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Abstract

Given two square matrices A and B, we propose a new approach for computing the smallest
value ε ≥ 0 such that A+E and A+F share an eigenvalue, where ‖E‖ = ‖F‖ = ε. In 2006, Gu
and Overton proposed the first algorithm for computing this quantity, called sep

λ
(A,B) (“sep-

lambda”), using ideas inspired from an earlier algorithm of Gu for computing the distance
to uncontrollability. However, the algorithm of Gu and Overton is extremely expensive,
which limits it to the tiniest of problems, and until now, no other algorithms have been
known. Our new algorithm can be orders of magnitude faster and can solve problems where A
and B are of moderate size. Moreover, our method consists of many “embarrassingly parallel”
computations, and so it can be further accelerated on multi-core hardware. Finally, we also
propose the first algorithm to compute an earlier version of sep-lambda where ‖E‖+ ‖F‖ = ε.

Keywords: sep-lambda, eigenvalue separation, eigenvalue perturbation, pseudospectra, Hamil-
tonian matrix

Notation: ‖ · ‖ denotes the spectral norm, σmin(·) the smallest singular value, Λ(·) the spectrum,
κ(·) the condition number of a matrix with respect to the spectral norm, J =

[
0 I
−I 0

]
, a matrix

A ∈ C2n×2n is Hamiltonian if (JA)∗ = JA, µ(·) the Lebesque measure on R, and bdA, intA, and
clA respectively the boundary, interior, and closure of a set A.

1 Introduction

The quantity sepλ(A,B) measures how close two square matrices A ∈ Cm×m and B ∈ Cn×n are
to sharing a common eigenvalue, in the sense of how much A and B must be perturbed in order to
make this so. Varah first introduced sepλ(A,B) in 1979 in [Var79], and it was subsequently studied
by Demmel in [Dem83, Dem86, Dem87], although Demmel used a slightly modified version, partly
“because it lets us state slightly sharper results later on” [Dem83, p. 24]. The two definitions are:

sepVλ (A,B) := min
E∈C

m×m

F∈C
n×n

{ε : Λ(A+ E) ∩ Λ(B + F ) 6= ∅, ‖E‖+ ‖F‖ ≤ ε}, (1.1a)

sepDλ (A,B) := min
E∈C

m×m

F∈C
n×n

{ε : Λ(A+ E) ∩ Λ(B + F ) 6= ∅,max(‖E‖, ‖F‖) ≤ ε}, (1.1b)

with sepVλ (A,B) denoting Varah’s definition and sepDλ (A,B) denoting Demmel’s. Obviously, they
are both zero if A and B share an eigenvalue and both positive otherwise. When it is not necessary
to distinguish between the two variants, we drop the superscript and just write sepλ(A,B). For
convenience, we also assume that m ≤ n throughout the paper.
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The two sepλ(A,B) quantities can also be equivalently defined in terms of singular values as
well as pseudospectra [GO06, pp. 348–349], where for some ε ≥ 0, the ε-pseudospectrum of a
matrix A is defined

Λε(A) := {z ∈ C : z ∈ Λ(A+∆), ‖∆‖ ≤ ε}, (1.2a)

= {z ∈ C : σmin(A− zI) ≤ ε}. (1.2b)

The first definition of pseudospectra dates to at least 1967, in Varah’s Ph.D. thesis [Var67] with
his introduction of an r-approximate eigenvalue, while in his 1979 paper on sepVλ (A,B), Varah
used the term ε-spectrum for Λε(A). The current definitive reference on pseudospectra and their
applications is certainly Trefethen and Embree’s well-known book on the topic [TE05]. The term
“pseudospectrum” was actually coined by Trefethen in 1990 [TE05, Ch. 6], 23 years after Varah’s
thesis, although it now considered the standard name.

The singular-value-based definitions of sepλ(A,B) are

sepVλ (A,B) = min
z∈C

{σmin(A− zI) + σmin(B − zI)} =: min
z∈C

fV(z), (1.3a)

sepDλ (A,B) = min
z∈C

max{σmin(A− zI), σmin(B − zI)} =: min
z∈C

fD(z). (1.3b)

For equivalent pseudospectral-based definitions of sepλ(A,B), we have

sepVλ (A,B) = min
ε1,ε2≥0

{ε1 + ε2 : Λε1(A) ∩ Λε2(B) 6= ∅}, (1.4a)

sepDλ (A,B) = min
ε≥0
{ε : Λε(A) ∩ Λε(B) 6= ∅}. (1.4b)

If ε ≥ sepDλ (A,B) holds, then intΛε(A)∩int Λε(B) = ∅ is a sufficient condition for ε = sepDλ (A,B).
In contrast, while intΛε1(A) ∩ int Λε2(B) = ∅ is a necessary condition for ε1 + ε2 = sepVλ (A,B)
to hold, it is not a sufficient condition. This is because one can continuously adjust ε1 and ε2
such that the two pseudospectra always touch but never have interior points in common. For
example, suppose that sepVλ (A,B) > 0, and let ε̂1 be such that Λε̂1(A) and Λ0(B) only touch, i.e.,
an eigenvalue of B is in bdΛε̂1(A) but intΛε̂1(A) ∩ Λ0(B) = ∅. In the same fashion, let ε̂2 be
such that Λ0(A) and Λε̂2(B) only touch. Then by continuity of pseudospectra, it is clear that the
2D point (ε1, ε2) can be continuously adjusted between point (ε̂1, 0) and point (0, ε̂2) such that
bdΛε1(A) ∩ bdΛε2(B) 6= ∅ and intΛε1(A) ∩ int Λε2(B) = ∅ both always hold.

Varah called sepVλ (A,B) the spectrum separation in [Var79, Definition 3.2] due to its pseu-
dospectral underpinnings; in fact, in his definition, he used the form given in (1.4a), not the other
two alternatives. His motivation in defining sepVλ (A,B) was its connection to the sensitivity of
solving the Sylvester equation:

AX −XB = C, (1.5)

where X,C ∈ Cm×n and (1.5) has a unique solution if and only if A and B have no common
eigenvalue. As Varah noted [Var79, p. 216], the sensitivity of a solution to (1.5) is inversely
proportional to the separation of A and B:

sep(A,B) := min
‖X‖F=1

‖AX −XB‖F = σmin(In ⊗A−BT ⊗ Im),

a quantity which Stewart had earlier introduced for studying invariant subspaces [Ste73, Defini-
tion 4.5]. It holds that 0 ≤ sep(A,B) ≤ minλ∈Λ(A),µ∈Λ(B) |λ − µ|, and clearly, the lower bound is
attained if and only if A and B have an eigenvalue in common, while the upper bound is attained
if A and B are both normal. However, Varah stressed that if A or B is nonnormal, then sep(A,B)
can be very close to zero, e.g., machine precision, even if the eigenvalues of A and B are well
separated, and that sep(A,B) is often orders of magnitude smaller than sepVλ (A,B). In 1993,
Higham’s thorough error analysis for solving (1.5) numerically showed that bounding the error of
a computed solution in terms of sep(A,B)−1 can sometimes “severely overestimate the effect of a
perturbation on the data when only A and B are perturbed, because it does not take account of
the special structure of the problem” [Hig93, p. 133], while simultaneously presenting an alterna-
tive error bound that remedies this deficiency. A few years later, Simoncini used sepVλ (A,B) and
pseudospectra in her analysis of solving (1.5) via a Galerkin method [Sim96].
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Meanwhile, Demmel initial interest in (his version of) sepλ(A,B) was for problem of computing
stable eigendecompositions [Dem83, Dem86], but in an entirely different context [Dem87], he
subsequently used sepDλ (A,B) to disprove two conjectures respectively made by himself and Van
Loan related to the (then unsolved) problem of computing the distance to instability of a stable
matrix. Following in the spirit of using sepλ(A,B) in the analysis of the stability of invariant
subspaces of matrices [Var79, Dem83, Dem86], Karow and Kressner used sepDλ (A,B) in 2014 as a
tool in deriving improved perturbation bounds [KK14]. Most recently in 2021, Roy et al. [RKBA21]
used sepVλ (A,B) in connection with approximating pseudospectra of block triangular matrices; in
this case, the value of sepVλ (A,B) can be used to construct several different outer approximations
to pseudospectra of these structured matrices.

In terms of computing sepλ(A,B), to the best of our knowledge, only a single algorithm has
been given so far for sepDλ (A,B), due to Gu and Overton in 2006 [GO06], while no algorithms have
appeared to date for sepVλ (A,B). Nevertheless, computing sepDλ (A,B) can at least approximate
sepVλ (A,B) to within a factor of two since

1

2
sepVλ (A,B) ≤ sepDλ (A,B) ≤ sepVλ (A,B), (1.6)

which is simply a special case of the relation 1
n
‖x‖1 ≤ ‖x‖∞ ≤ ‖x‖1 for x ∈ Cn obtained by respec-

tively identifying sepVλ (A,B) and sepDλ (A,B) with the 1-norm and ∞-norm of (‖E‖, ‖F‖)T ∈ R
2.

It is easy to obtain upper bounds for sepλ(A,B) by simply evaluating fV and/or fD defined
in (1.3) at any points z ∈ C, or better, by applying (nonsmooth) optimization techniques to
find local minimizers of them. Due to the max function in fD, it is typically nonsmooth at
minimizers, while fV will be nonsmooth at a minimizer if that minimizer happens to coincide with
an eigenvalue of A or B, which as Gu and Overton mentioned, is often the case for sepVλ (A,B).
Despite the potential nonsmoothness, fV and fD are rather straightforward functions in just
two real variables (via z = x + iy), whose function values and gradients (assuming z is a point
where they are differentiable) can be obtained via computing σmin(A − zI) and σmin(B − zI)
and their corresponding left and right singular vectors. When A and B are large and sparse, it
is often still possible to efficiently compute fV and fD and their gradients via sparse methods.
Nevertheless, finding local minimizers of (1.3) provides no guarantees for computing sepλ(A,B),
particularly since these problems may have many different local minima and the locally optimal
function values associated with these minima may be very different. Moreover, in applications
that use distances measures such as sepλ(A,B), obtaining an upper bound via local optimization
is generally much less useful than either computing the actual measure or a lower bound to it.
Indeed, in motivating their algorithm for sepDλ (A,B), Gu and Overton aptly remarked [GO06,
p. 350]: “the inability to verify global optimality [of minimizers of fD] remains a stumbling
block preventing the computation of sepλ(A,B), or even the assessment of the quality of upper
bounds, via optimization” and “in applications, lower bounds for such distance functions are more
important than upper bounds, as they provide ‘safety margins.’”

In this paper, we propose a new and much faster method to compute sepDλ (A,B) to arbitrary
accuracy, using properties of pseudospectra, local optimization techniques, and a new methodol-
ogy that we recently introduced in [Mit21] for finding global optimizers of singular value functions
in two real variables. This new approach, called interpolation-based globality certificates, can be
orders of magnitude faster than existing techniques and also avoids numerical difficulties inherent
in older approaches. A modified version of our new sepDλ (A,B) algorithm also produces esti-
mates of sepVλ (A,B) with stronger guarantees than those obtained by optimization; specifically,
this modified method produces locally optimal upper bounds ε̃ = ε1 + ε2 ≥ sepVλ (A,B) such that
intΛε1(A)∩ int Λε2(B) = ∅, which is a necessary condition for ε̃ = sepVλ (A,B) to hold, but which
optimization alone does not guarantee. Finally, we also propose a separate algorithm that is the
first to compute sepVλ (A,B).

The paper is organized as follows. In §2, we give a brief overview of Gu and Overton’s method
for sepDλ (A,B) [GO06] and explain its shortcomings. Then, in §3, we give a high-level descrip-
tion of our new optimization-with-restarts method and an introduction to the ideas underlying
interpolation-based globality certificates. As our new globality certificate for sepDλ (A,B) is quite
different and significantly more complicated than those we devised for computing Kreiss constants
and the distance to uncontrollability in [Mit21], we develop the necessary theoretical statements
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and components over three separate stages in §4, §5, and §6. In §7, we describe how to implement
our completed algorithm and give its overall work complexity. We then turn to Varah’s sep-lambda
in §8. Numerical experiments are presented in §9, with concluding remarks given in §10.

2 Gu and Overton’s method to compute sepDλ (A,B) and its

limitations

The algorithm of Gu and Overton for computing sepDλ (A,B) is particularly expensive: it is
O((m+ n)m3n3) work, e.g., O(n7) when m = n, which makes it intractable for all but the
tiniest of problems. The core of their method is a pair of related tests, each of which is inspired
by a novel but expensive 2D level-set test developed earlier by Gu for estimating the distance
to uncontrollability [Gu00]. The cost of each test is dominated by solving an associated gen-
eralized eigenvalue problem of order 4mn, which is O(m3n3) work when using standard dense
eigensolvers.1 Given some ε ≥ 0, the first test ([GO06, Algorithm 1]) checks whether the ε-level
sets of σmin(A − zI) and σmin(B − zI) have any points in common. If this is indeed the case,
then clearly ε ≥ sepDλ (A,B) must hold. However, if there are no level-set points in common,
one cannot conclude that ε < sepDλ (A,B) holds. For example, having no shared level-set points
may just be a consequence of Λε(A) being a subset of intΛε(B) or vice versa, in which case,
clearly ε > sepDλ (A,B) holds. To get around this difficulty, Gu and Overton devised an initial-
ization procedure ([GO06, Algorithm 2]), which invokes their second test many times in order to
compute an upper bound εub such that for all ε < εub, no connected component of Λε(A) can be
strictly inside a component of Λε(B) or vice versa.2 With this possibility excluded, i.e., ε < εub,
the outcome of the first test then does indicates whether or not ε < sepDλ (A,B) holds. Gu and
Overton’s overall method [GO06, Algorithm 3] thus first computes εub via their initialization pro-
cedure and then uses their first test to power a bisection iteration that converges to sepDλ (A,B).
The entire bisection phase of their algorithm remains O(m3n3) work, since the number of bisection
steps can be taken as a constant, but the initialization phase to compute the necessary εub involves
invoking the second test for (m + n) different parameter values, i.e., it solves (m + n) different
generalized eigenvalue problems of order 4mn. Hence, the cost of their entire method is dominated
by the initialization procedure, and the total asymptotic work complexity is O((m+ n)m3n3).

In their concluding remarks [GO06, p. 358], Gu and Overton noted that the faster divide-and-
conquer technique of [GMO+06] for computing the distance to controllability could potentially
be adapted to sepDλ (A,B), writing that “Although there are some inevitable difficulties with the
numerical stability of this approach, the complexity drops significantly.” Indeed, when m = n,
adapting this divide-and-conquer approach would bring down the O(n7) work complexity of their
algorithm for sepDλ (A,B) to O(n5) on average and O(n6) in the worst case. However, this has
not been implemented, and in our own experience of adapting this divide-and-conquer technique
to other algorithms, we have observed that doing so can indeed come at the cost of significantly
worse reliability due to numerical issues; see [Mit20, section 8].

Even with dense eigensolvers, Gu and Overton’s method can be susceptible to numerical dif-
ficulties. A primary concern is that the first test (used for bisection) actually requires being able
to assert whether or not two matrices have an eigenvalue in common. If eigenvalues can be com-
puted exactly (which is possible in some cases, e.g., a diagonal matrix), then testing whether two
matrices share an eigenvalue can be done without issues. However, in a practical code, computed
eigenvalues will have rounding errors, and so one must generally resort to using a tolerance in
order to carry out this test. But this also means that it is possible for the test to incorrectly assert
that two eigenvalues are the same when they should only be considered close or vice versa. This
is critical because the binary decision of bisection hinges upon the outcome of this numerical test.

1With respect to the usual convention of treating the computation of eigenvalues as an atomic operation with
cubic work complexity, which we use throughout this paper.

2In [GO06], Gu and Overton state that this “not strictly inside” property holds for ε ≤ εub, but actually this
inequality should be strict. Near the top of [GO06, p. 354], it is claimed that “ε = σmin(A− zI) > σmin(B − zI)”
holds, where z ∈ bdΛε(A) and z ∈ intΛε(B). However, per [AGV17, p. 31], there can exist a finite number of
points z ∈ intΛε(B) such that σmin(B − zI) = ε, and so the “not strictly inside” claim may or may not hold
when ε = εub. Fortunately, with inexact arithmetic, there is essentially no practical consequence of this small
oversight, while the theory in [GO06] is corrected merely by replacing ≤ with <.
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Making the wrong choice about the eigenvalues can cause bisection to erroneously update a lower
or upper bound, which in turn can result in a significant or even complete loss of accuracy in the
computed estimate. The distance-to-uncontrollability methods of [Gu00, BLO04, GMO+06] also
have the same numerical pitfall. In the context of computing Kreiss constants via 2D level-set tests
[Mit20], we recently proposed an improved procedure that does not require checking for shared
eigenvalues, and as such, it is much more reliable in practice; see [Mit20, Key Remark 6.3]. Our
improved technique can also be used to improve the reliability of the aforementioned distance-
to-uncontrollability algorithms, but it does not appear to be applicable for Gu and Overton’s
algorithm for sepDλ (A,B). The fundamental difference in the sepDλ (A,B) setting is that Gu and
Overton’s first test is based upon checking whether or not the ε-level sets of two different func-
tions, σmin(A−zI) and σmin(B−zI), have any points in common, whereas for the other quantities,
pairs of points on a given level set of a single function are sought.

Finally, another way to provide some speedup to Gu and Overton’s method would be to
replace the bisection phase with an optimization-with-restarts iteration. In this case, a mini-
mizer z̃ of fD with ε = fD(z̃) would be found using some nonsmooth optimization solver, and
then, assuming ε < εub, Gu and Overton’s first test ([GO06, Algorithm 1]) would be used to
assert whether or not z̃ is a global minimizer of fD. If so, then sepDλ (A,B) = ε and the
computation is done. Otherwise, recalling that the first test computes the points z ∈ C such
that σmin(A− zI) = σmin(B − zI) = ε, local optimization can be restarted from these points in
order to find a better (lower) minimizer. Any such optimization-with-restarts method must mono-
tonically converge to sepDλ (A,B) within a finite number of restarts because fD only has a finite
number of locally minimal function values, due to fD being semialgebraic. However, there are some
issues with this modification. The main limitation is that it neither accelerates nor removes the
need for the initialization procedure for obtaining εub, which is O(n7) work, while the subsequent
convergent phase of either bisection or optimization-with-restarts is O(n6) work. Consequently,
any speedups will be both quite small and limited to the smallest values of n, while being es-
sentially nonexistent for larger n. Another problem is that theory for nonsmooth optimization
typically requires that solvers are initialized at points where the function is differentiable (see,
e.g., [BCL+20, LO13, CMO17]), but by its nature, the points computed by Gu and Overton’s
first test are all points where fD will almost certainly be nonsmooth. Hence, there may be issues
in restarting optimization via these points, and depending on the exact solver and problem, we
have observed that solvers can indeed stagnate at these initial points. It is not entirely clear
how to best overcome this latter issue, but for us, it is not a priority. Instead, the focus of this
paper is to propose an entirely different approach to computing sepDλ (A,B) that allows us to use
optimization-with-restarts without any of the aforementioned drawbacks of extremely high costs,
expensive initialization procedures, and various numerical and technical issues.

3 A high-level overview of our new sepDλ (A,B) algorithm

To find a global minimizer of fD, a global optimization problem in two real variables, we will
instead develop our optimization-with-restarts algorithm using interpolation-based globality cer-
tificates [Mit21]. The core task in developing such a method is to devise a generally continuous
function (i.e., it may have some jumps) in one real variable that, given an estimate greater than
the globally minimal value, has an identifiable subset of its domain with positive measure that
provides a guaranteed way of locating new starting points for another round of optimization.
When an estimate is globally minimal, this function should alternatively assert this fact somehow,
e.g., by determining that the aforementioned subset is either empty or has measure zero. By
sufficiently well approximating this function globally via a piecewise polynomial interpolant (this
interpolant may also have jumps), e.g., by using Chebfun3 [DHT14], it is then possible to quickly
check for the existence of the aforementioned positive measure subset, whose presence indicates
that the estimate is not globally optimal. In fact, Chebfun can efficiently compute the precise
set of intervals corresponding to this subset. When the estimate is too large, the property that
there exists a subset of positive measure associated with new starting points is crucial for two
reasons. First, it means that encountering this subset during the interpolation process is not a

3Available at https://www.chebfun.org.
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probability zero event, and so if the function is well approximated, this subset will be detected.
Second, optimization can be immediately restarted once any points in this subset are discovered,
and so high-fidelity interpolants will often not be needed. As a result, restarts tend to be very
inexpensive, while high-fidelity approximation is generally only needed for the final interpolant,
which asserts that global convergence has indeed been obtained. Moreover, in practice only a
handful of restarts are typically needed. Besides overall efficiency, interpolation-based globality
certificates are inherently amenable to additional acceleration via parallel processing (see [Mit21,
section 5.2]), while also being quite numerically robust compared to other techniques. There are
several reasons for this latter property, but one is that by the nature of interpolation, global con-
vergence is assessed as the result over many computations, whereas other approaches often rely
upon a single computation that may result in an erroneous conclusion due to rounding errors; for
more details, see [Mit21, sections 1.3 and 2.3].

Given some estimate ε ≥ sepDλ (A,B), in the next sections, we consider the problem of what
function dε : R→ R to devise for our globality certificate for either finding new points for restarting
optimization or asserting whether ε = sepDλ (A,B) holds. The function dε should be reasonably
well behaved and relatively cheap to evaluate, as otherwise approximating it could be prohibitively
expensive and/or difficult. But as mentioned above, Chebfun can efficiently handle nonsmooth
and discontinuous functions; [PPT09, pp. 905–906] describes the algorithm that Chebfun uses to
efficiently detect discontinuities, either jumps in the function values or derivatives, which allows
Chebfun to work around these difficult points during its approximation process. Consequently,
we do not have to limit ourselves to smooth continuous candidates for dε. The function that we
will propose is based on detecting whether or not intΛε(A) ∩ int Λε(B) is empty and asserts that
ε > sepDλ (A,B) if and only if minθ∈(−π,π] dε(θ) < 0 holds. Moreover, our certificate for detecting
whether intΛε(A) ∩ int Λε(B) = ∅ holds works for any value ε > sepDλ (A,B). As we will explain,
our dε-based globality certificate incurs O(kn3) work (recall that we assume m ≤ n), where k

is the number of function evaluations required to sufficiently approximate dε. Furthermore, our
certificate also becomes more efficient the larger ε is, i.e., relatively few function evaluations are
needed to approximate dε when ε≫ sepDλ (A,B) as compared to when ε ≈ sepDλ (A,B).

Remark 3.1. Although the first test of Gu and Overton ([GO06, Algorithm 1]) also detects
if int Λε(A) ∩ int Λε(B) = ∅ holds, note that their test is both more limited in scope and more
expensive than our dε-based certificate. Gu and Overton’s first test (a) requires that ε < εub holds
in order to use it, with εub being very expensive to obtain, and (b) does the same amount of work
regardless of the value of ε; again, when m = n, computing εub is O(n7) work, while [GO06,
Algorithm 1] is O(n6) work.

4 Locating pseudospectral components

We now work on defining dε and establishing its properties, which is done over three sections.
This section follows similarly to [Mit21, sections 2–4], where we first proposed interpolation-based
globality certificates to find level-set components as tools for computing Kreiss constants and the
distance to uncontrollability. Here we adapt these ideas to locating pseudospectral components,
and throughout this section, we provide specific references to counterparts in [Mit21]. However,
as will be seen, computing sepDλ (A,B) is more complicated than computing these other quantities,
and so the additional tools that we develop in §5 and §6 will also be needed.

Given a matrixA ∈ Cm×m, ε ≥ 0, and some z0 ∈ C such that ε is not a singular value of A−z0I,
in this section we propose a way of determining which rays emanating from z0 intersect with Λε(A)
and which do not. We define the ray emanating from z0 specified by angle θ ∈ R as

Rθ := {z0 + reiθ ∈ C : r ∈ R, r > 0}. (4.1)

As we will explain momentarily, our assumption on ε ensures that a condition needed by our
method indeed holds; relatedly, our assumption also ensures that the “search point” z0 is not on
the boundary of Λε(A). Consider the following function parameterized in polar coordinates:

fA(r, θ) = σmin(A− (z0+ reiθ)I)) = σmin(FA(r, θ)), where FA(r, θ) = ie−iθ(A− z0I)− irI (4.2)
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and the second equality above holds since multiplication by a unitary scalar does not alter the
singular values of a matrix. Note that bdΛε(A) is contained in the ε-level set of fA. The following
pair of results give us a way to determine whether or not Rθ and Λε(A) intersect, and when
they do, to also calculate all the points in Rθ ∩ bdΛε(A). The first of these two results is
yet another variation of the 1D level-set technique Byers introduced in order to develop the
first method for computing the distance to instability in 1988 [Bye88], a powerful tool which we
and many others have adapted, extended, or used to develop 1D and 2D methods to compute
various quantities. Applications include the H∞ and L∞ norms [BBK89, BB90, BS90, BSV12,
BM18], distance to uncontrollability [Bye90, GN93, Gu00, Mit21], numerical radius [HW97, MO05,
Mit22], pseudospectral (or spectral value set) abscissa and radius [BLO03, MO05, BM19], Kreiss
constants [Mit20, Mit21], as well as the optimization of passive systems [MVD20b, MVD20a,
MVD22].

Lemma 4.1 (cf. [Mit21, Theorems 2.1, 3.1, and 4.1]). Let A ∈ Cm×m, ε ≥ 0, z0 ∈ C, and
r, θ ∈ R. Then ε is a singular value of FA(r, θ) defined in (4.2) if and only if ir is an eigenvalue
of the Hamiltonian matrix

Cθ :=

[
ie−iθ(A− z0I) −εI

εI ieiθ(A− z0I)
∗

]
. (4.3)

Proof. Suppose that ε is a singular value of FA(r, θ) with left and right singular vectors u and v.
Then

ε

[
u

v

]
=

[
FA(r, θ) 0

0 FA(r, θ)
∗

] [
v

u

]
=

[
ie−iθ(A− z0I) 0

0 −ieiθ(A− z0I)
∗

] [
v

u

]
+ ir

[
−I 0
0 I

] [
v

u

]
.

Rearranging terms, using the fact that [ uv ] = [ 0 I
I 0 ][

v
u ], and multiplying the bottom block row

by −1, we obtain Cθ[
v
u ] = ir[ vu ].

Corollary 4.2. Let A ∈ Cm×m, ε ≥ 0, z0 ∈ C, r, θ ∈ R, and Rθ be the ray defined by (4.1).
Then Rθ ∩ Λε(A) 6= ∅ if and only if ir is an eigenvalue of Cθ with r > 0.

Proof. Suppose that Rθ and Λε(A) intersect. As Λε(A) is bounded, there exists an r > 0 such
that the point z0 + reiθ is also on the boundary of Λε(A), and so σmin(FA(r, θ)) = ε. Thus
by Lemma 4.1, ir is an eigenvalue of Cθ. Now suppose Cθ has some eigenvalue ir with r > 0.
Again by Lemma 4.1, ε must then be a singular value of FA(r, θ) but not necessarily the smallest
one. Thus, σmin(FA(r, θ)) = ε̂ ≤ ε and so it follows that z0 + reiθ is in Λε̂(A) ⊆ Λε(A).

For any z0 + reiθ ∈ bdΛε(A) with r > 0, clearly σmin(FA(r, θ)) = ε, and so by Lemma 4.1,
ir ∈ Λ(Cθ). Hence, via computing all of the imaginary eigenvalues of Cθ, Lemma 4.1 provides
a way to calculate all of the points in Rθ ∩ bdΛε(A). However, note that if ir ∈ Λ(Cθ) with
r > 0, then z0 + reiθ may or may not be on bdΛε(A). There are two reasons for this. First,
per the proof of Corollary 4.2, ε may not be the smallest singular value of FA(r, θ), in which
case z0+ reiθ ∈ Λε̂(A) for some ε̂ < ε. Second, there can exist a finite number of points z ∈ Λε(A)
such that z 6∈ bdΛε(A) but σmin(FA(r, θ)) = ε nevertheless holds; see [AGV17, p. 31].

Corollary 4.2 can be stated more strongly, i.e., in terms of a line intersecting Λε(A), since irneg
with rneg < 0 is an eigenvalue of Cθ if and only if i|rneg| is an eigenvalue of Cθ+π. However, for
developing the theoretical concepts for our algorithm, it will be more intuitive and simpler to work
with the notion of rays emanating from z0 for the time being. For a code, it does make sense to
take advantage of all the imaginary eigenvalues of Cθ, and we describe how this is done, along
with other implementation details, in §7. Regarding the spectrum of Cθ, also note that since Cθ

is Hamiltonian, its eigenvalues are symmetric with respect to the imaginary axis. Eigenvalues
of real Hamiltonian matrices have additional symmetry with respect to the real axis, but this is
generally not the case for the spectrum of Cθ due to Cθ being generically complex valued (even
if A is real). Structure-preserving eigensolvers exist, e.g., [BMX99], that preserve this eigenvalue
symmetry numerically.
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Remark 4.3. While Lemma 4.1 pertains to the eigenvalues of a single Hamiltonian matrix,
the analogous [Mit21, Theorems 2.1, 3.1, and 4.1] used for computing Kreiss constants and the
distance to uncontrollability via interpolation-based globality certificates are in terms of the eigen-
values of certain structured matrix pencils. For the case of Kreiss constants [Mit21, Theorems 2.1
and 3.1], the associated matrix pencils include parametric matrices that can be singular, and so
these generalized eigenvalue problems cannot be reduced to standard eigenvalue problems. However,
the matrix pencil for the distance to uncontrollability does permit such a reduction, i.e., [Mit21,
Theorem 4.1] can be simplified to be in terms of the eigenvalues of the complex Hamiltonian matrix

[
ie−iθA B̃

γI ieiθA∗

]
, (4.4)

where in (4.4), matrices A and B̃ and scalars γ and θ are defined in [Mit21, Theorem 4.1].

As we will soon see, we will need to preclude the possibility of zero being an eigenvalue of Cθ.
The following straightforward result shows that our assumption on ε not being a singular value
of A− z0I accomplishes this.

Lemma 4.4 (cf. [Mit21, Theorems 2.4, 3.3, and 4.4]). Let A ∈ Cm×m, ε ∈ R, z0 ∈ C, and
θ ∈ R. Then the matrix Cθ defined in (4.3) has zero as an eigenvalue if and only if the matrix
(A− z0I)(A− z0I)

∗ has ε2 as an eigenvalue.

Proof. Since the blocks of Cθ are all square matrices of the same size, and the lower two blocks,
εI and ieiθ(A− z0I)

∗, commute, we have that

det(Cθ) = det(−(A− z0I)(A− z0I)
∗ − (−εI)(εI)) = det((A− z0I)(A− z0I)

∗ − ε2I),

thus proving the if-and-only-if equivalence.

We are now ready to present the first major component in our construction of dε. Given ε ≥ 0
specifying the ε-pseudospectrum of A, and z0 ∈ C such that ε is not a singular value of A− z0I,
we define the function aε : (−π, π]→ [0, π2] and associated set (cf. [Mit21, Equations (2.4), (3.4),
and (4.4)]):

aε(θ) := min{Arg(−iλ)2 : λ ∈ Λ(Cθ),Reλ ≤ 0}, (4.5a)

Aε := {θ : aε(θ) = 0, θ ∈ (−π, π]}, (4.5b)

where Arg : C \ {0} → (−π, π] is the principal value argument function, the matrix Cθ is defined
in (4.3), and the term Arg(−iλ) in (4.5a) is squared in order to smooth its value out when
transitioning to/from zero. We explain this in more detail later on, but the squaring is done in
order to make aε easier to approximate globally on its domain. Note that the definition of aε
excludes eigenvalues in the open right half of the complex plane since the spectrum of Cθ is
symmetric with respect to the imaginary axis.

Theorem 4.5 (Properties of aε; cf. [Mit21, Theorems 2.7, 3.5, and 4.6]). Let A ∈ Cm×m, ε ≥ 0,
and z0 ∈ C be such that ε is not a singular value of A − z0I. Then, the function aε defined
in (4.5a) has the following properties:

(i) aε(θ) ≥ 0 on its entire domain, i.e., ∀θ ∈ (−π, π],

(ii) aε(θ) = 0 ⇐⇒ ∃r > 0 such that ir ∈ Λ(Cθ) ⇐⇒ Rθ ∩ Λε(A) 6= ∅,

(iii) aε is continuous on its entire domain,

(iv) aε is differentiable at a point θ if the eigenvalue λ ∈ Λ(Cθ) attaining the value of aε(θ) is
unique and simple.

Furthermore, the following properties hold for the associated set Aε defined in (4.5b):

(v) ε = 0 ⇐⇒ µ(Aε) = 0,
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(vi) ε1 < ε2 ⇐⇒ µ(Aε1) < µ(Aε2 ),

(vii) if ε > fA(0, θ) for any θ ∈ R, then µ(Aε) = 2π,

(viii) Aε can have up to m connected components.

Proof. Noting that −iλ in (4.5a) is always in the (closed) upper half of the complex plane, state-
ments (i) and (ii) hold by the definition of aε and Corollary 4.2. Statement (iii) follows from the
continuity of eigenvalues and our assumption that ε is not a singular value of A−z0I, equivalently
ε2 6∈ Λ((A− z0I)(A − z0I)

∗), and thus, by Lemma 4.4, 0 6∈ Λ(Cθ) is ensured for any θ. State-
ment (iv) follows from standard perturbation theory for simple eigenvalues and by the definition
of aε.

Now turning to Aε, either z0 ∈ int Λε(A) or z0 6∈ Λε(A) must hold since our assumption on ε

precludes z0 from being a boundary point. If ε > fA(0, θ), then z0 ∈ int Λε(A), which in turn
implies that Rθ ∩ Λε(A) 6= ∅ for all θ, thus proving (vii). Now assume z0 6∈ Λε(A). Statement
(viii) is a consequence of the well-known fact that for any matrix A ∈ Cm×m, its ε-pseudospectrum
has at most m connected components. For any component G of Λε(A), by connectedness and (ii),
it is clear that G is associated with a single interval I ⊆ (−π, π] such that aε(θ) = 0 if and only if
Rθ ∩ Λε(A) 6= ∅. Since Aε is simply the union of those intervals associated with the components
of Λε(A), of which there can be at most m, Aε also has at most m components, thus proving
(viii). Statement (vi) follows by noting that Λε1(A) ⊂ Λε2(A) is equivalent to Aε1 ⊂ Aε2 . Since
Rθ ∩ Λε1(A) 6= ∅ implies that Rθ ∩ Λε2(A) 6= ∅, it follows that aε1(θ) = 0 implies aε2(θ) = 0,
and so Aε1 ⊂ Aε2 . Now suppose that Aε1 ⊃ Aε2 and let θ ∈ Aε1 \ Aε2 ; hence aε1(θ) = 0 but
aε2(θ) > 0. Then Rθ intersects Λε1(A) but not Λε2(A), and so Λε1(A) ⊂ Λε2(A) cannot hold, a
contradiction. Finally, for (v), if ε = 0, Λε(A) = Λ(A), and so Rθ ∩ Λε(A) 6= ∅ for at most m

different angles. As there can be at most m connected components of Aε, if µ(Aε) = 0 holds,
then ε = 0.

Per Theorem 4.5, aε is a continuous function and aε(θ) = 0 if and only if Rθ ∩ Λε(A) 6= ∅.
Thus, by finding roots of aε, we find rays which intersect the ε-pseudospectrum of A, our first step
toward finding regions where Λε(A) and Λε(B) overlap. For an illustration of this correspondence,
see Fig. 4.1, where bε, the analogue of aε for matrix B, is also plotted.

The properties of aε listed in Theorem 4.5 show that it is reasonably well behaved. Satisfying
the assumption that ε is not a singular value of A−z0I can be trivially met, e.g., just by choosing z0
with a bit of randomness. The dominant cost of evaluating aε at a point θ is computing the
spectrum of Cθ, i.e., O(m

3) work. Relative to Gu and Overton’s sepDλ (A,B) algorithm, this is
a negligible cost. To find the roots of aε, we can approximate aε using Chebfun, which is why
we defined aε using the squared term Arg(−iλ)2 instead of just Arg(−iλ). As will be made
clear in §6, aε transitioning to/from zero corresponds to two (or possibly more non-generically)
eigenvalues of Cθ coalescing on the positive portion of the imaginary axis. Without this squaring,
aε would generally be non-Lipschitz at such transition points and thus it could be difficult and/or
expensive to approximate via interpolation; the squaring smooths out this high rate of change so
that aε is easier to approximate. Although the analogues of aε and Theorem 4.5 that appeared
in [Mit21] for computing Kreiss constants and the distance to uncontrollability were sufficient
to develop interpolation-based globality certificates for those quantities, for sepDλ (A,B), aε and
Theorem 4.5 are insufficient.

5 Locating pseudospectral overlap

As part of locating regions where Λε(A)∩Λε(B) 6= ∅, we will also need to locate the components
of Λε(B) with respect to the same “search point” z0 and given value of ε. Thus, for matrix B,
let fB and FB respectively denote the analogues of fA and FA defined in (4.2), and similarly,
let bε and Bε be respective analogues of aε and Aε defined in (4.5). For matrix A, we continue
to use Cθ to denote its associated Hamiltonian matrix defined in (4.3), while we use Sθ to denote
the analogue Hamiltonian matrix for B, as both matrices will be needed. Per the assumption
of Theorem 4.5, we now need to assume that ε is not a singular value of either A− z0I or B− z0I,
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(a) Λε(A) and Λε(B) (b) aε(θ), bε(θ), and ℓε(θ)

Figure 4.1: For two randomly generated matrices A,B ∈ C14×14, the left pane shows their eigen-
values (respectively x’s and dots), and Λε(A) and Λε(B) (respectively solid and dotted contours)
for ε = 0.3 > sepDλ (A,B). The search point z0 is the origin; rays emanating from it are depicted
by dashed lines. The right pane shows corresponding plots of aε, bε (respectively solid and dotted
curves), and ℓε (dashed), where aε is defined in (4.5a), bε is its analogue for matrix B, and ℓε
is defined in (5.1a). On the left, rays in the lower left quadrant only intersect Λε(A) or nei-
ther ε-pseudospectrum, while rays in the lower right quadrant only intersect Λε(B) or neither
ε-pseudospectrum. Correspondingly, for (−π,− 1

2π] on the right, we see that aε has zeros but bε
is always positive, and vice versa for (− 1

2π, 0]. Meanwhile, there exist rays in the upper right
quadrant that pass through both Λε(A) and Λε(B), but Λε(A) and Λε(B) do not overlap in this
region; thus, on the right for (0, 12π], we see that aε and bε do have zeros in common, but ℓε is
equal to zero on this interval. Finally, in the upper left quadrant, int Λε(A) and intΛε(B) do in
fact overlap, and so on the right, we see that aε and bε have zeros in common and ℓε is indeed
negative on a subset of (12π, π] with positive measure.

which again, can be easily satisfied by choosing z0 with some randomness. In establishing tools
for locating pseudospectral overlap, we will make use of the following elementary result.

Lemma 5.1. Let A,B ⊂ R be such that A and B respectively consist of m and n connected
components. Then A ∩ B can have up to m+ n− 1 connected components.

Proof. Let A = A1 ∪ · · · ∪ Am, where each Aj is a connected component of A and Aj ∩ Ak = ∅

for all j 6= k, and in an analogous fashion, let B = B1 ∪ · · · ∪ Bn. Without loss of generality,
assume that m ≤ n. If m = 1, suppose that the claim is not true, i.e., that A ∩ B has more
than n components. Then there exists at least one pair of numbers x and y that are in different
components of A∩B but must be in the same component Bj of B. However, by connectedness of
the components ofA and B, we have that [x, y] ⊂ A1 = A and [x, y] ⊂ Bj. Therefore [x, y] ⊂ A∩B,
contradicting that x and y are in different components ofA∩B. For the inductive step, now assume
that the claim holds when A consists of j components, for j = 1, . . . ,m−1 and j < n, and suppose
that A has m components. Let s = 1

2 (aL + aR), where aL = supa∈Am−1
a and aR = infa∈Am

a,
and define BL := {b : b ∈ B, b < s} and BR := {b : b ∈ B, b > s}. Clearly BL and BR are disjoint
and BL∪BR = B\{s}. Letting nL and nR denote the respective number of connected components
of BL and BR, it follows that nL+nR = n if s 6∈ intB and nL+nR = n+1 otherwise. Applying the
inductive hypothesis, {A1∪· · ·∪Am−1}∪BL has at most (m−1)+nL−1 connected components,
while Am ∪ BR has at most nR connected components. Noting that {A1 ∪ · · · ∪ Am−1} ∪ BL
and Am ∪ BR are also disjoint and their union is A ∩ B, since s 6∈ A ∩ B, it follows that A ∩ B
has at most (m − 1) + nL − 1 + nR ≤ m + n − 1 connected components. The bound is tight, as
one can construct A such that Aj intersects both Bj and Bj+1 for j = 1, . . . ,m − 1, while Am

intersects Bj for j = m− 1, . . . , n.
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Theorem 5.2 (Properties of aε + bε and a necessary condition for overlap). Let A ∈ Cm×m,
B ∈ Cn×n, ε ≥ 0, and z0 ∈ C be such that ε is not a singular value of either A− z0I or B − z0I,
and let Rθ be the ray defined in (4.1). Furthermore, let Zε := {θ ∈ (−π, π] : aε(θ) + bε(θ) = 0},
where aε is defined in (4.5a) for A and bε is its analogue for B. Then the following statements
hold:

(i) if Rθ ∩ Λε(A) ∩ Λε(B) 6= ∅, then aε(θ) + bε(θ) = 0,

(ii) if aε(θ) + bε(θ) = 0, then Rθ ∩ Λε(A) 6= ∅ and Rθ ∩ Λε(B) 6= ∅,

(iii) aε + bε is continuous on its entire domain (−π, π],

(iv) aε + bε is differentiable at a point θ if aε and bε are differentiable at θ,

(v) Zε can have up to m+ n− 1 connected components.

Proof. The assumption in (i) implies that Rθ ∩ Λε(A) 6= ∅ and Rθ ∩ Λε(B) 6= ∅ hold, and
so aε(θ) = 0 and bε(θ) = 0 by Theorem 4.5 (ii). Statements (ii)–(iv) are direct consequences
of Theorem 4.5 (ii)–(iv). For (v), note that Zε = Aε ∩ Bε, where Aε is defined in (4.5b) for A

and Bε is its analogue for B. As Aε and Bε respectively have up to m and n connected components
by Theorem 4.5, statement (v) follows from Lemma 5.1.

Given an angle θ, Theorem 5.2 states that aε(θ) + bε(θ) = 0 is a necessary condition for the
pseudospectra Λε(A) and Λε(B) to overlap somewhere along the ray Rθ, but it is easy to see that
this is not a sufficient condition for such overlap. To obtain such a sufficient condition, we now
define the function ℓε : (−π, π]→ (−∞, 0] and an associated set:

ℓε(θ) := −µ (Rθ ∩ Λε(A) ∩ Λε(B)) , (5.1a)

Lε := {θ ∈ (−π, π] : ℓε(θ) < 0}. (5.1b)

As Lε is open, it is measurable, and via Lemma 4.1, we know that the ray Rθ can intersect
at most 2m and 2n boundary points, respectively, of Λε(A) and Λε(B). Thus, the number
of connected components of Rθ ∩ Λε(A) is finite, as is the number of connected components
of Rθ ∩ Λε(B); hence, the intersection in the definition of ℓε is measurable. Moreover, Lemma 4.1
allows us to determine these intervals (or isolated points), and so the value of ℓε(θ) can be com-
puted simply by calculating how much the intervals of Rθ ∩ Λε(A) overlap those of Rθ ∩ Λε(B);
we explain exactly how this is done in §7. In addition to aε and bε, function ℓε is also plotted
in Fig. 4.1.

Theorem 5.3 (Properties of ℓε and a sufficient condition for overlap). Let A ∈ Cm×m, B ∈ Cn×n,
ε ≥ 0, z0 ∈ C, θ ∈ R, and Rθ be the ray defined in (4.1). Then for the function ℓε defined in (5.1a),
the following statements hold:

(i) ℓε(θ) < 0 ⇐⇒ Rθ ∩ int Λε(A) ∩ int Λε(B) 6= ∅,

(ii) if aε(θ) + bε(θ) > 0, then ℓε(θ) = 0,

(iii) ℓε is continuous on its entire domain (−π, π],

(iv) ℓε is differentiable at a point θ if ∀r > 0 such that z0 + reiθ ∈ bdΛε(A), ir is a simple
eigenvalue of Cθ, and ∀r > 0 such that z0+reiθ ∈ bdΛε(B), ir is a simple eigenvalue of Sθ.

Furthermore, the following statements hold for the associated set Lε defined in (5.1b):

(v) ε ≤ sepDλ (A,B) ⇐⇒ µ(Lε) = 0,

(vi) sepDλ (A,B) < ε1 < ε2 ⇐⇒ 0 < µ(Lε1 ) < µ(Lε2),

(vii) minθ∈(−π,π] ℓε(θ) < 0 ⇐⇒ 0 < µ(Lε) ⇐⇒ sepDλ (A,B) < ε.
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Proof. Statement (i) simply follows from the definition of ℓε given in (5.1a) and noting that the
intersection Rθ ∩ int Λε(A) ∩ int Λε(B) is either empty or consists of a finite number of open
intervals in R. For (ii), if aε(θ) + bε(θ) > 0, then either Rθ ∩ Λε(A) = ∅ or Rθ ∩ Λε(B) = ∅

holds by Theorem 4.5 (ii), and so ℓε(θ) = 0. Statement (iii) follows from the fact the boundaries of
ε-pseudospectra vary continuously with respect to ε, which is clear from (1.2), and via Lemma 4.1,
do not contain any straight line segments. Under the assumptions in (iv), standard perturbation
theory for simple eigenvalues applies.

For Lε, (v) is a direct consequence of (i) and the definition of sepDλ (A,B) given in (1.4b),
as intΛε(A) ∩ int Λε(B) = ∅ if and only if ε ≤ sepDλ (A,B). Statement (vi) follows by a similar
argument to the proof of Theorem 4.5 (vi), with µ(Lε1) > 0 if and only if ε1 > sepDλ (A,B)
following from (i). Statement (vii) is simply a combination of (i) and (vi).

From Theorem 5.3 (vii), it is clear that if ℓε can be sufficiently well approximated, then one
can determine whether or not ε > sepDλ (A,B) holds. Moreover, as we fully explain in §7, via
Lemma 4.1, knowledge of such angles can be used to compute points on the ε-level set of fD,
points which can be used to restart optimization to find a better (lower) estimate for sepDλ (A,B).
Thus, one may wonder what the point was of considering aε + bε and deriving its associated
necessary condition given in Theorem 5.2. There is in fact a very important reason for this.

As ℓε is constant (zero) whenever it is not negative, it can, ironically, be a difficult function
to approximate. The pitfall here is that regions where a function appears to be constant may be
undersampled by interpolation software, precisely because the computed estimate of the error on
such regions will generally be exactly zero, e.g., because the software initially builds a constant
interpolant for the region in question. Thus, there is a concern that approximating ℓε via interpo-
lation may miss regions where ℓε(θ) < 0 holds, particularly if these regions are small compared to
the regions where ℓε(θ) = 0. Our solution to this difficulty is to replace ℓε by another non-constant
function whenever ℓε(θ) = 0 holds. We first consider the continuous function tε : (−π, π]→ R

tε(θ) :=

{
aε(θ) + bε(θ) if aε(θ) + bε(θ) > 0

ℓε(θ) otherwise
, (5.2a)

Tε := {θ ∈ (−π, π] : tε(θ) = 0}, (5.2b)

an alternative to approximating ℓε; we have also defined Tε, the set of roots of tε, as this will be
used later. The key point here is that tε tells us at which angles the sufficient condition for Λε(A)
and Λε(B) to overlap is satisfied (tε(θ) < 0), where only the necessary condition for overlap is
satisfied (tε(θ) = 0), or where neither is satisfied (tε(θ) > 0). However, in light of Theorems 5.2
and 5.3, it is clear that tε could still contain (potentially large) intervals where it is zero, and
generally, regions where tε(θ) < 0 holds will often be found in between such regions where tε is the
constant zero. Thus, there is still cause for concern that approximating tε to find regions where it
is negative may be difficult. As such, in the next section we introduce an additional nonnegative
function to replace the portions of tε where it is the constant zero.

Remark 5.4. Recall that we added smoothing in the definitions of aε and bε by squaring the Arg(·)
terms, as they otherwise may grow like the square root function when they increase from zero (or
vice versa), behavior which can be difficult and expensive to resolve via interpolation. While ℓε
can also exhibit similar non-Lipschitz behavior when it transitions to being negative (and possibly
elsewhere when it is already negative), we have intentionally not smoothed this term. The reason
is that once an angle θ is found such that ℓε(θ) < 0, there is no need to continue building an
interpolant approximation. This angle can immediately be used to compute new level-set points to
restart optimization and improve (lower) the current estimate to sepDλ (A,B).

6 Locally supporting rays of pseudospectra and our certifi-

cate function dε

In this section, we propose a new function with which we can replace the constant-zero portions
of tε. However, we begin with the following general definitions, which are variations of the concept
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of a supporting hyperplane in Rn [BV04, Chapter 2.5.2] specialized to C, and a pair of related
theoretical results.

Definition 6.1. Given a connected set A ⊂ C, a line L ⊂ C supports A at a point z ∈ bd(A)∩L
if A lies completely in one of the closed half-planes defined by L.

Definition 6.2. Given a set B ⊂ C, a line L ⊂ C locally supports B at a point z ∈ bd(B) ∩ L if
line L supports A∩N at z for some neighborhood N about z, where A is a connected component
of B. A ray R locally supports B at z ∈ bd(B)∩ intR if the line L containing R locally supports B
at z.

Note that if θ is a point where aε transitions from positive to zero (or vice versa), this implies
that the ray Rθ locally supports Λε(A). Similarly, if θ is a point where bε transitions from positive
to zero (or vice versa), then Rθ locally supports Λε(B). Thus, it follows that if θ is a point
where aε+bε transitions from positive to zero (or vice versa), thenRθ locally supports either Λε(A)
or Λε(B) or both simultaneously (though not necessarily at the same point). Also note that if ℓε
transitions from zero to negative (or vice versa) at θ, then Rθ locally supports Λε(A) ∩ Λε(B).
We now derive necessary conditions based on the eigenvalues of Cθ and Sθ for these scenarios.
We first consider the case when Rθ locally supports Λε(A). Note that [BLO03, p. 371–373] also
informally touches upon this subject and related issues for the specific case of vertical lines.

Lemma 6.3. Let A ∈ Cm×m, ε ≥ 0, z0 ∈ C, θ ∈ R, and Rθ be the ray defined in (4.1).
If Rθ locally supports Λε(A), then the matrix Cθ defined in (4.3) has ir̂ with r̂ > 0 as a repeated
eigenvalue with even algebraic multiplicity.

Proof. Without loss of generality, assume that z0 = 0 and θ = 0, and suppose that Rθ locally
supports Λε(A) at r̂ > 0. Thus, r̂ ∈ bdΛε(A), and so σmin(A − r̂I) = ε and ir̂ ∈ Λ(Cθ)
by Lemma 4.1. By Definition 6.2, there exists a neighborhood N (in the open right half-plane)
about r̂ such that (Λε(A)∩N )\Rθ is connected. As Rθ separatesN into N1 = {z ∈ N : Im z > 0}
and N2 = {z ∈ N : Im z < 0}, either Λε(A) ∩ N1 or Λε(A) ∩ N2 must be empty. Without loss of
generality, suppose that Λε(A)∩N1 = ∅, and now consider how eigenvalue ir̂ evolves as θ is varied,
i.e., λ(θ) ∈ Λ(Cθ) with λ(0) = ir̂. By continuity, eigenvalue λ(θ) can either move up or down on
the imaginary axis or it can move off the imaginary axis as the value of θ is increased from zero.
If it moves along the imaginary axis, then locally, we have that λ(θ) = ir(θ), where r : R → R is
continuous and r(0) = r̃. Since r̃ > 0, there exists a θp > 0 such that r(θ) > 0 for all θ ∈ (0, θp).
By Lemma 4.1, it thus follows that r(θ)eiθ ∈ Λε(A) for all θ ∈ (0, θp), but this contradicts the
assumption that Λε(A) ∩ N1 is empty. Thus, λ(θ) must move off the imaginary axis as the value
of θ is increased from zero. Since the eigenvalues of the Hamiltonian matrix Cθ are symmetric
with respect to the imaginary axis, by continuity at least one pair of eigenvalues (or possibly more
pairs non-generically) must coalesce on the imaginary axis at ir̂ as θ → 0.

Now consider the case when Rθ locally supports Λε(A) ∩ Λε(B), which can happen at a
boundary point of either Λε(A) or Λε(B), or a shared boundary point of both. Building on
Lemma 6.3, we have the following result.

Lemma 6.4. Let A ∈ Cm×m, B ∈ Cn×n, ε ≥ 0, z0 ∈ C, θ ∈ R, and Rθ be the ray defined in (4.1).
Furthermore, for matrix A, let Cθ be the matrix defined in (4.3), and let Sθ be its analogue for
matrix B. If Rθ locally supports Λε(A) ∩ Λε(B) at a point z ∈ C, then at least one, and possibly
all, of the following conditions must hold:

(i) Cθ and/or Sθ has ir̂ with r̂ > 0 as a repeated eigenvalue with even algebraic multiplicity,

(ii) Cθ and Sθ have an eigenvalue ir̂ with r̂ > 0 in common.

Proof. Without loss of generality, we can assume that z0 = 0 and θ = 0, and so z is on the
positive part of the real axis, i.e., z = r̂ for some r̂ > 0. If Rθ locally supports Λε(A)∩Λε(B) at r̂,
either r̂ ∈ bdΛε(A) but not bdΛε(B) (or vice versa) or r̂ is a shared boundary point of both Λε(A)
and Λε(B). If r̂ is not a shared boundary point, then Rθ must locally support either Λε(A)
or Λε(B) at r̂, and so Lemma 6.3 applies, yielding the “or” part of (i). Now suppose r̂ is a shared
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boundary point, and so σmin(A− r̂I) = σmin(B− r̂I) = ε. Then by Lemma 4.1, ir̂ is an eigenvalue
of both Cθ and Sθ, yielding (ii). Furthermore, Rθ may or may not also locally support Λε(A)
and/or Λε(B) at r̂. All four scenarios are possible, with the “and” part of (i) corresponding to
when the ray simultaneously locally supports both Λε(A) and Λε(B) at r̂.

Recall the set of roots Tε of tε, which is defined in (5.2b). If θ ∈ Tε, then the necessary condition
for overlap aε(θ) + bε(θ) = 0 is satisfied, and so Rθ intersects both Λε(A) and Λε(B). However,
as ℓε(θ) = 0, the sufficient condition is not met, and via Theorem 5.3, it follows that Λε(A)
and Λε(B) either have no points in common along Rθ, or at most only boundary points in
common. For a function to replace the regions of tε where tε(θ) = 0, i.e., Tε, we propose a
function dAB

ε : Tε → [0,∞) that is a measure of how close Λε(A) and Λε(B) are to sharing a
boundary point along Rθ. To that end, let

dAB
ε (θ) := min{dAε (θ), d

B
ε (θ)}, where (6.1a)

dAε (θ) := min{fA(r, θ)− ε : z0 + reiθ ∈ Rθ ∩ bdΛε(B)}, (6.1b)

dBε (θ) := min{fB(r, θ) − ε : z0 + reiθ ∈ Rθ ∩ bdΛε(A)}, (6.1c)

where fA is defined in (4.2) for matrix A and fB is its analogue for matrix B. Since θ ∈ Tε,
both Rθ ∩ bdΛε(A) and Rθ ∩ bdΛε(B) must be nonempty, and so the functions are well defined.
The purpose of dAε is to provide a nonnegative measure of how close Λε(B) is to touching Λε(A)
along the given ray Rθ, and vice versa for dBε . Note that if Rθ ∩ bdΛε(A) ∩ bdΛε(B) 6= ∅,
then dAε (θ) = dBε (θ) = 0, but otherwise dAε (θ) and dBε (θ) are typically not the same value. While
technically dAε alone (or dBε ) would suffice as a closeness measure of the two pseudospectra along
a given ray, we have observed that their pointwise minimum, i.e., dAB

ε , is often cheaper to approx-
imate. Important properties of dAB

ε are summarized in the following statement.

Theorem 6.5 (Properties of dAB
ε ). Let A ∈ Cm×m, B ∈ Cn×n, ε ≥ 0, and z0 ∈ C be such that

ε ≥ 0 is not a singular value of either A− z0I or B − z0I, and let Rθ be the ray defined in (4.1).
Furthermore, let dAB

ε be as defined in (6.1) on domain Tε defined in (5.2b). Then for any point
θ ∈ Tε, the following statements hold:

(i) dAB
ε (θ) ≥ 0,

(ii) dAB
ε (θ) = 0 ⇐⇒ Rθ ∩ Λε(A) ∩ Λε(B) 6= ∅ ⇐⇒ Rθ ∩ bdΛε(A) ∩ bdΛε(B) 6= ∅,

(iii) dAB
ε is continuous at θ if every eigenvalue ir, of either Cθ or Sθ, that attains the minimum

in dAB
ε (θ) is simple,

(iv) dAB
ε is differentiable at θ if there are no ties for dAB

ε (θ), i.e., it is attained via fA(r, θ)
or fB(r, θ) but not both, the corresponding minimum singular value is simple, and there is
a single eigenvalue ir, of either Cθ or Sθ as appropriate, that attains dAB

ε (θ), where this
eigenvalue is simple.

Proof. Statements (i) and (ii) are simple but important direct consequences of the definition
of dAB

ε and the fact that its domain is restricted to Tε, since otherwise dAB
ε (θ) could be negative

(or undefined) for some θ and the equivalences in (ii) would not hold. For statement (iii), con-
sider dBε (θ) and recall that by Lemma 4.1, z0 + r̂eiθ ∈ Rθ ∩ bdΛε(A) is always associated with an
eigenvalue ir̂ of Cθ. Since eigenvalues are continuous, eigenvalue ir̂ can either move continuously
along the positive portion of the imaginary axis or leave this region as θ is varied. Clearly, the
former case cannot cause a discontinuity in dBε , so consider the latter. By the assumption on ε,
zero can never be an eigenvalue of Cθ for any θ, and clearly the eigenvalues of a matrix are all
finite. Thus, if an eigenvalue leaves the positive portion of the imaginary axis, it cannot be by
going through the origin or infinity. Since the eigenvalues of the Hamilton matrix Cθ are symmet-
ric with respect to the imaginary axis, a simple eigenvalue cannot leave the imaginary axis, and
a repeated eigenvalue is excluded by assumption; hence, dBε must be continuous at θ. The same
argument shows that dAε is continuous at θ under the analogous assumptions for the eigenvalues
of Sθ, and so dAB

ε is continuous at θ. For (iv), the assumptions mean that there are no ties for the
min functions and standard perturbation theory for simple singular values and simple eigenvalues
applies.

14



-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

(a) Λε(A) and Λε(B) (b) dε(θ)

Figure 6.1: For two randomly generated matrices A,B ∈ C10×10, the left pane shows their eigen-
values (respectively x’s and dots), and Λε(A) and Λε(B) (respectively solid and dotted contours)
for ε = 0.3 > sepDλ (A,B). The search point z0 is the origin; rays emanating from it are depicted by
dashed lines. The right pane shows a corresponding plot of dε, where its components are plotted
as follows: aε + bε (dotted), ℓε (dashed), and dAB

ε (solid). For θ = − 1
2π, it can be seen in the

left pane that Rθ only passes through Λε(B) and so dε(θ) = aε(θ) + bε(θ) > 0 in the right pane.
Meanwhile for θ = 1

2π, Rθ passes through intΛε(A) ∩ int Λε(B) and so dε(θ) = ℓε(θ) < 0. Fi-
nally, for θ = 0, while Rθ passes through both Λε(A) and Λε(B), it never does so simultaneously,
hence aε(θ) + bε(θ) = ℓε(θ) = 0 and dε(θ) = dAB

ε (θ) > 0.

While Theorem 6.5 verifies that dAB
ε is reasonably well behaved, dAB

ε may have jump discon-
tinuities. However, dAB

ε is discontinuous at point θ ∈ int Tε only if two conditions simultaneously
hold: Rθ locally supports Λε(A) or Λε(B) at a point z0 + r̂eiθ with r̂ > 0, and this value r̂ is the
one that attains the value of dAB

ε (θ). As a result, we expect such discontinuities to be relatively
few, and so this should not be a problem in practice. Functions dAε and dBε typically do not have
non-Lipschitz behavior when they transitions to/from zero, and so we have not added smoothing
when them and defining dAB

ε . When fD has a unique minimizer, dAB
ε only has a single root

for ε = sepDλ (A,B).
Combining our three constituent pieces, we now define dε : (−π, π]→ R, our key function for

our interpolation-based globality certificate for sepDλ (A,B):

dε(θ) :=





aε(θ) + bε(θ) if aε(θ) + bε(θ) > 0,

ℓε(θ) if ℓε(θ) < 0,

dAB
ε (θ) otherwise.

(6.2)

In Fig. 6.1, we plot dε for a sample problem with ε > sepDλ (A,B) in order to illustrate the different
components of dε. Recalling that aε + bε is a nonnegative function and so is dAB

ε on its domain,
we immediately have the following global convergence conditions as a corollary of Theorems 5.2,
5.3, and 6.5.

Corollary 6.6 (Global convergence for sepDλ (A,B) via dε). Let A ∈ Cm×m, B ∈ Cn×n, ε ≥ 0,
and z0 ∈ C be such that ε is not a singular value of either A − z0I or B − z0I, and let dε be the
function defined in (6.2). Then

min
θ∈(−π,π]

dε(θ) < 0 ⇐⇒ µ({θ ∈ (−π, π] : dε(θ) < 0}) > 0 ⇐⇒ ε > sepDλ (A,B).

In the process of devising dε, we considered many different possibilities but found that these
alternatives were significantly more expensive to use than dε, even if they had fewer jumps or

15



even none. For example, we considered an entirely continuous alternative to dε that replaced
its dAB

ε portions with a continuous measure of the distance to any of the necessary conditions
in Lemma 6.4 holding. However, this function often had more complicated behavior and many
many roots than dε because the necessary conditions in Lemma 6.4 hold for any θ such that Rθ

locally supports either of the two pseudospectra or their intersection, and possibly at other an-
gles as well. Even when incorporating smoothing to address non-Lipschitz behavior at roots,
this alternative was still much more expensive to approximate than dε. We also tried replac-
ing dAB

ε with min{µ(Rθ ∩ Λε(A)), µ(Rθ ∩ Λε(B))} and other continuous alternatives, although
these choices still resulted in jumps when combined when used in conjunction with aε+ bε and ℓε.
But these choices were more expensive to approximate than dAB

ε because they generally had more
complicated behaviors than dAB

ε , e.g., more nonsmooth points, more oscillatory behavior, etc.
Finally, we considered just using the smallest pairwise distance between points in Rθ ∩ bdΛε(A)
and Rθ ∩ bdΛε(B). This is quite similar to dAB

ε and can have similar discontinuities, but it too
ended up being more expensive to approximate than dAB

ε . That all said, none of the alternatives
we considered were prohibitively expensive; using any of them to compute sepDλ (A,B) was still
much faster than the method of Gu and Overton, even though they were generally not as fast as
our ultimate choice for dε.

Remark 6.7. Another approach to computing sepDλ (A,B) is via

s(θ) := min
r∈R

sθ(r), where sθ(r) := max{σmin(FA(r, θ)), σmin(FB(r, θ))}, (6.3)

i.e., s(θ) is the minimal value fD takes along the line defined by θ and passing through some z0 ∈ C.
It is then immediate that

sepDλ (A,B) = min
θ∈[0,π)

s(θ), (6.4)

as this simply rewrites (1.3b) in polar coordinates about z0. Thus, using Chebfun to approxi-
mate s and then find a global minimizer in [0, π) provides another way to obtain sepDλ (A,B). One
drawback of this approach is that for any given θ, evaluating s(θ) is much more expensive than
evaluating dε(θ). As we explain in detail in the next section, evaluating dε(θ) is essentially direct,
since it only requires solving two eigenvalue problems of order 2m and 2n and this is generally the
dominant cost. Meanwhile, computing s(θ) involves finding a global minimizer of sθ, which requires
iteration. Although we can use Lemma 4.1 to construct such an iteration, similar to the level-set
methods of [BB90, BS90] for computing the H∞ norm, the resulting algorithm to compute s(θ)
would generally only be linearly convergent; the key difference between here and the H∞-norm
setting is that sθ, due to being a max of two min functions, will generally will be nonsmooth at
its minimizers. Consequently, evaluating s(θ) would require solving multiple eigenvalue problems
of 2m and 2n. Another issue is that although s is continuous, it is still nonsmooth, and it is
generally more expensive for Chebfun to detect nonsmooth points than jumps; see [PPT09, Tre20].
Finally, a third downside is that using Chebfun to precisely compute a (likely unique) global min-
imizer of some function, e.g., s, is a significantly more numerically challenging task than what
we ask of Chebfun inside our algorithm using dε, i.e., to find any point where dε is negative,
since as we have shown, the set of such points has positive measure when ε > sepDλ (A,B). Thus,
when attempting to compute sepDλ (A,B) by applying Chebfun to (6.4), we nevertheless recommend
subsequently refining its computed result by applying local optimization to fD initialized from the
point in the complex plane found by Chebfun.

7 Implementation and the cost of our method

We now discuss how to implement our sepDλ (A,B) algorithm, which we have done in MATLAB,
and describe its overall work complexity. We give detailed remarks in the following subsections,
while high-level pseudocode is given in Algorithm 7.1.

7.1 Choosing a search point

Regarding what search point z0 to use, we recommend the average of all the distinct eigenvalues
of A and B. This helps to ensure the whole domain of dε(θ) is relevant. Otherwise, if for a given
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Algorithm 7.1 Interpolation-based Globality Certificate Algorithm for sepD
λ
(A,B)

Input: A ∈ C
m×m, B ∈ C

n×n, “search point” z0 ∈ C, and zinit ∈ C.
Output: ε ≈ sepDλ (A,B).

1: while true do

2: ε← computed locally/globally minimal value of fD initialized from zinit
3: // Begin approximating dε to assert convergence or find new starting points
4: pε ← 1 // Initial guess for polynomial interpolant pε for approximating dε
5: while pε does not sufficiently approximate dε do

6: [θ1, . . . , θq]← new sample points from (−π, π]
7: // If new starting points are detected, restart optimization to lower ε:
8: if dε(θj) < 0 for some j ∈ {1, . . . , q} then

9: zinit ← a point in bd{Rθj ∩ Λε(A) ∩ Λε(B)} \ {z0}
10: goto line 2 // Restart optimization from zinit
11: end if

12: // Otherwise, no starting points detected, keep improving pε:
13: pε ← improved polynomial interpolant of dε via θ1, . . . , θq
14: end while

15: // pε approximates dε well and no new starting points were encountered
16: // However, do a final check before asserting that dε is nonnegative:
17: [θ1, . . . , θq] = argmin pε(θ)
18: if dε(θj) < 0 for some j ∈ {1, . . . , q} then

19: zinit ← a point in bd{Rθj ∩ Λε(A) ∩ Λε(B)} \ {z0}
20: goto line 2 // Restart optimization from zinit
21: else

22: return // pε ≈ dε and =⇒ ε ≈ sepDλ (A,B)
23: end if

24: end while

Note: To keep the pseudocode a reasonable length, we make some simplifying assumptions: optimization con-
verges to local/global minimizers exactly, zinit computed in lines 9 and 19, for restarting optimization, is never
a stationary point of fD, and the “search point” z0 is such that all encountered values of ε are not singular val-
ues of σmin(A− z0I) and σmin(B − z0I), per the assumptions given in §4 and §5. Lines 3-15 describe the core
of the interpolation-based globality certificate, where we only give a broad outline of the interpolation process for
approximating dε; note that for numerical reasons, each certificate should actually be done with ε̃ = (1 − τ)ε,
where τ ∈ (0, 1) is some relative tolerance. See §7.2 and §7.3 for more implementation details.

value of ε, z0 is chosen far from the pseudospectra of A and B, then aε(θ) + bε(θ) = 0 would only
hold on a very small subset of (−π, π], which in turn would likely make it harder to find the regions
where dε(θ) is negative. On every round, our code checks that the choice of z0 still satisfies our
needed assumptions and perturbs it slightly if it does not (in practice, we have not observed that
this is necessary). Finally, if the pseudospectra of A and B both have real-axis symmetry, by
choosing z0 on the real axis, it is then only necessary to approximate dε(θ) on [0, π].

7.2 Evaluating dε(θ) and its cost

Given some θ, evaluating dε(θ) proceeds as follows. First, the eigenvalues of both Cθ and Sθ

are computed. For increased reliability, it is recommended that this be done via a structure-
preserving eigensolver such as [BMX99]. From these spectra, it is then trivial to calculate the
value of aε(θ) + bε(θ) via (4.5a). If aε(θ) + bε(θ) > 0, then the value of dε(θ) has been computed.
Otherwise, evaluating dε(θ) requires the following additional computations, which begins with
obtaining the value of ℓε(θ). To that end, we compute Rθ ∩ Λε(A) and Rθ ∩ Λε(B). Considering
the former, we want to determine the values r > 0 such that fA(r, θ) = ε, and via Lemma 4.1,
we have the following sorted list of candidate values 0 = r0 < r1 < . . . < rq that may satisfy this
equality, where irj for j = 1, . . . , q are eigenvalues of Cθ and we have added r0 = 0. Then to
compute Rθ ∩ Λε(A), we must assert which intervals on Rθ, defined by [rj−1, rj ] for j = 1, . . . , q,
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are also in Λε(A). There are several ways to do this but a simple and robust way is to just
evaluate fA(r̂j , θ) for r̂j = 0.5(rj−1 + rj) over j = 1, . . . , q; since fA(r̂j , θ) 6= ε, the corresponding
interval is not in Rθ ∩ Λε(A) if and only if fA(r̂j , θ) > ε. Note that it does not matter if we have
two or more adjacent intervals in our computed version of Rθ∩Λε(A). An analogous computation
yields Rθ ∩ Λε(B). With these two sets computed, calculating the amount of their overlap along
the given ray, i.e., −ℓε(θ), is straightforward. If ℓε(θ) < 0, then the evaluation of dε(θ) is done
and the boundary points of Rθ ∩ Λε(A) ∩ Λε(B) have been also been computed, which are used
to restart optimization. However, if ℓε(θ) = 0, then finally we must compute dAB

ε (θ) in order to
complete the computation of d(θ), though this is this is straightforward to do from the definition
of dAB

ε (θ) given in (6.1) and the previous computations.
Recalling our assumption that m ≤ n, evaluating dε(θ) is O(n3) work if done in the following

manner. Computing all of the eigenvalues of Cθ and Sθ is O(n3) work, and that is all there
is to do when aε(θ) + bε(θ) > 0. But when aε(θ) + bε(θ) = 0, computing dε(θ) additionally
requires computing the values of fA(r, θ) and fB(r, θ) for different values of r. While the number
of values of r is often only a handful, in the worst case, it can be O(m + n). Hence, if we were
to evaluate this pair of functions by computing SVDs, we would exceed the stated O(n3) work
complexity bound by a factor of n. Fortunately, there is a more efficient option due to Lui for fast
plotting of pseudospectra [Lui97]. Since A is square, it has a Schur decomposition A = UTU∗,
where U is unitary and T is triangular, and moreover, since unitary transformations do not alter
the pseudospectrum, Λε(A) = Λε(T ) holds. The key benefit of this transformation is that at any
point z0 + reiθ ∈ C, we have that T − (z0 + reiθ)I remains in triangular form, and so inverse
iteration can be done to compute this shifted matrix’s minimum singular value using backsolves
that only require quadratic work as opposed to the usual cubic work for solving a linear system.
We need only compute and store Schur decompositions of A and B once in an offline phase, which
is cubic work, and then we can evaluate fA(r, θ) and fB(r, θ) for any r and θ in a most O(n2)
work under the mild assumption that inverse iteration converges in relatively few steps.4 Hence,
evaluating dε(θ) can always be done within O(n3) work. In our own experience, we have seen that
ten iterations is generally more than sufficient to compute fA(r, θ) and fB(r, θ) accurately to the
full precision of the hardware, and that this technique is already faster than computing the full
SVD for matrices as small as 50× 50.

7.3 Approximating dε and restarting

To approximate dε, we use Chebfun, as it is rather adept at approximating functions with nons-
mooth points and/or discontinuities. As Chebfun normally provides groups of points to evaluate
simultaneously (line 6 of Algorithm 7.1), these evaluations of dε can be done in parallel; see
[Mit21, Section 5.2] for more details. Furthermore, if dε(θ) < 0 for any of current group of
points provided by Chebfun, we immediately halt Chebfun and use the detected boundary points
of Rθ ∩ Λε(A) ∩ Λε(B) (except for z0) to restart optimization (lines 7–11 of Algorithm 7.1). This
is accomplished by throwing an error when a point is encountered such that dε(θ) < 0 holds, which
causes Chebfun to be aborted. By subsequently catching our own thrown error, we can resume
our program to restart another round of optimization.

7.4 Finding minimizers

Like many other optimization-with-restarts algorithms, it will be necessary to use a monotonic
optimization solver, i.e., one that always decreases the objective function on every iteration, which
is the case for most unconstrained optimization solvers. Minimizers of fD will almost always be
nonsmooth, and at best, we can expect linear convergence from a nonsmooth optimization solver.
However, since there are only two real variables, we expect the number of iterations needed to
converge to be relatively small. Thus, as evaluating fD and its gradient is significantly cheaper
than evaluating dε, and we expect far fewer function evaluations for the former than the latter,
the cost of Algorithm 7.1 will generally not be dominated by the optimization phases.

4For more details on the actual inverse-iteration-based algorithm, including pseudocode and code examples,
see [Lui97] and [TE05, Chapter 39], but note that the latter has the following typo: In “Core EigTool algorithm”
[TE05, p. 375], the second to last line should be sigmin(j,k) = 1/sqrt(sig);, not sigmin(j,k) = sqrt(sig);.
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To find minimizers of fD using only gradient information, we use GRANSO: GRadient-based
Algorithm for Non-Smooth Optimization [Mita]. GRANSO implements the BFGS-SQP nons-
mooth optimization algorithm of [CMO17], which can handle nonsmooth constraints, but for
problems without constraints, it reduces to BFGS with the line search of [LO13], a combination
which Lewis and Overton have studied and advocated as a method for nonsmooth optimization.
While there are no convergence results for BFGS for general nonsmooth optimization, it never-
theless seems to reliably and accurately converge to nonsmooth stationary values. Indeed, in their
concluding remarks [LO13, p. 160], Lewis and Overton wrote “In our experience with functions
with bounded sublevel sets, BFGS essentially always generates function values converging linearly
to a Clarke stationary value, with exceptions only in cases that we attribute to the limits of ma-
chine precision. We speculate that, for some broad class of reasonably well-behaved functions, this
behavior is almost sure.” Since fD is locally Lipschitz as long as sepDλ (A,B) > 0 and has bounded
level sets, we expect that BFGS will also be an efficient and reliable tool in our setting. For
improved theoretical guarantees, one could follow up optimization via BFGS with a phase of the
gradient sampling algorithm [BLO05], which would ensure convergence to nonsmooth stationary
values of fD when sepDλ (A,B) > 0. However, for simplicity, we only use BFGS here.

When restarting optimization, our certificate may provide many new starting points. Restart-
ing from just one would give the smallest chance of converging to a global minimizer on this round,
while restarting from them all could be a waste of time, particularly if this ends up just returning
the same minimizer over and over again. In practice, one could prioritize them in terms of most
promising first and limit the total number used. On multi-core machines, optimization can be run
from multiple starting points in parallel.

7.5 Terminating the algorithm

In addition to the convergence tests described in Algorithm 7.1, it is also necessary to terminate
the algorithm if consecutive estimates for sepDλ (A,B) are identical. The reason is that we cannot
expect optimization solvers to find minimizers exactly. If a global minimizer z̃ is obtained only up
to some rounding error, then sepDλ (A,B) has essentially been computed, but our certificate may
still detect that the algorithm has not truly converged to a global minimizer, and in this case,
the algorithm may try to restart optimization (unsuccessfully). This is also part of the reason
why the certificates should actually be performed with ε̃ = (1 − τ)ε, as described in the note
under Algorithm 7.1.

7.6 The overall work complexity and using lines instead of rays

In the worst case, the overall work complexity to perform the interpolation-based globality cer-
tificates is O(kn3), where k is the total number of function evaluations (over all values of ε

encountered). As restarts tend to happen quickly, k is roughly equal to the number of evaluations
needed to approximate dε when ε = sepDλ (A,B), and as we will see in the numerical experiments, k
can generally be considered to be like a large constant, although it is influenced by the geometry
of the two pseudospectra.

When implementing the algorithm, the definition of dε can be modified so that it considers
lines through z0 instead of rays emanating from z0. This can be beneficial, since we always get
information for the direction θ + π when considering Rθ, and so this modified version of dε need
only be interpolated on [0, π]. Function aε measures the minimum argument of −iλ over each
eigenvalue λ of Cθ, so when using lines instead of rays, it must also consider the minimum angle
with respect to the negative real axis. These additional angles are computed by simply switching
the sign of the imaginary part of each eigenvalue λ. The same change is made for bε, while
modifying ℓε and dAB

ε is straightforward. While using lines often results in less overall work, this
is not always the case, as it can sometimes make dε more complicated and thus more expensive
to approximate.
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8 Algorithms for sepVλ (A,B)

We now briefly turn to the problem of computing Varah’s sepλ(A,B). We first answer whether
or not Algorithm 7.1 extends to sepVλ (A,B) and then propose a different algorithm to com-
pute sepVλ (A,B).

8.1 Does Algorithm 7.1 extend to sepV
λ (A,B)?

In the construction of function dε for computing sepDλ (A,B), nowhere have we needed that the
same value of ε be used for the pseudospectra of A and B. Thus for Varah’s version of sepλ(A,B),
we can analogously define

dε1,ε2(θ) :=






aε1(θ) + bε2(θ) if aε1(θ) + bε2(θ) > 0,

ℓε1,ε2(θ) if ℓε1,ε2(θ) < 0,

dAB
ε1,ε2

(θ) otherwise,

(8.1)

where

ℓε1,ε2(θ) := −µ (Rθ ∩ Λε1(A) ∩ Λε2(B)) ,

dAB
ε1,ε2

(θ) := min{dAε1,ε2(θ), d
B
ε1,ε2

(θ)},

dAε1,ε2(θ) := min{fA(r, θ) − ε1 : Rθ ∩ bdΛε2(B)},

dBε1,ε2(θ) := min{fB(r, θ)− ε2 : Rθ ∩ bdΛε1(A)},

and fA is defined in (4.2) for matrix A, while fB is its analogue for matrix B. Although this will
not allow us to compute sepVλ (A,B) to arbitrary accuracy, we do have the following necessary
condition as another corollary of Theorem 5.3.

Corollary 8.1 (A necessary condition for ε1 + ε2 = sepVλ (A,B) via dε1,ε2). Let A ∈ Cm×m,
B ∈ C

n×n, ε1, ε2 ≥ 0, and z0 ∈ C be such that ε1 and ε2 are, respectively, not singular values of
A− z0I and B − z0I, and let dε1,ε2 be the function defined in (8.1). Then

min
θ∈(−π,π]

dε1,ε2(θ) < 0 ⇐⇒ µ({θ ∈ (−π, π] : dε1,ε2(θ) < 0}) > 0,

and
ε1 + ε2 > sepVλ (A,B) if min

θ∈(−π,π]
dε1,ε2(θ) < 0.

As the last statement in Corollary 8.1 is not if-and-only-if, dε1,ε2 does not allow us com-
pute sepVλ (A,B) with guaranteed accuracy. However, by modifying Algorithm 7.1 to instead find
minimizers of fV and use dε1,ε2 , we can compute locally optimal upper bounds for sepVλ (A,B)
that at least guarantee the necessary condition intΛε1(A) ∩ int Λε2(B) = ∅ is satisfied, as this is
equivalent to minθ∈(−π,π] dε1,ε2(θ) = 0. This is notably better than just computing upper bounds
via finding minimizers of fV, since the corresponding values of ε1 and ε2 associated with minimiz-
ers are not guaranteed to satisfy this necessary condition. However, when either ε1 = 0 or ε2 = 0
holds at the computed minimizer, note that intΛε1(A) = ∅ or intΛε2(B) = ∅ holds, and so
satisfying the necessary condition does not preclude the possibility that an eigenvalue of A may
be in intΛε2(B) or vice versa. Thus, when approximating sepVλ (A,B) via this extended algorithm,
one should always compute

ε̃ = min

{
min

λ∈Λ(B)
σmin(A− λI), min

λ∈Λ(A)
σmin(B − λI)

}
, (8.2)

which computes an upper bound ε̃ ≥ sepVλ (A,B) such that no eigenvalues of A are in the interior
of intΛε̃(B) and vice versa. Nevertheless, when optimization finds minimizers where neither ε1
nor ε2 is zero, then our certificate can be used to restart optimization if the necessary condition
does not hold, and hence obtain a better estimate for sepVλ (A,B).
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8.2 A different Chebfun-based algorithm to compute sepV
λ (A,B)

Given z0 ∈ C, let function v : [0, π)→ R be defined as

v(θ) := min
r∈R

vθ(r), where vθ(r) := σmin(FA(r, θ)) + σmin(FB(r, θ)), (8.3)

i.e., v(θ) is the minimal value fV takes along the line defined by θ and passing through z0. It then
immediately follows that

sepVλ (A,B) = min
θ∈[0,π)

v(θ). (8.4)

Since v is continuous function defined on a finite interval, as in the alternative sepDλ (A,B) algorithm
discussed in Remark 6.7, we can consider approximating v with Chebfun in order to solve (8.4).

Unfortunately evaluating v for a given θ is quite difficult, as the level-set iteration for find-
ing a global minimizer of sθ described in Remark 6.7 does not extend to vθ. However, for
some ε > sepVλ (A,B), say, ε = fV(z0), we can easily calculate a finite interval [r1, r2] such
that vθ(r) > ε must hold for all r 6∈ [r1, r2]. To do this, we simple apply Lemma 4.1 to ob-
tain the two extremal points, say, a1 and a2 with a1 ≤ a2, in the ε-level set of σmin(FA(r, θ))
with r varying and θ fixed, and then analogously, also obtain the two extremal level-set points b1
and b2 of σmin(FB(r, θ)) with b1 ≤ b2. By taking r1 = max{a1, b1} and r2 = min{a2, b2}, we
have that any global minimizer of vθ must lie in [r1, r2], since by construction, vθ(r) > ε outside
this interval. Thus, to obtain the value of v(θ), we simply solve two eigenvalue problems to ob-
tain [r1, r2] and then apply Chebfun to approximate vθ on [r1, r2] in order to obtain its globally
minimal value.

Using Chebfun to approximate v over [0, π), where for each θ, the value of v(θ) is also com-
puted by applying Chebfun to vθ, does lead to quite an expensive algorithm, as many evaluations
of σmin(FA(r, θ)) and σmin(FB(r, θ)) for different values of θ and r are required. However, this
nested Chebfun-based algorithm nevertheless has the virtue of being the very first algorithm to
compute sepVλ (A,B), as opposed to just approximating it, e.g., within a factor of two by instead
computing sepDλ (A,B).

Regarding the choice of z0, one might be tempted to use a local minimizer of fV, but there
are pros and cons to doing so. On the upside, if ε = fV(z0) is close to sepVλ (A,B), v likely will
be constant (with value ε) on a much of [0, π), or all of it if ε = sepVλ (A,B), precisely because z0
is a minimizer. This can greatly reduce the number of function evaluations required by Chebfun,
but as discussed earlier in §5, functions with large constant portions can actually cause Chebfun
to terminate prematurely. As such, we generally recommend that a minimizer of fV not be used
for z0.

Finally, recalling our recommendation at the end of Remark 6.7, when computing sepVλ (A,B)
via (8.4), we also similarly recommend refining Chebfun’s result via subsequently applying local
optimization. The upper bound given in (8.2) should also be computed.

9 Numerical experiments

All experiments were done in MATLAB R2021a on a computer with two Intel Xeon Gold 6130
processors (16 cores each, 32 total) and 192GB of RAM running CentOS Linux 7. We imple-
mented our new methods using a recent build of Chebfun (commit 119f9ad) with splitting

enabled and novectorcheck, and for simplicity, computed eigenvalues of Cθ and Sθ using eig

in MATLAB; to account for rounding errors, the real part of any computed eigenvalue λ was set
to zero if |Reλ| ≤ 10−8. For Algorithm 7.1, we used v1.6.4 of GRANSO with opt tol=1e-14 to
find local minimizers and used lines instead of rays for our globality certificates, as we observed
that this was usually a bit faster. We forgo including any parallel processing experiments here, as
we have previously validated the large benefits of using parallelism with our interpolation-based
globality certificate approach in [Mit21, Section 5.2]. The codes used to generate the results in this
paper are included in the supplementary materials, and we plan to add robust implementations
to ROSTAPACK: RObust STAbility PACKage [Mitb].
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(a) Λε(A(s)) and Λε(B(s)) for ε = sepD
λ
(A(s), B(s)) and s = 10 (left), s = 5 (middle), and s = 0 (right).
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(b) Λε1
(A(s)) and Λε2

(B(s)) for ε1 + ε2 = sepV
λ
(A(s), B(s)) and s = 10 (left), s = 5 (middle), and s = 0 (right).

Figure 9.1: For the example described in §9.1, pseudospectra of A(s) and B(s) (respectively solid
and dotted contours) corresponding to Demmel’s and Varah’s versions of sep-lambda are shown
along with the eigenvalues of A(s) and B(s) (respectively x’s and dots) for s ∈ {10, 5, 0}. In the
top right plot, Λε(A(s)) and Λε(B(s)) appear to touch at two places, but actually there is only
one contact point (the one closer to the origin). In the three lower plots, Varah’s sep-lambda is
attained with ε1 = 0.

9.1 An exploratory example

We first consider a simple example to explore the properties of our methods. We generated two
different complex 10 × 10 matrices using randn and rescaled them so that the resulting matri-
ces A and B both had spectral radii of 10. Then, for s ∈ {10, 5, 0}, we considered Demmel’s
and Varah’s versions of sep-lambda for A(s) = A − sI and B(s) = B + sI. When s = 0, the
spectra of A(s) and B(s) are “centered” are the origin, but when s is increased, the centers of the
two spectra, −s and s, become more and more distant from each other; hence, on a macro level,
increasing s generally increases the value of sepDλ (A(s), B(s)), and this is always true once s be-
comes sufficiently large. Estimates of sepDλ (A(s), B(s)) were computed using Algorithm 7.1, while
estimates of sepVλ (A(s), B(s)) were computed using both of our algorithms from §8; for Varah’s
sep-lambda, the estimates for both our algorithms agreed exactly since they were obtained at an
eigenvalue of A(s). For Algorithm 7.1 and its extension to Varah’s sep-lambda, we used 10 + 10i
as an initial point for optimization, which was chosen so that some restarts would be observed.
In Fig. 9.1, we show the resulting pseudospectra of A(s) and B(s) at the perturbation levels given
by sepDλ (A(s), B(s)) and sepVλ (A(s), B(s)).

We give performance statistics of Algorithm 7.1 on our exploratory example in Table 9.1.
For s = 10, GRANSO found a global minimizer of fD from the initial point and so only a single
certificate computation was needed in this case, while two certificates were needed for the s = 5
and s = 0 instances. On both of these, the first round of optimization only found a local minimizer,
and so the first certificate instead returned new points to restart optimization. But as can be seen
from Table 9.1, this happened with very little effort; only 15 evaluations of dε were needed to
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Table 9.1: Performance data for Algorithm 7.1 for Demmel’s version of sep-lambda on the example
given in §9.1 for s ∈ {10, 5, 0}: “fD evals.” is the total number of evaluations of fD during local
optimization, “Certs.” is the total number of certificates attempted, “All” and “Final” are the
total number of evaluations of dε over all certificates and just the final one, respectively, and the
final column is the total running time in seconds of Algorithm 7.1.

dε evals. Time (sec.)

s fD evals. Certs. All Final Alg. 7.1

10 156 1 2154 2154 4
5 150 2 8587 8572 5
0 205 2 22838 22823 13

Table 9.2: Performance data for our two algorithms described in §8 for Varah’s version of sep-
lambda on the example given in §9.1 for s ∈ {10, 5, 0}. For the extension of Algorithm 7.1 described
in §8.1, “fV evals.” is the total number of evaluations of fV during all optimization runs, “Certs.”
is the total number of certificates attempted, and “dε1,ε2 evals.” is the total number of evaluations
of dε1,ε2 over all certificates. For our algorithm described in §8.2, “fV evals.” is the total number
of evaluations of fV, “v evals.” is the total number of evaluated of the function v defined in (8.3).
Finally, we report the total running time in seconds for each method respectively under the “§8.1”
and “§8.1” columns.

Alg. from §8.1 Alg. from §8.2 Time (sec.)

s fV evals. Certs. dε1,ε2 evals. fV evals. v evals. §8.1 §8.2

10 188 1 4494 2512417 2044 2 139
5 142 1 4583 10161448 5900 2 548
0 150 1 6859 14736950 6502 2 777

find new starting points. Fig. 9.2 shows that the corresponding final configurations of dε are all
nonnegative, as they should be when ε = sepDλ (A(s), B(s)), per Corollary 6.6. Overall, we see
that additional effort was needed to approximate dε as s is decreased, which is as we would expect
because the behavior of dε generally becomes more complicated in proportion to how much the two
(pseudo)spectra “intermingle”, which for our test examples, is roughly controlled by s. Recalling
that the search point z0 defining dε is near the origin for these problems, this effect can be clearly
observed by looking at Figs. 9.1a and 9.2 (and is also illustrated in Fig. 4.1, where each quadrant
of the complex plane has a different amount of pseudospectral “intermingling”). For s = 10,
the eigenvalues of A(s) and B(s) are separated from each other the most, which in turn leads
to the final dε being rather straightforward; see Fig. 9.2a. However, the separation between the
eigenvalues of A(s) and B(s) is reduced via making s smaller, and hence we see that dε becomes
increasingly more complicated and with more discontinuities; see Fig. 9.2b and Fig. 9.2c.

Performance data for our two algorithms for Varah’s sep-lambda are given in Table 9.2, where
we see a similar effect with respect to changing shift s. However, the main takeaway here is that, as
predicted, our algorithm from §8.2 is indeed many times slower than our extension of Algorithm 7.1
described in §8.1.

9.2 Comparing Algorithm 7.1 to the method of Gu and Overton

We now do a comparison of Algorithm 7.1 against the seplambda routine5, which is Overton’s
MATLAB implementation of his sepDλ (A,B) algorithm with Gu [GO06]. To do this, we generated
two more examples in the manner as described in §9.1 but now for m = n = 20 and m = n = 40.
For each, including our earlier m = n = 10 example, we computed sepDλ (A(s), B(s)) for s = 0
and s = m = n using both our new method and seplambda. In order to obtain sepDλ (A(s), B(s))

5Available at https://cs.nyu.edu/faculty/overton/software/seplambda/.
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(a) s = 10: dε(θ) in linear scale (left) and in log10 scale (right)

(b) s = 5: dε(θ) in linear scale (left) and in log10 scale (right)

(c) s = 0: dε(θ) in linear scale (left) and in log10 scale (right)

Figure 9.2: Each subfigure shows the final dε computed by Algorithm 7.1 for the example from
§9.1 for s ∈ {10, 5, 0}. The components of dε are plotted as follows: aε + bε (dotted) and dAB

ε

(solid); ℓε does not appear as it is never negative when ε = sepDλ (A,B). The circle denotes the
angle θ (with respect to z0) associated with the best minimizer of fD obtained and corresponds
to the single place where dε(θ) = 0, which is more easily seen in the log10 plots on the right.

to high precision, we set the respective tolerances for both methods to 10−14. For this comparison,
we always initialized the first phase of optimization for our method from the origin.

A performance overview is reported in Table 9.3. In terms of accuracy, the estimates computed
by our method for sepDλ (A(s), B(s)) have high agreement with those computed by seplambda,
though our method did return slightly better (lower) values for all the problems. On the non-
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Table 9.3: Comparing Algorithm 7.1 and the method of Gu and Overton for Demmel’s version of
sep-lambda. The columns are the same as described in Table 9.1 except that we now additionally
give the problem size under “m = n”, the total running times in seconds of both methods,
respectively “Alg. Algorithm 7.1” and “GO”, and the relative difference between the estimates
computed by both methods (Rel. Diff.), with positive indicating our method returned a better
(lower) equal estimate for sepDλ (A(s), B(s)).

dε evals. Time (sec.)

m = n s fD evals. Certs. All Final Alg. 7.1 GO Rel. Diff.

10 10 65 1 2154 2154 3 16 3.5× 10−14

10 0 75 1 23287 23287 14 15 0
20 20 97 1 4746 4746 15 1481 1.1× 10−13

20 0 346 3 31786 31756 78 1408 1.3× 10−13

40 40 128 2 5973 5910 95 237425 3.3× 10−14

40 0 295 3 29261 29231 407 230251 2.0× 10−12

shifted (s = 0) examples, our new method was 1.1 times faster than seplambda for m = n = 10,
18.1 times faster for m = n = 20, and 566.0 times faster for m = n = 40. Clearly, as the
problems get larger, our method will be even faster relative to seplambda. For the shifted exam-
ples (s = m = n), the performance gaps are even wider: our new method was 6.2 times faster
than seplambda for m = n = 10, 98.6 times faster for m = n = 20, and 2495.7 times faster
for m = n = 40. The “dε evals.” data for s = 0 and s = m = n in Table 9.3 for these problems
also indicate that dε is generally less complex the more the eigenvalues of A and B are separated.
Meanwhile, the running times of seplambda were relatively unchanged by the value of s, as shift-
ing the eigenvalues of A and B has no direct effect on its computations. In Table 9.3, we can
again infer that restarts in our method, when needed, happened with relatively few evaluations
of dε. Per [Mit21, Section 5.2], the main work done in interpolation-based globality certificates is
“embarrassingly parallel”, and consequently, our method can further be accelerated by about an
order of magnitude using parallel processing, and substantially more if minor tweaks are made to
Chebfun to make it more amenable to parallelism.

Remark 9.1. Recalling the end of §2 on possibly replacing the bisection phase of Gu and Overton’s
with optimization-with-restarts, we now empirically validate our claim that the benefit of such a
modification is indeed quite limited and diminishes as the problem dimensions increase. Besides
recording the total time to run seplambda on each problem for Table 9.3, we also recorded the time
its initialization procedure required. Then, an upper bound for the best possible speedup is simply
the total time divided by the initialization time, where we idealistically assume that opimization-
with-restarts has zero cost. For m = n respectively equal to 10, 20, and 40, the computed ratios
were approximately 3.5, 2.2, and 1.6. Obviously, even these idealized speedups are nowhere near
sufficient to overcome the very large performance gaps shown in Table 9.3 for m = n = 20, let
alone m = n = 40, although such a modified version of seplambda would be close in performance
to our method on the m = n = 10, s = 10 problem and likely pull ahead for the m = n = 10, s = 0
problem. However, if we enabled parallel processing for Algorithm 7.1, then it would again be
fastest on this problem too and probably by a large margin. Finally, note that if seplambda

were further modified by also adapting the divide-and-conquer technique of [GMO+06], it still
would be significantly slower than Algorithm 7.1, except for maybe the tiniest of problems. In the
context of computing the distance to uncontrollability, we compared our interpolation-based globality
certificates methodology with the method of [GMO+06], which uses both optimization-with-restarts
and divide-and-conquer and also does not have any expensive initialization procedure, and our
approach was roughly 5 to 43 times faster depending on the dimension; see [Mit21, Section 5.1].

9.3 Scaling performance of Algorithm 7.1

Finally, we examine the scaling performance of Algorithm 7.1 on some larger problems, which
we constructed in the same fashion as before except that here we generated complex matrices A
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Table 9.4: The columns are the same as described in Table 9.3 except that here we only give
running times of Algorithm 7.1 and its computed estimates of sepDλ (A(s), B(s)). The running
time and accuracy comparisons with Gu and Overton’s method are not provided since it would
have taken far too long to run their method on these larger problems.

dε evals. Time (sec.)

m = n s fD evals. Certs. All Final Alg. 7.1 sepDλ (A(s), B(s))

100 100 89 1 5425 5425 704 6.1677176880084× 100

100 0 334 4 23689 23451 3045 2.5004731832266× 10−2

200 200 210 2 23170 23155 11563 6.3206868631252× 100

200 0 319 2 20846 20831 10187 4.2654521922541× 10−2

400 400 123 2 22456 22425 40966 6.0394981396743× 100

400 0 392 5 18237 18113 33931 4.0258158186612× 10−2

800 800 153 2 3113 3098 22112 1.0584889222355× 101

800 0 383 5 21962 19436 131887 9.9483548512835× 10−3

and B via sprandn with a density of 0.1; this change was done solely to be able to store the
matrices explicitly while keeping the file sizes small for up to m = n = 800. For these problem
sizes, it was not feasible to attempt running Gu and Overton’s method, so in Table 9.4, we only
give performance data for Algorithm 7.1. The accuracy of each estimate ε for sepDλ (A(s), B(s))
computed by Algorithm 7.1 was verified by creating a sufficiently high resolution plot of Λε(A(s))
and Λε(B(s)) and inspecting it to see whether or not the interiors of the two pseudospectra over-
lap. This visual check suffices to confirm the high accuracy of our new method because, per §7.4,
local minimizers discovered on every iteration of Algorithm 7.1 will be computed to high accu-
racy, and the fact that ε > sepDλ (A(s), B(s)) if and only if int Λε(A(s)) ∩ int Λε(B(s)) 6= ∅; hence,
to assess the accuracy of a computed estimate ε, we need only confirm whether or not Algo-
rithm 7.1 converged to a global minimizer of fD or only a local one, which is done by looking for
the absence or presence, respectively, of pseudospectral overlap. For the pair of smallest prob-
lems (m = n = 100), Algorithm 7.1 respectively took about 11 and 50 minutes, while on the
other extreme, Algorithm 7.1 needed about 6 and 37 hours, respectively, for the two m = n = 800
problem instances. Again, using parallel processing can reduce these running times dramatically.
Interestingly, for the intermediate sizes of m = n = 200 and m = n = 400, we actually see that
Algorithm 7.1 was slightly more expensive on the instances with nonzero s, which suggests that
the spectra of A(s) and B(s) for these particular examples would need to be shifted even further
apart in order for the complexity of dε to decrease. Over all the problems tested, we see that Al-
gorithm 7.1 required at most four restarts before converging, but once again, the costs of these
restarts was generally negligible, with the one exception being the m = n = 800, s = 0 problem,
where we can infer that the total cost of the four restarts was approximately 10% of the overall
running time.

10 Concluding remarks

In this paper, we have introduced a new method to compute Demmel’s version of sep-lambda
that is much faster than the only previous known algorithm (due to Gu and Overton). Under our
assumption that approximation of dε by interpolation is reliable, our method computes sepDλ (A,B)
to arbitrary accuracy and generally behaves like a method with cubic work complexity, albeit one
with a high constant factor. Nevertheless, our new approach is so much faster that it is now
possible to calculate sepDλ (A,B) for moderately sized problems, e.g., for m,n in the thousands,
which were simply intractable when using Gu and Overton’s algorithm. We have also extended
our algorithm to tackle Varah’s version of sep-lambda. Although in this case global optimality
cannot be guaranteed, the extension does rapidly compute locally optimal approximations which
satisfy the necessary condition for global optimality. Furthermore, we have a proposed a second
method to actually compute sepVλ (A,B), although this algorithm is significantly more expensive.
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