPCC,
2021c). In contrast to many previous studies, I not only look at selected global
warming levels but consider the continuous climate response to global warming.
Doing so is only possible through the increasing availability of SMILEs with large
ensemble sizes. The approach of my study could serve as an example for future
research considering different regions, or the entire globe, and different variables.
One should, however, keep in mind that the response to global warming can differ
between transient and equilibrium climate states (King et al., 2020), especially for
more slowly-responding variables.

Regarding the implications of Arctic climate warming, regionally and globally Reduced temperature
variations may ease
adaptation to a
warmer Arctic
climate

(section 1.1.1), it is crucial to know how surface temperatures in the Arctic are
changing with global warming - not only in their mean but also in their variability
and extremes. Previous studies have highlighted the severe impacts of increased
climate variability on biological and human systems (e.g., Thornton et al., 2014).
Conversely, one could expect that a reduction in temperature variability will
dampen impacts and ease adaptation to climate change. Arctic human communities
and species that do not rely on the presence of sea ice may adapt more easily if they
face fewer temperature variations and extreme events. Particularly the reduction in
extreme cold temperatures could potentially also facilitate a northward migration
of species, ecosystems, and human activities that are not adapted to extreme cold
weather. Nevertheless, one should state clearly that for many of the most severe
impacts and consequences of Arctic climate change, the mean warming is essential.
This includes the loss of sea ice, which directly follows anthropogenic greenhouse
gas emissions and temperature rise (Notz and Stroeve, 2016; Stroeve and Notz,
2018), the melting of the Greenland ice sheet, whose tipping point could be reached
already at 1.5°C of global warming (Armstrong McKay et al., 2022), as well as
gradual permafrost thaw. Thus, regardless of any adaptive capacity and its potential
increase due to reduced temperature variations, mitigation of climate change must
be the number one priority to minimize negative consequences also in the Arctic.
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abstract

To investigate the inherent predictability of sea ice and its representation in climate
models, we compare the seasonal-to-interannual memory of Arctic sea ice as given
by lagged correlations of sea-ice area anomalies in large model ensembles (Max
Planck Institute Grand Ensemble and Coupled Model Intercomparison Project
phase 6) and multiple observational products. We find that state-of-the-art climate
models significantly overestimate the memory of pan-Arctic sea-ice area from
the summer months into the following year. This cannot be explained by internal
variability. We further show that the observed summer memory can be disentangled
regionally into a reemergence of positive correlations in the perennial ice zone
and negative correlations in the seasonal ice zone; the latter giving rise to the
discrepancy between observations and model simulations. These findings could
explain some of the predictability gap between potential and operational forecast
skill of Arctic sea-ice area identified in previous studies.

plain language summary

Sea ice, as a relatively slowly-varying component in the climate system, holds
“memory” on seasonal-to-interannual timescales. This means that, based on the
current state of the sea ice, meaningful predictions of its state several months into
the future can be made, for instance with the use of climate models. Such sea-ice
predictions are of growing socioeconomic importance, particularly in the Arctic,
where the strong sea-ice loss in the last decades is giving rise to new risks as well
as economic opportunities. Here, we provide a comparison of the memory of Arctic
sea ice based on model and observational data. We show that current global climate
models systematically overestimate the memory of sea ice from one summer into
the following year and beyond. We further show that this overestimation arises
from how the outer region of the Arctic, which is only seasonally ice-covered,
remembers previous summer sea ice. Our findings imply that, first, there is likely a
misrepresentation of processes related to the memory of sea ice in climate models
and, second, the potential of making skillful sea-ice predictions is less strong than
previously assumed based on model simulations.
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a.1 introduction

Over the past decade, major advances in the prediction of sea ice have been made.
This includes the development of seasonal sea-ice prediction systems based on
coupled global climate models (GCMs) utilized for operational predictions (e.g.,
Wang et al., 2013; Chevallier et al., 2013; Sigmond et al., 2013; Msadek et al., 2014;
Peterson et al., 2015) and “perfect-model” studies (e.g., Koenigk and Mikolajewicz,
2009; Holland et al., 2011; Blanchard-Wrigglesworth et al., 2011a; Tietsche et al.,
2014; Germe et al., 2014; Day et al., 2014a; Day et al., 2016). The latter provide
an upper limit of the predictability of sea ice within a given model framework
under the assumption of perfect model physics and knowledge of initial conditions
(potential predictability). While perfect-model studies show that pan-Arctic sea-ice
area (SIA) or extent (SIE) are predictable at 12-36 month lead times, operational
predictions of detrended pan-Arctic SIA/SIE are skillful only for lead times of a few
months (1-6 months for summer SIE and 1-11 months for winter SIE depending on
the prediction system) (Guemas et al., 2016; Bushuk et al., 2019). This gap between
potential predictability and operational forecast skill has been noted in previous
studies (e.g., Guemas et al., 2016; Blanchard-Wrigglesworth et al., 2015). Bushuk
et al., 2019 provide the first consistent assessment of potential and operational
forecast skill within one GCM-based prediction system and find a substantial
skill gap in nearly all Arctic regions. This predictability gap could indicate a
strong potential for improvements of operational sea-ice predictions, either through
improved initialization or improved model physics. However, the skill gap might
also hint at a systematic overestimation of sea-ice predictability in state-of-the-art
GCMs, as previously suggested by Notz, 2017 and Blanchard-Wrigglesworth and
Bushuk, 2019. This brings up the question of which predictability can be expected
based on observations, which we address here.

One way to analyze the inherent predictability of sea ice, arising from the
memory/persistence of its initial conditions, in models as well as observations are
lagged correlation studies (Blanchard-Wrigglesworth et al., 2011b; Chevallier and
Salas-Mélia, 2012; Day et al., 2014b; Krikken and Hazeleger, 2015; Bushuk et al., 2015;
Bushuk and Giannakis, 2015; Bushuk et al., 2017; Ordoñez et al., 2018; Blanchard-
Wrigglesworth and Bushuk, 2019). As found by Blanchard-Wrigglesworth et al.,
2011b, the memory of pan-Arctic SIA anomalies is characterized by an initial
persistence of 2-5 months and two distinct modes of memory reemergence, in
which lagged correlations increase again after an initial drop. The first identified
mode of memory reemergence occurs between months of the melt and the freezing
season (“melt-to-growth season reemergence”) and is related to an imprint of SIA
anomalies on sea surface temperature (SST) anomalies in the vicinity of the sea-ice
edge, which persist over the summer season. The second mode occurs between
the months of one summer and the next (“summer-to-summer reemergence” or in
later works also “growth-to-melt season reemergence”) and can be explained by a
similar exchange of anomalies between SIA and sea-ice thickness. In addition, the
ice-albedo feedback adds to the persistence and reemergence during the summer
months. Day et al., 2014b showed that, despite some inter-model spread in the
magnitude of correlations, the memory patterns are robust across different GCMs.

Comparing the memory of pan-Arctic SIA in model simulations and observations,
previous studies noted generally higher lagged correlations in the models than in
the observations as well as differences in the occurrence of reemergence (Blanchard-
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Wrigglesworth et al., 2011b; Day et al., 2014b; Krikken and Hazeleger, 2015). While
the melt-to-growth season reemergence is present in observational data, there is
no significant signal of summer-to-summer reemergence. As pointed out by Day
et al., 2014b, the attribution of discrepancies to potential causes is complicated by
several factors of uncertainty, such as the shortness of the observational record and
the detrending of the time series.

With the present study, we aim to systematically analyze differences in the
memory of Arctic sea-ice in model simulations and observations: Can they be
attributed to internal variability or errors in the model physics? Where do they occur
regionally? In contrast to previous studies, we base our lagged correlation analysis
of SIA anomalies on a multitude of simulated and observational data: the Max
Planck Institute Grand Ensemble (MPI-GE, Maher et al., 2019), a Coupled Model
Intercomparison Project phase 6 (CMIP6; Eyring et al., 2016) multi-model ensemble,
and several observational data products. By comparing lagged correlations from
observational data to the range of model internal variability of large ensemble
simulations covering the same period, we systematically identify time lags at which
simulated memory is over-/underestimated. By analyzing not only the memory of
pan-Arctic SIA but also regional memory of SIA, we gain insights into the spatial
origin of discrepancies between models and observations.

a.2 data and methods

a.2.1 Sea-ice concentration data sets

For our analysis, we use monthly sea-ice concentration (SIC) data of the period 1979-
2018 from various model and observational data products. We analyze model data
from the MPI-GE (Maher et al., 2019), combining historical simulations (1979-2005)
and representative concentration pathway 4.5 (RCP4.5) simulations (2006-2018)
performed with the Max Planck Institute Earth System Model (MPI-ESM, Giorgetta
et al., 2013) from 100 model ensemble members. Additionally, we use a CMIP6

(Eyring et al., 2016) multi-model ensemble consisting of 240 members from 37

different models. For this ensemble, we use all available historical simulations (pe-
riod 1979-2014) except those performed with MPI-ESM. This allows judgment on
whether results obtained with the MPI-GE are model-specific or can be generalized
for state-of-the-art GCMs. Note that, due to the consideration of all available simu-
lations, the individual models are weighted differently depending on the amount
of provided ensemble members, but qualitatively similar results are obtained when
analyzing only one member per model. A table listing the contributing CMIP6

models with their number of ensemble members is provided in the supporting
information (Table A.1).

Furthermore, we use three observational products of SIC retrieved from satellite
records with different retrieval algorithms, namely Bootstrap (Comiso, 2017) and
NASA Team (Cavalieri et al., 1996) data from the National Snow and Ice Data
Center (NSIDC) and EUMETSAT Ocean and Sea Ice Satellite Application Facility
(OSI SAF) data (EUMETSAT Ocean and Sea Ice Satellite Application Facility, 2017,
2019; Lavergne et al., 2019). The usage of different observational products allows us
to take into account the uncertainty in observed SIC (e.g., Kern et al., 2019, 2020).

28



a.2.2 Quantification of memory

We quantify memory of Arctic sea ice in terms of lagged correlations of SIA
anomalies. From the SIC data sets, we compute monthly time series of pan-Arctic
and regional SIA, differentiating between a seasonal ice zone (SIZ) and a perennial
ice zone (PIZ). We define the PIZ to consist of all grid cells with a September SIC
of ≥ 0.15 (corresponding to the annual minimum ice extent) in at least 80% of
the years based on the NSIDC Bootstrap data; all other grid cells are considered
as SIZ. For the CMIP6 multi-model ensemble, we consider only pan-Arctic SIA,
determined as described in Notz and SIMIP Community, 2020. To remove externally
driven long-term trends, we detrend the time series of individual months using
locally weighted scatterplot smoothing (LOWESS; Cleveland, 1979). This local
regression provides a more accurate representation of the sea-ice decline than a
linear regression, as the negative trend is increasing with time, particularly in
the sea-ice minimum months (e.g., Serreze and Stroeve, 2015). In the supporting
information, we provide a visual comparison of the LOWESS and linear detrending
(Figure A.4) and show some key results based on linearly detrended time series,
allowing for a direct comparison to previous studies. From the resulting monthly
SIA anomalies, we calculate lagged correlations with time lags of up to 18 months
using Pearson’s correlation coefficient r. For details on the computation of SIA and
the statistical methods applied for the combination of correlation coefficients of
ensemble members, the computation of statistical significance, and the detrending,
we refer to the supporting information (Text A1).

a.3 results

a.3.1 Memory of pan-Arctic sea-ice area

Analyzing the lagged correlations of pan-Arctic SIA, all data sets show an initial
decline of memory associated with the persistence of SIA anomalies (Figure A.1a-c
and Figure A.5 for the individual observational data sets). Related to the sea-
sonal cycle, two persistence regimes can be differentiated: one centered around
the sea-ice maximum (winter persistence, January to May start months) and one
centered around the sea-ice minimum (summer persistence, June to December
start months). The e-folding decorrelation time ranges between 1-6 months depend-
ing on the initial month and data set, which is consistent with previous studies
(Blanchard-Wrigglesworth et al., 2011b; Day et al., 2014b; Krikken and Hazeleger,
2015). Furthermore, all data sets show a melt-to-growth-season reemergence of
memory (high correlations between pairs of months around the sea-ice minimum,
i.e., August-September, July-October, etc.; Blanchard-Wrigglesworth et al., 2011b).
The correlation between pairs of months around the sea-ice minimum is less clear-
cut in the observations than in the models. However, the relation from winter to
winter is stronger in the observations than in the MPI-GE, as also noted in previous
studies (Blanchard-Wrigglesworth et al., 2011b; Krikken and Hazeleger, 2015). The
CMIP6 ensemble reproduces the observed winter-to-winter memory better than
the MPI-GE.

For the summer-to-summer memory, differences between observations and model
simulations are more apparent than for other time lags. The model ensembles show
a clear summer-to-summer reemergence (high correlations between the summer
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Figure A.1: (a-c) Lagged correlations of monthly pan-Arctic sea-ice area anomalies in (a)
the Coupled Model Intercomparison Project phase 6 (CMIP6) multi-model
ensemble, (b) the Max Planck Institute Grand Ensemble (MPI-GE), and (c) the
observational products (National Snow and Ice Data Center [NSIDC] Bootstrap,
NSIDC NASA Team and Ocean and Sea Ice Satellite Application Facility [OSI
SAF] Climate Data Records) combined to a “3-member ensemble”. Correlation
coefficients of individual ensemble members or data products are combined
using a Fisher‘s z-transformation. Black dots indicate statistical significance on
the 99 % level. (d) Percentile of MPI-GE members with a lower correlation than
observational data for the respective time lag. Downward and upward triangles
mark values within the 5th and 95th percentile. Time lags with correlations
coefficients outside of the model range (0th and 100th percentile) are marked
with a larger triangle.

minimum months, particularly August/September, from one year to the next;
Blanchard-Wrigglesworth et al., 2011b). The signal is more pronounced in the
MPI-GE than in the CMIP6 ensemble (September 1-year lag correlation of 0.31

and 0.24, respectively). In the observations, the correlations from the summer
months beyond the persistence timescale are substantially lower than in the models
(e.g. September 1-year lag correlation of -0.06), with even significant negative
correlations from summer to spring of the next year. Despite these low correlation
coefficients, there is an increase in correlations (from -0.35 at minimum to around
zero) in the summer months. This could indicate a reemergence of summer SIA
anomalies that is superimposed with negative summer-to-summer correlations
caused by a different process. Note that when detrending the time series linearly, the
correlation coefficients are higher, rendering the summer-to-summer reemergence
in the observations more visible (Figure A.6), but we still find statistically significant
negative correlations from summer to spring.

As the model correlation values represent an average of many ensemble members
and the observations represent only a single time series, differences could be due to
internal variability. Still, one would expect the observations to lie within the range
of model variability. There are several patterns or individual time lags for which
the correlation coefficients from observations are at the edge of model variability
(Figure A.1d). Most evident is the pattern of time lags from the summer months
into the following year, in which the observed correlations are consistently within
or below the 5th percentile of MPI-GE correlation coefficients. This is a strong
indication for a systematic overestimation of memory related to errors in the model
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physics. Similar patterns of model over-/underestimation are found when ranking
the observed correlations within the CMIP6 ensemble (not shown).

For a more detailed view of the internal model variability, we define four different
memory regimes (winter persistence, winter long-term memory, summer persis-
tence, and summer long-term memory regime; Figure A.2a) and compare the mean
correlation coefficients for each of these memory regimes in the individual data
products to their distribution in the MPI-GE and CMIP6 ensemble (Figure A.2b-e).
The distributions of correlation coefficients in the MPI-GE and CMIP6 ensemble
have a large overlap (75-90% depending on the memory regime), indicating that
the MPI-ESM model behaves similarly to other CMIP6 models in terms of memory.
The CMIP6 ensemble has a wider spread than the MPI-GE, which is expected due
to the larger ensemble size and the variety of contributing models.

Comparing the model ensembles against observations, we find that for the
winter persistence, winter long-term memory, and summer persistence regimes
(Figure A.2b-d), despite some spread, all observational products show correlation
coefficients that lie within the range of correlations simulated in both the CMIP6 en-
semble and the MPI-GE. For the summer long-term memory (Figure A.2e), however,
the correlations of all three observational data sets are below the model ensemble
range (except for two CMIP6 ensemble members having a lower correlation than
the NSIDC NASA Team and Bootstrap data). This indicates that the observations
are not just an “outlier”, but that climate models systematically overestimate the
memory in the summer long-term regime. In the case of linearly detrended time se-
ries, the observed correlations are within the range of CMIP6 and MPI-GE internal
variability, but also in the lower tail of the distribution (Figure A.7).

Note that qualitatively similar results are obtained when analyzing lagged cor-
relations of pan-Arctic SIE (see Figures A.8 and A.9). As noted by Blanchard-
Wrigglesworth et al., 2011b, SIE anomalies are slightly less persistent than SIA
anomalies as they are more sensitive to dynamic wind forcing. Moreover, the SIE
does not account for variations in the interior of the ice cover in summer. As a con-
sequence, there is only a weak signal of simulated summer-to-summer reemergence
for SIE. Observed summer-to-spring correlations are negative also for SIE, albeit
lower in magnitude than for SIA, suggesting that both variations in the ice pack
as well as in the position of the sea-ice edge are involved. Equally as for SIA, all
observational data sets show correlations of SIE in the summer long-term memory
regime that are below the model ensemble range.

a.3.2 Regional memory of sea-ice area

To investigate whether some of the memory properties and differences between
the data sets have a certain spatial origin, we analyze the memory of SIA on a
regional level. As shown by Ordoñez et al., 2018, the memory of regional SIA can
vary substantially between different Arctic basins: It is impacted on the one hand
by the geographic location and associated ocean dynamics, and on the other hand
by the seasonal cycle of the regional SIA and its variability. For simplicity, we here
choose a variability-based regional separation, differentiating only between the SIZ,
which is characterized by thin, seasonal ice in the vicinity of the ice edge, and the
PIZ, which contains thick, multi-year ice in the center of the Arctic Ocean (see map
in Figure A.3a). While the SIA of the SIZ has a pronounced seasonal cycle and
year-round variability (Figure A.3b,d), the SIA of the PIZ is practically constant
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Figure A.2: (a) Definition of different memory regimes. (b-e) Distribution of mean correla-
tion coefficients for the four different memory regimes shown as histograms
for the Coupled Model Intercomparison Project phase 6 (CMIP6) multi-model
ensemble (gray) and the Max Planck Institute Grand Ensemble (MPI-GE) (blue),
and as lines for observational data sets (National Snow and Ice Data Cen-
ter [NSIDC] Bootstrap, NSIDC NASA Team, and Ocean and Sea Ice Satellite
Application Facility [OSI SAF] data). The black and blue lines show normal
distribution fits to the CMIP6 and MPI-GE data, respectively. Shadings indicate
the 2σ-range.
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throughout most of the year with a dip and substantial interannual variability
in the months around the sea-ice minimum (Figure A.3c,e). From analyzing the
lagged correlations between different combinations of SIZ, PIZ, and pan-Arctic SIA
anomalies (Figure 3f-w), we can gain information on the spatial occurrence and
origin of memory.

The different memory characteristics, identified on the pan-Arctic scale, show
different regional occurrences. The persistence of SIA anomalies is strongly con-
nected to the seasonal cycle. As both ice zones exhibit seasonal variations of ice
area in summer, SIA anomalies of both SIZ (Figure A.3f,o) and PIZ (Figure A.3j,s)
persist during summer and contribute to the summer persistence on the pan-Arctic
scale (Figure A.3h,k,q,t). In winter, the ice area in the SIZ shows strong seasonal
variations, while the ice area in the PIZ is practically constant. Thus, only the
SIZ (Figure A.3f,o) shows a pronounced signal of winter persistence, reflected
also on the pan-Arctic scale (Figure A.3h,q). The observations also show an intra-
regional persistence of winter SIA anomalies in the PIZ (Figure A.3s) not present
in the model. However, these correlations result from only small fluctuations of
the otherwise full ice cover and do not transfer any memory to the pan-Arctic
scale (Figure A.3t). Similar to the winter persistence, the melt-to-growth season
reemergence is only apparent in the SIZ (Figure A.3, left column) but not in the
PIZ (Figure A.3, middle column), as it is related to the imprint of SIA anomalies
to the SST in the vicinity of the sea-ice edge. Overall, the regional memory in the
persistence and winter long-term memory regimes is consistent between MPI-GE
and observations.

The most striking result on the pan-Arctic scale is the overestimation of the sum-
mer long-term memory, which is characterized by a summer-to-summer reemer-
gence in the model simulations and negative correlations in the observations. The
inter-regional correlations show that summer SIA anomalies from both ice zones
(especially from the SIZ) reemerge in the PIZ (Figure A.3, middle column) but
barely in the SIZ (Figure A.3, left column). Albeit weaker than in the MPI-GE data,
the reemergence signal is also present in the observations, implying that it is a
real-world phenomenon and not just a model artifact. As the summer-to-summer
reemergence is explained by an imprint of the SIA anomalies to the ice thickness
that persists throughout the winter (e.g., Blanchard-Wrigglesworth et al., 2011b),
its occurrence in the PIZ but not in the SIZ is plausible. In the SIZ, instead of a
reemergence, the MPI-GE shows low, positive correlations in the summer long-term
memory regime, whereas the observations show negative correlations in spring
and summer of the next year. The observed negative correlations arise primarily
from summer SIA anomalies in the PIZ (summer-to-spring, Figure A.3r) and to a
smaller extent from summer SIA anomalies in the SIZ (mainly summer-to-summer,
Figure A.3o).

Hence, the superposition of reemergence and negative correlations, as seen on
the pan-Arctic scale, can be disentangled regionally and the discrepancies between
model simulations and observations arise from a different relation between SIA
anomalies in the SIZ and preceding summer anomalies. This finding is further
reinforced by comparing the inter-regional lagged correlations in the observations
to their internal model variability in the MPI-GE (Figures A.10 and A.11). While the
memory of pan-Arctic summer SIA anomalies in the PIZ agrees well between the
data sets, in the SIZ the correlation coefficients of all observational data sets are be-
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Figure A.3: (a) Map showing the geographical area of the perennial ice zone (PIZ; grid
cells with September sea-ice concentration larger than 0.15 in 80% of the years
in the National Snow and Ice Data Center [NSIDC] Bootstrap time series) and
seasonal ice zone (SIZ; remaining grid cells). The bold black line indicates the
average annual maximum sea-ice extent. (b,c) Seasonal cycle of mean sea-ice
area in the SIZ and PIZ in Max Planck Institute Grand Ensemble (MPI- GE)
and observational data sets. (d,e) Seasonal cycle of the standard deviation of
sea-ice area in the SIZ and PIZ in MPI-GE and observational data sets (NSIDC
Bootstrap, NSIDC NASA Team, and Ocean and Sea Ice Satellite Application
Facility [OSI SAF] data). (d-l) Inter-regional lagged correlations between sea-ice
area anomalies in the SIZ (upper row), PIZ (middle row), and entire Arctic
(lower row) with succeeding sea-ice area anomalies in the SIZ (left column),
PIZ (middle column), and entire Arctic (right column) in the MPI-GE. (m-u)
Same as (d-l) but for the observational ensemble.
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low the MPI-GE range of correlation values, indicating a significant overestimation
of memory, similar to the pan-Arctic scale (Figure A.2e).

a.4 discussion

We presented a comprehensive overview and comparison of Arctic sea-ice mem-
ory/persistence in a large set of model and observational data based on lagged
correlations of SIA anomalies. Our results are consistent with previous studies (e.g.,
Blanchard-Wrigglesworth et al., 2011b; Day et al., 2014b; Krikken and Hazeleger,
2015) in identifying the same persistence and reemergence characteristics of pan-
Arctic SIA and noting an overestimation of the memory from summer into the
following year (summer long-term memory) in model simulations compared to
observations. While previous studies point out the lack of summer-to-summer
reemergence in observations, we additionally note an even larger discrepancy
between models and observations in the persistence of summer anomalies into
the following spring, where observational data consistently show negative cor-
relations which are not found in model simulations. Comparing our results to
Blanchard-Wrigglesworth and Bushuk, 2019, CMIP6 models show better agree-
ment with observations than CMIP5 models, particularly in the winter-to-winter
memory (see their Figure 1e). These differences could be related to model improve-
ments or changes in the forcing, but may also be influenced by differences in the
methodology (i.e., different time periods, detrending methods, and memory regime
definitions).

Beyond that, this study shows the robustness of models overestimating the sum-
mer long-term memory in many aspects. By analyzing the distribution of lagged
correlations in large model ensembles for the same period as the observational
record, we show that the overestimation cannot be explained by internal variability.
This reduces the likelihood of the discrepancy being caused by a “sampling error”
due to the shortness of the observational time series as suggested by Day et al.,
2014b. The overestimation is present not only within a single-model ensemble
but also in the CMIP6 multi-model ensemble, showing its robustness across state-
of-the-art GCMs. Moreover, the overestimation of summer long-term memory is
independent of the considered observational data set. Using three observational
data products (NSIDC Bootstrap, NASA Team, OSI SAF) that use different retrieval
algorithms to determine SIC from satellite measurements, we reduce the uncertainty
associated with observations. However, it should be noted that the discrepancy
between model simulations and observations is related to SIC anomalies in the
summer months, in which observations have their largest uncertainty due to the
presence of melt ponds (e.g., Kern et al., 2020). Another factor of uncertainty is the
applied method of detrending, which could either not fully capture the long-term
trend or remove parts of the low-frequency internal variability. Applying a linear
detrending instead of the LOWESS detrending, as done for instance by Blanchard-
Wrigglesworth et al., 2011b and Day et al., 2014b, yields higher correlations and
observed summer long-term memory correlations that are no longer outside the
range of model internal variability, but still in the lower tail of the distribution
(Figures A.6 and A.7). This could be due to the remaining non-linear part of the
trend, which may be stronger in observations than model simulations.

While on the pan-Arctic scale the summer-to-summer reemergence is only de-
tectable in model simulations, we could show that, in the PIZ, summer SIA anoma-
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lies reemerge also in observational data. The discrepancy between models and
observations, however, is found in the relation between SIA anomalies in the SIZ
and preceding summer SIA anomalies, where observational data show significant
negative correlations not present in the model simulations. The negative correla-
tions arise primarily from SIA anomalies in the PIZ, which suggests a non-local
mechanism. However, a part of the negative correlations arises in the SIZ, indicating
that also the position of the ice edge is involved. This is reinforced by the finding
that the model overestimation of summer long-term memory is significant not only
for pan-Arctic SIA but also for SIE (Figures A.8 and A.9). While the variability-
based separation between PIZ and SIZ nicely disentangles the summer-to-summer
reemergence from the negative correlations, it does not reflect the geographical
complexity of the Arctic Ocean and regional sea-ice dynamics. As shown by Or-
doñez et al., 2018, the strength of persistence and reemergence features strongly
depends on the geographical location. Moreover, it should be noted that the fixed
separation between SIZ and PIZ can only be an approximation as it does not reflect
the changing mean sea-ice state in the period of interest. Still, our regional anal-
ysis provides guidance for future work identifying the causes of the discrepancy
between models and observations.

The findings of this study have important implications for the predictability of
sea ice. As previously suggested by Notz, 2017 and Blanchard-Wrigglesworth and
Bushuk, 2019, the overestimation of memory of pan-Arctic SIA in the summer
long-term memory regime could explain a part of the predictability gap between
perfect-model experiments and operational forecasts (e.g., Bushuk et al., 2019). This
would imply that perfect-model studies overestimate the potential predictability of
pan-Arctic SIA arising from knowledge of summer sea-ice conditions and that the
potential for improvement of sea-ice predictions is less strong than these studies
suggest. Nevertheless, this can only be a partial explanation of the year-round
predictability gap and does not diminish the potential for improved operational
sea-ice predictions, for instance, through a better initialization. Moreover, there are
additional sources of sea-ice predictability that are not considered here, such as ice
thickness/volume and oceanic variables. Regarding future research, it should be
of high priority to identify the causes of the overestimation of summer long-term
memory in state-of-the-art GCMs.

a.5 conclusions

In summary, we draw the following conclusions from our analysis and data set-
intercomparison of lagged correlations of Arctic SIA anomalies:

• The memory of pan-Arctic SIA from the summer months into the following
year and beyond (“summer long-term memory”) is significantly overestimated
in model simulations compared to observations. Observed lagged correlations
in this memory regime are below the range of internal model variability (MPI-
GE) and inter-model variability (CMIP6 multi-model ensemble), showing that
the result is robust across state-of-the-art climate models.

• The observed summer long-term memory can be disentangled regionally
into a summer-to-summer reemergence in the perennial ice zone (PIZ) and
negative correlations in the seasonal ice zone (SIZ). The observed negative
relation between summer SIA anomalies in both ice zones, particularly in
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the PIZ, and succeeding spring and summer SIA anomalies in the SIZ is not
present in model simulations, giving rise to the model overestimation.

• The results reinforce that a part of the predictability gap between potential and
operational forecast skill of Arctic SIA could be caused by over-persistence of
summer SIA in models.
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a.6 supplementary information

This supporting information contains additional information on the methodological
details of the lagged correlation computation (Text A1), a table listing all used
CMIP6 models and their number of ensemble members (Table A.1), as well as
several additional figures. Figure A.4 gives a visual impression of the applied
detrending method. Figure A.5 shows the lagged correlations of pan-Arctic sea-ice
area (SIA) for the individual observational and reanalysis products. Figures A.6
and A.7 show some of the main results based on linearly detrended time series
and Figures A.8 and A.9 show the results for pan-Arctic sea-ice extent. Figure A.10

shows the percentile of MPI-GE members with lower inter-regional correlations
than the observations and Figure A.11 shows the distribution of summer long-term
memory correlations in the data sets on the regional scale.

Text A1. Details of lagged correlation computation
Computation of sea-ice area. From the different sea-ice concentration (SIC) data
sets, we compute pan-Arctic SIA considering the whole Northern Hemisphere on
the original grid and regional SIA after an interpolation on the NSIDC grid (25 km
x 25 km resolution) by multiplying the SIC with individual grid-cell area. For the
NSIDC data, we fill the observational pole hole with the average SIC around its
edge. For OSI SAF data, we use the filled pole hole of the product itself. For the
CMIP6 ensemble, we determine the pan-Arctic SIA as described in Notz and SIMIP
Community, 2020.

Detrending. We detrend the monthly time series of SIA using locally weighted
scatterplot smoothing (LOWESS; Cleveland, 1979), that is, a local weighted lin-
ear regression. We base the local regression on the nearest two-thirds of data
points and perform three residual-based reweightings. For that, we use the Python
module smoothers_lowess from the statsmodels package (https://github.com/
statsmodels/statsmodels/blob/master/statsmodels/nonparametric/smoothers_

lowess.py).
Combined correlations. To compute mean correlations for the ensembles, we

combine the individual Pearson correlation coefficients r of the ensemble members
by applying a Fisher’s z-transformation, averaging in z-space, and transforming
back to r-space.

Statistical significance. We determine the statistical significance of the correlation
coefficients based on two-tailed p-values tested against a null hypothesis of zero
correlation. In the case of ensemble mean correlations, we need to take into account
that individual ensemble members can have oppositely directed correlations, in
which case the p-values should cancel out. To achieve that, we follow the following
procedure: We compute the left- and right-tailed p-values for each member, combine
them by applying Stouffer’s method, re-convert the result to a two-tailed p-value (as
no prior knowledge on the direction of the correlation is available), and determine
statistical significance based on the smaller one of the two combined p-values.
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Table A.1: Models and number of ensemble members contributing to the CMIP6 multi-
model ensemble analyzed in this study.

Model # ens. members

ACCESS-CM2 2

ACCESS-ESM1-5 3

AWI-CM-1-1-MR 5

BCC-CSM2-MR 3

BCC-ESM1 3

CAMS-CSM1-0 3

CANESM5 25

CESM2 11

CESM2-WACCM 3

CESM2-WACCM-FV2 1

CNRM-CM6-1 10

CNRM-CM6-1-HR 1

CNRM-ESM2-1 5

E3SM-1-0 5

EC-EARTH3 5

EC-EARTH3-VEG 7

FGOALS-F3-L 1

FIO-ESM-2-0 3

GFDL-CM4 1

GFDL-ESM4 1

GISS-E2-1-G 10

GISS-E2-1-G-CC 1

GISS-E2-1-H 10

HADGEM3-GC31-LL 4

HADGEM3-GC31-MM 4

INM-CM4-8 1

INM-CM5-0 10

IPSL-CM6A-LR 32

MIROC-ES2L 3

MIROC6 10

MRI-ESM2-0 5

NESM3 5

NORCPM1 30

NORESM2-LM 3

NORESM2-MM 1

SAM0-UNICON 1

UKESM1-0-LL 12

all models 240
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Figure A.4: NSIDC Bootstrap October pan-Arctic sea-ice area with trend determined via
linear regression (red) and locally weighted scatterplot smoothing (LOWESS,
blue).
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Figure A.5: Lagged correlations of monthly pan-Arctic sea-ice area anomalies in the indi-
vidual observational products (NSIDC Bootstrap, NSIDC NASA Team and OSI
SAF Climate Data Records). Black dots indicate statistical significance on the
99 % level.
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Figure A.6: Lagged correlations and percentile ranks as in Figure A.1a-d but based on
linearly detrended time series of monthly pan-Arctic sea-ice area.
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Figure A.7: Distribution of mean correlation values for the four different memory regimes
as in Figure A.2b-e but based on linearly detrended time series of monthly
pan-Arctic sea-ice area.

41



J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Lead month

J
F

M
A

MJ
J

A
S

O
N

D

S
ta

rt
 m

o
n
th

MPI Grand Ensemble

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Lead month

J
F

M
A

MJ
J

A
S

O
N

D

Observations

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J

Lead month

J
F

M
A

MJ
J

A
S

O
N

D

S
ta

rt
 m

o
n
th

Observations vs. MPI-GE

0.8

0.4

0.0

0.4

0.8

C
o
rr

e
la

ti
o
n

0.8

0.4

0.0

0.4

0.8

C
o
rr

e
la

ti
o
n

0

20

40

60

80

100

P
e
rc

e
n
ti

le

Figure A.8: Lagged correlations and percentile ranks as in Figure A.1b-d but for Arctic
sea-ice extent.
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Figure A.9: Distribution of mean correlation values for the four different memory regimes
as in Figure A.2b-e but for Arctic sea-ice extent.
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Figure A.10: Percentile of MPI-GE members with a lower correlation than observational
data for inter-regional lagged correlations of SIZ, PIZ, and pan-Arctic sea-ice
area anomalies as in Figure A.3. Downward and upward triangles mark values
within the 5th and 95th percentile. Time lags with correlations coefficients
outside of the model range (0th and 100th percentile) are marked with a larger
triangle.
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Figure A.11: Distribution of mean correlation in the summer long-term memory regime
between pan-Arctic sea-ice area anomalies and succeeding (a) SIZ sea-ice area
anomalies and (b) PIZ sea-ice area anomalies shown as a histogram for the
MPI-GE (blue) and as lines for the observational data sets (orange). The blue
line shows a normal distribution fit to the MPI-GE data; shadings indicate the
2σ-range.
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abstract

The Arctic is warming faster than any other region in the world. Not only the mean
warming but also changes in temperature variability can translate into substantially
altered climate extremes. Using state-of-the-art Earth system model large ensemble
simulations, we show that the projected reduction of daily variations in Arctic
surface air temperature with global warming substantially dampens the intensity of
cold-season temperature extremes. The decreasing variability dampens the increase
of warm extreme temperatures that would be caused only through mean warming
by about 50% and amplifies the decrease in cold extreme temperatures at even
higher rates. We further show that the reduction in daily temperature variations is
mainly caused by a weakened seasonal temperature cycle, complemented by de-
creasing sub-seasonal temperature variability. The sharpest decrease in temperature
variability occurs seasonally in autumn and regionally in the northern Barents Sea,
driven by extensive sea-ice loss. Our results suggest that a warmer Arctic climate
will be subject to fewer temperature variations and less extreme relative to its new
mean temperature, which may ease adaptation to a new Arctic climate state.
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b.1 introduction

The climate in the Arctic is changing faster than in any other region of the world
and a new Arctic climate state is already emerging (Landrum and Holland, 2020). In
recent decades, surface temperatures in the Arctic have warmed nearly four times
faster than in the global average (Rantanen et al., 2022). This prominent feature of
climate change is known as Arctic amplification (Serreze and Francis, 2006; Serreze
and Barry, 2011; Previdi et al., 2021). Along with its mean warming, the Arctic is
experiencing increasingly more extreme temperature events (Walsh et al., 2020),
including summer heat waves in the terrestrial Arctic (Dobricic et al., 2020) and
winter warming events over the Arctic Ocean (Graham et al., 2017; Moore, 2016).
At the same time, cold extreme temperatures occur less frequently (Matthes et al.,
2015; Sui et al., 2017). These trends are projected to continue in the future, with
cold extremes generally warming faster than warm extremes (Seneviratne et al.,
2021; Kharin et al., 2013; Sillmann et al., 2013; Donat and Alexander, 2012).

While extreme temperatures change along with the mean warming, they are even
more sensitive to changes in temperature variability (Katz and Brown, 1992). In
the global average as well as in many regions around the globe, the direction and
magnitude of changes in temperature variability remain uncertain (Huntingford et
al., 2013; Olonscheck et al., 2021). In the Arctic, however, the temperature variability
has been robustly shown to decrease with global warming, particularly in the cold
season and for variations on different timescales ranging from daily (Ylhäisi and
Räisänen, 2014; Chen et al., 2019; Dai and Deng, 2021) over monthly (Holmes et al.,
2016; Bathiany et al., 2018) to annual (Borodina et al., 2017; Olonscheck et al., 2021).
This is primarily caused by the loss of sea ice, reducing the insulation between
ocean and atmosphere and increasing the ocean’s effective heat capacity (Stouffer
and Wetherald, 2007; Huntingford et al., 2013; Borodina et al., 2017; Olonscheck
et al., 2021). The decrease in temperature variability also extends to the northern
mid-latitudes due to reduced thermal advection as the Arctic amplification weakens
the meridional temperature gradient (Screen, 2014; Schneider et al., 2015; Holmes
et al., 2016; Collow et al., 2019; Tamarin-Brodsky et al., 2020; Blackport et al., 2021;
Dai and Deng, 2021). Moreover, the Arctic is also the region that experiences the
strongest changes in the seasonal temperature cycle (Dwyer et al., 2012; Chen et al.,
2019). Due to the seasonality of the Arctic amplification, which is strongest in late
autumn and weakest in summer (Serreze and Barry, 2011; Rantanen et al., 2022),
the amplitude of the Arctic’s seasonal temperature cycle decreases with global
warming (Dwyer et al., 2012; Chen et al., 2019; Bintanja and Van Der Linden, 2013).
Although often neglected in studies of variability, changes in the seasonal cycle
can contribute substantially to the experienced range of temperature variations
(Thomson, 1995) and thereby impact the intensity of temperature extremes.

In this study, we show what temperatures can be expected in a warmer Arctic cli-
mate by providing a comprehensive analysis of projected changes in Arctic surface
air temperature (SAT) under global warming. By jointly analyzing mean warming
and changes in daily temperature variations, decomposed into contributions from
inter-annual variability, sub-seasonal variability, and variability induced by the
seasonal cycle (Fischer and Schär, 2009), we quantify their relative importance in
altering warm and cold temperatures extremes in the different seasons. We base
our analysis on five single-model initial-condition large ensembles (SMILEs; Deser
et al., 2020) from the sixth phase of the Coupled Model Intercomparison Project
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(CMIP6; Eyring et al., 2016). The SMILEs come with 30-50 ensemble members that
simulate the climate under identical external forcing and model configurations but
with slightly perturbed initial conditions, allowing us to derive robust estimates of
internal temperature variability and extremes (Deser et al., 2020; Olonscheck et al.,
2021). Unlike many previous studies, we quantify the response of Arctic SAT to
global warming levels (GWLs), providing results that are independent of timing
and warming scenario and therefore more useful to stakeholders and policymakers
(IPCC, 2021d). The sampling of pre-industrial conditions and discrete GWLs of 1°C,
1.5°C, 2°C, and 3°C is illustrated in Fig. B.1a based on the MPI-ESM-LR model (see
"Methods" for details). The response of Arctic mean (north of 66°N) daily SAT to
increasing GWLs is characterized by an amplified warming and reduced variability
subject to strong seasonality (Fig. B.1b) and a weakened and delayed seasonal cycle
(Fig. B.1c). In the following, we demonstrate the changes in the distribution of
daily Arctic SAT as a function of global warming for the five SMILEs. First, we
show the mean warming; second, we show changes in temperature variability,
decomposed into their different timescales; and third, we show changes in cold and
warm extreme temperatures and quantify the contribution from mean warming
and variability changes.

Figure B.1: Arctic daily temperatures at different global warming levels (GWLs). a Time-
series of annual global-mean surface air temperature (GSAT) anomaly of each
MPI-ESM-LR ensemble member (thin gray lines), their 20-year rolling averages
(gray lines), and their ensemble mean (black line). The colored lines mark the
different GWLs (pre-industrial, 1°C, 1.5°C, 2°C, 3°C global warming). Right
edge: distributions of detrended GSAT anomalies for each GWL. b Distributions
of detrended and deseasonalized annual, winter (DJF), spring (MAM), summer
(JJA), and autumn (SON) daily Arctic-mean SAT anomalies for each GWL.
c Seasonal cycle of detrended daily Arctic-mean SAT for each GWL. Lines
show the mean seasonal cycle, shadings show the ensemble spread based on
the 2.5th and 97.5th percentiles. The circles/squares mark the average day of
minimum/maximum daily mean temperature.

b.2 mean warming

The mean warming of the Arctic with global warming in the considered SMILEs
is shown in Fig. B.2. The Arctic-mean SAT increases approximately linearly with
global warming, as seen in Fig. B.2a based on the MPI-ESM-LR ensemble, and we
compute the annual and seasonal Arctic amplification for all considered SMILEs
as the linear trends of Arctic versus global SAT anomalies within the global-
warming range of 0.5 - 4°C (Fig. B.2b). The ensemble-mean Arctic amplification
ranges between 2.3 and 3.2 annually in the considered models and is subject to
strong seasonality with the highest seasonal mean warming in winter (3.6 - 4.8),
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Figure B.2: Mean warming of the Arctic. a MPI-ESM-LR annual, winter (DJF), spring
(MAM), summer (JJA), and autumn (SON) mean Arctic-mean SAT anomaly as
a function of GSAT anomaly. Lines show the ensemble mean and shadings the
ensemble spread based on the 2.5th and 97.5th percentiles. The annual/seasonal
Arctic amplification factors, computed based on a linear regression within the
0.5 - 4°C global-warming range, are indicated. b Annual and seasonal Arctic
amplification in the different climate models. Symbols show the ensemble
mean, bars indicate the ensemble spread (2.5th - 97.5th percentile range). c,d,e
Spatial signals of MPI-ESM-LR annual (c), winter (d), and summer (e) mean
SAT anomalies in the Arctic domain at the 2°C GWL. For winter and summer,
the average sea ice edge at pre-industrial conditions (dashed lines) and 2°C
global warming (solid lines) are indicated.

followed by autumn (2.6 - 4.1), spring (2.0 - 2.8), and summer (0.8 - 1.8). These
estimates of Arctic amplification are in good agreement with other model-based
estimates reported in the literature (Holland and Landrum, 2021; Rantanen et al.,
2022). However, climate models as a group have been shown to underestimate the
observed Arctic amplification, at least in recent decades (Rantanen et al., 2022).
Note further that the assumed linearity is only an approximation and that the
rate of Arctic warming decreases for higher GWLs, particularly in autumn. This
flattening is caused by a weakened ice-albedo feedback due to the loss of sea ice
(Holland and Landrum, 2021; Ono et al., 2022), which is fastest around the sea-ice
minimum in September. The Arctic becomes practically sea-ice free (i.e., sea-ice area
< 1 million km2) in September at about 2.1°C global warming in the MPI-ESM-LR
ensemble average (Extended Data Fig. B.7).

Spatially, the warming of the Arctic is non-uniform (Fig. B.2c-e and Extended
Data Fig. B.8). The strongest warming occurs in the northern Barents Sea with local
winter warming of up to 17.5°C at the 2°C GWL, corresponding to a local Arctic
amplification of almost nine times global warming. This hotspot of warming is
also evident from observations (Isaksen et al., 2022) and is mainly caused by the
loss of cold-season sea ice in that area and the resulting "Atlantification" of the
northern Barents Sea (Lind et al., 2018; Polyakov et al., 2017). The weakest annual
warming occurs over the northern North Atlantic and Greenland. In summer, there
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is practically no warming over the central Arctic Ocean as the sea-ice cover keeps
the SAT at freezing temperature and all excess heat goes into melting the sea ice.

b.3 changes in variability of daily temperatures

The changes in daily SAT variability, measured as the standard deviation of the
distribution, with global warming and the contributions from the seasonal cycle,
day-to-day variations (sub-seasonal variability), and year-to-year variations (inter-
annual variability) are shown in Figs. B.3 and B.4. Additionally, the composition
of the total variability for each season based on the variance of the individual
components can be seen in Extended Data Fig. B.9.

In the Arctic mean, the total variability of daily SAT (Fig. B.3a,e) is decreasing
in all seasons except summer, in which the models project no changes or slight
increases of variability (0 to +5% of pre-industrial variability per degree of global
warming). The decrease in total daily variability is sharpest in autumn (-12 to
-16%/°C), followed by spring (-5 to -9%/°C) and winter (-3 to -8%/°C). Over the
entire year, the daily temperature variations decrease by -6 to -10% per degree of
global warming. While annually, in winter, and in spring the variability decreases
approximately linearly in the considered global-warming range, in autumn the
decrease flattens with increasing GWL and ceases as the seasonal sea ice is lost
completely (Extended Data Fig. B.7).

The seasonal cycle accounts for most of the temperature variations annually
(about 83%) and in the shoulder seasons of spring and autumn (about 65%; Ex-
tended Data Fig. B.9). In these seasons, the seasonal cycle variability decreases
with global warming (Fig. B.3b,f). Annually and in spring, it decreases by -5 to
-9%/°C; in autumn it decreases even faster by -11 to -15%/°C, again related to the
strong sea-ice loss in that season. In winter and summer, the seasons in which the
seasonal temperature cycle turns directions, the variability induced by the seasonal
cycle contributes considerably less to the total variability (about 15% in winter
and 30% in summer, Extended Data Fig. B.9) and is projected to increase. The
increase is particularly high in winter with relative changes ranging between +17

and +34%/°C, while it is more moderate in summer (0 to +5%/°C). The reason for
the increase in the seasonal cycle variability in winter and summer is that not only
the amplitude of the seasonal temperature cycle is reduced with global warming
but also its phase is delayed, as can be seen from Extended Data Fig. B.11. As the
turning points of the seasonal cycle are shifted away from the mid-points of the
summer and, particularly, the winter season, the seasonal cycle-induced temper-
ature variability gets more asymmetric and, therefore, increases, as can also be
seen from Fig. B.1c. The phase delay of the seasonal cycle of surface temperatures
in a warming climate is robustly simulated in climate models (Mann and Park,
1996; Dwyer et al., 2012; Chen et al., 2019) and has been attributed to the loss of
sea ice and the accompanying increase in effective surface heat capacity slowing
the temperature response (Dwyer et al., 2012; Hahn et al., 2022). Of course, the
phase shift does not physically add any temperature variations over the course of a
year but rather changes the timing of the seasons if they were defined based on
temperature instead of their meteorological definition.

In winter and summer, the sub-seasonal variability dominates the total daily
SAT variability with approximately 75% and 60%, respectively. Annually, in spring,
and in autumn, the sub-seasonal variability is the second most contributor (≈ 15%
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Figure B.3: Arctic-mean changes in temperature variability and its components. a-d MPI-
ESM-LR annual and seasonal total variability (a), seasonal cycle variability (b),
sub-seasonal variability (c), and inter-annual variability (d) computed as the
standard deviation (SD) of grid-cell SAT averaged over the Arctic domain as a
function of GSAT anomaly. The rates of change based on linear regression within
the 0.5 - 4°C global-warming range are given as percentage changes relative
to the pre-industrial value. e-h Multi-model comparison of the percentage
change in annual and seasonal temperature variability components with global
warming relative to their pre-industrial values.

annually; ≈ 30% for spring and autumn). It is projected to decrease in all seasons
(Fig. B.3c,g). The strongest decrease in sub-seasonal variability occurs in autumn
(-11 to -16%/°C), followed by winter and spring with a similar rate than annually
(-6 to -11%/°C), and summer (-3 to +1%/°C).

The inter-annual variability contributes the least to the total daily SAT variability
with about 2% annually, 5% in spring and autumn, and 10% in winter and summer.
It decreases in all seasons (-11 to -15%/°C in autumn, -3 to -7%/°C in winter and
spring, and -5 to -8%/°C annually) except for summer, in which it increases by +2

to +10%/°C (Fig. B.3d,h).
Spatially, the strongest reduction in total daily variability on annual timescales

(Fig. B.4a) and in the cold seasons (winter, autumn, and spring; Fig. B.4b and Ex-
tended Data Fig. B.10a,b) occurs in the Barents Sea. Similar to the warming of this
area, the decrease in variability is caused by the loss of cold-season sea ice. As the
sea ice retreats permanently, shown by the sea-ice edges at pre-industrial conditions
and 2°C global warming in Fig. B.4, it leaves behind open ocean. Due to its larger
heat capacity, the ocean dampens the variability of near-surface temperatures (Boro-
dina et al., 2017) on all considered timescales, that is, between seasons (seasonal
cycle variability, 2nd row of Fig. B.4), within a season (sub-seasonal variability, 3rd
row of Fig. B.4) and between years (inter-annual variability, 4th row of Fig. B.4).
In autumn (Extended Data Fig. B.10b), this strong reduction in variability is not
restricted to the Atlantic sector but occurs around the entire edge of the Arctic
Ocean where sea ice is lost, particularly also in the Chukchi Sea, located at the
connection to the Pacific.

Apart from the strong effect of sea-ice loss on local temperature variability, it
affects the entire region, leading to a decrease in annual and cold-season total
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daily temperature variability nearly everywhere in the Arctic. The seasonal-cycle
induced variability (2nd row of Fig. B.4) in spring, autumn, and annually decreases
everywhere except for the North Atlantic and Greenland, similar to the pattern of
winter mean warming that causes the reduction in the amplitude of the seasonal
cycle. The increase in winter seasonal-cycle variability (Fig. B.4e) is less a result
of changes in the amplitude than in the phase of the seasonal temperature cycle,
as discussed previously. There is a clear spatial agreement between the increase
of seasonal cycle variability in winter and the phase shift of the day of minimum
SAT (Extended Data Fig. B.11d). While the sub-seasonal variability (3rd row of
Fig. B.4) decreases in the entire Arctic, the inter-annual variability (4th row of
Fig. B.4) increases in areas near the new sea-ice edge as they transition from being
ice-covered every year to being ice-covered only in some years (Borodina et al.,
2017). Since the ice extent is subject to year-to-year variations rather than day-to-day
variations, this is also reflected in the variability of local SAT. It also explains the
larger relative decrease in Arctic-mean sub-seasonal variability than in Arctic-mean
inter-annual variability (Fig. B.3).

Figure B.4: Spatial changes in Arctic temperature variability and its components. Spatial
signals of the changes in MPI-ESM-LR annual, winter, and summer (left to
right) total variability, seasonal cycle, sub-seasonal variability, and inter-annual
variability (top to bottom) of daily SAT at 2°C GWL compared to pre-industrial
conditions. For winter and summer, the average sea-ice edge at pre-industrial
conditions (dashed lines) and 2°C global warming (solid lines) are indicated.
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In summer, the situation is different from the other seasons. The SAT variability
over ice-covered areas is practically zero as the temperature stays more or less
constant at the freezing point. When the ice-covered areas transition to open ocean,
the temperature variability increases. On the one hand, this is due to increasing
seasonal-cycle induced variability (Fig. B.4f) resulting from a phase shift in the
day of maximum SAT. The phase shift in the day of maximum SAT is much more
localized than in the day of minimum SAT (Extended Data Fig. B.11e). It shifts
substantially in the regions where the summer sea ice is lost (locally up to 60 days
at 2°C GWL), as the open ocean beneath can heat up during summer, thereby
increasing the local temperature range of the seasonal cycle during summer. On
the other hand, the inter-annual variability of SAT (Fig. B.4l) increases around the
new sea-ice edge due to year-to-year variations in summer ice extent. Moreover, in
summer, the inter-annual and sub-seasonal SAT variability in the terrestrial Arctic
also increase slightly.

Generally, the projected changes in variability are consistent between the different
models, differing by approximately ±5%/°C. Only for the positive changes in
seasonal cycle variability in winter and inter-annual variability in summer, the
ranges of projected relative changes are larger but still consistent in their direction.
Spatially (not shown for other models than MPI-ESM-LR), the models consistently
show the strongest variability changes in the areas where sea ice is lost, which is
physically plausible (Huntingford et al., 2013; Olonscheck et al., 2021; Borodina
et al., 2017; Stouffer and Wetherald, 2007). The findings are also consistent with
previous studies showing decreasing annual and cold-season Arctic SAT variability
(Olonscheck et al., 2021; Ylhäisi and Räisänen, 2014; Chen et al., 2019; Dai and
Deng, 2021; Holmes et al., 2016; Borodina et al., 2017; Stouffer and Wetherald, 2007;
Screen, 2014; Schneider et al., 2015; Collow et al., 2019; Tamarin-Brodsky et al.,
2020; Blackport et al., 2021) as well as a decreasing and shifting seasonality of
Arctic SAT (Dwyer et al., 2012; Chen et al., 2019). However, many of these studies
do not focus on the Arctic, and they consider different timescales of variability,
which we bridge by decomposing the total daily SAT variability. The consistent
negative trend in Arctic daily SAT variability in climate models is less evident
from atmospheric reanalyses (Davy and Outten, 2020; Chen et al., 2019), which
show positive trends over the Arctic sea ice in March (Davy and Outten, 2020).
The reason is, however, not clear and could be due to natural variability, poorly
represented surface coupling processes in the climate models, or inaccuracies of
the reanalysis (Davy and Outten, 2020).

b.4 changes in extreme temperatures - contributions from mean

warming and variability

Knowing how the mean and variability of Arctic SAT are projected to change
under global warming, we now look at how this translates into changes in extreme
temperatures, that is, the tails of the temperature distribution. Note that, so far,
we have analyzed variability changes only in terms of the distribution width,
measured by its standard deviation. However, for non-Gaussian distributions, there
can also be changes in the skewness, leading to asymmetric changes in the tails of
the distribution. Here, we consider changes in both the warm and cold extremes
(Fig. B.5) as a result of the mean warming (shift of the distribution) and variability
changes (all changes in the shape of the distribution). We define the warm and cold
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extreme temperatures as the annual/seasonal maximum and minimum daily SAT
in each year of each model simulation (see "Methods").

Considering the average seasonal extreme temperatures, we find that in the cold
seasons of autumn (Fig. B.5d,e), winter (Fig. B.5a,e), and spring (Fig. B.5b,e), Arctic-
mean cold extreme temperatures increase 2 - 3.5 times faster with global warming
than Arctic-mean warm extreme temperatures (in the multi-model average). This
is in line with the observed trend of cold extremes warming faster than warm
extremes, globally and even more pronounced in the Arctic (Seneviratne et al.,
2021). In summer (Fig. B.5c,e), warm and cold extreme temperatures warm at a
similar rate. In numbers, the cold extreme temperatures warm strongest in autumn
by 4.6°C to 7.2°C per degree of global warming in the different models, followed by
winter (4.0 - 5.5°C/°C), spring (3.2 - 4.4°C/°C), and summer (0.9 - 2.0°C/°C). The
warm extremes warm strongest in winter (2.1 - 2.6°C/°C), followed by autumn (1.3
- 1.9°C/°C), summer (1.1 - 1.8°C/°C), and spring (0.8 - 1.5°C/°C) with comparable
rates. The increase of the extreme temperatures is approximately linear with global
warming except for autumn cold extremes, for which the curve flattens substantially
with increasing GWL as the September sea ice is lost (Extended Data Fig. B.7).

The cold extremes in autumn, winter, and spring warm not only faster than
the respective warm extremes but also faster than the seasonal mean temperature.
At the same time, the warm extremes warm slower than the mean. This is also
true for the annual absolute extreme temperatures compared to the annual mean
temperature. This finding is consistent with the projected decrease in variability
and has also been shown to occur for large parts of the Northern Hemisphere
extratropical land areas (Gross et al., 2019, 2020). As a result, the annual and cold-
season extreme temperature ranges decrease with global warming and both warm
and cold extremes become less intense relative to the new mean temperature in a
warmer Arctic climate (Fig. B.5f).

The changes in the difference between extreme and mean temperatures (Fig. B.5g),
also referred to as "excess changes" (Gross et al., 2019, 2020), are only due to changes
in the variability (including all contributions from the seasonal cycle, sub-seasonal
variability, and inter-annual variability) and are not necessarily symmetric for warm
and cold extremes. The excess changes are largest in autumn (-1.3 to -2.5°C/°C for
warm extremes and +2.0 to +3.1 °C/°C for cold extremes), followed by spring (-0.9
to -1.6°C/°C for warm extremes and +1.0 to +1.9°C/°C for cold extremes) and the
annual timescale (-1.0 to -1.7°C/°C for warm extremes and +1.2 to +2.2°C/°C for
cold extremes). In these seasons, the positive excess changes in cold extremes are
somewhat larger than the negative excess changes in warm extremes, that is, the
intensity of cold extremes relative to the new mean decreases more than that of
warm extremes. Conversely, in winter, the intensity of warm extremes relative to
the new winter mean temperature decreases substantially more (excess changes
of -1.3 to -2.3°C/°C) than the intensity of cold extremes (excess changes of +0.2
to +0.7°C/°C), indicating a change in skewness towards the left/cold side of the
temperature distribution. In summer, warm and cold extremes warm at a similar
but slightly faster rate than the seasonal mean temperature, which expresses in
positive excess changes of 0 to +0.3°C/°C for warm extremes and +0.1 to +0.2°C/°C
for cold extremes in the Arctic-mean. It is remarkable that the cold extremes warm
at the same or higher rate than the mean temperature despite slightly increasing
variability, indicating a highly asymmetric change in the summer temperature
distribution towards a positive skew favoring warm extreme temperatures. The
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Figure B.5: Changes in Arctic-mean extreme temperature intensity. a-d MPI-ESM-LR
Arctic-mean (a) winter, (b) spring, (c) summer, and (d) autumn mean SAT
anomaly (Tmean, solid lines, as in Fig. B.2a), average warm extreme SAT anomaly
(Tmax, dashed lines), and average cold extreme SAT anomaly (Tmin, dotted lines)
as a function of GSAT anomaly. e Multi-model comparison of the rates of
change of annual and seasonal extreme temperatures with global warming
for warm extremes (red) and cold extremes (blue) based on linear regression
within the 0.5 - 4°C global-warming range. f Difference between annual and
seasonal extreme temperatures Tmax/Tmin and mean temperatures Tmean as a
function of global warming. g Multi-model comparison of the rates of change
of annual and seasonal extreme and mean temperature differences ("excess
changes") with global warming for warm extremes (red) and cold extremes
(blue) based on linear regression within the 0.5 - 4°C global-warming range.
The shadings in a-d,f and the bars in e,g show the ensemble spread based on
the 2.5th and 97.5th percentiles.
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Figure B.6: Spatial changes in winter extreme temperature intensity. Spatial signals of
changes in MPI-ESM-LR winter average warm extreme temperatures (a) and
cold extreme temperatures (d) at 2°C GWL compared to pre-industrial condi-
tions and their contributions from mean warming (b/e) and variability (c/f). The
dashed and solid lines indicate the average winter sea-ice edge at pre-industrial
conditions and 2° GWL, respectively.

asymmetric changes in extreme temperatures emphasize the importance of taking
into account changes in skewness in addition to variance changes (Tamarin-Brodsky
et al., 2020).

Comparing the magnitude of excess changes (Fig. B.5g) and mean warming
(Fig. B.2b), we find that the largest part of the extreme temperature changes
(Fig. B.5e) can be explained by the mean warming but a substantial part is also
caused by the changes in variability. Considering the multi-model average, the
increases in warm extreme temperatures that would be caused solely through a
shift in mean temperature are dampened by about 50% annually, in winter, spring,
and autumn through the reduced variability, while increases in cold extreme
temperatures are amplified by 74% in autumn, about 60% annually and in spring,
and only 13% in winter. Increases in summer warm and cold extreme temperatures
through mean warming are both amplified by about 12% through changes in
variability.

For winter, we exemplarily show the spatial signals of changes in warm and
cold extremes and the contribution from the mean warming and variability (excess
changes) at 2°C GWL in Fig. B.6. The interplay of mean warming (Fig. B.6b,e) and
decrease in variability (Fig. B.6c,f), both particularly strong in the northern Barents
Sea, intensifies an increase in cold extreme temperatures, which locally increase
by more than 20°C in the Barents Sea at the 2° GWL in the MPI-ESM-LR model
(Fig. B.6d). For the warm extremes, however, the decrease in variability counteracts
the strong mean warming, and while overall the warm extreme temperatures
increase, they do not increase stronger in the Barents Sea than in other parts of the
Arctic (Fig. B.6a). The changes in variability affect the warm extremes more than the
cold extremes in winter (Fig. B.6c,f), particularly near the new sea-ice edge. This is
primarily due to asymmetric changes in the sub-seasonal variability (Extended Data
Fig. B.12). The spatial signals of warm and cold extreme temperature changes and
the respective contributions from mean warming and the variability components
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for spring, summer, and autumn can be seen from Extended Data Figs. B.13-
B.15. Changes in the seasonal cycle and the sub-seasonal variability impact the
intensity of extreme temperature to different extents in different seasons, whereas
the inter-annual variability (not shown) is negligible for the occurrence of extreme
temperatures.

b.5 conclusions

We use state-of-the-art CMIP6 large ensemble simulations to assess the projected
response of Arctic daily SAT to global warming. While isolated aspects such as the
Arctic amplification, changes in temperature variability, seasonality, or extremes
have been studied before, here we consider the bigger picture: By jointly analyz-
ing changes in mean temperature and variability, decomposed into sub-seasonal,
seasonal, and inter-annual contributions, we quantify their relative importance in
altering extreme temperatures at different levels of global warming.

We find that the largest part of the changes in annual and seasonal extreme
temperatures is due to mean warming, but variability changes substantially dampen
the intensity of extreme temperatures. The decreasing variability of daily SAT,
annually and in the cold seasons of autumn, winter, and spring, dampens the
increase of warm extreme temperatures by about 50% and amplifies the increase
of cold extreme temperatures even more (except in winter). As a result, cold
extreme temperatures warm 2 to 3.5 times faster than warm extreme temperatures,
and relative to the new mean temperature, the extremes become less intense in
a warmer Arctic climate. An exception is the summer season, in which there
are only small, positive changes in SAT variability, and warm, cold, and mean
temperatures increase at similar rates. We further find that the variability induced
by the seasonal cycle and the sub-seasonal variability are the dominant contributors
to the total daily SAT variability, depending on the season, while the contribution
from inter-annual variability is small and negligible for the occurrence of extreme
temperatures. Locally, the largest changes in both the mean SAT and its variability
occur over the ocean areas that transition from ice-covered to open ocean, affecting
particularly the northern Barents Sea. The strong local mean warming and changes
in variability act together to greatly reduce the local intensity of cold extremes
without increasing the local intensity of warm extremes more than in the rest of
the Arctic. As the sea ice declines most rapidly in September, the autumn season
experiences the fastest reductions in Arctic-mean SAT variability.

The drastic changes in Arctic temperatures due to amplified global warming,
illustrated in this study, have severe consequences for Arctic communities and
ecosystems (Constable et al., 2022). At the same time, we show that a warmer
Arctic climate will be less extreme and subject to fewer temperature variations. As
increased temperature variations pose a greater risk to species than mean climate
warming (Vasseur et al., 2014), the reduced temperature variability may ease the
adaptation to a warmer Arctic climate.
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b.6 methods

Data

We analyze data from five single-model initial condition large ensembles (SMILEs)
from the latest CMIP6 (Eyring et al., 2016) generation of climate models that provide
at least 30 ensemble members, namely: MPI-ESM1.2-LR (30 members), CanESM5

(Swart et al., 2019) (50 members), MIROC6 (Tatebe et al., 2019) (50 members),
ACCESS-ESM1.5 (Ziehn et al., 2020) (40 members), and EC-Earth3 (Döscher et al.,
2022) (50 members). We combine historical simulations (years 1850-2014; for EC-
Earth3 data is available only starting from year 1970) and future projections (years
2015-2100) from the high-emission SSP5-8.5 scenario.

Our primary variable of interest is surface air temperature (SAT). We compute
annual-mean global-mean surface air temperature (GSAT) and analyze the response
of daily mean SAT in the Arctic domain, defined here as latitudes of 66°N-90°N.
Temperature anomalies are computed with respect to the pre-industrial period
from 1850-1900 (consistent with the Intergovernmental Panel on Climate Change
(IPCC) conventions (IPCC, 2021d)). The later initial year in the EC-Earth3 model
is corrected for by computing anomalies with respect to the period 1970-2000

and adding the difference between the periods 1970-2000 and 1850-1900 from
the MPI-ESM-LR model. We further use monthly sea-ice concentration data to
show seasonal average sea-ice edges (Figs. B.2d,e, B.4), defined as the 15%-contour
line of sea-ice concentration, and the September northern-hemisphere sea-ice area
(Extended Data Fig. B.7).

As the analysis is based on climate model simulations, it is not per se given
that they provide an accurate representation of the real world. Comparisons with
atmospheric reanalyses show that CMIP6 models commonly have a cold bias in
Arctic winter SAT related to overestimated sea-ice extents and simulate overly high
inter-annual variability of winter SAT (Davy and Outten, 2020; Cai et al., 2021).
There is some considerable inter-model spread in how well CMIP6 models capture
Arctic SAT and its tempo-spatial variability, with the MPI-ESM-LR model being
among the top ranking models (Cai et al., 2021).

Global warming levels

Instead of looking at specific time periods in the climate model simulations, we
evaluate the response to different levels of global warming. We do this in two ways:

On the one hand, we look at the continuous global-warming dependence by
evaluating Arctic SAT against the respective ensemble-mean GSAT anomaly (black
line in Fig. B.1a) in each simulation year. For plotting purposes (Figs. B.2a, B.3a-e),
the time series are reordered by GSAT in ascending order. As global warming
is accelerating over time, there are more data points at low than at high global
warming.

On the other hand, we analyze Arctic SAT at discrete global warming levels
(GWLs) by selecting representative data samples for the climate at pre-industrial
conditions, 1°C, 1.5°C, 2°C, and 3°C of global warming using a time sampling
approach (James et al., 2017) (colored lines in Fig. B.1a). We follow the methodology
used by the IPCC (IPCC, 2021d; Seneviratne et al., 2021): For each individual
ensemble member, we identify the year in which the 20-year rolling average GSAT
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anomaly first reaches the given GWL and include the 20-year period around this
year into the data sample. Due to internal variability, the timing of the considered
20-year periods can differ between ensemble members but their average GSAT
anomaly always corresponds to the target GWL. For the pre-industrial conditions,
we simply take the 20-year period 1860-1879 for all ensemble members. To remove
the warming trend from the GWL samples, we subtract the linear trend of the
ensemble mean 20-year SAT time series at each day of year and grid cell from each
ensemble member.

Due to the large ensemble sizes of the considered model simulation, the GWL-
sampling approach provides large data samples of 600 to 1000 (depending on the
ensemble size of the model) simulation years per GWL. This allows for a more
detailed and robust analysis of variability and extremes than the continuous GWL
approach where every simulation year is considered individually, that is, the sample
size equals the ensemble size.

Note that we perform the analysis based on projections under the high-emission
scenario SSP5-8.5, that is, for a rapidly warming climate. The climate response
to global warming can differ between transient and equilibrium climate states
(King et al., 2020). However, for quickly-responding variables, such as the SAT, the
scenario dependence is relatively small (Seneviratne et al., 2021). Performing the
same analysis based on SSP1-2.6 scenario simulations (not shown) indicates that
there are differences in the spatial signal of the Arctic SAT response, but in the
Arctic-mean the results are largely independent of the emission scenario.

Variability decomposition and computation

The variability of daily temperatures can be decomposed into different components.
We follow the approach of Fischer and Schär, 2009 and decompose the total vari-
ability σtot, defined as the standard deviation (SD) of all daily mean temperatures in
a year or season at a certain GWL, into contributions from inter-annual variability
(σ′), sub-seasonal variability (σ′′), and variability induced by the seasonal cycle (σ̂).
The daily mean temperature anomaly Ty,d on day d and in year y with respect to
the annual/seasonal mean temperature T̄ within a GWL-sample can be expressed
as

Ty,d = T̂d + T′
y + T′′

y,d, (B.1)

where T̂d is the mean seasonal cycle relative to T̄, T′
y is the annual/seasonal mean

temperature anomaly to T̄ in year y, and T′′
y,d is the residual daily temperature

anomaly. The decomposition implies ∑d T̂d = 0, ∑y T′
y = 0, and ∑y T′′

y,d = ∑d T′′
y,d =

0 and therefore independence of the individual temperature contributions. The
total variance can hence be written as

σ2
tot =

1
YD

y

∑
y=1

D

∑
d=1

T2
y,d (B.2)

=
1

YD

y

∑
y=1

D

∑
d=1

(T̂d + T′
y + T′′

y,d)
2 (B.3)

= σ̂2 + σ′2 + σ′′2, (B.4)
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where σ̂2 = 1
D ∑D

d=1 T̂2
d is the variance induced by the seasonal cycle, σ′2 =

1
Y ∑Y

y=1 T′2
y is the inter-annual variance, and σ′′2 = 1

YD ∑Y
y=1

1
D ∑D

d=1 T′′2
y,d is the sub-

seasonal variance.
As the variances of the individual temperature components add up to the total

variance, their relative variability contributions can be quantified based on the
variance (Extended Data Fig. B.9). Note that variance and standard deviation
are only robust measures of scale for normal or at least symmetric distributions.
While inter-annual and sub-seasonal temperature variations are approximately
symmetric, the temperature variations of the seasonal cycle are asymmetric/skewed,
particularly at the turning points of the seasonal cycle, i.e. in summer and winter.
This introduces a deviation between total temperature variance and the sum of the
variances of the individual temperature components, which in the Arctic mean is
about 10% in summer, 6% in winter, 2% in spring and autumn, and negligible on
the annual timescale.

We apply the variability decomposition to both the continuous and discrete GWL
approach. In the continuous approach, each year is considered individually and
the ensemble members form the data sample for the corresponding GWL. Instead
of computing the variability across years in time, we compute the inter-annual and
sub-seasonal variability across ensemble members, i.e. ∑y is replaced by ∑n, where
n denotes the number of the ensemble member. These two approaches of estimating
internal variability are consistent following the quasi-ergodic assumption (Hingray
and Saïd, 2014; Olonscheck and Notz, 2017). In the discrete approach, where the
GWL samples consist of 20 simulation years per ensemble member, we compute
the variability across both years in time and ensemble members, i.e. ∑y is replaced
by ∑y,n.

Where we show Arctic-mean SAT variability (Fig. B.3), we compute the variability
as the spatial average of the local temperature variability computed at grid-cell level.
Note that this is different from the variability of spatially averaged temperature,
which is considerably smaller as local variability is suppressed by averaging over
the spatially correlated temperature field.

Extreme temperatures

Various approaches exist to define temperature extremes. While often peak-over-
threshold approaches are applied, we here use the simpler approach of block
maxima/minima to determine warm/cold temperature extremes. We compute
warm/cold extreme temperatures Tmax/Tmin as the maximum/minimum daily
mean SAT of a season or the full year in each simulation year and ensemble
member for every grid-cell. When showing the Arctic mean (Fig. B.5), the spatial
average is performed after computing the extremes at grid-cell level. The results in
Figs. B.5, B.6 are based on the average extreme temperature at the respective GWL.
The GWL-samples of Tmax/Tmin, which follow a generalized extreme value (GEV)
distribution, also allow the computation of their return levels (not shown here).

To determine the contributions from mean warming, total variability and the
different variability components to the extreme temperatures (Fig. B.6, Extended
Data Figs. B.12-B.15), we re-compute the extremes based on adjusted data samples,
in which only the temperature component (T̄, T̂d, T′

y, T′′
y,d) of interest corresponds

to the target GWL-sample, while the other temperature components correspond to
pre-industrial conditions.
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Note that extreme temperatures are often defined based on daily maximum and
minimum temperatures (TXx, TNn). Here, we consider the extremes of daily mean
temperatures (Tmax, Tmin) to be consistent with the previous parts of the analysis,
but an analysis of TXx and TNn gives qualitatively similar results (not shown).

Linear regression coefficients

Based on the continuous GWL approach, we compute rates of change (e.g. of
Arctic-mean temperature, temperature variability, and extreme temperatures; Figs.
B.2a,b, B.3, B.5) with global warming as the regression coefficient of an ordinary
least squares (OLS) linear regression. For mean and extreme temperatures, we
compute the regression coefficients for each individual ensemble member and
show the ensemble mean and ensemble spread as the 2.5th - 97.5th percentile range.
In order to not over-represent the historical period with low global warming and to
assure comparison of identical global-warming ranges between the climate models,
we limit the linear regression to data points within the range of 0.5°C to 4°C of
global warming. For temperature variability, we give the rates of change in percent
of the temperature variability at zero global warming in the respective climate
model based on the regression constant (Fig. B.3f-j).
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b.7 extendend data figures

Figure B.7: Arctic summer sea-ice evolution. September northern-hemisphere sea-ice area
as a function of GSAT anomaly in the different SMILEs. The MPI-ESM-LR
model is highlighted in red, the other models are shown in gray. Lines show
the ensemble mean and shadings the ensemble spread based on the 2.5th and
97.5th percentiles. Based on the ensemble mean and the threshold of 106 km2

(black line), the September sea ice is lost between 1.9°C and 2.9°C of global
warming. In the MPI-ESM-LR model, the September sea ice is lost around 2.1°C
global warming.

Figure B.8: Spatial signals of spring and autumn mean warming. Same as Fig. B.2c-e but
for spring (MAM) and autumn (SON).
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Figure B.9: Relative contributions of temperature variability components. a-e Annual
and seasonal relative contributions of seasonal cycle-induced variance, sub-
seasonal variance, and inter-annual variance to the total variance of grid-cell
SAT, averaged over the Arctic domain, as a function of GSAT anomaly in the
MPI-ESM-LR model. f-j Multi-model comparison of the annual and seasonal
contributions of the three variability components averaged over the 0.5 - 4°C
global-warming range.
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Figure B.10: Spatial changes in spring and autumn Arctic temperature variability and its
components. Same as Fig. B.4 but for spring (MAM) and autumn (SON).
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Figure B.11: Phase shift of the seasonal temperature cycle. a,b Arctic-mean average day of
minimum/maximum daily, grid-cell SAT as a function of GSAT anomaly in
the MPI-ESM-LR model. The rates of change based on linear regression within
the 0.5 - 4°C global-warming range are indicated. c Multi-model comparison
of the phase shift of the day of minimum and maximum SAT, based on their
rates of change within the 0.5 - 4°C global-warming range. d-f Spatial signals
of the phase shift in the day of minimum daily SAT (d), maximum daily SAT
(e), and the difference between the days of maximum and minimum SAT
(phase length, f) at 2°C GWL compared to pre-industrial conditions in the
MPI-ESM-LR model.

Figure B.12: Spatial changes in winter extreme temperature intensity and their different
contributions. Same as Fig. B.6 with additional panels showing the contribu-
tions from seasonal cycle (d,i) and sub-seasonal (e,j) variability. The contribu-
tion from inter-annual variability is not shown as it is practically zero.
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Figure B.13: Spatial changes in spring extreme temperature intensity and their different
contributions. Same as Fig. B.12 but for spring (MAM).

Figure B.14: Spatial changes in summer extreme temperature intensity and their different
contributions. Same as Fig. B.12 but for summer (JJA).

Figure B.15: Spatial changes in autumn extreme temperature intensity and their different
contributions. Same as Fig. B.12 but for autumn (SON).
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