
Berichte zur Erdsystemforschung
Reports on Earth System Science

  261

2023

Towards improved seasonal climate 
predictions with artificial intelligence:
An application on summer teleconnections 

Julianna Carvalho Oliveira
Hamburg 2023

FÜR METEOROLOGIE



Hinweis

Die Berichte zur Erdsystemforschung werden 
vom Max-Planck-Institut für Meteorologie in 
Hamburg in unregelmäßiger Abfolge heraus-
gegeben.

Sie enthalten wissenschaftliche und technische 
Beiträge, inklusive Dissertationen.

Die Beiträge geben nicht notwendigerweise die 
Auffassung des Instituts wieder.

Die "Berichte zur Erdsystemforschung" führen 
die vorherigen Reihen "Reports" und "Examens-
arbeiten" weiter.

Anschrift / Address

Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg
Deutschland

Tel./Phone: +49 (0)40 4 11 73 - 0
Fax:              +49 (0)40 4 11 73 - 298  

name.surname@mpimet.mpg.de
www.mpimet.mpg.de

Notice

The Reports on Earth System Science are 
published by the Max Planck Institute for 
Meteorology in Hamburg. They appear in 
irregular intervals.

They contain scientific and technical contribu-
tions, including PhD theses.

The Reports do not necessarily reflect the 
opinion of the Institute.

The "Reports on Earth System Science" continue 
the former "Reports" and "Examensarbeiten" of 
the Max Planck Institute.

Layout

Bettina Diallo and Norbert P. Noreiks
Communication

Copyright

Photos below: ©MPI-M
Photos on the back from left to right:
Christian Klepp, Jochem Marotzke,
Christian Klepp, Clotilde Dubois,
Christian Klepp, Katsumasa Tanaka



Towards improved seasonal climate 
predictions with artificial intelligence:
An application on summer teleconnections 

Julianna Carvalho Oliveira
Hamburg 2023



Berichte zur Erdsystemforschung / Max-Planck-Institut für Meteorologie                             261
Reports on Earth System Science / Max Planck Institute for Meteorology                              2023

ISSN 1614-1199 - doi: 10.17617/2.3489354 

Julianna Carvalho Oliveira
aus Itabuna, Brasilien

Max-Planck-Institut für Meteorologie
The International Max Planck Research School on Earth System Modelling 
(IMPRS-ESM)
Bundesstrasse 53
20146 Hamburg

Universität Hamburg
Erdsystemwissenschaften
Bundesstr. 55
20146 Hamburg

Tag der Disputation: 15. Dezember 2022

Folgende Gutachter empfehlen die Annahme der Dissertation:
Prof. Dr. Johanna Baehr
Dr. Eduardo Zorita

Vorsitzender des Promotionsausschusses:
Prof. Dr. Hermann Held

Dekan der MIN-Fakultät:
Prof. Dr.-Ing. Norbert Ritter

Titelgrafik: Julianna Carvalho Oliveira



"Damit das Mögliche entsteht, muss immer wieder das Unmögliche versucht
werden."

— Hermann Hesse

Dedicated to my parents Silvana and Zeca.



A B S T R A C T

Recurrent large-scale atmospheric circulation patterns, or teleconnections, exert a
prominent effect on the Euro-Atlantic surface climate. In summer, teleconnections
are amongst the main drivers for high-impact climatic processes such as heatwaves,
and hence several relevant socio-economic sectors could benefit from their credible
seasonal prediction. However, dynamical climate models show limited capability to
reproduce summer teleconnections. This problem is further compounded by the com-
plex physical mechanisms influencing their predictability, which are still not well
understood. While conventional statistical tools offer only a limited assessment of
these physical mechanisms, artificial intelligence (AI) outperforms these tools, learn-
ing complex relationships from data and thereby advancing physical understanding.
Here, I promote the combination of observations and dynamical climate modelling
with AI to overcome some of these limitations and to achieve improved predictions
of European summer climate a season ahead.

I implement this novel AI-dynamical approach in two complementary steps: I
first refine the assessment of summer teleconnections in observations and a model,
and then I apply this knowledge to improve Euro-Atlantic summer seasonal climate
predictions. I use the AI classifier Self-Organising Maps (SOM) to characterise the
observed and modelled variability of the two dominant Euro-Atlantic summer tele-
connections in the 20th century: the summer North Atlantic Oscillation (NAO) and
summer East Atlantic Pattern (EA). I find that while the ensemble dynamical predic-
tion system can reproduce summer NAO and EA spatial features, it shows limited
model performance in reproducing their frequency of occurrence.

I use SOM to illustrate that the seasonal predictability of summer teleconnections
is associated with North Atlantic sea surface temperatures (SST), however this in-
fluence varies in intensity with time and is more relevant for summer EA than for
summer NAO. I go beyond standard forecast practices by applying these SST pre-
dictors to constrain the credibility of summer climate predictions in a dynamical
ensemble prediction system. I show that, particularly for years during which EA
dominates, summer climate predictions up to 4 months ahead can be significantly
improved in parts of Europe using these SST predictors.

With the use of an AI causal inference tool I find that although extratropical NA
SST in spring show a causal link with EA in the second half of the 20th century in ob-
servations, the evaluated dynamical ensemble prediction shows limited performance
to reproduce this causal link. However, I do find that those ensemble simulations that
reproduce this causal link show improved surface climate prediction credibility over
those that do not. Overall, my findings promote the use of combined AI-dynamical
approach to improve seasonal predictions and could even be applied operationally,
benefiting actual seasonal predictions of European summer climate.
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Z U S A M M E N FA S S U N G

Wiederkehrende atmosphärische Strömungsmuster, auch „Telekonnektionen“ genannt,
haben einen großen Einfluss auf das Wetter und Klima im Euro-Atlantikraum. Im
Sommer gehören Telekonnektionen zu den wichtigsten Treibern für potenziell fol-
genreiche klimatische Prozesse wie z. B. Hitzewellen. Verschiedene wichtige sozio-
ökonomische Bereiche könnten daher von einer zuverlässigen saisonalen Vorhersa-
ge dieser Telekonnektionen profitieren. Dynamische Klimamodelle sind jedoch nur
begrenzt in der Lage, sommerliche Telekonnektionen zu reproduzieren. Dieses Pro-
blem wird noch dadurch verschärft, dass die komplexen physikalischen Mechanis-
men, die Telekonnektionsvorhersagbarkeit beeinflussen, noch nicht hinreichend ver-
standen sind. Herkömmliche statistische Instrumente haben klare Grenzen, wenn
es um die Analyse dieser physikalischen Mechanismen geht. Künstliche Intelligenz
(KI) hingegen übertrifft die klassische Statistik, indem sie komplexe Beziehungen aus
den Daten erlernt und dadurch Verständnis nicht-linearer physikalischer Zusammen-
hänge ermöglicht. In dieser Dissertation kombiniere ich Klimabeobachtungen und
dynamische Klimamodellierung mit KI, um Nichtlinearitäten im Telekonnektionen
besser zu erfassen und so bessere Vorhersagen des europäischen Sommerklimas für
eine Saison im Voraus zu ermöglichen.

Ich nutze diesen neuartigen KI-dynamischen Ansatz in zwei komplementären
Schritten: Zunächst verbessere ich die Analyse der sommerlichen Telekonnektionen
in den Beobachtungen und einem Modell, und dann wende ich dieses Wissen an,
um saisonale Klimavorhersagen für den euro-atlantischen Sommer zu verbessern.
Ich verwende den KI-Klassifikator Self-Organising Maps (SOM), um die beobachtete
und modellierte Variabilität der beiden wichtigsten euro-atlantischen Telekonnektio-
nen im 20. Jahrhundert zu charakterisieren: die sommerliche Nordatlantische Oszil-
lation (NAO) und das Sommer-Ost-Atlantik-Muster („East Atlantic pattern“, EA).
Ich stelle fest, dass das dynamische Klimavorhersagesystem zwar die räumlichen
Merkmale der sommerlichen NAO und des EA reproduzieren kann, aber bei der
Reproduktion der Häufigkeit ihres Auftretens klare Defizite aufweist.

Die SOM-Analyse zeigt auch, dass die saisonale Vorhersagbarkeit der sommer-
lichen Telekonnektionen mit den Meeresoberflächentemperaturen (SST) des Nord-
atlantiks zusammenhängt, wobei dieser Einfluss in seiner Intensität mit der Zeit
variiert und für die sommerliche EA wichtiger ist als für die sommerliche NAO.
Ich gehe über übliche Vorhersagepraktiken hinaus, indem ich die so identifizierten
SST-Prädiktoren anwende, um die Glaubwürdigkeit der Sommer-Klimavorhersagen
in einem dynamischen Ensemble-Vorhersagesystem besser abzuschätzen. Ich zeige,
dass insbesondere für die Jahre, in denen die EA dominiert, die Vorhersage des Som-
merklimas in Teilen Europas mit Hilfe dieser SST-Prädiktoren bis zu 4 Monate im
Voraus signifikant verbessert werden kann. Mit Hilfe einer KI-basierten kausalen De-
tektionsmethode stelle ich fest, dass die außertropische NA-SST im Frühjahr zwar
einen beobachtbaren, kausalen Zusammenhang mit EA in der zweiten Hälfte des 20.
Jahrhundert hat, die untersuchten Ensemblesimulationen diesen kausalen Zusam-
menhang jedoch nur begrenzt reproduzieren können. Dennoch kann in den Fällen,
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in denen die Ensemblesimulationen den kausalen Zusammenhang erfolgreich repro-
duzieren, eine höhere Zuverlässigkeit der Vorhersage des Oberflächenklimas erreicht
werden, als in den übrigen Fällen. Meine Ergebnisse zeigen so auf, dass ein Einsatz
eines kombinierten KI-dynamischen Ansatzes zur Verbesserung der saisonalen Vor-
hersagen führen kann. Dieser Ansatz könnte sogar operationell angewendet werden,
um tatsächliche saisonale Vorhersagen des europäischen Sommerklimas zu verbes-
sern.
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1
T O WA R D S I M P R O V E D S E A S O N A L C L I M AT E P R E D I C T I O N S
W I T H A RT I F I C I A L I N T E L L I G E N C E : A N A P P L I C AT I O N O N
S U M M E R T E L E C O N N E C T I O N S

1.1 introduction

Predicting changes in the atmosphere is not trivial. We are used to regularly monitor
numerical weather predictions issued by our local weather services, despite knowing
that chances are high that those convey only little information to help us make deci-
sions. An even more difficult endeavour is to predict trends in the evolution of the
atmosphere a few months ahead, or seasonal climate prediction1 (e.g. Doblas-Reyes et
al., 2013). Such predictions rely on physics-driven dynamical climate models which
resolve physical equations, thereby describing the dynamics of a simplified modelled
version of the atmosphere. As opposed to the physics-based approach of dynamical
climate models, artificial intelligence (AI) methods can learn complex nonlinear rela-
tionships from atmospheric data without relying on physical laws (e.g. Scher, 2018).
This dissertation promotes the combination of AI and physics-based climate predic-
tions to improve our ability to issue reliable climate predictions a season ahead. I
specifically apply this AI-dynamical approach to investigate one of the hardest cli-
mate prediction problems: seasonal climate prediction of the European summer.

To illustrate this choice, let us assume that we want to predict whether next sum-
mer in Europe is going to be warmer than usual, perhaps to advise a vineyard owner
on the best timing for their harvest. As a first approximation, we could consider
in our model only external forcing from increasing concentration of anthropogenic
greenhouse gases (IPCC, 2013) and issue a prediction of likely warmer temperatures.
But besides external forcing, much of the seasonal climate variability in Europe is de-
termined by the chaotic nature of the atmosphere. Coupling processes with slowly
varying components of the Earth system further contribute to the complexity of the
problem (e.g. Shuila and Kinter III, 2006). A reliable seasonal prediction thus requires
accurate domain knowledge and thorough process understanding, which makes sea-
sonal forecasting for Europe particularly challenging. State-of-the-art climate models
provide European seasonal predictions with marginal credibility, in particular for the
summer season (e.g. Mishra et al., 2019).

Over the past decade, increasing effort has been made towards improving the
reliability of seasonal summer climate predictions to provide useful information
to climate-sensitive sectors (e.g. Vitart and Robertson, 2018). Recurrent summer at-
mospheric circulation patterns, the so-called teleconnections, are amongst the drivers
for high-impact climatic processes, including heatwaves and floods (e.g. Teng et al.,
2013). Hence, a reliable seasonal prediction of summer teleconnections would bene-
fit a range of users in sectors such as agriculture, energy and policy-making. Such

1 In seasonal climate predictions – or forecasts – we are interested in deviations from the "usual" climate
state, which is often determined by a climatological mean calculated over a time period of 30 years.
Please note that the terms "forecast" and "prediction" are used as synonyms in this thesis.
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a reliable prediction becomes even more relevant with climate change, given the fre-
quency of extreme weather and climate events projected to increase (Rahmstorf and
Coumou, 2011).

Yet, the mechanisms underlying summer teleconnections are not well understood
nor well represented in current climate models (e.g. Carvalho-Oliveira et al., 2022;
Delgado-Torres et al., 2022). I show in this dissertation how advances in AI combined
with climate modelling offer a powerful framework to improve our understanding
of these mechanisms and achieve improved seasonal summer predictions. In the re-
mainder of this chapter, I provide a foundation to understand how I reach this goal. I
discuss important aspects concerning summer teleconnections, thereby highlighting
relevant scientific caveats that lead to the framing of my research questions.

1.1.1 What are teleconnections?

We start off by having a close look at the organised chaos of the atmosphere. At
timescales longer than 10 days, atmospheric variability in the extratropics tends to
be organised in recurrent space-time circulation patterns, the so-called atmospheric
modes of variability (Trenberth, 2022). These modes can link climate variability across
remote distances via atmospheric pathways, an important property known as tele-
connection (Trenberth, 2022).2 This ability to link remote regions is closely related to
the presence of planetary-scale atmospheric waves known as Rossby waves, which
act to restore atmospheric energy budget imbalances (Liu and Alexander, 2007). The
El Niño-Southern Oscillation (ENSO) is the most prominent example of a telecon-
nection. It results from ocean-atmosphere coupling and is responsible for connecting
fluctuations in the sea surface temperature (SST) taking place in the tropical Pacific
with changes in weather occurring across large parts of the globe (e.g. Trenberth et
al., 1998).

Teleconnections can be divided into three classes according to their geographical
extent and causes (Fig.1.1; e.g. Coumou et al., 2018). In summer, the main teleconnec-
tion class comprises the zonally symmetric modes, which in the northern hemisphere
is known as the Northern Annular Mode (NAM, Thompson and Wallace, 2000), also
referred to as the Arctic Oscillation. NAM corresponds to hemispheric-wide varia-
tions in position and strength of the westerly winds, featuring pressure anomalies of
opposing signs between the Arctic and midlatitudes (Fig.1.1a). Its most prominent
expression is over the North Atlantic, best known as the North Atlantic Oscillation
(NAO, Walker, 1924).

During summer in the Euro-Atlantic region, the NAO and East Atlantic Pattern
(EA, Wallace and Gutzler, 1981) are the main examples of a second class of teleconnec-
tions, the regional long-wave variations occurring in a sector of the globe (Fig.1.1b,c,
respectively). Summer NAO and EA stand out as teleconnections because they are
also linked to a third class of teleconnections, related to the amplification of Rossby
waves. This process can promote trapping and focusing effects of tropospheric winds,
known as the circumglobal wave-train (Branstator, 2002; Wu and Lin, 2012)3. It pro-

2 For this reason, atmospheric modes of variability are often simply referred to as "teleconnections". Both
terms are used interchangeably in this thesis.

3 Two other teleconnections become relevant when describing the large-scale atmospheric circulation
in the Euro-Atlantic sector during winter and spring: the Scandinavian Pattern and the East Atlantic
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Positive summer NAM Positive summer NAO

Positive summer EA Rossby wave amplification

warmer/drier

colder/wetter

low pressure

high pressure

Jet stream 

a) b)

c) d)

Figure 1.1: Schematics representing the major types of summer atmospheric teleconnections
recurring in the Euro-Atlantic: a) Northern Annular Mode in positive phase. b)
North Atlantic Oscillation in positive phase. c) East Atlantic Pattern in positive
phase. d) Rossby wave amplification forming a circumglobal wave-train leading
to synchronised weather events along its path. Adapted from Coumou et al., 2018.

duces zonally oriented chains of perturbations around the globe, associated with
persistent alternating hot-dry and cold-wet conditions which are prone to develop-
ment of severe weather extremes in summer (Fig.1.1d, e.g. Coumou et al., 2014). The
summer NAO and EA teleconnections are the focus of this dissertation.

1.1.1.1 Summer North Atlantic Oscillation

"Thus it seems well established that there is a sort of oscillation in the pressure of the air
between a centre of action at high pressure and another neighbouring one at low pressure.

(...) For the moment, we cannot say how these great changes in air pressure take place, which
extend over areas so large that they often cover an entire hemisphere." — Hildebrandsson

[1897]

Hildebrandsson, 1897 is considered the forerunner for all future studies that led
to the characterisation of the NAO. Walker, 1924 was the first study to define the
NAO as a dipole of alternating sea level pressure (SLP) changes between the Azores
and Iceland, the so-called Azores High and Icelandic Low. This spatial SLP oscilla-
tion results from the redistribution of atmospheric mass between the Arctic and the
subtropical North Atlantic, with significant influence on weather across much of the
Northern Hemisphere. The two most common definitions of the summer NAO are
station-based and empirical orthogonal function (EOF)-based (Hurrell et al., 2003).

Western Russia. In summer, however, these patterns exert a relatively weak effect in comparison to the
NAO and EA, thus being usually neglected (Bueh and Nakamura, 2007; Hall and Hanna, 2018; Josey
et al., 2011; Zha et al., 2022).
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While the station-based definition calculates the normalised SLP difference between
the Azores and Iceland, the EOF-based is the time series associated with the first
EOF of June-July-August SLP in the Euro-Atlantic region (70

◦–40
◦E, 25

◦–80
◦N), ex-

plaining between 22-39% of SLP variance depending on the investigated time period
and dataset used (e.g. Comas-Bru and Hernández, 2018; Folland et al., 2009).

During negative phases of the NAO, the meridional pressure gradient is weak
and shows enhanced pressure over the Arctic and lower pressures in the subtropics.
These conditions lead to a decrease in the strength of the jet stream, which shifts
equatorwards, thereby moving the path along which midlatitude storms preferred
form – the storm tracks. In summer, this is associated with increased precipitation
and cooler conditions over northwestern Europe, and warm and dry conditions in
southern Europe (Folland et al., 2009). Summer 2012 is an outstanding example of
such impact, when a sustained negative phase of the NAO was linked to widespread
flooding events in the United Kingdom and strong drought and wildfires in Spain
(Dong et al., 2013b). Positive NAO phases in summer show reversed conditions (see
schematics in Fig.1.1b).

1.1.1.2 Summer East Atlantic Pattern

About sixty years after the seminal work by Sir Gilbert Walker defining the NAO
(Walker, 1924), Wallace and Gutzler, 1981 were the first to identify the EA telecon-
nection. As opposed to the well-established characterisation of the NAO, the exact
definitions and spatial features of the EA are still a matter of debate4. While some
studies describe the EA as an SLP seesaw similar to the NAO, albeit more zonally
distributed and shifted southwards (e.g. Barnston and Livezey, 1987; Neddermann
et al., 2018), other studies refer to a single anomalous SLP centre located west of
the British Isles (e.g. Comas-Bru and McDermott, 2014; Moore et al., 2013; Ossó et
al., 2018). In order to focus on the physical processes underlying the EA, throughout
this dissertation I refer to "East Atlantic Pattern", the EA, as the second dominant tele-
connection in the Euro-Atlantic sector after the NAO. I take this general terminology
to provide a framing of the physical aspects that are already known to influence (or
are influenced by) this teleconnection, thus disregarding at this point which methods
were used (see Sec. 1.1.4 for a discussion on the methods). Despite these discrepan-
cies, perhaps the most important EA feature lies in its spatial overlap with the NAO,
implying that the EA modulates NAO strength (Woollings et al., 2010). This coupling
between EA and NAO teleconnections has been the focus of several recent studies,
which showed that this NAO-EA interplay controls climate across different spatio-
temporal scales, with important ecological and societal impacts (Bastos et al., 2016;
Hall and Hanna, 2018; Zubiate et al., 2017).

Although the characteristics of EA in winter are usually well described in litera-
ture, only a few studies have focused on its component in other seasons (e.g. Ossó
et al., 2018; Wulff et al., 2017). The most common definition of the summer EA cor-
responds to the second EOF of June-July-August SLP in the Euro-Atlantic region,
which explains between 10-17% of SLP variance (Comas-Bru and Hernández, 2018).

4 To this day, several terms and methodologies have been proposed to analyse the EA, turning compar-
ison among studies a challenge by itself. EA has also been referred to as the "Summer East Atlantic"
(Wulff et al., 2017), the "Zonal Pressure Gradient" (Neddermann et al., 2018), the "Sea Level Pressure
Index" (Ossó et al., 2018) or "Atlantic Low" and "Atlantic Ridge" (Cassou et al., 2005).
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Figure 1.2: Schematics representing the main sources of summer predictability for Euro-
Atlantic teleconnections across timescales. Adapted from Merryfield et al., 2020.

A positive phase of winter EA is characterised by anticyclonic conditions west off the
British Isles5. Such conditions have been associated with decreased precipitation in
the United Kingdom (Comas-Bru and McDermott, 2014), drier conditions over West-
ern Europe, and below-average surface temperatures in southern Europe (Moore et
al., 2011).

In summary, in this section I present an overview of the main characteristics and
most common definitions of the Euro-Atlantic summer teleconnections, introducing
the focus of my study on the summer NAO and EA. In Sec. 1.1.4 I reintroduce this
topic by discussing the challenges associated with the analysis of these teleconnec-
tions. In preparation for this discussion, we first need to understand which physical
processes influence the summer NAO and EA, and in particular how these processes
impact their predictability.

1.1.2 Sources of predictability

Most teleconnections in the extratropics, including the summer NAO and EA, are
intrinsic features of the atmosphere. They are primarily driven by internal dynamical
processes, such as interactions between eddies and the mean flow (e.g. Barnes and
Hartmann, 2010), which have short predictability timescales (Weiland et al., 2021; see
Fig.1.2). Teleconnections may also arise through interactions with external drivers, or
forcings, such as the stratosphere (Domeisen et al., 2020), the cryosphere (Hall et al.,
2017) and in particular the ocean (Gastineau and Frankignoul, 2015).

External forcings are important for influencing the temporal variability of telecon-
nections beyond weather timescales, often increasing their persistence and thereby
the theoretical capability to predict them at longer timescales (e.g. Ossó et al., 2020;

5 I use the polarity originally defined in Wallace and Gutzler, 1981, and followed by a number of studies
(e.g. Comas-Bru and McDermott, 2014). However, some studies use a reversed polarity, with a positive
phase of EA described as cyclonic conditions west off the British Isles (e.g. Barnston and Livezey, 1987;
Wulff et al., 2017).

6



Wang and Ting, 2022). That is, external forcings influence the predictability of telecon-
nections across timescales and constrain the ability of climate models to predict their
evolution in time.

Despite most predictability studies for the Euro-Atlantic region focusing on win-
ter (e.g. Dunstone et al., 2016; Scaife et al., 2014), recent studies showed evidence
of external forcings active in the summer season (Fig.1.2). One of the most promi-
nent examples is the coupling between tropics and extratropics, which is typically
associated with ENSO at seasonal timescales. ENSO-related SSTs can be accurately
predicted by most climate models several months in advance, thus constituting a
primary source of seasonal predictability (Doblas-Reyes et al., 2013). But while an
impact of ENSO on both winter NAO and summer EA has been suggested by sev-
eral studies (e.g. Mezzina et al., 2020; Wulff et al., 2017, respectively), ENSO exerts
only a weak influence on summer NAO (e.g. Folland et al., 2009; Hall et al., 2017).

Stratospheric and cryospheric processes have also been linked to increased pre-
dictability of teleconnections. Several studies conclude that both stratospheric (e.g.
Hansen et al., 2017; Scaife et al., 2005) and cryospheric (e.g. Cohen and Jones, 2011)
forcings exert an important influence on winter NAO, by primarily modulating the
jet stream strength. However, only a few studies have suggested an influence on sum-
mer NAO (e.g. Hall et al., 2017; Wang and Ting, 2022), and no such link has yet been
found for EA neither in winter (Maidens et al., 2021) nor summer.

Yet, there is increasing evidence that both tropical and extratropical oceanic forc-
ings play a key role for the predictability of NAO and EA across a range of timescales
(e.g. Athanasiadis et al., 2020; Czaja and Frankignoul, 2002). Particularly for the sum-
mer case, the North Atlantic has been shown to influence seasonal predictability of
these teleconnections via persisting SST patterns, a topic that I further discuss in Sec.
1.3.

So far I have shown how summer teleconnections impact the surface climate in
the Euro-Atlantic region, and discussed the main external processes influencing their
seasonal predictability. An important question thus arises: are climate models able to
predict the variability of summer climate and to reproduce summer teleconnections
at seasonal timescales?

1.1.3 Summer seasonal climate predictions

Despite the discussed prospects for summer predictability on seasonal timescales,
current state-of-the-art climate models generate predictions with rather limited pre-
dictive skill (e.g. Doblas-Reyes et al., 2013; Mishra et al., 2019). Generally speaking,
skill refers to the ability of a climate model (or prediction system) to produce a useful
prediction – what I refer to as credibility in Sec. 1.1. A common approach to verify the
skill of a climate model is to compare its predictions against some reference system,
such as observations from past events. In this way, verification of a climate model
consists of performing predictions for the past in so-called hindcast mode (Troccoli,
2010).

A hindcast, also known as re-forecast, is a prediction initialised from past con-
ditions that can be verified against known past events. Such predictions are often
performed as a set of realisations known as ensemble prediction, which is designed
to account for a sample of the possible physical pathways or climatic states given the

7



-1.0   -0.9  -0.8  -0.7  -0.6  -0.5  -0.4  -0.3  -0.2 -0.1       0     0.1    0.2   0.3   0.4   0.5   0.6   0.7   0.8    0.9     1.0

Glosea5 ECMWF NCEP Meteo France

P
re

di
ct

iv
e 

sk
ill

S
um

m
er

W
in

te
r

Figure 1.3: Comparison of predictive skill amongst four prediction systems, for summer and
winter. Predictive skill is assessed with anomaly correlation coefficient (ACC)
between the predicted ensemble mean of each individual climate model of EU-
ROSIP and the observed seasonal summer (June-July-August mean) temperature
obtained from Era-Interim reanalysis for the period 1992–2012. Forecasts are ini-
tialised in May. Areas covered in red correspond to positive correlations, and in-
dicate an agreement between model and reanalysis. This agreement is significant
at the 95% confidence interval for areas covered by dots. Adapted from Mishra
et al., 2019.

distribution of initial conditions (Troccoli, 2010). The skill of an ensemble of predic-
tions is usually assessed by averaging all realisations (denoted ensemble mean), thus
reducing the unpredictable component of the model (Eade et al., 2014).

To illustrate these concepts, I show in Fig.1.3 a comparison of skill assessment
amongst four seasonal prediction systems, referring to the prediction of summer and
winter air temperature over Europe during the period 1992–2012. The skill of each
climate model is calculated by comparing its ensemble mean against Era-Interim
reanalysis, calculated with anomaly correlation coefficient6 (ACC, Collins, 2002).

Firstly, we can see that predictions in winter show higher skill than those in sum-
mer. Moreover, all climate models are particularly limited in skilfully predicting air
temperature in northwestern and central Europe in both seasons. Likewise, climate
models tend to show low skill in reproducing the observed variability of summer
teleconnections (e.g. Beverley et al., 2019; Delgado-Torres et al., 2022; Lledo et al.,
2020). Several factors have been proposed to explain these limitations, including in-
appropriate model resolution (Cattiaux et al., 2013), biases in the jet stream position
(Pithan et al., 2016), and ensemble overdispersion due to initialisation issues (Ho et
al., 2013).

This limited skill of seasonal climate predictions has motivated several studies
to perform a conditional skill assessment (Fig.1.4), using a concept also known as
windows of opportunity (Mariotti et al., 2020). Windows of opportunity concern identi-
fying conditions associated with enhanced predictability for a given problem, such as

6 The anomaly correlation coefficient (ACC) varies between values -1 and 1, with ACC = 1 indicating a
perfect agreement between model and reference.
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Figure 1.4: Illustration of a conditional skill assessment with ensemble subsampling. An en-
semble of predictions (thin lines) for a given target variable is generated by inte-
grating the model from initial conditions represented by the probability density
function at time 0 (PDF(0)). The ensemble at prediction time t (lead time) consists
of a sample of PDF(t), which represents the distribution of all possible climatic
states at time t. To represent this ensemble, a mean over all members gives the
ensemble mean (thick black line). In ensemble subsampling, physical predictors
known to influence the target variable are used to select a sample of the possible
states generated by the ensemble (orange thin lines). A mean over these selected
ensemble members gives the subsampled ensemble mean (orange dashed line).

via a physical process known to exert an important influence (e.g. Carvalho-Oliveira
et al., 2021). Several studies demonstrated improved seasonal climate skill by com-
bining this concept with ensemble subsampling, which selects a sample of ensemble
members informed by a chosen predictor to calculate the ensemble mean (Carvalho-
Oliveira et al., 2022; Dobrynin et al., 2018; Neddermann, 2019).

In this section, I discuss the relevance of targeting teleconnections to detect condi-
tions that favour more predictable states in summer seasonal predictions. This leads
us to a final aspect that needs to be considered before implementing such a task: how
do we properly define, identify and quantify teleconnections?

1.1.4 On the complexities of analysing teleconnections

Although several methods have been proposed to monitor teleconnections, extracting
physically relevant information from the chaotic atmosphere is a challenging task
(e.g. Shepherd, 2014). In this section, I discuss the linear and nonlinear approaches,
commonly used in teleconnection analysis. I highlight their limitations and motivate
how AI methods belonging to the field of machine learning can overcome those to a
large extent. This discussion, therefore, leads to scoping out the general goal of my
dissertation and the framing of my overarching research question.
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1.1.4.1 Linear approach

The first approach to quantify a teleconnection was a correlation map depicting the
NAO, illustrating the linear relationship between polar SLP and indices derived from
fixed stations across the Northern Hemisphere (Exner, 1913). As introduced in Sec.
1.1.1, station-based monitoring of NAO is amongst the most common methods to
analyse its variability. While this method provides a continuous record of the tele-
connection, it has the disadvantage of not capturing spatial structures nor changes
in the position of the Azores High and Iceland Low over time. This approach is less
used in the monitoring of the EA (Comas-Bru and Hernández, 2018), which often
relies on EOF-based analysis.

In EOF analysis, large atmospheric datasets are reduced to a set of orthogonal spa-
tial patterns, generated such that each pattern explains as much variance as possible.
Each given spatial pattern is associated with a time series that represents its ampli-
tude over time (principal components, PC). That is, EOF analysis is not based on
physical principles, but rather on mathematical ones: a field of SLP, for example, is
split into independent orthogonal patterns ordered by relative variance, which may
be interpreted as teleconnections. Consequently, spatial patterns concerning the same
physical process (the same teleconnection) with similar variances may be wrongly
split into different EOF patterns (North et al., 1982). The orthogonality constraint
may also lead to the blending of patterns deriving from unrelated physical processes
(e.g. Reusch et al., 2007), thus making a physical interpretation very difficult.

Another limitation of an EOF-based analysis for the summer NAO and EA con-
cerns the assumptions of stationarity and spatial symmetry between opposite phases,
which seem to be only partly adequate (e.g. Cassou et al., 2004; Rieke et al., 2021;
Weisheimer et al., 2019). Changes in the variability of a teleconnection over time (non-
stationarity) can generate nonphysical EOF patterns, artificial trends and amplitude
changes in the associated PCs (Tremblay, 2001). Moreover, the symmetry assumption
relies on the hypothesis that positive and negative phases of a teleconnection show
identical spatial structure of the anomalies but opposing polarity, which does not
agree with observations of the summer NAO or EA (e.g. Cornes et al., 2013). To
better understand the implications arising from these limitations, we need to take
another perspective, the one introduced by a nonlinear approach.

1.1.4.2 Nonlinear approach

The nonlinear paradigm of climate regimes to analyse teleconnections in the Euro-
Atlantic was first introduced in Cassou et al., 2004 for the winter, and later in Cassou
et al., 2005 for the summer case. This perspective is similar to the concept of "weather
regimes"7 (Vautard, 1990) used in synoptic meteorology, and can be seen as the tem-
poral integration of the latter. These studies applied the so-called k-means clustering
algorithm on atmospheric data (e.g. Michelangeli et al., 1995) to determine four tele-
connection patterns, which in summer are reminiscent of the positive and negative
phases of the NAO and EA in the linear approach. The four summer teleconnections

7 Weather regimes describe recurrent and persistent states of the atmospheric circulation over a given
specific region, often computed using k-means clustering (e.g. Michelangeli et al., 1995). Clustering
is a multivariate statistical method that groups data into a pre-defined number of classes (clusters)
according to a measure of similarity.
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are referred to as NAO in positive (also known as Blocking) and negative phases,
Atlantic Ridge (similar to the positive phase of EA) and Atlantic Low (similar to the
negative phase of EA). This approach offers a compromise to overcome the spatial
symmetry assumption imposed by EOF, thus accommodating the observed spatial
asymmetry between positive and negative phases. This asymmetry is strongest for
the NAO during winter, but it is also present in the summer case for both NAO and
EA (see. Fig.3 in Cattiaux et al., 2013 for a visual example).

Yet, the most interesting aspect of the nonlinear paradigm concerns analysing
the frequency of occurrence of a given teleconnection. From this perspective, the
atmosphere is viewed as a complex dynamical system (Lorenz, 1963), where low-
frequency climate variability8 is reflected in the preferred transition between telecon-
nections and changes in their occurrence. Relating these changes with the variability
of external forcings could therefore provide important information on the predictabil-
ity of teleconnections and thereby identify windows of opportunity for skilful sum-
mer climate predictions. Which is exactly what I intend to do in this dissertation.
However, some drawbacks become evident when using clustering methods for this
purpose. In order to best implement this task, I need to introduce two optimised AI
algorithms belonging to the group of machine learning (ML) methods.

1.1.4.3 Machine learning approach

The first ML algorithm I use in this thesis is the so-called Self-Organising Maps (SOM,
Kohonen, 1984). SOM belongs to the field of unsupervised neural networks, which is
comprised of algorithms designed to learn and classify patterns from data without
prior knowledge of any labelling. As a neural network-based classifier, SOM consists
of two fully-connected layers that can be visualised as a two-dimensional grid, de-
noted SOM map. As for all neural network methods, one drawback of SOM is that
it contains hyperparameters9 that must be chosen a priori by the user. Carrying out
a sensitivity test of these parameters is therefore required, upon evaluation of the
research question and calculation of performance metrics (Forest et al., 2020). The
biggest advantage of this method over clustering on the analysis of teleconnections
is that it treats the data as a continuum and preserves the topology10 of the data (e.g.
Leloup et al., 2007). To understand these concepts, let us assume we apply SOM on
a three-dimensional SLP dataset corresponding to the Euro-Atlantic region.

During training, SOM spans the entire SLP data space to identify a set of modes
that best represent the nearby SLP fields, while still describing the distribution of
the dataset when considered all together. The learning process is iterative and con-
trolled by a neighbourhood function, responsible for preserving a topological order-
ing of the data. This property assures that neighbouring modes correspond to similar
SLP patterns and widely separated ones correspond to dissimilar patterns (Kohonen,
2013). Once trained, our SOM map therefore offers an efficient way to visualise and

8 Low-frequency variability stands for timescales between 10 and 50 days, i.e. longer timescales than
baroclinic systems (e.g. storms), but shorter than a season (e.g. Hannachi et al., 2017).

9 In machine learning, a hyperparameter refers to a parameter whose value controls the learning process.
10 A topology is a system of subsets in the data, which can be interpreted as neighbouring, related data

points. A topology preserving classifier implies that neighbouring patterns presented in the output
space are also neighbouring patterns in the input space. This property preserves quantitative relation-
ships in the dataset and thus facilitates the interpretation of SOM-derived patterns as physical patterns.

11



analyse transitions amongst modes of SLP that comprise a continuum of teleconnec-
tion patterns in the physical space.

While SOM has been applied to analyse both winter and summer teleconnec-
tions in the Euro-Atlantic region (e.g. Johnson et al., 2008; Polo et al., 2011; Rousi
et al., 2017, Gu and Gervais, 2022), these studies concerned observations or historical
model simulations at synoptic or decadal timescales. In the first part of this disser-
tation, I use the SOM framework to analyse the interannual variability of summer
teleconnections in the Euro-Atlantic during the 20th century, both in observations
and simulations from an initialised seasonal prediction system (Sec. 1.2). I further
explore SOM to analyse dependencies between teleconnections and other climatic
variables. I give a particular focus to identify potential North Atlantic precursors,
which I then test in the model (Sec. 1.3).

Once these potential precursors are identified, I focus on understanding their un-
derlying mechanisms and causal-effect relationships in the second part of this dis-
sertation (Sec. 1.4). Causality in climate sciences has been conventionally assessed in
two ways: via correlations or climate modelling. On one hand, correlations cannot
be interpreted as a measure of causality (Pearl et al., 2000). Interactions with other
variables, such as indirect links or common drivers, as well as autocorrelation effects
(Runge et al., 2019) can lead to spurious links. On the other hand, dedicated climate
model experiments can be designed to isolate effects (e.g. by applying different forc-
ings) and presumably enable a causal analysis (e.g. Osborne et al., 2020). But besides
high computational costs, model biases in the representation of relevant physical
processes (e.g. Beverley et al., 2019) can make the interpretation of causal-effect rela-
tionships using this approach challenging.

Alternatively, I make use of a second ML method, the so-called Causal Effect Net-
works (CEN, Runge et al., 2015) to investigate causal relationships between the North
Atlantic and summer teleconnections. CEN is based on the Conditional Independence
Causal Discovery framework (Pearl et al., 2000) and is suitable for testing hypotheses
of causal-effect relationships among physical variables (e.g. Di Capua et al., 2020b;
Kretschmer et al., 2016). CEN is able to detect confounding effects, overcoming sev-
eral disadvantages imposed by correlation analysis, and thereby facilitating process
understanding. As a last step, I use CEN as a foundation to investigate the vari-
ability of predictive skill in an initialised seasonal prediction system. Thus, in my
dissertation I aim at answering the following overarching question:

How can machine learning help addressing the complexities of predicting
summer Euro-Atlantic teleconnections at seasonal timescales?

I give an overview of the two publications related to this dissertation in the next
sections, providing answers to my specific research questions (Sec. 1.2-1.4). I then
provide a summary of my main conclusions and final remarks in Sec. 1.5. We start
off with Sec. 1.2, where I present the first neural network-based analysis of initialised
simulations generated by the Max Planck Institute Earth System Model (MPI-ESM)
seasonal prediction system.
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1.2 a neural network view on summer teleconnections

The central goal of this dissertation is established: investigate with a ML framework
to what extent summer teleconnections in the Euro-Atlantic can be predicted one
season ahead. To achieve this, I first use the neural network-based classifier SOM to
characterise these teleconnections, both in observations and in the model (Carvalho-
Oliveira et al., 2022, see Appendix A). SOM outperforms both linear (e.g. Liu et
al., 2006) and clustering (e.g. Astel et al., 2007; Budayan et al., 2009) methods in
partitioning data, and allows the evaluation of intermediate modes associated with a
given teleconnection (e.g. Hunt et al., 2013). These aspects motivate my first research
question:

1. How does SOM characterise the interannual variability of summer
Euro-Atlantic teleconnections occurring in the 20th century?

I assess the interannual variability of summer Euro-Atlantic teleconnections in
terms of spatial features and frequency of occurrence. I focus on the high summer
(Cassou et al., 2005), and evaluate monthly July and August SLP data spanning the
period 1902–2008. I use ERA-20C reanalysis (Poli et al., 2016) for observations, and
model simulations from a 30-member hindcast ensemble with MPI-ESM in mixed
resolution (hereafter: MR-30). The ensemble is initialised every May between 1902

and 2008. I use ERA-20C data to train SOM and thereby define a continuum of
observed summer teleconnections. Next, I perform this SOM training for each indi-
vidual ensemble member in the model, and compare the results to observations.

I find an optimum SOM map size with 3x4 dimensions, i.e. generating 12 SOM
modes. My sensitivity analysis finds that larger SOM map sizes (e.g., 5x5 as in Polo
et al., 2011, for daily data) show qualitatively similar modes although split in dupli-
cate patterns. Since SOM is an unsupervised ML method, the next step consists of
labelling these SOM modes guided by expert knowledge (e.g. Kashinath et al., 2021).
In this case, labelling means to associate a SOM mode with a summer teleconnection,
i.e. summer NAO or EA in positive or negative phases. I choose the methodology
used in Cassou et al., 2005 as a reference to label the modes using a similarity analy-
sis11.

Observed variability

The SOM approach reveals a strong spatial asymmetry between modes belonging to
reversed phases of NAO and EA. This is a robust feature that can be visualised in
both summer SLP and 500 hPa geopotential height fields (Fig.A.2). I find an eastward
shift of the pressure dipole (in particular the southern lobe) for a positive phase, as
opposed to a negative phase, as reported for the winter NAO case (Cassou et al.,
2004; Luo et al., 2018). SOM modes related with summer NAO occur more frequently
(56%) than those with summer EA (44%). Nonlinearities of the method are expressed
in the difference of occurrence between positive and negative phases, with summer
NAO (EA) occurring 31% (20%) of the times in negative and 25% (24%) in positive

11 In the paper (Appendix A), I adopt the nonlinear terminology of Cassou et al., 2005 and refer to
NAO and EA teleconnections as positive and negative NAO, Atlantic Ridge and Atlantic Low (see Sec.
1.1.4.2). In the text, I keep the NAO and EA terminology used so far for consistency.
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phases. These findings are in line with the observed trends in the summer NAO
index (e.g. Hanna et al., 2015).

As opposed to EOF or clustering, SOM provides a detailed characterisation of the
summer teleconnections spatial features. Each teleconnection can be represented by
a set of SOM modes (e.g. 3 for positive summer NAO), which show variations in
the intensity and position of the cyclonic and anticyclonic pressure centres. For ex-
ample, pronounced pressure centre shifts are evident for summer EA in negative
phase (SOM modes 11 and 12 in Fig.A.2), a teleconnection that has been previously
associated with heatwave occurrence in Europe (e.g. Duchez et al., 2016). These large
scale shifts in the circulation act as a dynamic driver for variability of the surface
climate modulated by the jet stream (e.g. Belmecheri et al., 2017), and can be visu-
alised by anomalies of air temperature associated with each SOM mode (Fig.A.10).
Interestingly, I find that the most frequent SOM mode associated with a negative
summer EA (SOM mode 12) is associated with negative temperature anomalies in
Europe. And only when anticyclonic conditions shift from Greenland towards Eu-
rope (leading to the occurrence of SOM mode 11), positive temperature anomalies
occur (Neddermann et al., 2018; Wulff et al., 2017). Predicting the occurrence of such
mode is therefore more informative than predicting a single index for summer EA,
as usually done in conventional forecast practices.

How does the model perform?

I find that MR-30’s performance in reproducing spatial features varies amongst dif-
ferent teleconnections, being highest for a positive, and lowest for a negative phase
of EA (0.85 and 0.7 mean correlations, respectively; Fig.A.3). Moreover, the model
performance is higher for a negative than for a positive phase of NAO (0.8 and
0.73 mean correlations, respectively). While results for the spatial features suggest a
moderate performance for MR-30, comparing modelled and observed frequencies of
occurrence reveals a stronger limitation in the model.

This discrepancy between simulated spatial and temporal features agrees with
results from performance assessments of other models (e.g. Cattiaux et al., 2013;
Cortesi et al., 2017; Delgado-Torres et al., 2022; Fabiano et al., 2020). Despite MR-
30 showing a high intra-ensemble variability, it tends to overestimate the observed
frequencies of summer NAO. I find that MR-30 shows particularly high underes-
timation in predicting the occurrence of a negative phase of EA, thus limiting its
potential to predict early warning of warmer than average summers. In contrast,
MR-30 is mostly able to predict the observed frequency of a positive phase of EA,
and could represent with its occurrence windows of opportunity for skilful summer
predictions (Mariotti et al., 2020).

To illustrate this concept and motivate my next steps, I propose in Fig.1.5 a thought
experiment: what if we could predict which of these teleconnections is most likely
to occur in a summer – how would seasonal summer predictive skill improve? In
this ideal scenario, the dominant summer teleconnection is a priori known and can
be used as a predictor for a conditional skill assessment with ensemble subsampling
(see Fig.1.4). That is, instead of calculating an ensemble mean with the full ensemble
to compare with observations, I calculate a "refined" ensemble mean using my pre-
dictors. I perform this test with MR-30 and find a significant skill improvement in
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Figure 1.5: How would summer predictive skill improve if summer teleconnections could be
"perfectly" predicted by MR-30? a) July-August SLP predictive skill for a mean
over the full 30-member ensemble against ERA-20C in 1902-2008 (measured as
anomaly correlation coefficient, ACC). b) Same as a), but for a "perfect" ensemble
mean, where only ensemble members that predict the observed summer telecon-
nection are selected. Stippling represents a correlation significant at the 95% level.

the prediction of summer SLP 3-4 months ahead of time in the Euro-Atlantic for the
"refined" ensemble mean, compared to the "full" (compare Fig.1.5a,b).

This improvement has two main implications. Firstly, it represents an upper limit
of skill that could be reached with MR-30 if the model were to always simulate the
correct summer teleconnection. Note that despite overall significant skill increase,
ACC values are constrained by the model ability in reproducing the teleconnections
(Fig.A.3). Secondly, it reflects a reduction of the ensemble spread, which grows too
large because of weaknesses in the ensemble generation in the data assimilation
system (e.g. Ho et al., 2013). Subsampling acts towards enhancing the signal of a
given teleconnection by excluding ensemble members that drifted away from the
correct physical path (e.g. Dobrynin et al., 2018), thereby increasing skill. In the next
section, I take a step further and show how such a conditional skill assessment can
be achieved in practice, using information from spring predictors generated by SOM.

1.3 linking summer predictive skill and the north atlantic

Several recent studies have suggested an influence of the North Atlantic on the sea-
sonal predictability of summer atmospheric circulation (e.g. Dunstone et al., 2019).
Both extratropical (Ossó et al., 2018) and tropical (Neddermann et al., 2018) SSTs in
spring have been shown to persist into summer and influence summer EA, whereas
an SST tripole pattern (Czaja and Frankignoul, 1999) has been suggested to influence
summer NAO (Gastineau and Frankignoul, 2015; Hall et al., 2017). In this section, I
analyse North Atlantic SSTs with SOM to derive a set of spring SST predictors that
can be tested in MR-30 at prediction start (i.e. May initialisation). Identifying these
SST predictors thus enables a conditional skill assessment with ensemble subsam-
pling, as illustrated in Fig.1.5, but applicable in forecast mode. My guiding research
question is:
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2. How does predictive skill of summer hindcasts in MR-30 depend on North
Atlantic SST at initialisation?

Here, my main hypothesis is that the seasonal predictability of summer teleconnec-
tions may be forced by the North Atlantic (e.g. Osborne et al., 2020), and that each
spring SST predictor may excite a preferable summer teleconnection. This oceanic
influence could arise from interacting diabatic heating and eddy vorticity forcings,
altering the lower-tropospheric baroclinity over regions of strong meridional SST gra-
dients (Nie et al., 2016; Peng et al., 2003). Persisting spring SSTs have been suggested
to force the summer jet stream position, which shifts as a response to changes in the
baroclinicity. Such mechanism has been linked to both summer NAO and EA tele-
connections (Dunstone et al., 2019; Gastineau and Frankignoul, 2015; Osborne et al.,
2020).

Identifying SST precursors

To identify spring SST predictors, I calculate monthly April SST composites in ERA-
20C preceding each summer SOM mode obtained in Sec. 1.2 (Fig.A.4). The identified
predictors are reminiscent of SST tripole and horseshoe patterns, which have been
previously suggested to influence summer NAO (Hall et al., 2017) and summer EA
(Duchez et al., 2016; Gastineau and Frankignoul, 2015; Ossó et al., 2018). I evaluate
the linear relationship between these predictors and summer surface climate in the
Euro-Atlantic, to identify target regions where the influence of spring SST is signifi-
cant (e.g. Fig.A.5 for summer SLP). By calculating similarity with the SST predictors,
I classify each April North Atlantic SST field in the assimilation experiment used
to initialise MR-30. That is, upon initialisation of MR-30, a spring SST predictor car-
ries subsampling information of which summer teleconnection is likely to dominate
in a given year. This information thereby allows me to perform a conditional skill
assessment of MR-30.

Conditional skill assessment

I perform this skill assessment for summer surface climate predictions by first calcu-
lating a mean over the full ensemble, and analysing summer SLP, 2-metre air tem-
perature and 500 hPa geopotential heights predictions 3-4 months ahead. I find that
summer surface climate skill in MR-30 seems to depend on the characteristics of
North Atlantic SSTs present at the initialisation (Figs.A.6, A.11). This dependence
could presumably reflect the variability in strength and location of meridional SST
gradients (e.g. Kushnir et al., 2002), as well as their persistence (e.g. Deser et al.,
2003). Skill spatial features differ amongst SST predictors, and are overall limited to
the mid-North Atlantic and seldom significant over land. I find the highest skill val-
ues over the ocean for positive EA SST predictors, particularly offshore of the British
Isles for summer SLP.

When performing subsampling, I find that spring SST predictors are not sufficient
to indicate the dominant summer teleconnection, illustrated by a marginal skill im-
provement in summer SLP skill. There are two main reasons why these results are not
particularly surprising. Firstly, besides oceanic forcing, other predictors have been
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suggested to influence summer NAO (e.g. snow cover, Screen, 2013, Matsumura et
al., 2014; sea ice concentration, Hall et al., 2017; stratosphere-troposphere coupling,
Wang and Ting, 2022, to name a few) and summer EA (e.g. tropical precipitation,
Wulff et al., 2017). Secondly, a correlation analysis suggests only a regional influence
of spring SST on summer surface climate (Fig.A.5), dependent on the characteristics
of each SST regime.

However, I find that spring SST predictors are partly able to indicate the phase
of the dominant summer teleconnection via subsampling. This phase-based group-
ing can be interpreted with SOM’s topology preserving feature, which assures that
the position of modes in the SOM map reflects their similarity in the physical space
(Fig.A.9). Besides, each phase is typically associated with a preferred jet stream posi-
tion, which is more northerly (southerly) when summer NAO and EA are in positive
(negative) phase (e.g. Dorado-Liñán et al., 2022; Trouet et al., 2018; Woollings et al.,
2010).

While results of skill improvement for 2-metre air temperature and 500 hPa geopo-
tential heights are marginal, I achieve regional enhanced SLP skill when summer
EA occurs. This skill improvement is statistically significant over Scandinavia for a
positive phase. For a negative phase, improvement takes place south of 55

◦ N but
is mostly statistically insignificant. These regions of skill improvement usually coin-
cide with areas of significant correlation with the SST predictor (Fig.A.5). I find only
marginal skill improvement for summer NAO, which could be due to MR-30’s lim-
ited performance in representing it (Sec. 1.2, e.g. Osborne et al., 2020) or may indicate
that other external forcings play a more important role for its seasonal predictability.

Next, I verify my results by performing a conditional skill assessment on an in-
dependent ensemble generated by the MPI-ESM-MR-based seasonal prediction sys-
tem, covering the recent period 1980-2016 (Dobrynin et al., 2018). In comparison to
MR-30’s centennial scale simulations (1902-2008), I find a stronger dependence of
summer EA to spring SST in the recent years covered by the independent ensemble.
This is shown by a higher regional improvement across different variables, which
significantly increases for 2-metre air temperature in Scandinavia (Fig.A.8, right col-
umn). The areas of improvement, however, do not always coincide with those in
MR-30. Although these differences could be due to initialisation of each system, they
raise the question whether the relationship between North Atlantic SSTs and EA is
stationary, and most importantly whether it is causal. I address these questions in
the next section, delving into the mechanisms behind this relationship by implement-
ing a systematic evaluation of observations and MPI-ESM-MR within a causal-effect
framework.

1.4 causal pathways towards skilful summer seasonal predictions

I demonstrate in Sec. 1.3 that EA seasonal predictability is influenced by North At-
lantic SST, whereby improved skill of summer climate predictions can be achieved.
While there is no consensus on the physical processes underlying this link between
North Atlantic SST and summer EA, two mechanisms have been proposed in ob-
servations: Rossby wave activity driven by ENSO-related tropical SST forcing (Wulff
et al., 2017), and shifts in the jet stream position driven by extratropical North Atlantic
SST forcing (Ossó et al., 2018). A link between EA and tropical SST forcing is, how-
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ever, likely to be nonstationary (Rieke et al., 2021). This therefore limits its use to
constrain summer predictive skill to only certain periods of time.

Furthermore, a link between extratropical North Atlantic SST and summer EA
(hereafter: SST-EA link) has been suggested for a recent period starting from 1979

(Ossó et al., 2018). The characteristics of this link at longer timescales, however, are
not yet known. Here, I address this gap by disentangling the causal-effect pathways
between extratropical North Atlantic SST and summer EA over a long observational
record. I go beyond previous studies by applying an AI-based causal discovery tool
to investigate the variability of predictive skill in the initialised ensemble MR-30. I
therefore aim at answering the following two research questions:

3. To what extent are spring extratropical North Atlantic SSTs causal drivers for
the summer EA?

4. How does skill of MPI-ESM-MR at predicting European surface climate
depend on its representation of Euro-Atlantic causal links?

I answer these questions in two complementary steps. First, I analyse observations
covering the 20th century with the ERA-20C reanalysis (Poli et al., 2016). Then, I
analyse three independent sets of MPI-ESM-MR simulations: a pre-industrial control
run (piControl), a historical run, and the initialised ensemble MR-30 used in Sec. 1.3.

Causal drivers of summer EA

I start addressing the first research question by carrying out a variability analysis
for the period 1908-2008. In Fig.1.6a I use two indices to represent the variability of
spring extratropical North Atlantic SST (in green) and summer EA (in orange) (see
Sec. B.3.2 for details). It is possible to visualise that both SST and EA undergo a
strong variability through the analysed period. I find significant correlations of 0.54

during the last 30 years, in line with Ossó et al., 2018. Correlations are insignificant
when considering the full period, dropping to 0.2. In Fig.1.6b I compute averaged
correlations over a 20-year period to visualise the low-frequency variability of this
link. I find that the SST-EA link is nonstationary, showing a significant change in
strength between first (blue) and second (pink) halves of the 20th century (hereafter:
early and late periods, respectively).

I speculate that this nonstationarity could result from a confounding effect due to
an external process that modulates the strength of this link. Testing for confounding
effects in climatic data is not possible with conventional statistical methods such as
correlations. I therefore perform a causality analysis with the AI-based CEN (Sec.
1.1.4.3) for early and late periods, separately. CEN performs an interactive condi-
tional independence test (Pearl et al., 2000), assessing whether the SST-EA link is
significant when conditioned on another potential predictor, such as ENSO-related
tropical SSTs (Wulff et al., 2017). Although I find a spurious, noncausal link in the
early period, I show that the SST-EA link in the late period is causal, confirming
suggestions of previous studies (Ossó et al., 2018, 2020). This causal link has an esti-
mated mean strength expressed by a path-coefficient (Runge et al., 2015) of about 0.2,
i.e. a 1 standard deviation change in SST causes a 0.2 standard deviation change in
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Figure 1.6: Observed variability of the SST-EA link in the 20th century. a) Time series of
SST (green) and EA (orange) indices smoothed by a 3-year running mean (see
text for definitions). Purple dashed line illustrates the beginning of the period
investigated in Ossó et al., 2018. b) Running-correlation between SST and EA
indices for a 20-year window. Coloured markers indicate significant correlations
at the 95% confidence interval, illustrated by dashed lines.

the EA 3-4 months later (Fig.B.3). These findings shed light on the mechanisms pro-
posed to influence summer EA, suggesting a more active role of extratropical North
Atlantic SSTs than previously thought.

Is the model able to reproduce the causal link?

To answer the second research question, I first evaluate whether MPI-ESM-MR can
reproduce the observed SST-EA causal link. I find that the model is unable to repro-
duce the SST-EA causal link when analysing both a 1000-year piControl simulation
(Giorgetta et al., 2011; Mauritsen et al., 2012), and a historical simulation (period
1850-2005) under natural and anthropogenic forcing following CMIP5 (Dobrynin et
al., 2018). Yet, I find that the model is able to reproduce this link in the initialised
MR-30 ensemble at certain times, suggesting a possible role of initialisation. Skill is
nevertheless limited, with MR-30 tending to underestimate the SST-EA link strength
(Fig.B.6), which might explain its low skill in predicting summer seasonal European
climate (e.g. Carvalho-Oliveira et al., 2022; Neddermann et al., 2018). However, I do
find that those ensemble simulations that reproduce the SST-EA causal link tend to
show improved skill in certain regions, over those that do not (Fig.B.6). This finding
suggests that a causal analysis could be particularly useful to identify target regions
under strong influence of a predictor (i.e. SST in our case), where predictions could
be potentially skilful.

I illustrate these ideas in Fig.1.7, showing a causal map that represents the causal
influence of spring SST on summer SLP and air temperatures in observations. I iden-
tify a target region west of the British Isles under strong causal influence of SST. I
test the hypothesis that ensemble simulations able to reproduce a causal link with
SST in this region are more likely to show local skilful predictions, in comparison
to simulations that do not. I assess this by randomly choosing one ensemble mem-
ber amongst the 30-member ensemble every year during the late period, a process
which I repeat 2000 times. I then assess the skill of all sampled 45-year long time-
series against observations in predicting summer surface climate 3-4 months ahead.
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sea level pressure
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Target region

Figure 1.7: Could regions under causal influence from a SST predictor be a target for skil-
ful predictions? Plot shows the causal influence of an SST predictor calculated
from spring North Atlantic SSTs onto summer SLP (contours) and 2-metre air
temperature (shading). This causal influence is expressed in terms of a causal
link strength coefficient calculated with the AI-tool CEN, which denotes by how
much summer SLP or air temperature change (in standard deviation) when the
SST predictor changes by 1 standard deviation.

I find higher skill for predictions of SLP, 500 hPa geopotential heights and 2-metre
air temperature in simulations which reproduce the causal link with SST, over those
that do not. These findings suggest that AI-based causal discovery could comple-
ment conventional predictive skill assessments to identify opportunities for skilful
seasonal predictions.

1.5 summary and conclusions

This dissertation proposes an AI-dynamical approach to advance the understanding
of the physical mechanisms influencing the seasonal predictability of Euro-Atlantic
summer teleconnections, thereby achieving improved seasonal summer climate pre-
dictions a season ahead. In this section I present a summary of my conclusions,
revising the research questions raised throughout this dissertation, and providing
answers to each of them. I finish this section with an outlook, drawing final thoughts
concerning the findings presented in this dissertation.

1.5.1 Answers to the research questions

In Sec. 1.2, I implement an AI-dynamical approach with the neural network-based
classifier SOM. I specifically assess the variability of summer Euro-Atlantic telecon-
nections during 1902-2008, first in observations, and then in the initialised ensemble
MR-30. SOM outperforms the conventional statistical methods used in teleconnec-
tion analysis, overcoming their assumptions of stationarity, spatial symmetry and
orthogonality (e.g. Liu et al., 2006). Moreover, as opposed to clustering, SOM en-
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ables the characterisation of intermediate atmospheric modes associated with each
teleconnection. These aspects led to my first research question:

1. How does SOM characterise the interannual variability of summer Euro-
Atlantic teleconnections occurring in the 20th century?

• Summer teleconnections are characterised by a set of 12 SOM modes, which for
reversed phases of summer NAO or EA show a pronounced spatial asymmetry,
in agreement with observations.

• SOM modes related to summer NAO occur more frequently (56%) than those
to summer EA (44%). In line with observations, I find differences in the occur-
rence of each teleconnection among positive and negative phases, with summer
NAO (EA) occurring 31% (20%) of the times in negative and 25% (24%) in pos-
itive phases.

• For a given teleconnection, I find zonal shifts in the pressure centres amongst
SOM modes, which in turn are reflected as anomalies in the summer 2-metre air
temperature fields. This spatial characterisation becomes particularly relevant
when analysing the occurrence of negative summer EA, which can be a driver
for European heatwaves.

• I find that while MR-30 can moderately reproduce the spatial features of sum-
mer NAO and EA, it has a very limited performance in reproducing their tim-
ing.

• MR-30 shows particularly high underestimation in predicting the occurrence
of a negative summer EA, thus limiting its potential to predict early warning
of warmer than average summers.

• By contrast, MR-30 shows a high agreement with observations when reproduc-
ing a positive summer EA, both in terms of spatial features and timing. Hence,
the occurrence of positive summer EA could represent windows of opportunity
for skilful summer predictions in this model.

Motivated by these findings, in Sec. 1.3 I investigate how the occurrence of sum-
mer teleconnections relates to the predictive skill of Euro-Atlantic summer surface
climate in MR-30. I verify my results analysing an independent seasonal prediction
system covering the recent period 1980-2016 (Dobrynin et al., 2018). Furthermore,
I take an AI-dynamical approach to investigate how the predictability of summer
teleconnections is linked to North Atlantic SSTs, which have been suggested to in-
fluence their occurrence (Gastineau and Frankignoul, 2015; Osborne et al., 2020). I
derive a set of SST predictors, allowing me to carry out a conditional skill assessment
of MR-30 with ensemble subsampling. Hence, my second research question is:

2. How does predictive skill of summer hindcasts in MR-30 depend on North
Atlantic SST at initialisation?

• Summer predictive skill in MR-30 depends on spring North Atlantic SST anoma-
lies present at the initialisation of hindcasts, particularly for SLP. I classify these
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anomalies in a set of 12 SST predictors, reminiscent of SST tripole and horse-
shoe patterns, previously associated with the predictability of summer telecon-
nections.

• Skill spatial features differ amongst SST predictors, and are overall limited to
the mid-North Atlantic and seldom significant over Europe. I find the highest
skill values over the ocean for positive EA SST predictors, particularly offshore
of the British Isles for summer SLP.

• I find that the SST predictors are partly able to indicate the phase of the dom-
inant summer teleconnection via ensemble subsampling, whereby I achieve
improved SLP skill 3-4 months ahead in parts of Europe. This improvement is
significant over parts of northern Europe and Scandinavia for a positive sum-
mer EA, where correlation with the SST predictor is highest. In contrast to
summer EA, I find a marginal improvement for summer NAO, suggesting that
its seasonal predictability is weakly associated with North Atlantic SST.

• I find a higher dependence of the summer predictive skill to spring North At-
lantic SST over the more recent period covered by the independent ensemble
(1980-2016), in comparison to MR-30’s centennial simulations (1902-2008). This
is illustrated by a higher regional improvement across different variables for
the independent ensemble, which particularly increases for 2-metre air temper-
ature in Scandinavia.

In summary, these findings contribute to the growing body of evidence that the
predictable component of summer teleconnections at seasonal timescales may be
larger than previously thought, thereby suggesting an active role of the North At-
lantic in particular for summer EA. In Sec. B.3.2, I further investigate the specific role
of extratropical North Atlantic SST (hereafter: SST) in forcing the summer EA, using
the AI-based causal discovery tool CEN. I go beyond previous studies (Ossó et al.,
2018, 2020) and analyse a long observational record to assess the variability of the
SST-EA link, and testing if SST is a causal driver for summer EA. I then evaluate
three independent sets of MPI-ESM-MR simulations to compare whether the model
is able to reproduce the characteristics this link, and how this may affect summer
predictive skill. I address the following two research questions:

3. To what extent are spring extratropical North Atlantic SSTs causal drivers for
the summer EA?

• I find that the observed SST-EA link is nonstationary during the 20th century,
showing distinct variability between early (1902-1957) and late (1958-2008) pe-
riods.

• I perform a causal discovery analysis and find that, whereas the SST-EA link
is spurious in the early period, SST is a causal driver for the summer EA in
the late period. I calculate an estimated causal influence on summer EA of 0.2
standard deviation change, when spring SST changes by 1 standard deviation.

• I test for a confounding influence of ENSO-related tropical forcing, which has
been suggested as another predictor for summer EA. I find that the SST-EA
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causal link remains significant when conditioned on ENSO-related tropical
forcing, suggesting a more active role of extratropical North Atlantic SSTs than
previously thought.

4. How does skill of MPI-ESM-MR at predicting European surface climate de-
pend on its representation of Euro-Atlantic causal links?

• I find that whereas piControl and historical simulations with MPI-ESM-MR
are unable to reproduce the SST-EA causal link detected in observations, the
initialised ensemble MR-30 is able to reproduce this link at certain times, sug-
gesting a possible role of initialisation.

• MR-30’s performance in reproducing the SST-EA link is, nevertheless, limited.
I find that the model tends to underestimate the SST-EA link strength, which
can explain its low skill in predicting summer seasonal European climate.

• However, I find that MR-30 simulations that can reproduce the SST-EA causal
link tend to show regional improved skill, over those that do not. I show this
impact on skill for a region of strong SST causal influence west of the British
Isles. I find higher skill for predictions of SLP, 500 hPa geopotential heights and
2-metre air temperature in simulations which reproduce the causal link with
SST, over those that do not.

In summary, I show that MPI-ESM-MR has limited performance in reproducing
a causal link between spring SST and summer EA, offering an explanation why
this model shows poor skill in predicting European summer climate at seasonal
timescales. My findings suggest that AI-based causal discovery could complement
conventional predictive skill assessments to identify opportunities for skilful sea-
sonal predictions.

1.5.2 "No such thing as a free lunch"

Perhaps one of the most important assumptions in AI is reflected in the No free lunch
theorem (Wolpert, Macready, et al., 1995): there is no universal learning algorithm. I
show in this dissertation how AI can benefit our endeavour to predict summer cli-
mate a season in advance. Any combination of AI and climate modelling, however,
requires a very careful consideration of the problem at hand. The tools used in this
dissertation might not be best suited for other problems, and collaboration between
climate and computer scientists can be crucial to tailor the best AI-dynamical ap-
proach. My dissertation is the effort of such an approach, whereby I overcome some
of the challenges for seasonal prediction of the European summer climate.
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a.1 abstract

We combine a machine learning method and ensemble climate predictions to in-
vestigate windows of opportunity for seasonal predictability of European summer
climate associated with the North Atlantic jet stream. We particularly focus on the
impact of North Atlantic spring sea surface temperatures (SST) on the four domi-
nant atmospheric teleconnections associated with the jet stream: the summer North
Atlantic Oscillation in positive and negative phases, the Atlantic Ridge, and Atlantic
Low. We go beyond standard forecast practices by not only identifying these atmo-
spheric teleconnections and their sea surface temperature precursors, but by making
use of these identified precursors in the analysis of a dynamical forecast ensem-
ble. Specifically, we train the neural network-based classifier Self-Organising Maps
(SOM) with ERA-20C reanalysis and combine it with model simulations from the
Max Planck Institute Earth System Model in mixed resolution (MPI-ESM-MR). We
use two different sets of 30-member hindcast ensembles initialised every May, one
for training and evaluation between 1902-2008, and one for verification between 1980-
2016, respectively. Among the four summer atmospheric teleconnections analysed
here, we find that Atlantic Ridge simulated by MPI-ESM-MR shows the best agree-
ment with ERA-20C, thereby representing with its occurrence windows of oppor-
tunity for skillful summer predictions. Conversely, Atlantic Low shows the lowest
agreement, which might limit the model skill for early warning of warmer than aver-
age summers. In summary, we find that spring SST patterns identified with a SOM
analysis can be used to guess the dominant summer atmospheric teleconnections at
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initialisation and guide a sub-selection of potential skillful ensemble members. This
holds especially true for Atlantic Ridge and Atlantic Low, and is unclear for summer
NAO. We show that predictive skill in the selected ensemble exceeds that of the full
ensemble over regions in the Euro-Atlantic domain where spring SST significantly
correlates with summer SLP. In particular, we find a significant improvement in pre-
dictive skill for SLP, geopotential height at 500 hPa, and 2 metre temperature at 3-4
months lead time over Scandinavia, which is robust among the two sets of hindcast
ensembles.

a.2 introduction

Seasonal predictability of European summer climate is closely linked to the leading
modes of atmospheric teleconnections associated with the North Atlantic jet stream.
In the Euro-Atlantic region, the jet stream controls the location of the storm track
and modulates the occurrence of weather systems, thus acting as a dynamical control
for large-scale temperature and precipitation regimes (e.g. Bladé et al., 2012; Dong
et al., 2013a). Yet, current state-of-the-art seasonal prediction systems often show
biased representations of the jet stream strength and position (Beverley et al., 2019),
posing a constraint to the skillful prediction of large-scale features of the summer
climate in the North Atlantic-European sector a season ahead (e.g. Dunstone et al.,
2016). A further limitation is that dynamical seasonal prediction systems tend to
produce overdispersive ensembles, for which the forecast uncertainty is higher than
the forecast error (Ho et al., 2013). In contrast, relatively small forecast uncertainties
presumably indicate more predictable climate states, which in turn reveals windows
of opportunity for more skillful forecasts (Mariotti et al., 2020). Identifying conditions
that favour more predictable states - the aim of the present study - is hence a crucial
step to achieve improved seasonal forecasts.

Here, we go beyond standard forecast practices by combining an ensemble sea-
sonal prediction system with the neural network-based classifier Self-Organising
Maps (SOM) (Kohonen, 1984). This approach identifies a sub-ensemble in which
simulated North Atlantic sea surface temperatures (SST) at the initialisation of the
prediction system (i.e. April) are linked to the seasonal predictability of the two dom-
inant modes of variability associated with the North Atlantic jet stream: the summer
North Atlantic Oscillation (NAO) and East Atlantic Pattern (EA) e.g. Bastos et al.,
2016; Folland et al., 2009.

Several studies suggested an influence of spring North Atlantic SST on the pre-
dictability of NAO and EA. Neddermann et al., 2018 showed that tropical North
Atlantic SST in spring can be a predictor for a zonal pressure difference mode that
resembles the EA, while Ossó et al., 2018 found that the source of predictability for
the EA lies on the temperature gradient between subpolar and subtropical gyres.
Gastineau and Frankignoul, 2015 and Hall et al., 2017 suggested that a similar tem-
perature gradient may influence the predictability of NAO as well. Going beyond
these studies, we use North Atlantic SST patterns in spring as predictors for both the
NAO and the EA.

Traditionally, NAO and EA are defined as the first two empirical orthogonal func-
tions (EOF) of summer SLP in the Euro-Atlantic region (Barnston and Livezey, 1987;
Folland et al., 2009). Cassou et al., 2005 proposed an alternative approach using k-
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means clustering (k=4) and defined four modes of summer variability: the NAO in
positive and negative phases, and the Atlantic Ridge (At. Ridge) and Atlantic Low
(At. Low). While the At. Low resembles the positive phase of the EA (Barnston and
Livezey, 1987), the At. Ridge resembles the negative phase. NAO in positive phase
and the At. Low are associated with warmer and drier conditions in northern and
central Euro-Atlantic regions, and colder and wetter conditions over south. Gener-
ally, a negative NAO phase and At. Ridge show a reverse pattern (e.g. Cassou et al.,
2005).

In this study we use SOM as an alternative tool to EOF to identify the main atmo-
spheric teleconnections. We compare how well simulations with the Max Planck In-
stitute Earth System Model in mixed resolution (MPI-ESM-MR) represent the spatial
and temporal variability of sea level pressure and its co-variability with spring SST in
the Euro-Atlantic sector. Specifically, we use two different sets of 30-member hindcast
ensembles initialised every May, one for training and evaluation between 1902-2008,
and one for verification between 1980-2016, respectively. We give particular focus to
the influence of specific SST patterns in spring on the seasonal predictability of the
main atmospheric teleconnections.

We adopt a SOM perspective over traditional EOF analysis for two main reasons.
Firstly, a clear limitation for EOF is that all decomposed basis vectors must be or-
thogonal, which may lead to nonphysical or blended patterns (e.g. Reusch et al.,
2005). Secondly, an EOF analysis requires stationarity, which cannot be assumed for
century-long analysis of the North Atlantic jet stream, and likely neither to the SST-
SLP relationship investigated here (e.g. Rieke et al., 2021; Weisheimer et al., 2019;
Woollings et al., 2015).

Besides neglecting orthogonality and stationarity assumptions, SOM provides ad-
vantages to visualise and interpret spatial and temporal variability associated with
the data. It assumes that the data exist on a continuum instead of in distinct cat-
egories, which are organised such that similar SOM modes are displayed close to-
gether in the SOM map. This fine classification allows for efficient application of
SOM to explore large-scale, slow varying processes, with a number of successful
applications for climate characterisation (e.g. Johnson, 2013; Polo et al., 2011). Fur-
thermore, SOM has been recently applied as an assessment tool to pre-select both
skillful models in an multi-model ensemble (Mignot et al., 2020), as well as skillful
ensemble members in a single-model ensemble prediction system (Oliveira et al.,
2020).

In this study we combine the concept of ensemble subsampling (e.g. Dobrynin et
al., 2018) with SOM, and evaluate the potential of spring North Atlantic SST at initial-
isation in predicting skillful ensemble members in MPI-ESM-MR. We further assess
to what extent this selection affects the predictive skill of European summer climate,
in comparison to a traditional predictive skill analysis. The manuscript is structured
as follows: Sect.A.3 describes our methodology, the SOM algorithm and datasets
used for training and evaluation. We characterise the main observed and simulated
summer atmospheric teleconnections in the Euro-Atlantic domain in Sect.A.4.1. In
Sect.A.4.2 we perform a SOM training to identify regions in the domain with po-
tential for skill improvement, and in Sect.A.4.3 we evaluate the hindcast skill. We
present a discussion of the results in Sect.A.5, followed by conclusions in Sect.A.6.
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a.3 methodology

We organise our methodology in four main parts: data (Sect.A.3.1), training (Sect.A.3.2),
evaluation (Sect.A.3.3) and verification (Sect.A.4.4). In Sect.A.3.1, we describe the re-
analysis and test ensemble used for training and evaluation, an independent ensem-
ble used for verification and the preprocessing methods adopted in our analysis. A
brief introduction to the SOM algorithm, the steps taken for training SOM, and our
predictor analysis is described in Sect.A.3.2. We characterise ensemble subsampling
and hindcast skill analysis in Sect.A.3.3, and describe an independent verification in
Sect.A.4.4. In Fig.A.1 we show a sketch representing our methods workflow.

a.3.1 Data

a.3.1.1 Reanalysis

We use monthly means of sea level pressure (SLP), geopotential height at 500 hPa
(Z500), air temperature at 2m (T2m) and sea surface temperature (SST) from ERA-
20C (Poli et al., 2016) and ERA-Interim (Dee et al., 2011) reanalysis products, span-
ning 1902-2008 and 1980-2016, respectively. For the three atmospheric variables we
evaluate the North Atlantic-European sector covering 70

◦W-40
◦E, 25

◦-80
◦N, and for

SST covering 90
◦W-40

◦E, 5
◦-80

◦N.

a.3.1.2 Ensemble simulations

We use two sets of 30-member hindcast simulations with the Max Planck Institute
Earth System Model in its mixed-resolution setup (MPI-ESM-MR, Dobrynin et al.,
2018). The atmospheric component ECHAM6 Stevens et al., 2013 has a resolution of
T63L95, with an approximate horizontal resolution of 200 km (1.875

◦) and 95 vertical
layers up to 0.01 hPa. The oceanic component MPI-OM Jungclaus et al., 2013 has a
resolution of TP04L40, with an approximate horizontal resolution of 40 km (0.4◦) and
40 vertical layers. External forcing is taken from CMIP5 Giorgetta et al., 2013. The first
set of hindcasts is used for training and evaluation, and covers the period 1902-2008

(hereafter: test ensemble), and the second is used for an independent verification
(Sect.A.3.4, see Fig.A.1) and covers 1980-2016 (hereafter: independent ensemble).

The test ensemble is initialised on 1st of May every year from 1902-2008, with ini-
tial conditions taken from an assimilation experiment. The assimilation experiment
is performed using the MPI-ESM-MR with full-field nudging by Newtonian relax-
ation towards all atmospheric and ocean levels except in the boundary layer. The
atmosphere conditions of vorticity, divergence, three-dimensional temperature and
two-dimensional pressure are taken from ERA-20C. In the ocean, three-dimensional
daily mean salinity and temperature anomalies are nudged at a relaxation time of
approximately 10 days. The ocean state is derived in an ocean-only simulation per-
formed with MPI-OM forced with the atmospheric variables from ERA-20C. The
three-dimensional atmospheric and ocean fields of the assimilation experiment form
the initial conditions, and ensemble members are generated by small perturbations
of the atmospheric state by disturbing the diffusion coefficient in the uppermost
layer.
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Figure A.1: Sketch of workflow. A.1: We use SOM to identify atmospheric teleconnections
dominating the large-scale variability over the Euro-Atlantic region in 1902-2008.
The final SOM output is a map consisting of twelve SOM modes. We train SOM
with monthly July and August sea level pressure (SLP) in the reanalysis data.
This same data is used to train a k-means clustering (k=4) to be used as a ref-
erence, whose centroids are labelled NAO+, NAO-, At. Ridge or At. Low as
proposed in Cassou et al., 2005. A.2: We calculate pattern correlation between
SOM modes and the k-means centroids to associate each summer SOM mode to
a summer atmospheric teleconnection. We repeat this process with the k-means
centroids to label each JA SLP field of the reanalysis and the hindcast. Lastly,
we identify SST predictor patterns by calculating composite April SST patterns
in the reanalysis w.r.t. SOM modes. Those SST predictor patterns are used to
classify each North Atlantic April SST field in the pre-forecast data using pat-
tern correlation. Given that each SST predictor pattern precedes a summer SOM
mode associated with NAO+, NAO-, At.Ridge or At. Low, we are able to define
a summer atmospheric teleconnection "first guess" before each initialisation. B.1:
Using the test ensemble, we evaluate the hindcast skill for 3-4 month lead time
considering the full ensemble to calculate the ensemble mean. B.2: We perform
ensemble subsampling to re-calculate the ensemble mean by selecting only en-
semble members whose labels agree with the "first guess", and compare with the
full ensemble. C.1: We label, classify and subsample the independent ensemble
as verification of our method.
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Similarly, the independent ensemble is initialised in 1st of May every year from
1980-2016 from an assimilation experiment where ERA-Interim data (Dee et al., 2011)
is assimilated in the atmospheric model component, and ORA-S4 data (Balmaseda
et al., 2013) and National Snow and Ice Data Center observations (Comiso, 1995) are
assimilated in the ocean/sea ice component.

We use July and August monthly means (3-4 months lead time) of SLP, Z500 and
T2m from test and independent ensembles. At every gridpoint we compute anoma-
lies by removing mean seasonal cycle and linear trend, in order to eliminate the
centennial-scale climate change signal. We use July-August seasonal means (JA) to
focus on the low-frequency dominant summer atmospheric teleconnections. In ad-
dition, we calculate spatial averages weighted by the cosine of latitude to take into
account the dependence of the gridpoint density on latitude.

a.3.2 Training

a.3.2.1 Pattern identification and labelling

We use monthly July and August SLP fields from ERA-20C reanalysis to train Mini-
som, a Python implementation of Self-Organising Map (SOM) (Vettigli, 2019). SOM is
a non-linear method based on unsupervised learning with two-layer neural networks
(Kohonen, 1984). SOM’s architecture allows for a reduced and ordered representa-
tion of high-dimensional datasets by a smaller set of variables. In a typical two-layer
SOM, the input layer corresponds to feature vectors from the training dataset, while
the output layer is the SOM map. The SOM map is a topological ordering of neurons
usually in 2D grid (denoted SOMij, where i and j are the grid indices of the SOM
map). This layer is fully connected to the input layer via weight vectors with the
same dimension as the feature vectors. The lattice structure of the layers permit to
calculate a measure of distance (here Euclidean distance) and identify the shortest
path between neurons of both layers, thereby assigning as Best Matching Unit the re-
spective closest neuron in the SOM map, iteratively. A fundamental property of SOM
is the topological ordering: neighbouring neurons SOMij represent similar neurons
in the input data space and therefore share similar properties. Hereafter we adopt
mode as terminology to refer to neurons in the SOM map. For details on the SOM
algorithm see Kohonen, 2013.

We train a 3x4 rectangular lattice of neurons (i.e. SOM34) and choose training pa-
rameters as a compromise to keeping low quantisation and topological errors, while
achieving a detailed view on the representative SOM modes associated with the
summer atmospheric teleconnections defined in Cassou et al., 2005. We find that
optimum parameters are i) initial spread of the neighbourhood function σ(0) = 0.01

(Gaussian) and ii) learning rate 0.8, for a maximum of 100000 iterations in batch
training mode. Our tests with larger SOM sizes (e.g. 4x4, 5x5) showed qualitatively
similar modes to the chosen 3x4 lattice, although showing duplicate patterns. Hence,
a 3x4 SOM lattice balanced the need to represent the main summer atmospheric tele-
connections with the least number of modes possible. The final output of the SOM
training is a 12-mode SOM map (hereafter: SOM master). In addition to the SOM
master, we perform a similar SOM training for each individual ensemble member of
the test ensemble to allow comparison between model and reanalysis.
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Next, we label each SOM mode as either At. Ridge, At. Low or NAO in positive
or negative phase to allow comparison with other studies using EOF or k-means.
We label by calculating pattern correlation between each SOM mode and the four
centroids of a k-means clustering of ERA-20C JA SLP means, previously labelled
according to Cassou et al., 2005; Cattiaux et al., 2013. We obtain similar labels if
classifying the SOM modes with hierarchical agglomerative clustering using ward
dissimilarity (Jain and Dubes, 1988). Note that during learning, each observation
in the training dataset is associated with only one mode SOMij in the SOM map.
In other words, this analysis assigns one dominant atmospheric teleconnection per
summer each year.

a.3.2.2 Define predictor

We derive a set of twelve SST predictor patterns by calculating monthly April North
Atlantic SST composites in the reanalysis w.r.t. the SOM master. That is, each SST
composite pattern is a mean over the years associated with the input vector con-
nected to a specific SOM mode in summer. We assume that each pattern is a poten-
tial predictor for one of the four atmospheric teleconnections (At. Low, At. Ridge,
NAO+ or NAO-). To test this in the model, we classify each April North Atlantic
SST field in the pre-forecast data according to the SST predictors via maximum pat-
tern correlation. Thus, the most similar SST predictor defines a summer atmospheric
teleconnection ”first guess” before each initialisation, which we use as subsampling
criteria in Sect.A.3.3.

a.3.3 Evaluation

a.3.3.1 Hindcast skill analysis & ensemble subsampling

The hindcast skill of MPI-ESM-MR against reanalysis data is assessed using point-
wise detrended anomaly correlation coefficient (ACC) (Collins, 2002), which de-
scribes the model ability to reproduce the reference anomalies.

For single-model initialised ensemble prediction systems, ensemble subsampling
consists of a post-processing technique that pre-selects potentially skillful ensemble
members prior to a predictive skill assessment, given a statistical link to sources of
high predictability (e.g. Dobrynin et al., 2018). We perform an ensemble subsampling
with the aim of leveraging the MPI-ESM-MR ensemble prediction system before cal-
culating the ensemble mean and assessing the hindcast skill. This procedure retains
only ensemble members anticipated by the SST predictor to re-calculate the ensem-
ble mean, i.e. selects a subsample of potential skillful ensemble members per year.
That is, it allows us to investigate the conditional predictability of the SST predictor
on the summer atmospheric circulation. This selection of ensemble members is used
to re-calculate the ensemble mean of SLP, Z500 and T2m.

a.3.4 Verification

We use the independent ensemble (Sect.A.3.1.2) to evaluate the robustness of our
spring SST predictors in selecting potential skillful ensemble members at the ini-
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tialisation of summer predictions for the period 1980-2016. Even though "test" and
"independent" ensembles derive from completely independent seasonal prediction
systems, we acknowledge that an overlapping period (1980-2008) is present in the
verification, implying that the conclusions drawn in this section must be taken with
care. We stress, however, that excluding this overlapping period would lead to a very
limited statistical analysis of the model predictive skill covering only the 8-year pe-
riod 2009-2016, and thus preventing us from reproducing the analysis performed in
Sect.A.3.3. Once more observed and predicted years become available, it would be
relevant to perform this analysis without overlap with the training period.

To perform the verification, we firstly label the independent ensemble as described
in Sect.A.3.2.1. Next, using the assimilation experiment as our pre-forecast data, we
classify SST as described in Sect.A.3.2.2. Lastly, we perform a hindcast skill analysis
and ensemble subsampling (Sect.A.3.3), comparing to ERA-Interim (Dee et al., 2011)
reanalysis.

a.4 results

a.4.1 Dominant summer atmospheric teleconnections

We use a 3x4 SOM to represent the summer (July-August) sea level pressure vari-
ability spanning 1902-2008 in the Euro-Atlantic region using the reanalysis (Fig.A.2
shows the labelled SOM master, where the position of some modes differ from the
original SOM map, see Fig.A.9). We group together SOM modes associated with the
same main atmospheric teleconnections (i.e. NAO+, NAO-, At. Ridge or At. Low)
and identify two main groups based on the meridional position of cyclonic and an-
ticyclonic pressure centres. The first group comprises SOM modes 1-6, with NAO+
and At. Ridge modes, the second group comprises SOM modes 7-12, with NAO-
and At. Low modes. In terms of the preferred jet stream position, the first group of
atmospheric teleconnections is usually associated with northerly or central positions,
while the second with southerly or central (e.g. (Trouet et al., 2018; Woollings et al.,
2010). For simplicity, we refer to the former as northern jet group, and the latter as
southern jet group.

NAO modes in positive (SOM modes 1-3) and negative (SOM modes 7-10) phases
are located in opposite corners of the original SOM master, showing the highest
topological distance and therefore the least level of similarity (c.f. Fig.A.9). Clear
spatial asymmetries revealed by the non-linear method can be observed between the
two phases. SOM modes 4-6 and 11-12 cover a range of wavy patterns related to
At. Ridge (SOM modes 4-6), and At. Low (SOM modes 11-12). While NAO modes
show significant moderate correlation to the correspondent first EOF of SLP (e.g.
SOM mode 1: 0.36, p < 0.05 and SOM mode 10: -0.54, p < 0.05), no significant
pattern correlation can be found with the second EOF of SLP. Yet, some modes bear
high similarity with At. Ridge (SOM modes 4-6) and At. Low (SOM modes 11-12),
reported in Cassou et al., 2005.

Next, we assess the agreement between atmospheric teleconnections in the reanal-
ysis and those simulated by MPI-ESM-MR in the test ensemble (Fig.A.3 a, b). As op-
posed to a traditional evaluation using the ensemble mean, we instead analyse each
ensemble member separately to assess the intra-ensemble variability. Spatially, we
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Figure A.2: SOM master representing the dominant summer atmospheric teleconnections
in the North Atlantic European sector during 1902 - 2008, trained with ERA-
20C July and August sea level pressure (SLP). Note that some modes were re-
positioned with respect to the original SOM map to facilitate the interpretation
of results.

a) b)

Figure A.3: Model agreement with reanalysis: a) Pattern correlation between observed and
simulated SOM modes (per ensemble member). b) Associated frequency of ob-
served and simulated SOM modes (per ensemble member). X markers and
dashed line represent observed frequencies.

find overall moderate pattern correlation values, with At. Low modes (SOM modes
11-12) and one NAO+ mode (SOM mode 3) differing the most between model and
reanalysis. In contrast, At. Ridge modes SOM 4-5 show the best agreement. While
pattern frequency results (Fig.A.3b) show high intra-ensemble variability, the model
fails at times to encompass the observed frequency (e.g. SOM modes 1, 6, 8). The
model tends to underestimate the frequency of At. Low (SOM modes 11-12), and
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Figure A.4: Spring sea surface temperature (April SST) predictor patterns in the reanalysis
w.r.t. the SOM master (Fig.A.2), for the period 1902-2008. Each pattern of SST
precedes a summer SOM mode, as labelled.

overestimate NAO+ modes (SOM modes 1-2). We hypothesise that these limitations
in the model representation of the observed summer variability pose a constraint on
the credibility of summer predictions in the Euro-Atlantic region one season ahead
based on this prediction system.

a.4.2 Target regions for skill improvement and link to SST

In this section, we evaluate the relationship between spring SST and summer SLP to
target regions for potential skill improvement in the model. The set of spring SST pre-
dictors (Fig.A.4) show reasonable agreement with previous studies (e.g. Gastineau
and Frankignoul, 2015). Preceding summers dominated by At. Ridge (hereafter: pre-
At. Ridge), we find SST tripole patterns with warm SST anomalies in the tropical
North Atlantic and western subpolar gyre off Newfoundland, and mostly cold SST
in the subtropical western North Atlantic. At. Low summers follow major North
Atlantic basinwide cooling, with a warming pattern near Greenland and off New-
foundland (hereafter: pre-At. Low). In contrast, negative NAO summers mostly fol-
low horseshoe-like SST patterns with warm anomalies except over the subtropical
gyre (hereafter: pre-NAO-). One case stands out, however, showing instead a SST
predictor similar to the At. Low ones (c.f. Fig.A.4, pre-SOM mode 8). Lastly, we find
no consistent mean SST pattern preceding positive NAO summers, but a set of three
different SST tripole patterns with a common cooling over the North Sea and off the
coast of northwest Africa (hereafter: pre-NAO+).

We evaluate the linear relationship between April North Atlantic SST predictors
and JA SLP using the reanalysis (Fig.A.5). Areas of significant correlation indicate
where the specific SST predictor might influence the summer circulation, and thus
serve as reference to interpret any skill improvement in the model. We find that SST
predictors have significant influence on JA SLP in At. Ridge (pre-SOM modes 4-6)
and At. Low cases (pre-SOM modes 11-12), and in less extent to NAO+ (pre-SOM
modes 1-2) and NAO- (pre-SOM modes 8-10). We find reasonable agreement with
correlation results for the SST predictors and JA T2m or JA Z500 (not shown). From
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Figure A.5: Summer sea level pressure (JA SLP) point-wise correlated to timeseries associ-
ated with April sea surface temperature (SST) predictor patterns for the reanal-
ysis over the period 1902-2008. Stippling represents correlation significant at the
95% level.

Fig.A.5 we might expect to find skill improvement only for the summer circulation
over Greenland, Scandinavia, central Europe and a region over the ocean west of
Iberia Peninsula using our SST predictors.

a.4.3 Windows of opportunity for MPI-ESM-MR based on SST

Firstly, we use the test ensemble to evaluate whether the SST-SLP relationship found
in the reanalysis holds in the model. Next, we use the independent ensemble to test
the robustness of this relationship and to assess the potential of skill improvement
for other variables.

We evaluate the predictive skill at 3-4 months lead time for JA SLP in the test
ensemble, for SST predictors of each of the four main summer atmospheric telecon-
nections separately to distinguish the contribution of SST (Fig.A.6). As a first step
we analyse ACCs before subsampling in the ensemble space, considering the full
ensemble (Fig.A.6a, d, g, j). We find distinct predictive skill for each group of SST
predictor, with SST predictors for At. Ridge (i.e. pre-At. Ridge) showing highest skill
off the Iberian coast, but no skill over land. The remaining groups show very limited
skill overall.

We perform ensemble subsampling by selecting ensemble members according to
the April SST classification in the pre-forecast data in predicting northern (At. Ridge
or NAO+) or southern jet (At. Low or NAO-) groups. For example, Fig.A.6b shows
the ACC calculated for the ensemble mean over members which predict either NAO+
or At. Ridge, for those years where April SST in the pre-forecast data classifies as
pre-NAO+. A more strict selection allowing only one dominant atmospheric telecon-
nection per summer leads to a weak improvement. We include difference plots to
illustrate the effect of performing ensemble subsampling on the predictive skill, in
comparison to the traditional analysis using the full ensemble mean. Physically, a
positive difference in correlation (selected minus full ensemble) thus represents the
model predictive skill that could be achieved by this prediction system, if corrected

36



Figure A.6: Evaluation of SST as predictor in the test ensemble. Anomaly correlation coef-
ficients (ACC) for sea level pressure (SLP), comparing the test ensemble to the
reanalysis in 1902-2008. On the first row (uppermost) ACCs are calculated for
years where April SST months in the pre-forecast data are classified as preceding
NAO+, i.e. pre-NAO+. Similarly, the remaining three rows show ACCs for the
case of pre-Atl. Ridge, pre-NAO- and pre-At. Low, respectively. Column-wise,
ACCs are presented as follows: a), d), g), j) the ensemble mean is taken over the
full ensemble; b), e), h), k) the ensemble mean is taken over the selected ensem-
ble; c), f), i), j) differences in ACC between full and selected ensemble mean. The
criteria for the selected ensemble is explained in Stippling represents correlation
significant at the 95% level.
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using our method. In contrast, a negative difference in correlation suggests that the
SST predictor is not sufficient to perform a first guess, or that the model is unable to
accurately simulate the atmospheric teleconnection under the circumstances given.

Comparing selected and full ensemble in Fig.A.6, we find significant regional im-
provement in the predictive skill of JA SLP for SST predictors of At. Ridge and
Low. Improvement is highest for At. Ridge over Greenland and Scandinavia, reach-
ing ACCs above 0.6. These regions of improvement in skill agree with the expecta-
tion based on Fig.A.5, SOM modes 4-6. This finding further agrees with Fig.A.2b, c,
which shows that At. Ridge is the atmospheric teleconnection best represented by
MPI-ESM-MR, thus having the potential to benefit the most from a physics informed
subsampling. For NAO+ and NAO-, improvement is limited to the region over the
ocean off the Iberian Peninsula, insignificant at the 95% level. We speculate that this
is partly due to the less accurate representation of some NAO SOM modes by MPI-
ESM-MR (see Fig.A.2b, c), in addition to a weaker SST-SLP relationship than for At.
Ridge and Low modes (see Fig.A.5).

To contribute to the interpretation of predictive skill improvement, we test the ben-
efit of refining the model ensemble with a "perfect" selection using the test ensemble.
The "perfect" ensemble selection assumes that the dominant summer atmospheric
teleconnection in the Euro-Atlantic domain is known each year in advance, thereby
estimating the potential skill if such atmospheric teleconnection would be perfectly
predicted by the model. We stress that, as opposed to the "selected" ensemble, such
an analysis is only possible in hindcast mode, thus not being reproducible in real
forecast mode. We analyse northern and southern jet groups separately to distin-
guish the effect of subsampling for SLP. In Fig.A.7, we select only ensemble members
which agree with the atmospheric teleconnection label predicted by the reanalysis in
a given year to calculate the ensemble mean. We find major skill improvement in the
Euro-Atlantic sector for SLP predictions at 3-4 months lead time, with about half of
the ensemble members selected to re-calculate the ensemble mean (Fig.A.7g). The
main area of improvement fairly agrees with the position of the jet: over Scandinavia
for the northern group and over south-western Europe for the southern group. This
suggests that the area of skill improvement depends on on the skill of the model in
simulating the relationship between predictor and target.

a.4.4 Test with the independent ensemble

Next, we use the independent ensemble to test whether these findings hold for an
independent hindcast dataset covering the period of 1980-2016 (Fig.A.8). In addi-
tion to SLP, we test how the selection of ensemble members based on the SST-SLP
relationship impacts the predictive skill of T2m and Z500. We analyse two groups
and calculate ACCs for SST predictors for northern jet (pre-At. Ridge or NAO+) and
southern jet (pre-At. Low or NAO-), similarly to Fig.A.7. Analysing the full ensemble
(first column), we find for both SLP and Z500 that the northern jet group (Fig.A.8a,
g) shows higher skill for northern Europe in comparison to the southern jet group
(Fig.A.8j, p). Still, improvement for SLP and Z500 skill (Fig.A.8c, i, l, r) takes place
in similar areas as for the independent ensemble (Fig.A.6 and Fig.A.11), albeit less
pronounced. For T2m in the selected ensemble (Fig.A.8d-f), we find skill improve-
ment for north-western Europe, with ACCs over Scandinavia reaching significant
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Figure A.7: "Perfect" model approach. Anomaly correlation coefficients (ACC) for sea level
pressure (SLP), comparing the test ensemble to the reanalysis in 1902-2008. On
the upper row ACCs are calculated for years where the observed dominant sum-
mer atmospheric teleconnection is classified as either At.Ridge or NAO+. Con-
versely, in the lower row ACCs are calculated for At. Low or NAO- cases. ACCs
are presented as follows: a) and d) the ensemble mean is taken over the full en-
semble; b) and e) only members whose classification matches the observed are
selected to calculate the ensemble mean; c) and f) differences in ACC between
full and selected ensemble mean. Stippling represents correlation significant at
the 95% level. g) Bar plots show the fraction of ensemble members selected per
year: red bars for observed At.Ridge or NAO+, blue bars for At. Low or NAO-
cases. Horizontal lines show the mean fraction for each case.
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values above 0.5 (at 95% level) for spring SST indicating northern jet group (pre-At.
Ridge/NAO+). We find no significant T2m skill improvement for the southern jet
group (Fig.A.8m-o). Despite not reaching statistical significance, a correspondence
in the spatial pattern improvement for SLP, Z500 and T2m (Fig.A.8c, f, i) alludes
that the ensemble subsampling based on the spring SST - summer SLP relationship
influences the predictive skill of Z500 and T2m. This suggests the effect of the large-
scale atmospheric circulation as a dynamical driver of temperature variability at the
seasonal timescale, and illustrates the importance of improving the simulation of
summer atmospheric teleconnections within the ensemble as a step to achieve skill-
ful predictions of European climate.

a.5 discussion

Dynamical seasonal forecasts of European summer climate have until recently mostly
shown negligible skill (e.g. Mishra et al., 2019), presumably a consequence of model
errors in representing important drivers of summer climate variability (e.g. Beverley
et al., 2019; Ossó et al., 2020). While recent work has shown evidence for skillful
European summer rainfall predictions (Dunstone et al., 2018), model skill seemed
to stem primarily from thermodynamical drivers. Identifying processes and predic-
tors that provide forecast opportunities for skillful long-lead predictions is hence of
paramount importance.

In this paper we use SOM to enable the identification of dynamical predictors for
a pre-defined set of SOM modes. These SOM modes represent twelve stages of the
four main atmospheric teleconnections driving the large-scale summer variability in
the Euro-Atlantic region (Cassou et al., 2005). While defining these discrete samples
is a clear limitation of our approach, using SOM allows us to distinguish spring
SST patterns that can be used to indicate conditions of potentially high summer
predictive skill at prediction start. Conversely, we were unable to find skillful SST
predictors for composites based on a k-means clustering (k=4), possibly due to the
blending of patterns and loss of information (not shown).

We show in this study that April North Atlantic SST patterns can be used to se-
lect potentially skillful ensemble members for MPI-ESM-MR summer hindcasts over
specific target regions. We find that these regions depend on the dominant atmo-
spheric teleconnection in a given summer, and on the strength of its relationship
with spring SST. Based on these two criteria, we find that spring SST precursors for
At. Ridge summers correspond to conditions under which the MPI-ESM-MR sea-
sonal predictions may be expected to have particularly high skill over target regions,
thus representing forecasts of opportunity (Mariotti et al., 2020).

We identify spring SST precursor patterns for At. Ridge summers which show
reasonable agreement with results reported by Ossó et al., 2018 using Maximum Co-
variance Analysis. The authors described a pattern consisting of a spring SST dipole
between subpolar and subtropical North Atlantic that persists into summer, forced
by anomalous winter atmospheric circulation. Ossó et al., 2020 showed that this SST
pattern drives a poleward displacement of the jet stream through changes in the
background baroclinicity. Ossó et al., 2018 suggested that the summer atmospheric
response to this oceanic forcing is imprinted at the surface as an anticyclonic anomaly
that resembles the At. Ridge.
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Figure A.8: Evaluation of SST as predictor in the independent ensemble. Anomaly correla-
tion coefficients (ACC) for sea level pressure (SLP), temperature at 2 m height
(T2m) and geopotential height at 500 hPa (Z500), as labelled, comparing the in-
dependent ensemble to Era-Interim in 1980-2016. On the upper three rows ACCs
are calculated for years where April SST months in the pre-forecast data are
classified as preceding either At.Ridge or NAO+, i.e. pre-At.Ridge/NAO+. Con-
versely, the lower three rows show ACCs for the case of pre-Atl.Low/NAO-.
Column-wise, ACCs are presented as follows: a), d), g), j), m), p) the ensemble
mean is taken over the full ensemble; b), e), h), k), n), q) the ensemble mean is
taken over the selected ensemble; c), f), i), l), o), r) differences in ACC between
full and selected ensemble mean. Stippling represents correlation significant at
the 95% level.
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Identifying SST initial conditions that are linked to summers dominated by At.
Ridge 3-4 months ahead is an important step towards skillful European seasonal
summer predictions. At. Ridge has been associated with northerly wind anomalies
over western Europe (Craig and Allan, 2021), leading to a widespread below-average
surface temperature distribution (Cassou et al., 2005; Comas-Bru and Hernández,
2018). We find a similar imprint on the surface climate for SOM modes associ-
ated with At. Ridge (Fig.A.10), illustrated by composites of summer air temperature
anomalies. In combination with cyclonic conditions over the Mediterranean region,
At. Ridge has been additionally associated with easterly wind anomalies, thereby in-
fluencing the occurrence of dry spells and drought conditions over western Europe
(Haarsma et al., 2009; Rousi et al., 2021).

In addition to At. Ridge, our analysis of the relationship between spring SST and
summer SLP (Fig.A.5) suggests that spring North Atlantic SST precursors for At.
Low could predict potentially skillful ensemble members for MPI-ESM-MR summer
hindcasts (e.g. Fig.A.5, pre-SOM mode 12). While we find improvement in skill over
large areas of central Europe and off the coast of England, the improvement does
not reach significance (95%) over most areas, except over southeastern Europe. We
speculate that this is due to the more limiting representation of this atmospheric
teleconnection in MPI-ESM-MR (Fig.A.3a, b), which might imply a model limita-
tion for early warning of warmer than average summers. This finding agrees with
Neddermann, 2019, which show that a teleconnection pattern similar to At. Low in
MPI-ESM-MR shows a different structure of the centres of action in comparison to
the reanalysis.

In contrast to At. Ridge and Low, only a few studies have suggested an active role
of spring North Atlantic SST as a driver for summer NAO at seasonal to interannual
timescales (e.g. Gastineau and Frankignoul, 2015; O’Reilly et al., 2017). Osborne et
al., 2020 investigated the effect of North Atlantic SST on atmospheric circulation
responses over the Euro-Atlantic region, speculating that summer NAO-related SST
anomalies might feedback onto the At. Ridge and Low teleconnections rather than
the summer NAO. Our analysis using North Atlantic SST as precursor for NAO
show only marginal predictive skill improvement, for both NAO in positive and
negative phases. This suggests that April North Atlantic SST has a limited impact on
the seasonal predictability of summer NAO, potentially explained by this SST-NAO
inconsistency.

Though we only investigate the role of spring North Atlantic SST, other predictors
have been suggested to influence predictability of the summer atmospheric telecon-
nections analysed here. In particular, Hall et al., 2017 suggested that summer NAO
is dependent on the positioning of the polar front jet, and thus on Arctic sea ice.
Another potential predictor for summer NAO is stratospheric temperature, which
in winter establishes a downward connection from the stratosphere to the surface,
leading to enhanced surface predictability (e.g. Ayarzagüena and Serrano, 2009). For
winter NAO, a combination of these precursors in autumn with ensemble subsam-
pling allowed unprecedented skillful prediction of the NAO index in MPI-ESM-MR
(Dobrynin et al., 2018). Including such predictors to inform the ensemble subsam-
pling would be an interesting focus for future work.
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a.6 conclusions

We combine SOM and seasonal climate predictions with MPI-ESM-MR to investigate
the seasonal predictability of European summer climate associated with the North
Atlantic jet stream. We show that April North Atlantic SST patterns can be used
to select potentially skillful ensemble members for MPI-ESM-MR summer hindcasts
over specific target regions. Our main findings are:

• Our SOM analysis shows that among the four main summer atmospheric tele-
connections MPI-ESM-MR best represents Atlantic Ridge, showing the highest
agreement with the reanalysis both spatially and in frequency of occurrence.
Conversely, spatial representation of Atlantic Low in MPI-ESM-MR agrees the
least with the reanalysis, and the model underestimates frequency of occur-
rence.

• The use of SOM composites of North Atlantic SST patterns as spring SST pre-
dictors is relevant for Atlantic Ridge and Atlantic Low teleconnections, and
limited for NAO. Greenland and Scandinavia are the areas over land with most
potential spring SST influence on northern jet positions.

• Using the test ensemble (1902-2008), we find significant skill improvement for
summer SLP at 3-4 month lead time over Greenland and Scandinavia for predic-
tions initialised with SST predictors for Atlantic Ridge, for a selected ensemble
predicting northern jet atmospheric teleconnections (Atlantic Ridge or NAO+).

• Using the independent ensemble (1980-2016), we find significant skill for sum-
mer SLP at 3-4 month lead time over northern Europe for predictions ini-
tialised with SST predictors for northern jet atmospheric teleconnections (At-
lantic Ridge or NAO+). For a selected ensemble predicting northern jet telecon-
nections we find significant skill improvement over Scandinavia for both Z500

and T2m.

• A spatial correspondence in the improvement of Z500 and T2m for the north-
ern jet group suggests the effect of large-scale atmospheric circulation as a dy-
namical driver of European temperature variability at the seasonal timescale.
This finding highlights the importance of accurately representing summer at-
mospheric teleconnections in dynamical seasonal prediction systems as a nec-
essary condition towards skillful predictions of the European climate.

Our findings offer an interesting avenue for the use of SOM in further research
on windows of opportunity for seasonal climate predictions. Since our analysis only
relies on SST information prior to the initialisation of the prediction system, our
methodology can be extended and further applied to operational ensemble predic-
tion systems.
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a.7 supplementary information
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Figure A.9: Original SOM map representing the dominant summer atmospheric teleconnec-
tions in the North Atlantic European sector during 1902 - 2008, trained with
ERA-20C July and August sea level pressure (SLP).
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Figure A.10: Composite of air temperature at 2 metre in the reanalysis w.r.t. the SOM master
(Fig.2), for the period 1902-2008.
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Figure A.11: Evaluation of SST as predictor in the test ensemble. Anomaly correlation co-
efficients (ACC) for geopotential height at 500 hPa (Z500), comparing the test
ensemble to the reanalysis in 1902-2008. On the first row (uppermost) ACCs are
calculated for years where April SST months in the pre-forecast data are clas-
sified as preceding NAO+, i.e. pre-NAO+. Similarly, the remaining three rows
show ACCs for the case of pre-Atl. Ridge, pre-NAO- and pre-At. Low, respec-
tively. Column-wise, ACCs are presented as follows: a), d), g), j) the ensemble
mean is taken over the full ensemble; b), e), h), k) the ensemble mean is taken
over the selected ensemble; c), f), i), j) differences in ACC between full and se-
lected ensemble mean. The criteria for the selected ensemble is explained in
Stippling represents correlation significant at the 95% level.
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Figure A.12: As Fig.S3, for air temperature at 2 metre.
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Figure A.13: "Perfect" model approach. Root mean square error (RMSE) for sea level pressure
(SLP), comparing the test ensemble to the reanalysis in 1902-2008. On the upper
row RMSE is calculated for years where the observed dominant summer atmo-
spheric teleconnection is classified as either At.Ridge or NAO+. Conversely, in
the lower row RMSE is calculated for At. Low or NAO- cases. RMSEs are pre-
sented as follows: a) and d) the ensemble mean is taken over the full ensemble;
b) and e) only members whose classification matches the observed are selected
to calculate the ensemble mean; c) and f) differences in RMSE between full and
selected ensemble mean.
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Figure A.14: Evaluation of SST as predictor in the independent ensemble. Root mean square
error (RMSE) for sea level pressure (SLP), temperature at 2 m height (T2m) and
geopotential height at 500 hPa (Z500), as labelled, comparing the independent
ensemble to Era-Interim in 1980-2016. On the upper three rows RMSE is calcu-
lated for years where April SST months in the pre-forecast data are classified as
preceding either At.Ridge or NAO+, i.e. pre-At.Ridge/NAO+. Conversely, the
lower three rows show RMSE for the case of pre-Atl.Low/NAO-. Column-wise,
RMSEs are presented as follows: a), d), g), j), m), p) the ensemble mean is taken
over the full ensemble; b), e), h), k), n), q) the ensemble mean is taken over the
selected ensemble; c), f), i), l), o), r) differences in RMSE between full and se-
lected ensemble mean.
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b.1 abstract

We apply the causal inference-based tool Causal Effect Networks to evaluate the
influence of spring North Atlantic extratropical surface temperatures (SST) on the
summer East Atlantic Pattern (EA) seasonal predictability during the 20th century.
First in the ERA-20C reanalysis, we find that a meridional SST gradient in spring
(SST index) causally influences the summer EA, with an estimated causal effect ex-
pressed by a β-coefficient of about 0.2 (a 1 standard deviation change in spring SST
index causes a 0.2 standard deviation change in the EA 3-4 months later). We only
find this link to be causal, however, in a late period consisting of 51 years (1958 -
2008). When performing the analysis on 45-year-long timeseries randomly sampled
in this late period, we find the strength of the causal link to depend on interannual
variability, suggesting a possible modulation by an external physical mechanism. In
addition to the summer EA, we find that spring SST has an estimated causal effect
of about -0.2 on summer 2-metre air temperatures over northwestern Europe, possi-
bly mediated by summer EA. Second, we test whether MPI-ESM-MR can reproduce
the observed causal links. We use a pre-industrial and a historical simulation, and
a 30-member initialised seasonal prediction ensemble with MPI-ESM-MR to test the
model performance in reproducing the detected causal links in ERA-20C and to eval-
uate whether this performance might leave an imprint in the model predictive skill
of European summer climate. While we find that MPI-ESM-MR is mostly unable to
reproduce the causal link between spring SST and the summer EA among the differ-
ent datasets, the 30-member initialised ensemble can moderately reproduce a causal
link between spring SST and summer 2-metre air temperatures over a region west of
the British Isles. We perform a predictive skill assessment conditioned on the spring
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SST causal links for July-August sea level pressure, 500 hPa geopotential height and
2-metre air temperatures for predictions initialised in May. Our results suggest that
MPI-ESM-MR’s performance in reproducing the spring SST causal links constrains
the seasonal prediction skill of European summer climate.

b.2 introduction

The summer East Atlantic Pattern (EA) is amongst the important atmospheric tele-
connections influencing weather and climate in the Euro-Atlantic region (e.g. Bastos
et al., 2016; Comas-Bru and McDermott, 2014). Along with the summer North At-
lantic Oscillation (NAO), these teleconnections are often used to describe the com-
bined changes in latitude and speed of the North Atlantic jet stream (Woollings et al.,
2010) – one of the major modulators of mid-latitude weather extremes (e.g. Rousi et
al., 2022). Understanding the predictability associated with these teleconnections is
therefore of paramount importance. Although several recent studies have focused on
predictability of the NAO (Athanasiadis et al., 2020; Domeisen et al., 2018; Klavans
et al., 2021; O’Reilly et al., 2019), the EA has received less attention. Here, we apply a
causal inference-based tool to evaluate the influence of North Atlantic extratropical
surface temperatures (SST) on the predictability of EA at seasonal timescales.

The most common description of the EA pattern features a well-defined sea level
pressure (SLP) centre of action south of Iceland and west of the British Isles, usu-
ally defined as the second leading empirical orthogonal function (EOF) of SLP in
the Euro-Atlantic region (e.g. Moore et al., 2013). Wallace and Gutzler, 1981 define a
positive phase of the EA as characterised by a centre of action exhibiting anticyclonic
conditions, featuring the northward extension of the Azores High. A positive EA
has been associated with below-average surface temperatures (Cassou et al., 2005;
Comas-Bru and Hernández, 2018) and dry spells in parts of Europe (Rousi et al.,
2021). Conversely, anomalous cyclonic conditions offshore of Ireland have been sug-
gested to influence heatwaves in Europe for a negative EA phase (e.g. Duchez et al.,
2016). Comparing to a nonlinear approach (e.g. Carvalho-Oliveira et al., 2022; Cassou
et al., 2004), a positive EA phase is reminiscent of Atlantic Ridge, whereas a negative
EA phase resembles the Atlantic Low. A common feature amongst the different EA
definitions is that its centre of action is positioned along the NAO nodal line, thus
ultimately modulating the location and strength of the NAO dipole and the North
Atlantic storm track (Woollings et al., 2010). That is, summer climate predictability
in the Euro-Atlantic region is closely linked to EA variability.

While there is no consensus on the physical processes driving the EA, spring North
Atlantic sea surface temperatures (SSTs) have been proposed to influence EA vari-
ability and predictability. Gastineau and Frankignoul, 2015 suggested that summer
500-geopotential height anomalies in the Euro-Atlantic significantly co-vary with a
spring North Atlantic tripole pattern in observations over the 20th century. More-
over, Carvalho-Oliveira et al., 2022 suggested that spring North Atlantic SSTs can
influence predictive skill of summers dominated by EA in initialised simulations.
Based on linear regression analyses of the period 1979–2017, Ossó et al., 2018 and
Ossó et al., 2020 proposed a physical mechanism whereby anomalous extratropical
North Atlantic SSTs in spring may persist into summer and influence shifts in the
eddy-driven jet stream, imprinting at the surface a SLP pattern that resembles the
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EA. In particular, these studies suggest that this mechanism is forced by changes in
baroclinicity of the lower troposphere associated with a strong meridional SST gradi-
ent in spring located between subpolar and subtropical North Atlantic. The authors
hypothesised that the delayed atmospheric response in summer, and not in spring,
could be explained by the seasonal evolution of both SST gradient and jet stream
position, modulated by a positive coupled ocean–atmosphere feedback that operates
primarily in summer.

Nevertheless, while the linear regression-based analysis provided in Ossó et al.,
2018 suggest a contribution of spring SST on the summer SLP variability, this ap-
proach does not imply causation. Disentangling the complex causal-effect pathways
underlying the mechanism proposed in Ossó et al., 2020 over a long observational
record is a crucial step to evaluate EA predictability in dynamical climate models.
Hence, in this paper we use Causal Effect Network (CEN, Kretschmer et al., 2016;
Runge et al., 2015) to test the hypothesis of spring SST causally driving a response
in the summer SLP and temperature fields in the Euro-Atlantic sector during the
20th century. CEN overcomes spurious correlations due to autocorrelation, indirect
effects, or common drivers (Runge et al., 2019), and has been successfully used to
complement hypothesis testing for other teleconnections (e.g. Di Capua et al., 2020a).

Although dynamical seasonal forecasts of European summer climate usually show
very little skill (e.g. Mishra et al., 2019), recent studies suggest that improving the
representation of teleconnections can increase forecast skill (Carvalho-Oliveira et al.,
2022; Oliveira et al., 2020; Schuhen et al., 2022). The physical mechanism connecting
SST variability and jet stream dynamics proposed in Ossó et al., 2020 thus offers a
framework to more generally assess the influence of SST on seasonal predictability of
the EA – the aim of the present study. Therefore, we use CEN to firstly investigate un-
der which circumstances spring extratropical North Atlantic SSTs causally influence
the summer EA and its associated impact on surface climate. Secondly, we analyse
pre-industrial, historical and initialised simulations with the MPI-ESM-MR to test the
model performance in reproducing the observed SST - EA link, and to identify how
this performance might constrain the seasonal prediction skill of European summer
climate.

b.3 methodology

b.3.1 Reanalysis and model data

We investigate the SST - EA link first using ERA-20C reanalysis (Poli et al., 2016), and
then using model simulations with the Max Planck Institute Earth System Model in
its mixed-resolution setup (MPI-ESM-MR, Dobrynin et al., 2018). We use monthly
means of sea level pressure, sea surface temperature (SST), and air temperature at
2 metre height (T2m). We focus our analysis on the 101-year long period spanning
1908-2008 in the model and observations.

In MPI-ESM-MR, the atmospheric component ECHAM6 (Stevens et al., 2013) has
a resolution of T63L95, with a nominal horizontal resolution of 200 km (1.875

◦) and
95 vertical layers up to 0.01 hPa. The oceanic component MPI-OM (Jungclaus et al.,
2013) is coupled to ECHAM6 and has a resolution of TP04L40, with an approximate
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horizontal resolution of 40 km (0.4◦) and 40 vertical layers. External forcing is taken
from CMIP5 (Giorgetta et al., 2013).

We investigate how MPI-ESM-MR performs in reproducing the SST - EA link
among three independent sets of MPI-ESM-MR simulations. The datasets comprise a
pre-industrial control run (piControl), a historical run, and a 30-member seasonal ini-
tialised hindcast ensemble (MR-30). Comparing the performance of each set against
reanalysis enables us to distinguish the role of forcing (from piControl to historical),
and of assimilation (historical to initialised ensemble) on the model skill.

The pre-industrial coupled atmosphere/ocean control run piControl has a total
length of 1000 years (period 1850-2849) (Giorgetta et al., 2011), with forcing constant
in time: orbital parameters and greenhouse gases concentration are fixed at 1850

values; spectral solar irradiance remains constant as the solar cycle average over
1844-1856, and monthly ozone concentrations are fixed at the 11-year average over
1850-1860 (Mauritsen et al., 2012). The historical simulation runs from 1850 to 2005

under natural and anthropogenic forcing following CMIP5 (Dobrynin et al., 2018).
Lastly, the hindcast ensemble MR-30 is initialised on 1st of May every year from

1902-2008, with initial conditions taken from an assimilation experiment (e.g. Oliveira
et al., 2020). In the assimilation experiment, Newtonian relaxation (nudging) is used
in full-field mode towards all atmospheric and ocean levels except in the boundary
layer. The atmosphere conditions of vorticity, divergence, three-dimensional tempera-
ture and two-dimensional pressure are assimilated with ERA-20C data. In the ocean,
three-dimensional daily mean salinity and temperature anomalies are nudged at a re-
laxation time of approximately 10 days. The ocean state is derived in an ocean-only
simulation performed with MPI-OM forced with the atmospheric variables from
ERA-20C. The three-dimensional atmospheric and ocean fields of the assimilation
experiment form the initial conditions, from which 30 ensemble members are gener-
ated by perturbing the atmospheric state with slightly disturbed diffusion coefficient
in the uppermost layer.

b.3.2 Pre-processing and climate indices

We compute anomalies at every gridpoint by removing mean seasonal cycle and
linear trend, satisfying data input requirements for the CEN algorithm. We analyse
bimonthly means in March-April (MA) and April-May (AM) for spring SST and July-
August (JA) SLP and T2m. In MR-30, we use the assimilation experiment to obtain
spring SST fields, and the hindcast ensemble at lead times 3-4 months to obtain
summer SLP, T2m and 500 hPa geopotential height (Z500). We apply area-weighting
by multiplying each value with the cosine of its latitudinal location to take into
account the dependence of the gridpoint density on latitude.

We test the influence of spring extratropical North Atlantic SSTs in the summer
EA using the SST index proposed in Ossó et al., 2018. We calculate the SST index
by subtracting the average SST over the eastern box (35

◦W-20
◦W, 35

◦-42
◦N) from

the average SST over the western box (52
◦W-40

◦W, 42
◦-52

◦N), represented in green
colours in Fig.B.2f. We analyse the SST index for both March-April and April-May
means.

We calculate the EA index to analyse the summer EA teleconnection. As a first
step, we define a reference EA index as the second principal component (PC) of the
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leading empirical orthogonal function (EOF) of JA anomalies of sea level pressure
over the Euro-Atlantic sector 70

◦W-40
◦E, 25

◦-80
◦N calculated from the ERA-20C

reanalysis data (e.g. Comas-Bru and McDermott, 2014). Next, each EA index in the
model simulations from MPI-ESM-MR are calculated by projecting each ensemble
member onto the EA reference EOF. We consider a positive phase of the EA index
when characterised by a centre of positive SLP anomalies that lies south of Iceland
and west of the British Isles (e.g. Comas-Bru and McDermott, 2014; Wallace and
Gutzler, 1981, Fig.B.1a).

To fully analyse the impact of spring SST on the summer SLP variability, we in-
clude the SLP index proposed in Ossó et al., 2018, in addition to the EA index. The
SLP index is calculated as JA SLP anomalies averaged over the region 45

◦N-55
◦N;

25
◦W-5◦W indicated by a blue box in FigB.2c. We check whether the strength and

timing of the SST-SLP relationship is consistent among the two indices.
Finally, we evaluate whether spring SST influences temperatures over Europe with

a T2mCE index, defined as the average summer air temperatures over the central
European region 46

◦N-55
◦N; 11

◦E-34
◦E, represented by the red box in Fig.B.2i. All

climate indices are standardised to have mean of zero and SD of 1 to allow for
comparison.

Using the aforementioned climate indices, we perform linear regressions and cor-
relations to analyse the linear relationship between the predictor spring SST and the
target variables summer EA, SLP, and T2mCE indices. We use a two-tailed Student’s
t-test to calculate the statistical significance.

b.3.3 Causal effect network

We use Causal Effect Network (CEN, Kretschmer et al., 2016; Runge et al., 2015) to
test whether spring SST causally influences the variability of summer SLP and tem-
perature fields in the Euro-Atlantic sector during the 20th century. CEN is machine
learning tool which implements the so-called Peter and Clark momentary condi-
tional independence algorithm (PC-MCI, Runge et al., 2019) for causal discovery.
CEN iteratively calculates partial correlations amongst a set of time-series to test if
a link between a potential precursor and a target variable at a certain time lag is: i)
considered spurious, and can be explained by the combination of other time-series at
different lags (i.e. conditional independence); or ii) considered causal, and cannot be
explained by the combined influence of other investigated variables (i.e. conditional
dependence). We stress, however, that the term causal should be interpreted as causal
relative to the set of investigated variables, under the assumptions considered in the
CEN algorithm (e.g. stationarity of time-series). We refer the reader to Kretschmer
et al., 2016 for a thorough description of the CEN algorithm.

We visualise the output of CEN as a process graph, where circles represent the in-
vestigated variables, and arrows indicate the strength and the direction of the causal
links. The strength is expressed by the standardised regression coefficient, denoted
β-coefficient, and defined as the expected change of Yt in units of its standard devi-
ation (SD) induced by raising Xt−τ by 1 SD, while keeping all other potential pre-
cursors constant. Moreover, CEN outputs the autocorrelation path coefficient, which
represents the causal influence of a variable on itself, as opposed to the Pearson
autocorrelation.
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b.4 results

b.4.1 Characteristics of the observed link: temporal and spatial variability

The spatial pattern of the summer EA in its positive phase is characterised by large-
scale cyclonic conditions, except at the anticyclonic centre of action located south of
Iceland and west of the British Isles (Fig.B.1a). A typical surface climate imprint of
the summer EA in positive phase shows below-average temperatures in continental
Europe (Fig.B.1b) and below-average precipitation in the British Isles and northwest-
ern Europe (Fig.B.1c). As a first approach to evaluate the influence of extratropical
SSTs in the summer EA, we use the SST index defined in Ossó et al., 2018. A linear
correlation analysis suggests that strength of the relationship between the SST index
in spring and the EA index in summer is time dependent (Fig.B.1f). Considering a
period of 101 years (1908-2008), this relationship is weak (r = 0.2, Fig.B.1e). However,
considering indeed only the latest 51 years(1958-2008, Fig.B.1d), correlation reaches
significant values (r = 0.5). The temporal variability of this relationship is well il-
lustrated for correlations calculated using a 20-year running window, which shows
a reverse in the sign of correlations starting from 1945, and highlights an increase
in the strength beyond 1958 (Fig.B.1f). This analysis suggests that the spring SST -
summer EA relationship is nonstationary. Hence, we distinguish the following three
periods to scope the remaining analysis: i) early period: 1908 - 1957; ii) late period:
1958-2008, and iii) full period: 1908-2008.

We assess the spatial features of the SST index influence on the summer atmo-
spheric circulation in the different periods to further explore the variability of the
spring SST - summer EA relationship. We analyse average lag of 3 months, i.e. April-
May (AM) SST and July-August (JA) SLP means (3-months lag). Correlation maps
show distinct patterns in early and late periods. We find that significant correlations
between the precursor SST index and the summer sea level pressure (SLP) takes
place over a region in the North Atlantic which reasonably coincides with the loca-
tion of the EA teleconnection centre of action during the late period (Fig.B.2b, c.f.
Fig.B.1a). The location of this region seems to oscillate about 45

◦ N, remaining south
of this latitude in the early period (Fig.B.2a), while located northwards in the late
one (Fig.B.2b). Surrounding this high correlation region, the sign of correlations is
opposite between early and late periods. We find similar results using March-April
(MA) SST means, only in weaker strength.

Regression maps further suggest that spring SST anomalies persist into summer
and then influence atmospheric circulation (Fig.B.2d-f). Positive values of the AM
SST index in spring are associated with summer warm anomalies east of Newfound-
land and cool anomalies west of Iberia, leading to concomitant anticyclonic condi-
tions in the ocean located south of Greenland. In the late period, these anticyclonic
conditions coincide with the position of the EA centre of action.

Moreover, we test whether the SST index influences JA T2m via the EA. We find
significant correlations between the AM SST index and JA T2m, showing a similar
pattern as in Fig.B.1b corresponding to JA EA - T2m. We find that correlations be-
tween AM SST index and JA T2m show distinct patterns between early and late
periods (Fig.B.2g,h). A positive phase of the SST index in spring precedes a positive
phase of the summer EA (e.g. Fig.B.2e), which in turn can be associated with below-
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r = 0.51

r = 0.21

a) b)        c)

d)

f)

e)

2 m-air temperature total precipitationEast Atlantic Pattern (EA)

Figure B.1: Variability and linear relationships of EA in ERA-20C. a) Positive phase of the
EA teleconnection, defined as the second EOF of July-August SLP. b) Pointwise
correlation of EA index with concurrent July-August anomalies of 2-metre air
temperatures in the full period. c) Same as b), for July-August anomalies of to-
tal precipitation. d) Time series of SST (orange) and EA (blue) indices for the
late and e) the full periods. The full period is smoothed by a 3-year running
mean. f) Running-correlation between SST and EA indices for a 20-year window.
Coloured markers indicate significant correlations at the 95% confidence interval,
illustrated by dashed lines.
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Figure B.2: Distinct spatial characteristics of the spring SST influence on the summer cir-
culation over the 20th century (for ERA-20C). Top row (a-c) shows point-wise
correlation coefficients for the April-May SST index and July-August SLP means
considering early (1908-1957), late (1958-2008) and full periods (1908-2008), respec-
tively. Middle row (d-f) shows linear regression maps of July-August SST anoma-
lies (shading) and SLP (contours) against the precursor SST index (normalised).
Contour interval is 0.2 hPaσ-1. Bottom row (g-i) shows point-wise correlation co-
efficients for the April-May SST index and July-August air temperature at 2 metre
height. Stippling indicates correlations significant at the 95% confidence level, cal-
culated with a Student’s t-test. Boxes illustrate the regions used to calculate the
SLP and SST indices (c, f, respectively) as in Ossó et al., 2018, and the T2mCE

index, as described in the text.
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average temperatures, primarily over central Europe. In summary, this analysis re-
veals that spring extratropical oceanic forcing of the summer atmospheric circulation
has a marked temporal and spatial variability over the 20th century, only projecting
onto the EA pattern over the late period. This variability might pose a constraint on
the predictive skill of European summer climate based on spring extratropical SST
over certain periods of time.

b.4.2 Investigating causality

To further test the robustness of the SST-EA relationship in ERA-20C, we evalu-
ate whether spring extratropical SSTs and summer EA are conditionally dependent.
Specifically, we test the hypothesis that spring SST is a causal driver for the summer
EA, thus excluding autocorrelation effects or common drivers which could lead to
spurious links. We perform a causality analysis using the CEN algorithm (Runge
et al., 2015).

First, we build one CEN for each of the three investigated periods in ERA-20C.
Besides the EA and SST indices, we include two additional indices in the CEN. The
first is the SLP index, defined in Ossó et al., 2018 and illustrated by the blue box
in Fig.B.2c. We thus test whether differences between early and late periods (c.f.
Sec.B.4.1) are reflected in distinct timing or strength among the EA and SLP indices
with SST. The second index concerns summer air temperatures averaged over the
region represented by the red box in Fig.B.2i (T2mCE), which shows significant cor-
relations with SST. We test whether spring SST causally drives changes in air temper-
ature over central Europe and under which circumstances this holds true. Our CEN
analysis focuses on 3 and 4 months lag only.

Over the late period, we confirm that the spring SST index is a causal driver for
both the summer EA, and the summer SLP index, however at distinct time lags
(Fig.B.3a). The strength of the causal link is expressed by the standardised regression
coefficient, denoted β-coefficient in CEN. At 4-month lag, we find βSST→EA ≈ 0.22,
which means that a change of 1 standard deviation (SD) in the March-April SST
index leads to a change of 0.22 SD in July-August EA, when conditioned on T2mCE

and SLP indices. We find a causal link of similar strength at 3-month lag βSST→SLP

≈ 0.21 between April-May SST and July-August EA, as well as βSST→T2mCE
≈ -0.2

between April-May SST and July-August T2mCE. Although we speculate that the
link SST → T2mCE is mediated via the summer EA, we are unable to confirm this
mediation with a CEN analysis focusing on 3-4 months lag. We find no significant
causal links when analysing the full or early period.

Next, we test the sensitivity of the detected causal links between spring SST and
summer SLP to slight differences in the analysed years. By removing 6 randomly
selected years (12% of tested years in the late period) in each new CEN over 500

iterations , we test whether the causal links are particularly subjected to interannual
variability (Fig.B.3c-f). We find high variability in the strength of the links βSST→EA

and βSST→SLP (Fig.B.3b, e), ranging from zero (i.e. no causal link) to 0.5, with me-
dian values corresponding to β-coefficients calculated in Fig.B.3a. This sensitivity
in the causal link strength due to sampling suggests that the spring SST - summer
SLP relationship might be modulated by an external physical mechanism, i.e. an
additional actor excluded from this CEN.
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Figure B.3: Causal effect network analysis for the late period (1958-2008) in ERA-20C. a)
causal graph between SST index, EA teleconnection, SLP index and T2mCE (left),
and schematic illustrating the causal pathways in the Euro-Atlantic region. The
strength and direction of the causal links is given by the β-coefficient and is repre-
sented by the arrows, whereas the auto-correlation path coefficient is represented
for each variable by the respective circle colour. The numbers over each arrow
represent the time tag (in months) when the strongest causal link between each
variable pair is detected. b) Region used to calculate the SLP index (black box). c-
f) Sensitivity of the causal links shown as the PDF of β-coefficients calculated for
a random sample selection of 45 years, iterated 500 times, between the variables:
SST and SLP indices at lag 3 (a) and lag 4 (d), and SST index and EA at lag 3 (e)
and lag 4 (f). Only causal links with p_value < 0.1 are shown. Red lines show the
correspondent β-coefficients represented in (a).
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- - - - ERA-20C
- - - - MPI pi-Control
- - - - MPI historical
         MPI MR-30

MPI MR-30

Figure B.4: Model skill in reproducing summer EA and its link with spring SST. a) probabil-
ity density functions (PDF) of the summer EA and c) time series of the summer
EA: light grey colours in a) and c) represent individual ensemble members, and
dashed grey line shows the piControl. b) Running-correlation between SST and
EA indices for a 20-year window, for ERA-20C (black line), the ensemble mean
(grey line) and the historical simulation (green line). Coloured markers indicate
significant correlations at the 95% confidence interval, illustrated by the horizon-
tal dashed lines.

b.4.3 Does MPI-ESM reproduce the observed link?

We now test whether the causal links detected in ERA-20C during the late period can
be reproduced by MR-30. As a first step, we compare the model ability to reproduce
the temporal variability of the observed summer EA. We find that MPI-ESM is overall
able to reproduce the range of variability (Fig.B.4a) but shows different levels of skill
in reproducing the summer EA amongst the different simulation sets. Historical
simulations show low agreement with ERA-20C (r = 0.14), whereas MR-30 initialised
simulations tend to mostly encompass the observed variability (Fig.B.4c).

Next, we evaluate the model skill in reproducing the spring SST - summer EA rela-
tionship. We find that the model shows limited skill, with MR-30 capturing the tem-
poral variability of the relationship in the early, but not in the late period (Figs.B.4b,
B.5). A comparison between correlation maps computed for the evaluated periods
shows that while historical simulations do not show agreement in the spatial pattern
of the spring SST - summer EA relationship against observations, the MR-30 ensem-
ble mean shows an improvement in reproducing the mechanism (Fig.B.5d-f). These
results motivate us to assess whether the model is able to reproduce any of the ob-
served causal links, or whether it shows different causal paths than those observed.

We build three different CEN sets to evaluate, respectively, piControl, historical
and initialised simulations with MR-30. The variables analysed in the CEN sets are
first SST, EA and SLP indices and the time lag of interest is spring - summer (3 and
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Figure B.5: Comparison of the spatial characteristics of the SST-SLP relationship over the 20th
century (model against ERA-20C). Correlation maps show point-wise correlation
coefficients for the April-May SST index and July-August SLP means considering
early (1908-1957; a,d,g), late (1958-2008; b,e,h) and full periods (1908-2008; c,f,i),
respectively. Top row shows results for the MPI-ESM-MR historical simulation,
middle row for MPI-ESM-MR 30-member ensemble, and bottom row for ERA-
20C.
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β1: SST →SLP | EA = -0.28

anomaly correlation coefficient

β2: SST →SLP | EA = 0.36
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Figure B.6: Causal effect networks for MPI-ESM. a) Causal graph between SST index, EA
teleconnection and SLP index for the MPI-ESM-MR 30-member ensemble (MR-
30) considering the full period. b) Sensitivity of the causal links between SST,
SLP and EA indices at 3 and 4-month lags in the late period. Boxplots show β-
coefficients calculated for a random selection of 45 years, sampling one random
ensemble member amongst the 30-member set per year. This process is repeated
2000 times and only β-coefficients different from zero are shown (here denoted
MR-30 causal ensemble). Orange "x" markers represent the β-coefficient calculated
from ERA-20C (red lines in Fig.B.3). c) Same as (a) for a 1000-year long piControl
simulation with MPI-ESM-MR. Only causal links with p_value < 0.1 are shown.
d) Comparison of the impact on SLP predictive skill for 3-4 month lead time in
MR-30 against ERA-20C for timeseries showing opposite β-coefficient strengths:
a MR-30 causal timeseries with (left) β1 = -0.28, and (right) β2 = 0.36. Predictive
skill is quantified with anomaly correlation coefficients for the late period. β1

and β2 are highlighted in (b) by orange arrows.

4 months lag). While no causal links are found in the historical simulations, we find
opposite causal links than those in ERA-20C for the piControl simulation, suggesting
an atmospheric forcing into the ocean (e.g. βEA→SST ≈ 0.22), but no detected causal
influence from the ocean on the atmosphere.

Analysing the initialised simulations, we first exploit the full 30-member ensemble
MR-30 to build a CEN for the full period (1908-2008), where each constructed time-
series thus comprises 3030 years. We find that MR-30 is able to reproduce a weakly
positive SST - EA link (i.e. βSST→EA|SLP = 0.03) at 3-month lag, but not at 4-month
lag as detected in ERA-20C during the late period, and in much weaker strength
(i.e. βSST→EA|SLP = 0.22, ERA-20C). No causal links from SST to EA or SLP indices
are found when analysing only the late period (1958-2008). Next, we therefore in-
vestigate the causal link sensitivity to the sample size and focus on 45-year long
timeseries covering the late period, allowing a direct comparison with the sensitivity
analysis performed in ERA-20C (Fig.B.6b-e).
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b.4.4 Sensitivity analysis and impact on predictive skill

We perform a two-step sampling method in our sensitivity analysis with MR-30.
First, 45-years are randomly selected in the late period (1958-2008). Second, one en-
semble member amongst the full 30-member ensemble is randomly selected in every
year. We iterate this process 2000 times, thus generating 2000 45-year-long timeseries
for each SST, EA and SLP variables. In each iteration, we build one CEN to analyse
whether any causal associations are detected for the sampled SST, SLP and EA time-
series. Our sensitivity results suggest that the model is mostly unable to reproduce
the observed links between SST and EA or SLP indices (Fig.B.6b), showing only in
very rare cases β-coefficients in the positive range as in ERA-20C (Fig.B.3).

We hypothesise that this MR-30 limitation in reproducing the causal links detected
in ERA-20C might constrain the skilful prediction of European summers a season
ahead. As a first test, we focus on two particular β-coefficients, namely β1 = -0.28

and β2 = 0.36, corresponding to the link SST → SLP at 3-month lag illustrated by
orange arrows in Fig.B.6b. In other words, we analyse two cases with strong causal
link strength but in opposite signs, with β2 lying in the observed ERA-20C range.

We perform a predictive skill assessment for each MR-30 causal timeseries respec-
tive to β1 and β2 against ERA-20C, checking whether the strength of the causal link
has a fingerprint in the predictive skill of JA SLP. We find a better agreement between
model and reanalysis for β2 than for β1, with significant anomaly correlation coeffi-
cients (ACC) particularly over the region where spring SST is significantly correlated
to summer SLP in ERA-20C (e.g. FigB.2b). However, since positive causal links are
only seldom present in MR-30, we are unable to identify a robust fingerprint in the
predictive skill related to any of the links between SST and EA or SLP indices.

Nevertheless, identifying a robust fingerprint of spring SST on summer predictive
skill could be an important step towards targeting forecasts of opportunity (Mari-
otti et al., 2020). The correlation analysis in Fig.B.2 suggests that spring SST could
influence summer T2m variability over the Euro-Atlantic region in ERA-20C during
the late period (Fig.B.7a). Therefore, we perform an additional causality analysis in
ERA-20C to highlight where in the T2m field a causal influence of spring SST is ex-
pected, and whether this causal relationship could be used to investigate an effect
on MR-30’s predictive skill.

We compute a causal map (Di Capua et al., 2020b) that represents the beta coef-
ficients calculated for the link between AM SST index and each grid point of the
JA T2m field, i.e. βSST→T2m (Fig.B.7b). Results are similar if we calculate the causal
link conditioned to either EA or SLP index with a 3-month lag (not shown). In other
words, the linear influence of spring SST index on summer T2m cannot be exclusively
explained by the linear influence of neither EA nor SLP index in spring. We find two
causal regions of opposite signs. The first region shows negative causal links and is
located in northwestern Europe, partly encompassing the area used to calculate the
T2mCE index expressed in the causal graph in Fig.B.3a. This can be interpreted as
an increase of 1 SD in the spring SST index (e.g. warming over subpolar, and cooling
over subtropical North Atlantic) causally driving a decrease of about 0.3 SD in the
summer T2m field in northwestern Europe. The second region shows positive causal
links with βSST→T2m > 0.5 and partly overlaps the region of highest correlation be-
tween AM SST and JA SLP (e.g. FigB.7b). We therefore compute a causal map for the
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link βSST→SLP at 3-month lag, to also highlight in the JA SLP field where AM SST is
a causal influence (FigB.7d). We find that a positive causal region associated with AM
SST is present in both JA SLP and T2m fields, illustrated by a grey box in FigB.2b,d
and denoted Ridge. Targeting this causal region, we test the hypothesis that predic-
tive skill of the summer surface climate in MR-30 might be higher for timeseries able
to reproduce the causal link strength in ERA-20C (βSST→T2m > 0.5), than for those
unable to reproduce the link (βSST→T2m = 0). We focus on the positive causal region
identified in Fig.B.7b,d to calculate a T2m index corresponding to the average over
40

◦N-55
◦N; 15

◦W-34
◦W (denoted T2mRidge). We perform a CEN sensitivity anal-

ysis to investigate this causal link, whereby each constructed CEN consists of SST,
T2mRidge and SLP indices calculated with MR-30. We perform a two-step sampling
method to generate 500 timeseries consisting of 45-years randomly selected in the
ensemble space during the late period – similarly to the analysis performed for SST,
EA and SLP. At 3-month lag, we find that MR-30 is able to reproduce a range of beta
coefficients for SST → T2mRidge, encompassing the observed link 16% of the times
(Fig.B.7e). That is, 16% of random combinations in the MR-30 ensemble space result
in a MR-30 causal timeseries which represents a causal influence of the SST index in
spring (April-May) onto the T2mRidge in summer (JA).

To test our hypothesis, we evaluate whether the strength of this causal link (i.e.
βSST→T2mRidge

at 3-month lag, Fig.B.7c) is imprinted on MR-30’s skill in predicting
summer SLP, T2m and Z500 for the Ridge region a season ahead. We quantify the
predictive skill with ACC using ERA-20C as a reference, for two opposite cases in
MR-30: i) timeseries showing strong β-coefficients lying in the range 0.6 < β < 0.8
and ii) timeseries showing beta-coefficients = 0, i.e. non-causal. We find 25 samples in
i), and we therefore randomly select 25 samples in ii) to enable a direct comparison.
We calculate the ACC for each of the total 50 samples, averaging over the Ridge
region (Fig.B.7f). We find that a random selection in the ensemble space tends to
show higher median and maximum values for the predictive skill of SLP, T2m and
Z500 when MR-30 reproduces the causal link βSST→T2mRidge

, than when the causal
link is absent.

b.5 discussion

The framework of forecasts of opportunity (Mariotti et al., 2020) in seasonal predic-
tion has been increasingly explored to identify physical processes which lead to
enhanced predictability and forecast skill. Such a strategy has been particularly use-
ful for summer (Carvalho-Oliveira et al., 2022) and winter (Dobrynin et al., 2018)
seasonal predictions in the European region, where predictive skill is limited. Here,
we target the summer EA to understand how its seasonal predictability is influenced
by spring North Atlantic SSTs using the causal inference-based tool CEN.

Using ERA-20C, our CEN analysis confirms that the spring SST index proposed
in Ossó et al., 2018 causally influences the variability of summer SLP in the Euro-
Atlantic region with a 3-4 months delay during the late period. Specifically, we find
that a 1 SD change in the spring SST index first drives a 0.2 SD change in the summer
SLP index at 3-month lag (e.g. March-April SST → June-July SLP index), and then
drives a 0.2 SD change a month later in the summer EA (e.g. March-April SST → July-
August EA, Fig.B.3a). While EA and SLP indices are highly correlated (r = 0.82), the
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Figure B.7: Spring extratropical SST causal associations and impact on MR-30 predictive skill.
Point-wise correlation coefficients for (a) April-May SST index and July-August
T2m; (c) April-May SST index and July-August SLP. Correlations are calculated
for ERA-20C during the late period, as in Fig.B.2i,b, respectively. Correspondent
causal maps, showing the causal associations between (b) April-May SST index
and July-August T2m βSST→T2m; (d) April-May SST index and July-August SLP
βSST→SLP. Grey boxes highlight the region of strongest causal influence and
represents the area used to calculate the T2m index used in (e), and is denoted
T2mRidge in the text. e) Sensitivity of CEN built with the SST, SLP and T2m
indices for MR-30. Boxplots show β-coefficients calculated for a random selection
of 45 years, sampling one random ensemble member amongst the 30-member set
per year. This process is repeated 500 times and only β-coefficients different from
zero are shown. Orange "x" markers represent the β-coefficient calculated for a
CEN built with the SST, SLP and T2m indices from ERA-20C for the late period.
Only causal links with p_value < 0.1 are shown. f) Comparison of the impact
on summer surface climate predictive skill in MR-30 against ERA-20C for causal
and non-causal MR-30 timeseries. Mean ACCs are shown for July-August sea
level pressure (SLP), 2-metre air temperature (T2m) and 500 hPa geopotential
height (Z500), averaged over the region highlighted by the grey box. See the text
for further description.
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position of the area used to calculate the SLP index (Fig.B.2c) only partly overlaps
the EA centre of action (Fig.B.1a), which extends further northwest. We speculate
that the northward migration of the North Atlantic Jet stream during summer (e.g.
Hallam et al., 2022) could explain the delay of a month between the causal link of
SST index and EA/SLP indices.

Besides extratropical SSTs, ENSO-related tropical forcing has been suggested to
influence the summer EA over more recent decades (1979 - 2016, e.g. O’Reilly et
al., 2018; Wulff et al., 2017). As opposed to the mechanism proposed in Ossó et al.,
2018, Wulff et al., 2017 suggested that the summer EA is forced by diabatic heating
anomalies in the tropical Pacific and Caribbean, and it is characterised by an extrat-
ropical Rossby wave train with a centre of action west of the British Isles. The CEN
analysis proposed in this paper could therefore be extended to include tropical SST
predictors, thus testing how the causal links discussed here could be affected by the
influence of additional drivers.

Our findings suggest that the causal links detected in ERA-20C are nonstationary
during the 20th century, being present only in the late period. Nonstationarity in
teleconnections has been reported by several studies (e.g. Weisheimer et al., 2019;
Woollings et al., 2015). In particular, Rieke et al., 2021 used a 700-year pre-industrial
control run with MPI-ESM-LR to investigate the tropical link of the summer EA
(Wulff et al., 2017) with a statistical model, and showed that the link had a non-
stationary behaviour, being present in some multidecadal epochs but not in others.
Detecting nonstationarity in the causal links discussed here has an important con-
sequence for the application on predictive skill in seasonal forecasting, implying a
limited use of such causal links to target forecasts of opportunity.

Yet, our causality analysis with CEN offers an alternative assessment of MPI-ESM-
MR’s performance, enabling a direct comparison of the causal links reproduced by
the model with those detected in reanalysis. We find that the causal links between
spring SST index and summer EA and T2m are absent in piControl and historical
simulations, but appear in some 45-year-long timeseries sampled in the initialised
ensemble MR-30, thus suggesting a role of initialisation (Fig.B.6). We use a random
ensemble subsampling to perform a predictive skill assessment conditioned to MR-
30’s performance in reproducing causal links between spring SST and both summer
EA and T2mRidge. As a result, one ensemble member is randomly chosen among
the 30-member per year. Alternatively, performing an ensemble subsampling to cal-
culate an ensemble mean over a subset of ensemble members could provide a better
analysis of MR-30’s potential. Nevertheless, our results suggest that MR-30’s limited
performance in reproducing these causal links, in particular between spring SST and
the summer EA, might explain its low skill in predicting summer seasonal European
climate (e.g. Carvalho-Oliveira et al., 2022; Neddermann et al., 2018).

b.6 conclusions

We apply the causal inference-based tool CEN to evaluate the influence of spring
North Atlantic extratropical SSTs on the predictability of summer EA and its associ-
ated impact on surface climate at seasonal timescales. Our main findings are:

• Analysing ERA-20C, we find that the observed relationship between spring
SST index and summer EA is nonstationary during the 20th century, showing
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distinct spatial patterns between early (1902-1957) and late (1958-2008) periods.
The estimated causal influence of spring SST on summer EA is of β ≈ 0.2.

• We find that this relationship is only considered causal over the late period. A
sensitivity analysis of its strength during the late period shows high variability,
suggesting that the presence or absence of specific years plays an important
role in the quantification of the causal link. This implies that an external phys-
ical mechanism not included in our analysis might modulate the spring SST -
summer EA causal link.

• In addition to summer EA, we find that the spring SST index causally influ-
ences summer T2m (β ≈ -0.2) over a region in northwestern Europe, and the
Ridge region located west of the British Isles (β ≈ 0.5). This causal influence is
possibly mediated by the EA.

• We find that piControl and historical simulations are unable to reproduce
the causal links detected in ERA-20C. In contrast, our CEN analysis with the
full initialised ensemble MR-30 reveals a weakly positive causal link between
spring SST and summer EA (β ≈ 0.03).

• However, for 45-year-long timeseries randomly sampled in MR-30, we find that
the initialised ensemble is mostly unable to reproduce the spring SST - summer
EA link.

• In contrast, MR-30 shows a moderate performance in reproducing the spring
SST - summer T2mRidge causal link. We find that MR-30 tends to show im-
proved predictive skill for summer surface climate predictions over the Ridge
region when the spring SST - summer T2mRidge causal link is correctly repro-
duced by the model.

In this paper, we show that MPI-ESM-MR has limited performance in reproduc-
ing a causal link between spring SST and summer EA amongst uninitialised and
initialised model datasets. Our causality analysis therefore sheds light on the lim-
itations of this model in providing skilful seasonal predictions of summer climate,
particularly over areas which undergo a significant EA influence. Finally, our results
for the initialised ensemble MR-30 show that ensemble members able to reproduce
a causal link to spring SST have a potential for regional skill improvement, thereby
illustrating how this causality framework could be used to target forecasts of oppor-
tunity.

acknowledgments The authors would like to thank the Climate Modelling
group at Universität Hamburg and the Climate Extremes group at VU Amster-
dam for helpful discussions. Model simulations were performed using the high-
performance computer at the German Climate Computing Center (DKRZ).

68



B I B L I O G R A P H Y

Astel, Aleksander, Stefan Tsakovski, Pierluigi Barbieri, and Vasil Simeonov (2007).
“Comparison of self-organizing maps classification approach with cluster and
principal components analysis for large environmental data sets.” In: Water re-
search 41.19, pp. 4566–4578.

Athanasiadis, Panos J, Stephen Yeager, Young-Oh Kwon, Alessio Bellucci, David
W Smith, and Stefano Tibaldi (2020). “Decadal predictability of North Atlantic
blocking and the NAO.” In: NPJ Climate and Atmospheric Science 3.1, pp. 1–10.

Ayarzagüena, Blanca and Encarna Serrano (2009). “Monthly characterization of the
tropospheric circulation over the Euro-Atlantic area in relation with the timing
of stratospheric final warmings.” In: Journal of Climate 22.23, pp. 6313–6324.

Balmaseda, Magdalena Alonso, Kristian Mogensen, and Anthony T Weaver (2013).
“Evaluation of the ECMWF ocean reanalysis system ORAS4.” In: Quarterly jour-
nal of the royal meteorological society 139.674, pp. 1132–1161.

Barnes, Elizabeth A and Dennis L Hartmann (2010). “Testing a theory for the effect
of latitude on the persistence of eddy-driven jets using CMIP3 simulations.” In:
Geophysical Research Letters 37.15.

Barnston, Anthony G and Robert E Livezey (1987). “Classification, seasonality and
persistence of low-frequency atmospheric circulation patterns.” In: Monthly weather
review 115.6, pp. 1083–1126.

Bastos, Ana, Ivan A Janssens, Célia M Gouveia, Ricardo M Trigo, Philippe Ciais,
Frédéric Chevallier, Josep Penuelas, Christian Rödenbeck, Shilong Piao, Pierre
Friedlingstein, et al. (2016). “European land CO 2 sink influenced by NAO and
East-Atlantic Pattern coupling.” In: Nature communications 7.1, pp. 1–9.

Belmecheri, Soumaya, Flurin Babst, Amy R Hudson, Julio Betancourt, and Valerie
Trouet (2017). “Northern Hemisphere jet stream position indices as diagnostic
tools for climate and ecosystem dynamics.” In: Earth Interactions 21.8, pp. 1–23.

Beverley, Jonathan D, Steven J Woolnough, Laura H Baker, Stephanie J Johnson, and
Antje Weisheimer (2019). “The northern hemisphere circumglobal teleconnection
in a seasonal forecast model and its relationship to European summer forecast
skill.” In: Climate dynamics 52.5-6, pp. 3759–3771.

Bladé, Ileana, Brant Liebmann, Didac Fortuny, and Geert Jan van Oldenborgh (2012).
“Observed and simulated impacts of the summer NAO in Europe: implications
for projected drying in the Mediterranean region.” In: Climate dynamics 39.3-4,
pp. 709–727.

Branstator, Grant (2002). “Circumglobal teleconnections, the jet stream waveguide,
and the North Atlantic Oscillation.” In: Journal of Climate 15.14, pp. 1893–1910.

Budayan, Cenk, Irem Dikmen, and M Talat Birgonul (2009). “Comparing the perfor-
mance of traditional cluster analysis, self-organizing maps and fuzzy C-means
method for strategic grouping.” In: Expert Systems with Applications 36.9, pp. 11772–
11781.

Bueh, Cholaw and Hisashi Nakamura (2007). “Scandinavian pattern and its climatic
impact.” In: Quarterly Journal of the Royal Meteorological Society: A journal of the

69



atmospheric sciences, applied meteorology and physical oceanography 133.629, pp. 2117–
2131.

Carvalho-Oliveira, Julianna, Leonard F Borchert, Eduardo Zorita, and Johanna Baehr
(2022). “Self-organizing maps identify windows of opportunity for seasonal Eu-
ropean summer predictions.” In: Frontiers in Climate 4.

Carvalho-Oliveira, Julianna, Leonard Friedrich Borchert, Aurélie Duchez, Mikhail
Dobrynin, and Johanna Baehr (2021). “Subtle influence of the Atlantic Merid-
ional Overturning Circulation (AMOC) on seasonal sea surface temperature (SST)
hindcast skill in the North Atlantic.” In: Weather and Climate Dynamics 2.3, pp. 739–
757.

Cassou, Christophe, Laurent Terray, James W Hurrell, and Clara Deser (2004). “North
Atlantic winter climate regimes: Spatial asymmetry, stationarity with time, and
oceanic forcing.” In: Journal of Climate 17.5, pp. 1055–1068.

Cassou, Christophe, Laurent Terray, and Adam S Phillips (2005). “Tropical Atlantic
influence on European heat waves.” In: Journal of climate 18.15, pp. 2805–2811.

Cattiaux, Julien, Benjamin Quesada, Ara Arakélian, Francis Codron, Robert Vautard,
and Pascal Yiou (2013). “North-Atlantic dynamics and European temperature
extremes in the IPSL model: sensitivity to atmospheric resolution.” In: Climate
dynamics 40.9-10, pp. 2293–2310.

Cohen, Judah and Justin Jones (2011). “A new index for more accurate winter pre-
dictions.” In: Geophysical Research Letters 38.21.

Collins, Matthew (2002). “Climate predictability on interannual to decadal time scales:
The initial value problem.” In: Climate Dynamics 19.8, pp. 671–692.

Comas-Bru, Laia and Armand Hernández (2018). “Reconciling North Atlantic cli-
mate modes: revised monthly indices for the East Atlantic and the Scandinavian
patterns beyond the 20th century.” In: Earth System Science Data 10.4, pp. 2329–
2344.

Comas-Bru, Laia and Frank McDermott (2014). “Impacts of the EA and SCA pat-
terns on the European twentieth century NAO–winter climate relationship.” In:
Quarterly Journal of the Royal Meteorological Society 140.679, pp. 354–363.

Comiso, Josefino C (1995). SSM/I sea ice concentrations using the bootstrap algorithm.
Vol. 1380. National Aeronautics and Space Administration, Goddard Space Flight
Center.

Cornes, Richard C, Philip D Jones, Keith R Briffa, and Timothy J Osborn (2013).
“Estimates of the North Atlantic Oscillation back to 1692 using a Paris–London
westerly index.” In: International Journal of Climatology 33.1, pp. 228–248.

Cortesi, Nicola, Nube Gonzalez-Reviriego, Albert Soret, and Francisco J Doblas-
Reyes (2017). Weather regimes: ECMWF seasonal forecasts verification. Technical re-
port. Tech. rep. Barcelona Supercomputing Center.

Coumou, Dim, Giorgia Di Capua, Steve Vavrus, Lei Wang, and Simon Wang (2018).
“The influence of Arctic amplification on mid-latitude summer circulation.” In:
Nature Communications 9.1, pp. 1–12.

Coumou, Dim, Vladimir Petoukhov, Stefan Rahmstorf, Stefan Petri, and Hans Joachim
Schellnhuber (2014). “Quasi-resonant circulation regimes and hemispheric syn-
chronization of extreme weather in boreal summer.” In: Proceedings of the National
Academy of Sciences 111.34, pp. 12331–12336.

70



Craig, Philip M and Richard P Allan (2021). “The role of teleconnection patterns in
the variability and trends of growing season indices across Europe.” In: Interna-
tional Journal of Climatology.

Czaja, Arnaud and Claude Frankignoul (1999). “Influence of the North Atlantic SST
on the atmospheric circulation.” In: Geophysical Research Letters 26.19, pp. 2969–
2972.

— (2002). “Observed impact of Atlantic SST anomalies on the North Atlantic Oscil-
lation.” In: Journal of Climate 15.6, pp. 606–623.

Dee, Dick P, S M Uppala, AJ Simmons, Paul Berrisford, Paul Poli, Shinya Kobayashi,
U Andrae, MA Balmaseda, G Balsamo, d P Bauer, et al. (2011). “The ERA-Interim
reanalysis: Configuration and performance of the data assimilation system.” In:
Quarterly Journal of the royal meteorological society 137.656, pp. 553–597.

Delgado-Torres, Carlos, Deborah Verfaillie, Elsa Mohino, and MG Donat (2022). “Rep-
resentation and annual to decadal predictability of Euro-Atlantic weather regimes
in the CMIP6 version of the EC-Earth coupled climate model.” In: Journal of Geo-
physical Research: Atmospheres, e2022JD036673.

Deser, Clara, Michael A Alexander, and Michael S Timlin (2003). “Understanding the
persistence of sea surface temperature anomalies in midlatitudes.” In: Journal of
Climate 16.1, pp. 57–72.

Di Capua, Giorgia, Marlene Kretschmer, Reik V Donner, Bart van den Hurk, Ramesh
Vellore, Raghavan Krishnan, and Dim Coumou (2020a). “Tropical and mid-latitude
teleconnections interacting with the Indian summer monsoon rainfall: a theory-
guided causal effect network approach.” In: Earth System Dynamics 11.1, pp. 17–
34.

Di Capua, Giorgia, Jakob Runge, Reik V Donner, Bart van den Hurk, Andrew G
Turner, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou (2020b). “Dom-
inant patterns of interaction between the tropics and mid-latitudes in boreal
summer: causal relationships and the role of timescales.” In: Weather and Climate
Dynamics 1.2, pp. 519–539.

Doblas-Reyes, Francisco J, Javier García-Serrano, Fabian Lienert, Aida Pintó Biescas,
and Luis RL Rodrigues (2013). “Seasonal climate predictability and forecast-
ing: status and prospects.” In: Wiley Interdisciplinary Reviews: Climate Change 4.4,
pp. 245–268.

Dobrynin, Mikhail, Daniela IV Domeisen, Wolfgang A Müller, Louisa Bell, Sebas-
tian Brune, Felix Bunzel, André Düsterhus, Kristina Fröhlich, Holger Pohlmann,
and Johanna Baehr (2018). “Improved teleconnection-based dynamical seasonal
predictions of boreal winter.” In: Geophysical Research Letters 45.8, pp. 3605–3614.

Domeisen, Daniela IV, Gualtiero Badin, and Inga M Koszalka (2018). “How pre-
dictable are the Arctic and North Atlantic Oscillations? Exploring the variabil-
ity and predictability of the Northern Hemisphere.” In: Journal of Climate 31.3,
pp. 997–1014.

Domeisen, Daniela IV, Christian M Grams, and Lukas Papritz (2020). “The role
of North Atlantic–European weather regimes in the surface impact of sudden
stratospheric warming events.” In: Weather and Climate Dynamics 1.2, pp. 373–
388.

71



Dong, Buwen, Rowan T Sutton, Tim Woollings, and Kevin Hodges (2013a). “Vari-
ability of the North Atlantic summer storm track: mechanisms and impacts on
European climate.” In: Environmental Research Letters 8.3, p. 034037.

Dong, Buwen, Rowan Sutton, and Tim Woollings (2013b). “The extreme European
summer 2012.” In: Bulletin of the American Meteorological Society 94.9, s28–s32.

Dorado-Liñán, Isabel, Blanca Ayarzagüena, Flurin Babst, Guobao Xu, Luis Gil, Gio-
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