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SUMMARY
Predictive coding is an important candidate theory of self-supervised learning in the brain. Its central idea is
that sensory responses result from comparisons between bottom-up inputs and contextual predictions, a
process in which rates and synchronization may play distinct roles. We recorded from awake macaque V1
and developed a technique to quantify stimulus predictability for natural images based on self-supervised,
generative neural networks. We find that neuronal firing rates were mainly modulated by the contextual
predictability of higher-order image features, which correlated strongly with human perceptual similarity
judgments. By contrast, V1 gamma (g)-synchronization increasedmonotonically with the contextual predict-
ability of low-level image features and emerged exclusively for larger stimuli. Consequently, g-synchroniza-
tion was induced by natural images that are highly compressible and low-dimensional. Natural stimuli
with low predictability induced prominent, late-onset beta (b)-synchronization, likely reflecting cortical feed-
back. Our findings reveal distinct roles of synchronization and firing rates in the predictive coding of natural
images.
INTRODUCTION

There are widely different theoretical accounts of stimulus

processing in visual cortex. Feedforward (FF) models of vision

explain neural responses based on receptive field (RF) properties

that arise through FF convergence and span a circumscribed re-

gion of space in early visual areas. A central idea of thesemodels

is that neurons in visual cortex extract features that allow for

solving tasks such as object classification. In support of this

view, there are close similarities between the stimulus-response

properties of units in the primate ventral stream and convolu-

tional neural networks for object recognition (OR-CNNs). Other

theories of vision such as predictive and efficient coding have

assigned a central role to the integration of sensory evidence

with contextual information. For such integration, recurrent dy-

namics, implemented through lateral and top-down connec-

tions, are thought to play an important role. Predictive coding

postulates that a key computational goal of sensory circuits is

to perform active perceptual inference based on sparse sensory

data, and to encode information efficiently (Rao and Ballard,

1999; Mumford, 1992; Friston, 2010; Srinivasan et al., 1982;
Neuron 110, 1
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Von Helmholtz, 1867; Haefner et al., 2016). Predictive process-

ing could also play a central role in self-supervised learning,

which has been challenging to implement in networks trained

on object classification (Bengio et al., 2012; LeCun, 2019). In

contrast to object classification where labels for learning are

sparse under natural conditions, contextual predictions can

be continuously compared with sensory inputs. To understand

the potential role of predictive coding mechanisms in visual

cortex, a key question is how stimuli with weak versus strong

contextual predictability are encoded and transmitted by

neuronal populations.

The predictive coding model of Rao and Ballard (1999) pos-

tulates that neuronal populations signal surprising information

through enhanced firing rates, whereas predictable information

entails a suppression of neural activity. Consistent with this

model, firing rates in visual areas such as V1 are enhanced

for small compared with large natural stimuli (i.e., when lacking

spatial context) (Vinje and Gallant, 2000; Coen-Cagli et al.,

2015) and for artificial stimuli that have non-matching features

across space (e.g., orientation or color) (Bair et al., 2003; Peter

et al., 2019). Spatial context may not only determine firing rates,
–18, April 6, 2022 ª 2022 The Authors. Published by Elsevier Inc. 1
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but likely also recurrent interactions between neuronal popula-

tions, thereby inducing specific temporal patterns of correlated

firing among neurons. These temporal correlations can carry

additional information (compared with firing rates alone) about

contextual predictability and could coordinate the interactions

between neuronal groups both within and between areas. In

area V1, many visual stimuli induce quasi-oscillatory states in

the g-frequency range (30–80 Hz), which are accompanied by

synchronized firing over several millimeters in cortical space,

called ‘‘gamma (g).’’ Gamma activity is thought to result from

balanced interactions between inhibitory and excitatory neu-

rons (Onorato et al., 2020; Vinck et al., 2013; Spyropoulos

et al., 2020). It has been proposed that g-synchronized firing

promotes FF processing of information and is enhanced

when stimuli are salient and attended (Fries et al., 2001; Bieder-

lack et al., 2006; Fries, 2015; König et al., 1996; Bastos et al.,

2015). Building on this idea, it has been proposed that cortical

g-synchronization mediates the signaling of prediction errors

and that slower rhythms such as a and b carry prediction sig-

nals that require integration on longer timescales (Bastos

et al., 2020, 2012; Arnal et al., 2011; Chao et al., 2018) (but

see Ferro et al., 2021). In contrast to this proposal, it has also

been hypothesized that in visual cortex, g-synchronization

among spiking discharges occurs predominantly in states of

high stimulus predictability (Vinck and Bosman, 2016). In this

scenario, synchronization could carry complementary informa-

tion to firing rates by signaling a match between prediction and

evidence, which may be of equal importance to signal trans-

mission and plasticity as error signals (Singer, 2021; Grossberg,

1987).

Contextual predictions should reflect our innate and learned

priors about the statistics of the natural environment. Hence, it

is critical to investigate the neural correlates of predictability

using natural scenes rather than artificial stimuli (e.g., grat-

ings, homogeneous surfaces), which are extreme outliers in

our visual environment. It has remained difficult to study the

distinct roles of firing rates and synchronization in a general

form for natural images because it is unclear how the

constructs of predictions and predictability should be opera-

tionalized and quantified. Ideally, this would rely on neural

networks that learn both linear and non-linear natural scene

statistics (i.e., priors) across a very large number of images

in a self-supervised manner. These natural scene statistics

contain low-level (pixel structure) to high-level (object informa-

tion) features for which biological neurons, with encoding

properties shaped by natural scene priors, could encode

sensory predictions or prediction errors. This suggests that

there may not be one all-encompassing measure of predict-

ability, but that different levels of predictability should be

distinguished. Here, we derived measures to assess predict-

ability in natural images in order to investigate the contextual

modulation of firing rates and synchronization in macaque V1.

To this end, we developed a self-supervised deep neural

network (DNN) to generate predictions of the likely structure

of stimuli falling in a neuron’s RF based on natural image sta-

tistics. By comparing these predictions to the actual stimuli,

we obtained different measures of predictability and related

them to neural activity. Our data suggest distinct roles for
2 Neuron 110, 1–18, April 6, 2022
firing rates and synchronization in the predictive processing

of natural scenes.

RESULTS

Three macaque monkeys performed a passive fixation task

and viewed large (>11�) natural images. We recorded multi-

unit (MU) spiking activity and local field potentials (LFPs)

from 32–64 channel microelectrode arrays in area V1 (Fig-

ure 1A). RF eccentricities were 5.2 degrees of visual angle

(dva) on average (range: 2.5–10.6 dva) with an average diam-

eter of 1.44 dva (which was likely overestimated because of

small eye movements). LFP and multi-unit activity (MUA) po-

wer spectra showed a typical 1=f trend with characteristic

peaks in the g-frequency band (30–80 Hz) (Figures S1A–

S1D; Pesaran et al., 2018). These g-peaks are known to reflect

the rhythmic synchronization of synaptic and spiking activity

(Onorato et al., 2020; Buzsáki and Draguhn, 2004; Pesaran

et al., 2018). Their magnitude was estimated by removing

the 1=f trend and fitting polynomials as in Peter et al. (2019)

(see STAR Methods).

Quantifying predictability using deep neural networks
We developed a method to quantify the stimulus predictability

of visual inputs to the RF (see STAR Methods; Figure 1B). A

DNN was trained in a self-supervised way to form stimulus

predictions about a small region of the image based on the

rest of the image, which can be understood as a form of pre-

dictive coding. During training, stimulus predictions were

improved iteratively, each time comparing the predicted RF

image-patch with the ground-truth image patch. The input to

the network was the image region surrounding the RF im-

age-patch, i.e., the embedding context (224 3 224 pixels;

�5–6 dva wide). Based on this contextual input, the network

generated a predicted RF image-patch (which was set to

1 dva, roughly corresponding to the size of the neuron’s

RFs). The network was trained using natural images that

were not presented during recordings (see STAR Methods).

Training was self-supervised because only data from the im-

age itself were used for training, without human labels. As a

loss function for training, we quantified perceptual similarity

between the ground-truth RF image-patch and the predicted

RF image-patch.

As novel input to this trained network, we then used images

presented during recordings. The network predicted the con-

tent of an RF image-patch, which was centered on a given

recording site’s RF center, based on the image context. We

then used a perceptual similarity measure in order to quantify

the difference between the predicted and ground-truth patch.

This perceptual similarity measure computed pixel-wise

correlations, which is comparable with the well-established

perceptual similarity measure structural similarity index

(SSIM) (Figure S1E). The computed value, called ‘‘structural

predictability,’’ reflects the extent to which the precise pixel

structure of a given stimulus falling in the V1 RF can be pre-

dicted by the spatial context. This represents a predictability

measure on the image level. Different levels of predictability

will be considered further below.
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Figure 1. Recording paradigm and machine learning method to compute predictability for natural scenes
(A) Natural images were presented for 1.2 s (in a subset of sessions, for 0.6 s). (Left panel) Green dots indicate locations of RF centers of the recording array in

monkey H. Image is cut out around the RF locations. (Center) Median example trace of the LFP for the image shown on the left. The 25–100 Hz filtered trace has

arbitrary units. (Right) Example raster plot for MUA (spikes threshold at 3 s.d).

(B) Illustration of a deep neural network (DNN) trained to predict visual inputs into the RFs. A mask of approximately the same size as the recording site’s RF is

applied to an image. The image with the mask is then entered as an input to a DNNwith a U-net architecture. This DNN generates (predicts) the full image, i.e., the

image content behind themask is filled in. Stimulus predictability is computed by comparing the ground-truth input image and the predicted image and then used

for network optimization during the training stage. After network training, a novel set of images is presented to both the DNN and the monkeys. The predictability

score is then correlated with LFP and spiking responses across images. See also Figure S1.
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Predictability in natural images determines
synchronization of V1 activity
We then examined the relationship between neural activity and

structural predictability. LFP spectra showed major differences

depending on the degree of structural predictability. For strong

structural predictability, LFP power spectra showed a promi-

nent narrow-band peak in the g-frequency range, which was

several times larger than pre-stimulus power (Figures 2A–2C,

S2A, and S2B). By contrast, LFP spectra did not show g-peaks

for weak structural predictability. Across structural predictabil-

ity bins, g-synchronization increased monotonically and by

�300% (Figures 2B and 2C). This finding was consistent across

the three monkeys (H, I, and A: Pearson’s r = 0.94, 0.85, and

0.87), and similar findings were made for MUA spiking activity

in the g range (Figure S2C). In an additional analysis, we

directly correlated LFP g-power with structural predictability

across all images (i.e., without using quantiles, see STAR

Methods). There was a clear positive correlation between

g-synchronization and structural predictability (Figure 2D).

Findings were consistent between early and late trials for a

given stimulus in a session, and the correlation with predictabil-

ity was observed already during the first presentation
(Figure S2F). Furthermore, the findings were not explained by

eye movements or pupil diameter (Figure S2E).

Unexpectedly, we observed that LFPs showed a prominent

peak in the (high) b-frequency band (18–30 Hz) for stimuli with

weak structural predictability (Figures 2A–2C). This b-peak

emerged only during the late phase of the stimulus period

(>500 ms) (Figures 2A and S2A). LFP b-peaks were detected in

only 2/3 animals and were negatively related to structural

predictability in both (monkey H: Pearson’s r = �0.79; monkey

I: r = �0.54; note that in the third monkey, stimulus duration

was only 600 ms). MUA showed considerably less rhythmicity

in the b-range for low predictability compared with the g-rhyth-

micity observed for high structural predictability (Figure S2C).

For the rest of the paper, we focus primarily on firing rates and

g, and report several of themain analyzes for b in the supplemen-

tary figures.

Firing rate intensity was computed separately for early

(50–150 ms) and late stimulus periods (200–600 ms), by deter-

mining the instantaneous energy of the MU activity (see STAR

Methods). Note that in this study, we primarily focus on the

late rates (1) because surround modulation was the strongest

in this period (see further below), (2) to compare g and rates in
Neuron 110, 1–18, April 6, 2022 3
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Figure 2. Distinct relationships of firing rates and neural synchronization with structural predictability

(A) Average time-frequency representations for weak and strong structural predictability.

(B) (Left) Average 1/f-corrected LFP power spectra for monkey H, for different levels of structural predictability. Black line indicates the pre-stimulus period. SEMs

are shown only for the lowest and highest quantile of structural predictability. (Right) Multi-unit firing rates.

(C) (Left) Average (±SEM) 1/f-corrected b-peak amplitude versus structural predictability. Average was computed across all recording sites in the three animals

(n= 72 sites). (Middle) Same for g. (Right) Same for early (50–150 ms) and late firing rates (200–600 ms).

(D) Pearson-r correlation across recording sites (with a minimum RMS contrast of 0.1) between structural predictability and g, b, and rate. Correlations were

computed for each recording site separately, using all images presented across sessions. Correlations were significant for b, g, and early rates (all p< 0:001) but

not for late rates (p = 0:11) (t test). Absolute correlations were higher for g and b than early and late rates (p<0:001 for all comparisons). Data in (B and C) are

represented as mean ± SEM. See also Figure S2.
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the same period, and (3) to avoid the early onset transient. Early

firing rates showed weakly negative correlations with structural

predictability, and late firing rates did not have significant

correlations with structural predictability (Figures 2B–2D). Firing

intensity was non-monotonically related to structural predictabil-

ity, reaching maximal values for intermediate structural predict-

ability (Figure 2C). These findings would thus appear to contra-

dict the hypothesis that V1 firing rates encode sensory

prediction errors (Rao and Ballard, 1999). However, as shown

below, firing rates modulations are primarily determined by a

different form of stimulus predictability, namely high-level

stimulus predictability.

Predictability and data compression
To further understand the significance of structural predictability

for visual encoding, we related structural predictability to data

compression. We reasoned that natural images with predictable

structure have a high degree of redundant information and

should therefore be highly compressible. To compute data

compression rates, we used a large image database in which

we compressed each image and determined the number of

bits per pixel in the compressed image (see STAR Methods).

For each image, we also computed the average structural

predictability across 16 image locations (examples shown in

Figure 3A). Structural predictability was strongly correlated
4 Neuron 110, 1–18, April 6, 2022
with image compressibility (Figure 3B). Thus, images with high

structural predictability can also be efficiently encoded by an

image compression algorithm.

Based on the results shown in Figure 2, we reasoned that g but

not firing rates should correlate strongly with compressibility. To

investigate this, we computed the compressibility of the 3 3 3

degree image patches centered on the RFs and correlated this

with neural activity. We found that g showed a much stronger

correlation with compressibility than firing rates (Figures 3C

and S3A).

Predictability, dimensionality, and natural image
statistics
Next, we wondered how neural activity relates to the dimension-

ality of visual inputs. We expected that when the RF input can be

well predicted by the surrounding context, the image can be rep-

resented by relatively few spectral components, which can be

understood as a low dimensionality. For example, a grating or

a homogeneous surface can be represented by a single spectral

component. To quantify dimensionality, we took the rotational

average of the two-dimensional Fourier transform of the RF im-

age-patch, sorted the spectral components by their magnitude

and computed the slope of the spectrum (Figure S3Bi). Image

patches with high structural predictability had significantly

lower dimensionality (Figures 3D, right and S3Bii). Accordingly,
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Figure 3. Synchronization reflects image compressibility and dimensionality and distinguishes natural image categories

(A) Two examples of images that have a low and high compression rate, structural predictability and g values (as log10-fold change), respectively. Compression

rate was measured as the number of bits/pixel for image compression.

(B) (Left) Compressibility (i.e., negative of compression rate) versus average structural predictability. (Right) Correlation between compressibility and structural

predictability across images.

(C) Average correlation (across recording sites) between compressibility and g and firing intensity across images.

(D) (Left) Images with low dimensionality had strong g synchronization (r across quantiles =�0.9, p<0:001). Dimensionality was determined from the slope of the

image spectrum. (Right) Average magnitude of spectral image components versus structural predictability (Pearson’s r = �0.91, p<0:001).

(E) Fold-changes in neural activity for images with man-made content or nature content in the RF. Comparison was significant for b (p<0:001) and g (p< 0:001), but

not for early and late rates (p= 0:5 and p = 0:9, t test). (Right) Percentage of sites with a detectable b or a g peak, across all randomly selected images. Data in

(B and D) (left) are represented as mean ± SEM. See also Figure S3.
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g-synchronization was maximal for images with low dimension-

ality and decreased monotonically as dimensionality increased

(Figure 3D, left).

We further asked if neural activity could distinguish between

different image categories (Torralba and Oliva, 2003). Images

with man-made objects often contain predictable structure,

whereas less predictable structure is common for images of na-

ture (Figures S3C and S3D). Furthermore, predictable structure

is associated with the presence of object boundaries covering

the RFs. Firing rate intensity did not differ between nature and

man-made categories and did not depend on the presence of

an object boundary (Figures 3E and S3E). b-synchronization

was stronger for images of nature, whereas g-synchronization

was stronger for images with man-made content and object

boundaries in the RFs (Figures 3E and S3E). Accordingly, stimuli

such as gratings, straight and curved bars, and edges of filled

contours generated strong g (Figures S3G–S3J). Structural

predictability showed high variability in natural images (Fig-

ure S3F). There was also substantial variability in g and b across

images: g peaks were detected only for about 50% of sites, and

b peaks were found almost exclusively for the nature category

(Figure 3E).

Finally, we analyzed whether our findings extended to color

images because color influences both g and firing rates (Shirhatti

and Ray, 2018; Peter et al., 2019; Wachtler et al., 2003; Rols
et al., 2001). In separate sessions, we presented images both

in grayscale and their original color. Across images, g-and b-syn-

chronizations showed a strong correlation between grayscale

and color images (Pearson’s r = 0.81 and 0.7, respectively,

p<0:001 for both).

Relationship with salience
Because we found g-synchronization to be positively correlated

with contextual predictability, and it is known that contextual

predictability is an important determinant of image salience (Li,

2002), we wondered whether g-synchronization is correlated

with image salience. To investigate this, we extracted salience

maps from each image using a state-of-the-art DNN (see

STARMethods). These networks operationalize salience by pre-

dicting in which areas of an image the subjects prefer to direct

their gaze. Indeed, we found that image salience correlated

negatively with g-synchronization (Figure S4I), consistent with

the relatively strong negative correlation between predictability

and image salience (see Figure S6D). The negative correlation

of predictability with salience had a substantially greater magni-

tude than the positive correlation of salience with luminance

contrast (Figure S6D). This finding is in line with the lack of a

straightforward relationship between luminance contrast and

salience (Einh€auser and König, 2003) and the importance of

contextual predictability (Li, 2002).
Neuron 110, 1–18, April 6, 2022 5
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Interaction of stimulus predictability with stimulus drive
In addition to predictability, natural images also show substantial

variability in luminance contrast (Figure S4A). Luminance

contrast influences the contextual modulation of sensory

responses (Sceniak et al., 1999; Kapadia et al., 1999; Cavanaugh

et al., 2002) and correlates positively with g-synchronization for

artificial grating stimuli (Henrie and Shapley, 2005; Roberts

et al., 2013; Hadjipapas et al., 2015). We therefore wondered

how the influence of predictability on neural activity depended

on luminance contrast.

For each recording site, we computed the luminance contrast

(specifically root mean square contrast) of its corresponding RF

image-patch (see STAR Methods). Firing rates increased as a

function of luminance contrast (Figures 4A and 4B). Luminance

contrast also correlated positively with g-synchronization

(Figures 4A and 4B; for b see Figure S4B), and the g peak fre-

quency showed a moderate increase with luminance contrast

(Figure 4A), consistent with previous work using grating stimuli

(Henrie and Shapley, 2005; Ray and Maunsell, 2010; Hadjipapas

et al., 2015; Roberts et al., 2013).

We expected that stimulus predictability and luminance

contrast should interact in a multiplicative way for g-synchroni-

zation. We reasoned that V1 does not have access to the image

itself but needs to infer the image properties based on a poten-

tially noisy representation of the image, encoded by sparse and

variable lateral geniculate nucleus (LGN) inputs (Rao andBallard,

1999). Hence, the inputs to V1 neurons should become more

predictable/redundant for high luminance contrast and input

drive (Peter et al., 2019). To investigate whether luminance

contrast and predictability interacted in a multiplicative way (Fig-

ures 4C–4E), we first fit a multiple linear regression model. The

regression predictors were structural predictability, luminance

contrast and their interaction. This full regression model ex-

plained more variance in g-synchronization than luminance

contrast and predictability alone (Figure 4C). There was a signif-

icant interaction between luminance contrast and structural pre-

dictability (mean t-statistic contrast�1.42 ± 0.89, p> 0:05, t test;

predictability �0.84 ± 0.78, p>0:05; predictability 3 contrast

4.2 ± 1.2, p<0:001). The interaction term of luminance contrast

and structural predictability explained almost as much variance

as the full regression model (Figure 4C), consistent with a multi-

plicative effect (see also Figure 4D).

To further investigate whether luminance contrast reflects

the presence of a high amount of redundant information in

the visual inputs to V1, we added Poisson noise to the original

images, mimicking neural noise. We then quantified the result-

ing predictability as described above for each image (Figure 4F).

This yielded a structural predictability value for the noisy

images, indicating the extent to which a noisy RF input could

be predicted by the noisy image context (predictability under

noise ) (Figure 4F). PUN correlated strongly with the luminance

contrast in the original (i.e., noise-free) image (Figure 4F).

Furthermore, PUN correlated more strongly with g synchroniza-

tion than the structural predictability computed over the

original image (Figure 4G; similar results were obtained for

Gaussian noise). By contrast, correlations of PUN with firing

rates were similar to those with the original luminance contrast

(Figure 4G). These findings support the idea that the inputs to
6 Neuron 110, 1–18, April 6, 2022
V1 neurons become more predictable/redundant for high lumi-

nance contrast.

Finally, we examined other stimulus factors like spatial

frequency and stimulus orientation. These factors explained little

variance in g, even though they had a strong effect on explained

variance for firing rates (Figures 4C, S4C, and S4G). In addition,

image focus, which was strongly correlated with luminance

contrast, showed weaker correlations with g than contrast and

predictability (Figure S4H).

Synchronization is poorly accounted for by a
feedforward network for object recognition
Wewished to compare these analyzes to a standard approach in

which neural activity is explained by the activations of units in a

convolutional FF network for OR-CNN. Our OR-CNN instantia-

tion was the Visual Geometry Group-16 (VGG-16) network. In

contrast to the predictive neural network, which was trained

using self-supervision to extract structural predictability, VGG-

16 categorizes object images and is trained in a supervised

way using labeled objects. V1 firing rates were relatively well

accounted for by the OR-CNN, indicating a similarity between

stimulus responses of V1 units and artificial units in middle layers

of the OR-CNN (Figures 5A–5C), in agreement with previous

work, Cadena et al. (2019). By contrast, the strength of g-syn-

chronization was relatively poorly explained by such a network,

i.e., its stimulus selectivity was not well explained by the stimulus

selectivity of OR-CNN units (Figure 5B). These results indicate

that g itself was poorly accounted for by a linear combination

of low-level pixel values. By contrast, we have shown above

that the strength of g-synchronization was well explained by

the structural predictability of those low-level pixel values (see

Figures 2B and 2C), indicating structural predictability entails a

non-linear computation.

To test this, we trained a de novo neural network to predict

g-synchronization from the image properties (Figure S5C). This

yielded much stronger correlations (r z 0.7) that were close in

magnitude to the correlations obtained by combining predict-

ability and luminance contrast (Figures S5D and S5E). This

means that predictability and luminance contrast are quite close

to the performance of the black-box approach, which provides

an estimate of the ceiling of possible performance.

Perceptual similarity and low versus high-level
predictability
In Figures 2B–2D, we showed that late firing rates were not

significantly correlated with structural predictability. Because

firing rates were generally reduced for full as compared with

small natural images (see Figure 7; Vinje and Gallant 2000), we

wondered which factors determine the contextual modulation

of firing rates (i.e., surround suppression). Structural predictabil-

ity is based on measuring similarity between the predicted and

the presented image using pixel-by-pixel correlations. This sim-

ilarity function is closely related to the perceptual similarity mea-

sure SSIM, which is mathematically tractable and has an intuitive

relationship to image compressibility (Figure 3B). Structural pre-

dictability does not distinguish between higher- and lower-level

features. Yet, it is possible that neuronal signals may distinguish

between predictability of low- and high-level features.
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Figure 4. Dependence of neural activity on luminance contrast and predictability

(A) (Left) Average 1/f-corrected LFP power spectra (±1 SEM) for the highest and lowest level of luminance contrast (root means square contrast , see STAR

Methods), for monkey H. (Right) As left, but for multi-unit firing rates.

(B) (Left) Average g-peak amplitude versus luminance contrast. (Right) Same for early (50–150 ms) and late MU firing rates (200–600 ms).

(C) Average correlation across sites of g and firing rate with image factors. Left-to-right: (Ci) Luminance contrast (Cntr); (Cii) the product of contrast and stimulus

predictability (Cntr 3 Pred.); (Ciii) Pred, Cntr, Pred. 3 Cntr interaction (Full regression (regr.) model); and (Civ) a model with additional low-level features (Including

(Incl.) other stim factors), namely spatial frequency, luminance and orientation (see STARMethods). Correlations were computed for each recording site separately,

across all imagespresented across sessions. All correlationswere significantly different fromzero (p<0:001, paired t test). Forg, the differencebetween (Cntr3Pred.)

and (Full regr. model) was significant (p<0:001), but the difference between (Full regr. model) and (Incl. other stim factors) was not (p>0:05). For early rates, all

comparisons were significant (p<0:05). For late rates, all comparisons except for (Full regr. model) versus (Cntr 3 Pred.) were significant at p<0:05.

(D) g fold-changes for different levels of luminance contrast and structural predictability.

(E) Illustration of interaction between predictability and bottom-up inputs.

(F) Derivation of the PUN measure (predictability under noise, left). We added Poisson noise to each luminance value and then computed the structural pre-

dictability for the noise-corrupted image, yielding the PUN measure. PUN was strongly correlated to the original luminance contrast in the center RF (right).

(G) (Left) PUN correlated more strongly with g synchronization than predictability and luminance contrast (p<0:001 for both, paired t test). (Right) For late firing

rates, correlations with PUNwere weaker than for luminance contrast (p<0:001). For a comparison of baseline-corrected g-power with 1/f-corrected g-power, an

analysis of reliability of the predictors, and analysis of other stimulus factors, see Figure S4. Data in (A and B) are represented asmean ± SEM. See also Figure S4.
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Because perceptual similarity measures that are based on

pixel-by-pixel correlations like SSIM do not distinguish between

higher and lower-level image features, we turned to a newer

method for perceptual similarity, learned perceptual image patch

similarity (LPIPS). LPIPS compares two images based on
activations in each layer of an OR-CNN (Figure 6A; Zhang

et al., 2018). The different OR-CNN layers represent different

levels of image feature abstraction. LPIPS showed a stronger

correlation with human perceptual similarity judgments than

SSIM (Figure 6B), consistent with Zhang et al. (2018).
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Figure 5. A feedforward neural network for object recognition explains firing rates relatively well, but poorly accounts for g-synchronization

(A) For each recording site, we determined different neural activity parameters. The image patch centered on the RF of the recording site was then passed into

the CNN for object recognition (OR-CNN; in this case the VGG-16), and we computed the activation of every OR-CNN artificial neuron (AN) whose RF

overlapped with the recording site. Sparse L1-regression with cross-validation was used to predict neural activity from OR-CNN ANs with RFs at the center of

the image.

(B) Regression prediction accuracy of different neural activity parameters depending on OR-CNN layer. Data are represented as mean ± SEM. Regression

prediction accuracy for late (200–600 ms) firing rates was significantly higher for middle (5–9) than early (1–4) and deep (10–13) convolutional layers (p< 0:001,

paired t test). For g, regression prediction accuracy was significantly higher for middle (p<0:001) and deep (p<0:05) than early layers. For early rates and b see

Figures S5A and S5B.

(C) Prediction accuracy depending on the RF location of OR-CNN ANs in the image. In this case, we predicted neural activity from all units in a 33 3 image using

sparse L1-regression. Shown are the prediction weights, which reveal circular RFs for firing rates already in the earliest layer. See also Figure S5.
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We then used the global LPIPS measure, which summarizes

over OR-CNN layers, to compare the ground-truth and pre-

dicted image (using the algorithm detailed in Figure 1), yielding

‘‘LPIPS-predictability.’’ LPIPS-predictability captures not only

how well low-level, but also how well higher-level features of

the stimulus in the RF are predicted by context. We found that

V1 rates in the late response phases were negatively and mono-

tonically related to LPIPS-predictability (Figure 6C), in contrast

to the absence of a significant correlation with structural predict-

ability (Figure 2).

These observations suggest the importance of deeper

OR-CNN layers in explaining neural activity and human percep-

tual similarity judgments. To quantify CNN-layer-specific

measures of image similarity, we measured the similarity

between OR-CNN activation patterns resulting from two image

inputs using the Euclidean distance between activation pat-

terns, a measure of representational differences between

image content (content similarity). In addition, we computed

OR-CNN-based structural similarity as the Pearson correlation

between OR-CNN activation patterns, in analogy to pixel-wise

structural similarity, thus weighting spatial correlations more

than image content. OR-CNN-based content and structural

similarity were most strongly correlated to human perceptual

similarity judgments in deep layers (Figure 6B). We then distin-

guished between low and high-level predictability by computing

layer-specific OR-CNN-based content and structural predict-

ability. We found that the predictability of higher-level OR-CNN
8 Neuron 110, 1–18, April 6, 2022
features showed a stronger negative correlation with image

salience than the predictability of lower-level OR-CNN features

(Figure S6D). By contrast, image compressibility correlated

best with the activity in early, rather than deep layers of the

OR-CNN (Figure S6A).

For both OR-CNN-based stimulus predictability measures,

we found that rates were negatively related to predictability,

and that the magnitude of the correlation between stimulus pre-

dictability and V1 firing rates became stronger toward the deeper

layers of the OR-CNN (Figure 6D; showing the magnitude of the

average correlation). Thus, high-level predictability was the most

reliable variable explaining V1 firing rates. We observed the

opposite pattern for V1 g-synchronization (for b see Figure S6Ei):

V1 gwas strongly and positively correlated with OR-CNN-based

structural and content predictability in the early layers of the

OR-CNN (Figure 6D) but weakly correlated with content and

OR-CNN-based structural predictability in the deeper layers of

the OR-CNN. Accordingly, the correlation with OR-CNN-based

predictability decreased across layers (Figure 6D). Including

OR-CNN-based structural and content predictability from

deeper layers did not explain further variance in V1 g-synchroni-

zation, whereas it did for V1 firing rates (Figure S6B).

These findings indicate that g-synchronization and firing inten-

sity reflect distinct aspects of stimulus predictability, and with

opposite correlations of opposite signs: firing rates decrease

with the predictability of high-level features, whereas g-synchro-

nization increases with low-level predictability.
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Figure 6. Firing rates reflect high-level stimulus predictability, gamma reflects low-level stimulus predictability

(A) OR-CNN network (VGG-16) used to define low- and high-level stimulus similarity and predictability. Responses of artificial units (ANs) in different layers OR-

CNN layers were computed for two images at a time. For each layer, we computed two similarity measures: (A1) content similarity, which is based on Euclidean

distance; (A2) OR-CNN-based structural similarity, which was computed as the Pearson correlation across locations for each AN separately and then averaging

these correlations across ANs.

(B) (Left) Average AUC value for (B1) LPIPS, (B2) SSIM, (B3) structural correlations, as used for Figures 1 and 2. Learned perceptual image patch similarity (LPIPS)

is a perceptual similarity measure based on OR-CNNs (Zhang et al., 2018). LPIPS had higher AUC values than the other measures (p<0:001, paired t test). (Right)

Structural and content similarity versus human perceptual similarity. AUC increased significantly with layer depth for both structure and content (r = 0.93 and

r = 0.98, p<0:001 for both).

(C) (Left) Firing rates and neural synchronization versus LPIPS-predictability. The input (ground-truth) and predicted image-patch were compared using the OR-

CNN network, yielding LPIPS-predictability. (Right) Correlations across all images, averaged across recording sites (p<0:001Þ for all variables).
(D) Correlation of late firing rates and peak g-power with OR-CNN-based content and structural predictability across OR-CNN layers. See Figure S6C for example

images with different levels of low- and high-level content predictability. Note that, we first computed average correlations and show here the absolute average

value of these correlations, but that correlations were positive for g and negative for firing rates. Late firing rates showed a significant increase in absolute

correlation across OR-CNN layers, both for OR-CNN-based structural and content predictability (structure: r = 0:85; content: r = 0:81, p<0:001 for both). By

contrast, g showed a significant decrease for both (structure: r = 0:9; content: r = 0:84, p<0:001). The average correlation (across layers) for OR-CNN-based

structural predictability was significantly higher than OR-CNN-based content predictability for g (p<0:001, paired t test). For firing rates, the average correlation

with OR-CNN-based content predictability was higher than for OR-CNN-based structural predictability (p<0:001, paired t test). Data in (B–D) are represented as

mean ± SEM. See also Figure S6.
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Experimental dissociation of firing rates and
g-synchronization
To further dissociate firing rates from g-synchronization we de-

signed an additional experiment, in which stochastic textures

(brown, white, and pink noise) were presented in two conditions:
center-surround match (same noise in RF and surround) and

mismatch (different textures in RF and surround) (Figure 7A).

This paradigm can be compared with the classic figure-ground

paradigm (Lamme and Spekreijse, 1998), but in our case, the

figure region has a small size (the RF region). Because the texture
Neuron 110, 1–18, April 6, 2022 9
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Figure 7. Firing rates and gamma show distinct modulations by spatial context

(A)Center-surroundmismatchparadigmwithnoise stimuli andcenter-only versus full stimuli.Stimuli hadwhite,pink,orbrownnoise in the1dvacenter, andwhite,pink,

or brown noise in the surround. Stimuli (6 dva) were centered on the recording site’s RF. Only recording sites within 0.25 dva of the stimuli centerwere analyzed. (Left)

LFPpower spectra.Note that thebroadband increase inLFPpowerathigh frequencies is typical for spikebleed-inRayandMaunsell (2011). (Dashed line)Baselinepre-

stimulus period. (Right) Normalized MU firing rates. Firing rates were higher for noise-mismatch stimuli (gray bar: p<0:05, t test, n = 24 recording sites).

(B) (Left and right): Examples of surround suppression for image that show either clear gamma synchronization (left) or no clear peak in the gamma-range.

(C) Comparison of gamma-amplitude and late firing rates for different stimulus sizes (log10-fold-change for both). Suppression for early firing intensity was

significantly weaker than for late firing intensity (paired t test, p<0:001).

(D) Increase in g-synchronization for full compared with small images as a function of structural predictability.

(E) Surroundmodulation in firing rates (small minus full) as a function of structural predictability and LPIPS-predictability. Data in (A–C) are represented asmean ±

SEM. See also Figure S7.
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stimuli had low structural predictability, we did not expect to find

any g-synchronization. Indeed, LFP spectra did not show

g-peaks for any of the conditions (Figure 7A). However,

the texture stimuli differed in terms of higher-level content pre-

dictability since artificial neurons (ANs) in deeper layers of OR-

CNNs have texture selectivity. Accordingly, firing rates were

substantially higher for texture-mismatch stimuli than homoge-

neous textures (Figure 7A). These findings further support the

conclusion that firing rates and synchronization properties are

modulated by distinct aspects of spatial predictability.

Stimulus size dependence and surround modulation
Finally, we investigated whether the surround modulation of

neural activity, i.e., the difference between responses to small

and large stimuli, was explained by stimulus predictability.

We did this for two reasons: first, it allowed us to dissociate

the dependence on context from local stimulus properties,

keeping the local properties constant while exclusively manip-

ulating the surround. Second, we wanted to investigate if

surround modulation itself was determined by stimulus

predictability.

We recorded additional sessions in which images were pre-

sented either in full (‘‘center+surround’’) or within a small (0.5–

1 dva) aperture (‘‘center-only’’) centered on the RFs of the re-

corded neurons. Firing rates were consistently reduced in the

center+surround condition (Figures 7B, 7C, and S7A), consistent

with previous work (Vinje and Gallant, 2000; Coen-Cagli et al.,

2015). Surround suppression was stronger for late than for early

firing rates (pairwise t test, p<0:001, early: 0.043 ± 0.009, late:

0.08 ± 0.008) consistent with the dependence of surround sup-

pression on horizontal and top-down feedback (FB) (Angelucci

et al., 2017). In contrast to firing rates, g-synchronization was

strongly reduced in the center-only condition (Figures 7C and

S7A). Thus, the emergence of g required that there was a pre-

dictable RF ‘‘surround,’’ i.e., that the natural image extended

beyond 1 dva with a predictable context, rather than a gray

screen that did not match the center stimulus (Figure 7C),

consistent with previous findings using artificial stimuli (Peter

et al., 2019; Gieselmann and Thiele, 2008).

Surround suppression of firing rates was sometimes associ-

ated with strong g-synchronization and in other cases occurred

in the absence of a clear g peak (Figure 7B). Surround modula-

tion of g (i.e., an increase for large stimuli) became increasingly

stronger with structural predictability (Figure 7D). By contrast,

the surround modulation of firing rates (i.e., the decrease for

large stimuli) did not show a significant trend with structural pre-

dictability (Figure 7E, left). The surround modulation of firing

rates increased monotonically with LPIPS-predictability, howev-

er (Figure 7E, right). We further compared LPIPS-predictability

with previously developed models for firing rate surround modu-

lation based on linear correlations between Gabor-like simple

cells (Coen-Cagli et al., 2012, 2015). We show that LPIPS-pre-

dictability explained surround modulation better than this

state-of-the-art model (Figures S7B andS7C). Thus, the stimulus

predictability measures developed here allow for a continuous

regression of the surround modulation of firing rates and g syn-

chronization, which are modulated by distinct types of stimulus

predictability.
DISCUSSION

Summary
We find that V1 firing rates and synchronization have distinct

relationships to the spatial predictability of visual stimuli,

suggesting complementary roles in predictive processing.

Predictability for natural scenes was quantified using a self-

supervised neural network. This network was trained on a large

number of images, and generated predictions of likely visual

stimuli falling into the neuronal RFs. We reasoned that the

predictive neural network has learned the statistical structure

of the stimulus set and developed a similar internal model

as the primate visual system to generate predictions. We

then defined two kinds of predictability measures: first,

by comparing the predicted RF input to the actual RF input,

we defined structural predictability as the extent to which

the precise structure of a stimulus in the V1 RF can be

predicted by the context. Second, we distinguished between

the predictability of lower- and higher-level features using a

OR-CNN. OR-CNNs are standard models of neural responses

in the primate ventral stream and have recently been used

to compute perceptual image similarity by comparing

images in terms of their activation across OR-CNN layers

(Zhang et al., 2018). Due to the influence of deeper OR-CNN

layers, CNN-based image similarity provides a closer match

to human perceptual similarity judgments than structural simi-

larity, Zhang et al. (2018). We defined lower- and higher-level

predictability by comparing actual and predicted RF input in

terms of OR-CNN features. Higher-level predictability showed

a stronger negative correlation with image salience than

lower-level predictability, demonstrating the behavioral rele-

vance of higher-level predictability. Our main findings are the

following:

(1) Structural predictability in natural scenes is a key determi-

nant of g-synchronization (30–80 Hz). Consequently,

g-synchronization emerges for predictable stimuli that

have low dimensionality, can be efficiently encoded

(compressibility), and have low image salience. Surpris-

ingly, firing rates are only weakly modulated by structural

predictability and image compressibility. An unexpected

observation was that stimuli with weak structural

predictability, esp. with nature content, induce a late-

onset (>500–600 ms) b-rhythm in the V1 LFP (see

further below).

(2) The main factor determining a decrease in V1 firing rates

is the contextual predictability of ‘‘higher-level’’ features

of stimuli falling into the RF. By contrast, the key deter-

minant of increases in g-synchronization is the contex-

tual predictability of ‘‘lower-level’’ OR-CNN features.

Consequently, contextual predictability of stochastic

textures decreases firing rates, but does not modulate

g-synchronization. In sum, not only does the sign of

the relationship to spatial predictability differ between

firing rates and g-synchronization (negative and positive

correlations, respectively), but also the level of spatial

predictability they are modulated by (higher and lower,

respectively).
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Distinct effects of predictability on firing rates and
synchronization
Neuronal populations may be modulated by predictability in two

distinct ways: (1) through changes in firing rates and (2) through

distinct patterns of correlated firing that result from the recurrent

interactions within and between neuronal populations (Bastos

et al., 2020; Vinck and Bosman, 2016; Singer, 2021). In this

study, we focused on a particular form of correlated firing,

namely local rhythmic synchronization in the g-frequency

range. This kind of synchronization is, spectrally speaking, a

narrow-band phenomenon and is therefore visible in the LFP

(Buzsáki, 2006; Pesaran et al., 2018). g-synchronization is

thought to reflect local interactions between inhibitory and excit-

atory neurons. In addition, cat and primate V1 contains a unique

class of excitatory pacemaker neurons that may explain the

prominence of the V1 g-rhythm compared with other cortical

areas (Onorato et al., 2020; Gray and McCormick, 1996).

Overall, our findings agree with the hypothesis that V1 g-syn-

chronization reflects spatial predictability (Vinck and Bosman,

2016). We further show that this relationship pertains specifically

to the predictability of low-level features (structural predictabil-

ity). However, our findings appear incompatible with earlier

studies that found g-synchronization to be positively related to

prediction errors (Arnal et al., 2011; Bastos et al., 2020; Chao

et al., 2018; Bauer et al., 2014). Notably, these studies used

temporal predictability, whereas the present study used spatial

predictability, and the generalization of our findings to temporal

predictability remains to be demonstrated (see Vinck and

Bosman, 2016; Peter et al., 2019; Canales-Johnson et al.,

2021 for further discussion). We further note that there are

different flavors of predictive coding theories (Rao and Ballard,

1999; Friston, 2008; Mumford, 1992; Keller and Mrsic-Flogel,

2018; de Lange et al., 2018; Heeger, 2017; Singer, 2021). The

dependence of V1 g-synchronization on the structure of artificial

stimuli (Figure S3) as well as the strong g responses to homoge-

neous colored surfaces (Peter et al., 2019; Shirhatti and Ray,

2018; Rols et al., 2001) further support our conclusion that g-syn-

chronization reflects structural predictability and emerges for

simpler forms of stimulus continuities across space, e.g., edges,

line elements, and surface color (Peter et al., 2019).

To our surprise, firing rates correlated very weakly with

structural predictability and image compressibility but showed

a relatively strong decrease with the predictability of higher-level

OR-CNN features. Previous work has shown that the activity in

middle layers of OR-CNNs provides a reasonable model for V1

activity; however, this model leaves substantial variance unex-

plained (Cadena et al., 2019) (see also Figure 5). Thus, our find-

ings provide a quantitative approach to predict V1 firing rates

from natural images based on predictability, which provides

complementary explanatory power compared with previous ap-

proaches based on OR-CNNs. These findings on predictability

and OR-CNNs suggest that V1 firing rates result from two kinds

of computations: (1) they encode features that are relevant for

core visual tasks such as object recognition and (2) they increase

when those features are not predicted by or stand out from the

context. Importantly, the goal of OR-CNNs is to encode and

extract categorical information in an invariant manner, not to pre-

dict or reconstruct the sensory inputs. Thus, it makes sense that
12 Neuron 110, 1–18, April 6, 2022
firing rates were weakly modulated by the extent to which the

structure of the image can be predicted by a low-dimensional

representation.

Importantly, if stimulus manipulations increase both low- and

high-level predictability, then they can lead to opposite changes

in g-synchronization (i.e., an increase) and firing rates (i.e., a

decrease) (Peter et al., 2019). An example of this is increasing

the size of a stimulus by adding a predictive surround, which

typically leads to increases in g-synchronization and decreases

in firing rates for neuronal populations at the stimulus center

(Peter et al., 2019; Gieselmann and Thiele, 2008). Another

example is a center-surround mismatch in stimulus orientation,

which enhances firing rates and suppresses g-synchronization

for neuronal populations at the stimulus center (Bair et al.,

2003; Veit et al., 2017). Importantly, compared with cross-ori-

ented center-surround gratings, iso-oriented gratings have

stronger predictability both in terms of lower-level features (i.e.,

a continuity of line elements) and higher-level features (i.e.,

similar stimulus orientation and spatial frequency).

In sum,g-synchronization increaseswith low-level predictabil-

ity, whereas firing rates decrease with high-level predictability. A

possible explanation for this dissociation may be the following:

g-synchronization likely depends on local interactions among

excitatory/inhibitory neurons via horizontal, patchy connections,

which have a limited spatial reach of a fewmillimeters (Vinck and

Bosman, 2016; Veit et al., 2017; Lowet et al., 2017; Rockland and

Lund, 1983; Gilbert andWiesel, 1983; Gray et al., 1989) (note that

V2 FB may in addition modulate g-synchronization [Hartmann

et al., 2019; Vinck and Bosman, 2016]). As a result, g-synchroni-

zation may decrease mainly due to local discontinuities in

stimuli. By contrast, firing rates can increase due to mismatches

across larger regions of space, mediated by both long-

and short-range top-down FB (Angelucci et al., 2017; Keller

et al., 2020; Kirchberger et al., 2021; Keller and Mrsic-Flogel,

2018). This longer-range FB can mediate the computation of

mismatches in higher-level features across a larger region

of space.

Finally, although V1 spiking rhythmicity was generally very

weak for non-predicted stimuli, we observed a clear b-rhythm

in the LFP for these stimuli. This b-rhythm emerged almost

exclusively for pictures of nature content and did not correlate

with luminance contrast. Previous work suggests that b reflects

cortical top-down FB from parietal and frontal areas (Bressler

et al., 2007; Buschman and Miller, 2007; Bastos et al., 2015;

Gregoriou et al., 2009). This is consistent with the late onset of

b after 500–600 ms, given that late, sustained activity is very

weak in area V1 compared with other areas in parietal and frontal

cortex. Overall, the distinct properties of b-synchronization, as

well as the lack of a gradual frequency shift from g to b fre-

quencies, suggest that the b-rhythm is a phenomenon that is

distinct from the V1 g-rhythm. More data are needed on the

generative source of this b-rhythm and its relationship to top-

down FB and predictions (Bastos et al., 2020, 2012) before a

functional interpretation can be given.

Functional interpretations
Next, we will discuss potential roles of g-synchronization and

firing rate modulations in several domains.
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EFFICIENT CODING

Our findings strongly suggest that V1 g-synchronization is

associated with efficient encoding of the image. A previous

computational model has studied how a population of neurons

can encode a 1D stimulus (Chalk et al., 2016). Optimal encoding

of a 1D stimulus requires (1) intermediate levels of g-synchroni-

zation (Chalk et al., 2016), (2) sparsely firing cells that spike in a

small fraction of g-cycles, and (3) stochastic g-oscillations, as

observed in area V1 (Spyropoulos et al., 2020; Burns et al.,

2011). Thus, V1 g-synchronization may represent a dynamic

regime that allows for efficient encoding (i.e., data compression)

of low-dimensional, highly redundant images. In contrast, when

V1 neurons represent non-redundant information and receive

heterogeneous inputs, efficient encoding entails that correla-

tions between neurons need to be avoided and g-synchroniza-

tion should decrease. A similar explanation may account for

the fact that in mouse LGN, g-synchronization occurs for diffuse

light stimulation rather than for structured stimuli (Saleem et al.,

2017; Schneider et al., 2021).

PLASTICITY

It is known that synchronization can have important conse-

quences for the induction of synaptic plasticity (Galuske et al.,

2019; Sejnowski and Paulsen, 2006; Stopfer et al., 1997),

which is mediated by mechanisms such as spike-timing-depen-

dent plasticity (Wespatat et al., 2004; Sjöström et al., 2001;

Sejnowski and Paulsen, 2006; Vinck et al., 2010; Galuske

et al., 2019; Anisimova et al., 2021). Bursts of g oscillations could

therefore maintain or strengthen synaptic connections between

neurons that, on average, predict each other’s visual inputs, and

thereby contribute to self-supervised learning of spatiotemporal

natural image statistics.

INTER-AREAL COMMUNICATION

We found that g-synchronization is enhanced for predicted

stimuli and decreaseswith image salience. A possible interpreta-

tion based on predictive codingmodels is that g-synchronization

reduces FF information propagation. In contrast to this interpre-

tation, previous work has shown that FF Granger-causality from

V1 to higher areas is strongly associated with g-synchronization

(Bosman et al., 2012; Bastos et al., 2012, 2015; van Kerkoerle

et al., 2014). However, a recent study argues that a strong

g-source in V1 will naturally give rise to FF Granger-causality

with LFP signals in higher areas, without necessarily having a

direct functional consequence for information transmission

(Schneider et al., 2021). Thus, the critical question is the precise

effect of g-synchronization on cells in downstream targets.

Previous work suggests that fast-spiking interneurons respond

more strongly to g-frequency inputs than excitatory neurons,

as excitatory neurons tend to have low-pass filtering properties

(Pike et al., 2000; Buzsáki and Schomburg, 2015; Cardin et al.,

2009; Hasenstaub et al., 2005). As a result, g-synchronization

may recruit strong FF inhibition in a receiving area (Schomburg

et al., 2014), instead of activating and entraining excitatory

neurons. Consistent with this interpretation, several studies
have shown that g-synchronization in a sending area (e.g.,

LGN and V1) induces phase-locking only in layer IV of the

receiver (e.g., V1 and V2), without propagation to layers II/III

(Zandvakili and Kohn, 2015; Schneider et al., 2021) (note that

other studies have reported inter-areal spike phase-locking

without selecting particular layers or neuron types [Engel et al.,

1991; Grothe et al., 2012]).

These possible interpretations seem difficult to reconcile with

the hypothesis that inter-areal phase-synchronization between

g-rhythms can selectively gate communication according to

cognitive demands such as attention (Bosman et al., 2012;

Rohenkohl et al., 2018; Grothe et al., 2012). Here, we observed

substantial variability in V1 g-synchronization across stimuli,

which may result in substantial variability in inter-areal g-coher-

ence with areas V2 and V4 (Schneider et al., 2021; Roberts

et al., 2013). Given such variability, it remains an open problem

how attention can be generically mediated via selective inter-

areal synchronization, and how stimuli with weak g-synchroniza-

tion are communicated to higher areas (for further discussion see

Hermes et al. 2015; Ray and Maunsell 2015; Brunet et al. 2014;

Akam and Kullmann 2012). Our data show that the variability

in V1 g-synchronization across natural images is not explained

by the extent to which a stimulus is ‘‘visible’’ or salient; note

that the negative correlation of g with salience is explained by

the strongly negative correlation of salience with predictability

(in line with Li [2002]). Furthermore, the effect of attention on

g-synchronization in V1 varies across studies and does not

show a systematic tendency in any direction (van Kerkoerle

et al., 2014; Chalk et al., 2010; Das and Ray, 2018; Ferro et al.,

2021; Buffalo et al., 2011). By contrast, V1 firing rates are typi-

cally enhanced both for stimuli that are attended (Chalk et al.,

2010; Buffalo et al., 2010; van Kerkoerle et al., 2014) and that

contain a center-surround mismatch in higher-level features.

MISMATCH SIGNALS

These firing rate mismatch signals can play numerous important

functions. They can be important for learning, given the well-

established role of error signals in learning (Bellec et al., 2020).

Furthermore, mismatch signals can attract attention to stimuli

that are salient and stand out from the background, guiding

eye movements (Li, 2002). Mismatch signals may also enrich

the heterogeneity of features that are computed within V1. In

this context, both the local RF properties of a V1 neuron and

its contextual modulation can be seen as a ‘‘difference’’ oper-

ator: the local classical RF properties result from a local differ-

ence operation (e.g., a Gabor-like filter), whereas contextual

modulation reflects a difference operation on a larger spatial

scale. Mismatch signals on a larger spatial scale may benefit

performance on tasks such as object recognition and contribute

to scene segmentation and perceptual grouping. Indeed, it is

known that in mice, performance on scene segmentation

tasks depends on the contextual modulation of V1 firing rates

(Kirchberger et al., 2021). By contrast, the relationship of g-syn-

chronization with perceptual grouping has been debated

(Roelfsema et al., 2004; Palanca and DeAngelis, 2005;

Shadlen and Movshon, 1999; Singer, 1999; Lima et al., 2010).

Our data suggest that rates and synchronization may carry
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complementary information about segmentation. Whereas firing

rates are increased by spatial discontinuities in higher-level fea-

tures (defined by OR-CNNs), such as stochastic textures, g-syn-

chronization decreases with local discontinuities in lower-level

structure (e.g., edges, color). Finally, recent work has suggested

that inserting a V1-like layer into OR-CNNs may improve object

recognition (Marques et al., 2021; Dapello et al., 2020). Here,

we presented a quantitative method to predict contextual mod-

ulation of V1 firing rates. It needs to be investigated whether

including a similar contextual modulation of firing rates in OR-

CNNs benefits object recognition. Likewise, including g-oscilla-

tory mechanisms in recurrent neural networks with similar

properties as observed here may benefit task performance and

efficient coding.
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Self, M.W., van Kerkoerle, T., Supèr, H., and Roelfsema, P.R. (2013). Distinct

roles of the cortical layers of area V1 in figure-ground segregation. Curr.

Biol. 23, 2121–2129.

Shadlen, M.N., and Movshon, J.A. (1999). Synchrony unbound: a critical

evaluation of the temporal binding hypothesis. Neuron 24 (67–77), 111.

Shirhatti, V., and Ray, S. (2018). Long-wavelength (reddish) hues induce

unusually large gamma oscillations in the primate primary visual cortex.

Proc. Natl. Acad. Sci. USA 115, 4489–4494.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition, arXiv, arXiv:1409.1556.

Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of

relations? Neuron 24 (49–65), 111–125.

Singer, W. (2021). Recurrent dynamics in the cerebral cortex: integration of

sensory evidence with stored knowledge. Proc. Natl. Acad. Sci. USA 118,

e2101043118.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures complied with the German and European regulations for the protection of animals and were approved by the regional

authority (Regierungspr€asidium Darmstadt). Three adult macaque monkeys (Macaca mulatta) were used in this study. Monkey I was

female, 14 years old, and 8 kilograms. Monkey A was male, 10 years old, and 14 kilograms. Monkey H was male, 11 years old, and

17 kilograms.
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METHOD DETAILS

Surgical procedures
Implantations were made in the left hemisphere of V1. In Monkey H, we implanted a Utah array with 64 microelectrodes (inter-elec-

trode distance 400 mm, half of them with a length of 1 mm and half with a length of 0.6 mm, Blackrock Microsystems), and inserted a

reference wire under the dura towards parietal cortex. In monkeys A and I, we implanted a semi-chronic microelectrode array

Microdrive (SC32-1, Gray Matter Research), containing 32 independently movable tungsten electrodes (inter-electrode distance

of 1.5 mm); here, the microdrive chamber was used as the reference. Note that no histological verification of layers/depths was

performed, because the animals are still alive. We estimate that our recordings mainly sample activity from layers 2-4, because

the vast majority of recording sites do not show the typical inversion of the first deflection of the event-related potential as is found

in the deep layers (Li et al., 2015; Schroeder et al., 1998), this is further supported by the electrode lengths in monkey H. Further

details on surgical procedures can be found in Peter et al. (2019).

Behavioral task
All monkeys were trained on a fixation task. The animals were positioned 83 (monkey H) or 64 cm (monkeys A, I) in front of a 22 inch

120 Hz LCD monitor (Samsung 2233RZ, Ghodrati et al. [2015]; Wang and Nikoli�c, 2011). Monkeys self-initiated trials by fixating on a

small fixation spot, which was presented at the center of the screen, and had to maintain fixation during the entire trial. Trials during

which the eye position deviated from the fixation spot by more than 0.8 (monkey H) or 1.44 visual deg (monkey I and A) radius were

aborted. Note however that eye movements were generally constrained within 1 visual deg, with the majority of eye movements

within 0.5 visual deg (Figure S2Ei). Correct trials were rewarded with diluted fruit juice. For further details on the task see Peter

et al. (2019).

Recordings
Recordings were made with a Tucker Davis Technologies (TDT) system. Data were filtered between 0.35 and 7500 Hz (3 dB filter

cutoffs) and digitized at 24.4 kHz (TDT PZ2 preamplifier). Stimulus onsets were recorded with a custom-made photodiode. Eye

movements and pupil size were recorded at 1000 Hz using an Eyelink 1000 system with infrared illumination. For further details

see Peter et al. (2019).

Visual stimulation
Image selection

Natural images were acquired from the Yahoo Flickr Creative Commons 100 Million (YFCC100M) Dataset (Thomee et al., 2015). The

resolution of these images was high enough to match the resolution of the LCD monitor given the stimulus size (see below). Images

were included if user tags included any of the following: Animal, building, closeup, flower, house, indoor, landscape, natural, object,

texture, tool, toy, tree. Any of the following tags led to exclusion: Blur, blurry, bokeh, digital, art, artwork, artist, text, writing, drawing,

painting, cartoon, graphic, graphic+design, illustration, logo, desktop. A set of 340 images was selected as stimulus set for the

monkeys. Note that from the same Yahoo Flickr database, a training and validation set was selected for the deep neural network

training (see further below); this training set was different from the images presented to the monkey. All images were converted to

grayscale, except for a subset of sessions in which we presented the images also in color. The 340 selected images had to fulfill

the following criteria, which are comparable to the ones used in Coen-Cagli et al. (2015): (1) A mean RGB value between 40 and

200. (2) An average luminance-contrast, measured as root-mean-squared (RMS) contrast, above 0.2. (3) A centroid of spatial

frequency (defined further below in the Image Statistics section) greater than 0.5 dva (degrees of visual angle). These criteria

excluded images that were excessively bright, dark, or spatially uniform. However, note that we studied V1 responses to uniform

grayscale surfaces in Peter et al. (2019).

Image standardization

We cropped each image to 600x600 pixels, and applied two further transformations to the images, similar to Coen-Cagli et al. (2015):

(1) We set the global luminance-contrast for each image to 0.6, by using a sigmoid projection of pixel values. (2) We rescaled and

centered the images to have a mean RGB value of 128, equal to the background. For stimulus presentation, we approximately

centered the images on the cluster of recorded V1 RFs. Stimuli had a width of 11.5 dva (monkey H, stimulus centered horizontally

at x=+2 and vertically at y=-3 dva from fixation) or 15 dva (monkey A x=+3.55 and y=-0.12, monkey I x=+3.45 and y=-0.02).

Further image selection criteria

Stimulus sets for a given recording session consisted of 20 images, each presented for a total of 10-20 trials. Each session contained

a subset of ten images where at least part of the image had a high spatial predictability (>0.85, see below). This was done to ensure

that a sufficient number of image patches with high predictability were sampled, given the low probability of finding image patches

with very high spatial predictability (Figure S3F). These images were found as follows: (1) Around the clusters of RFs, a region of 3 x

3 degrees visual angle was selected (ROI). (2) The ROI was divided into 1 degree patches and the spatial predictability of 9 non-over-

lapping patch locations were quantified (see section Image Statistics). (3) At least 2 out of 9 patch locations were required to have a

predictability value (definedwith SSIM) above 0.85. The other 10 images were, in terms of predictability, selected randomly. Note that

correlations between spatial predictability and synchronization were also found below 0.85 (Figure 2C), and that for all 20 images,
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there were typically some recordings sites with RFs corresponding to low predictability. Additionally, all 20 images were required to

have, inside the ROI, an average luminance-contrast above 0.15 and a centroid of the spatial frequency below 8 cycles per degree;

this prevents aliasing, given the visual acuity of macaques at the recorded eccentricities.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis
Preprocessing

We analyzed only correctly performed trials. We downsampled the LFPs to z1.02kHz using Matlab’s decimate.m function. Line

noise was removed using a two-pass 4th order Butterworth bandstop filters between 49.9-50.1, 99.7-100.3 and 149.5-150.5 Hz.

Similar to previous studies (Schmid et al., 2013; Self et al., 2013; Xing et al., 2012; Legatt et al., 1980; Peter et al., 2019), we computed

MU (Multi Unit) signals from the broadband signal, by bandpass filtering between 300 and 6000 Hz (4th order butterworth), rectifica-

tion, and applying low-pass filtering and downsampling in the same way as for the LFPs. For the calculation of rate modulations, this

MU signal was smoothed with a Gaussian kernel with an SD of 20 ms. For further details see Peter et al. (2019).

RF estimation

RF were mapped with moving bar stimuli (spanning the entire monitor). Moving bars (width 0.1 deg, speed 10-17 deg/s) were

presented with 8-16 different orientations. MU responses were computed as a function of stimulus position, after correcting for

response latency. MU responses for each movement direction were then fitted by a Gaussian function. We used this fit to extract

the 10th percentile and the 90th percentile. Across the 16 directions, this yielded 32 data points, which were fit with an ellipse.

This ellipse was defined as that MU’s RF. The RF size was defined as the diameter based on 23
ffiffiffiffiffiffiffiffiffiffi
a3b

p
, where a and b are the major

and minor radius. The preferred stimulus orientation was also computed using these bar stimuli (and was highly consistent with

orientation tuning based on static gratings).

Electrode selection

We included all electrodes for analysis that met the following criteria: (1) The MU showed a response to RF stimulation that was at

least two SD above stimulation outside the RF. (2) TheMU response during the response period (0.05-0.15 s post stimulus onset) of at

least one stimulus condition in the session was at least 2 SD above the corresponding baseline (-0.4-0 s before stimulus onset).

Estimation of LFP power spectra

For the experiment in Figures 7 and S7 (masked paradigm), the baseline period was the last 400 ms before stimulus onset, and each

stimulation period yielded an epoch of 400 ms (0.2-0.6 s period). For the rest of the figures, the baseline period was the last 500 ms

before stimulus onset, and each stimulation period yielded two non-overlapping epochs of 500 ms (0.2-1.2 s period). For monkey H,

we made use of the constant spacing of neighboring electrodes in the array to improve power spectral estimation: Power spectra

were approximated by the complex mean of the cross-spectra of a channel with its two same-depth nearest neighbors. This reduced

uncorrelated high-frequency fluctuations due to spiking, which can affect the 1=f slope of LFP spectra; qualitatively similar results

were obtained using the unipolar power spectra. LFP epochs were multi-tapered ( ± 5 Hz smoothing) (Pesaran et al., 2018), Fourier

transformed and squared to estimate LFP power spectral densities.

Quantification of LFP gamma-band and beta-band amplitude

In Peter et al. (2019), we developed an algorithm to extract the amplitude of narrow-band gamma-band (or beta-band) oscillations,

with several advantages compared to previous methods. Note that qualitatively similar correlations with spatial predictability were

obtained by simply using baseline-corrected power in b and g bands (see Figure S2A), however baseline-corrected power can be

skewed by firing rates which results in a stronger correlation with luminance-contrast (Figures S4D and S4E). The algorithm had

the following structure:

1. Power spectra were log-transformed and the frequency axis was also sampled in log-spaced units to avoid overweighing the

contribution of high-frequency datapoints. All subsequent polynomial fits were performed on the 5-200 Hz range.

2. 1/Fn correction was performed by fitting an exponential to the LFP power spectrum, excluding data points in the range of

10-85 Hz in order to avoid any influence on peak detection. (For a subset of figures, namely Figures S2B, S4D, and S4E,

we corrected the power by dividing by the pre-stimulus baseline).

3. To determine the polynomial order, we used a cross validation procedure to prevent overfitting. Polynomials of order 1-20were

fit toDP as a function of frequency for a ‘‘training set’’. We then evaluated themean squared error using the same polynomial fit

on a ‘‘test set’’ for each of the 20 orders. This procedure was then repeated for multiple iterations and we chose the order with

the best median performance.

4. On the polynomial fit, localmaxima andminima in the b (18-30 Hz) or g (30-80 Hz) rangewere identified. The peak frequency was

the location of themaximum. The band-widthwas estimated as twice the distance between the frequency of themaximum (Fmax)

and the frequency of the first local minimum to the left of the maximum (Fmin), i.e. b = Fmin + 2,ðFmax � FminÞ = 2Fmax � Fmin. The

amplitude was then assessed from the difference between the value of the polynomial fit at the maximum and the average of the

polynomial fit at Fmin and 2Fmax � Fmin, where Fmin is the frequency of the nearest local minimum to the left of the maximum (we

used the left one, to avoid any influence of spike-bleed-in at higher frequencies).

5. The amplitude was quantified as a fold-change.
Neuron 110, 1–18.e1–e8, April 6, 2022 e3



ll
OPEN ACCESS Article

Please cite this article in press as: Uran et al., Predictive coding of natural images by V1 firing rates and rhythmic synchronization, Neuron (2022),
https://doi.org/10.1016/j.neuron.2022.01.002
Rate modulation

Rate modulation was computed as

R = ðMstim =MbaseÞ ; (Equation 1)

whereMstim andMbase represent the MU firing activity in the stimulus and baseline period, respectively. Spike-density functions were

normalized in the same way.

Statistics

Error bars or shaded error regions correspond to ± one standard errors of the mean (SEM) across recording sites. Violin plots show

themedian together with the 25-75 percentiles and the data distribution estimated usingMatlab’s ksdensity.m function. The statistics

used in the rest of the manuscript were as follows:

d In Figures 2C, 4B, and 6C, we show average neural activity (72 recording sites) as a function of spatial predictability or

luminance-contrast. We pooled all 72 channels and RF image patches together and then formed non-overlapping bins of

250 RF image patches. We then performed a Spearman-rank correlation across these 250 images.

d In Figures 2D and 4C, we correlated g-peak amplitude with predictability or luminance-contrast across sessions for each chan-

nel separately. We tested whether the average correlation was significantly different from zero across 72 channels by using a

two-sided T-test.

d In Figures 4C and 6D, we tested whether different models were significantly different from each other by using 10-fold cross-

validation, and a paired T-test across 72 recording sites. The additional regression variables used in Figures 4C were: Center

luminance, center spatial frequency and absolute deviation from preferred MU orientation, as well as the luminance and spatial

frequency of the 224 3 224 pixel image patch surrounding the RF image patch.

d In Figures 3E and S3E, we performed a two-sided T-test between nature and man-made or object-boundary vs. no boundary

categories (N=72 recording sites).

d In Figure 6D, we used a Pearson correlation to quantify the trend across layers.

d In Figure 5B, we compared the strength in correlations between blocks of VGG-16 layers using a pairwise two-sided T-test

across N=72 recording sites (early: layer 1-4; middle: layer 5-9; deep: 10-13).

d We repeated 5 experimental sessions twice with 5 different stimulus sets with 100 stimuli. Using this we estimated the variance

of the estimated means (which mainly results due to limited number of trials) and corrected for this variance.

Note that statistical inference, as in almost all electrophysiological studies, can be argued to be limited to the analyzed sample

(Fries and Maris, 2021).

Identification of object boundaries and man-made vs. nature pictures
To automatically identify object boundaries, we used the Mask-R convolutional neural network. Using this network, we determined if

there is a detected object contour that intersects with the MU’s RFs. We distinguished man-made vs. nature pictures as follows:

Pictures were categorized as man-made if man-made structure (e.g. buildings) was within the 43 4 degree image region centered

on the RFs of the recording array (for examples see Figure S3C). Images with both nature and man-made content were not consid-

ered for this comparison.

Deep Neural Networks methods
We used DNNs for several purposes. In Figures 1, 2, 3, 4, 6, and 7 we trained a network to predict missing parts of an image to obtain

several measures of spatial predictability. We will first describe the stimuli used to train this network, its architecture and training pro-

cedures. Following this, we describe other networks in which we directly predicted neural activity from the image.

Preprocessing of training stimuli
We resized the images from the Yahoo Flickr dataset (see Section ‘‘Visual Stimulation’’) to 3003 300 pixels. To improve robustness

and generalization, we applied standard data augmentation of the images for the training, consisting of several operations from the

Tensorflow image module (Abadi et al., 2015). Each operation had a 50% chance of being applied for a given image: brightness

(max_delta=0.1), contrast ( = [0, 1]), hue (max_delta = 0.1), saturation ( = [0, 1]), convert to black & white, horizontal flip. Resulting

images were then randomly cropped to 2243 224 pixels. The mean RGB value [123.68, 116.779, 103.939] of ImageNet was sub-

tracted from each image, in order to use the VGG-16 network for the initial layers of the network (Simonyan and Zisserman, 2014).

Mask generation

In order to make a network that can robustly predict missing inputs, we trained the network with binary masks that either had

occluders or missing pixels (low signal-to-noise ratio). Binary masks were randomly selected from 3 types: elliptic, rectangular, or

salt and pepper noise. Rectangular and elliptic mask types consisted of 2-3 missing regions that were randomly selected to be

203 20 pixels to 803 80 pixels (0.5-2 degrees) in area. One side of the rectangle (or axis for the ellipse) was randomly picked be-

tween 20 to 80 pixels. Finally, random rotations were applied to each missing region. Salt & Pepper noise had a sparsity ratio of at

least 20%. Images including the mask were randomly cropped to size 2243 224, and horizontally flipped with a 50% chance.
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Architecture of deep neural network for inpainting
For the inpainting we relied on Deep Neural Networks. Note that qualitatively similar correlations (however of smaller magnitude) were

obtained when generating image predictions based on an algorithm that does not use deep neural networks (Criminisi et al., 2004),

demonstrating the generality of our approach (Figure S2D). The neural network architecture was based on the U-Net architecture

(Falk et al., 2019; Ronneberger et al., 2015), with the followingmodifications: For initialization, the encoder part of U-Net was replaced

by all the convolutional and pooling layers of the VGG-16 network, using the Keras implementation (Simonyan and Zisserman, 2014;

Chollet, 2015). Transfer learning using VGG-16 has been previously used in image segmentation (Iglovikov and Shvets, 2018), image

reconstruction (Uhrig et al., 2017), style transfer (Gatys et al., 2015), and image inpainting (Liu et al., 2018). The resulting network

architecture consisted of five blocks, each of which had two or three convolutional layers (33 3) with ReLU (rectified linear) activation

functions, followed by a max-pooling (23 2) operation. The decoder consisted of five blocks, each with a nearest-neighbor upsam-

pling layer (2 3 2), followed by two convolutional layers. The output layer was a convolutional layer with, as is conventional, a linear

activation function.

Partial Convolution

All convolution operations in the network, including the VGG-16 network, were implemented as partial convolutions. Partial convo-

lution has been introduced with the sparsity-invariant convolutional network where the input to each convolution is paired with a

binary mask indicating which pixels are observable or missing, respectively (Uhrig et al., 2017). Partial observability of the inputs

during the training makes the network robust to input sparsity, regardless of the task of the network. We implemented a modified

version with mask updates per network operation, as described in Liu et al. (2018). The idea of partial convolution is that the missing

region is gradually filled, and that the filled-in information is used for filling in the rest of the missing pixels in an iterative way.

Loss function for training
Convolutional neural network (CNN) activations have been previously used as a basis for perceptual similarity metrics instead of

traditional measures such as SSIM (Wang et al., 2004) or L2-norm (Dosovitskiy and Brox, 2016; Gatys et al., 2015; Zhang et al.,

2018). Even though these perceptual loss functions based on CNNs match human perception better, image generation based

on those loss functions can suffer from high frequency artifacts (Olah et al., 2017, 2018; Johnson et al., 2016). To minimize high-

frequency artifacts, we therefore implemented the reconstruction and content loss functions in the Fourier domain, similar to decor-

related image parameterization described in Mordvintsev et al. (2018) and Odena et al. (2016).

Total loss consisted of reconstruction, content, and style losses:

Ltotal = Lreconstruction +pcontent,Lcontent +pstyle,Lstyle

Here, pstyle and pcontent are hyperparameters (see further below). Reconstruction loss consisted of three terms: (i) The difference be-

tween the amplitudes of Fourier transforms; (ii) the log difference between the Fourier amplitudes; (iii) the phase similarity between the

predicted and the original image, which has been previously applied to auditory signal synthesis in the Fourier domain (Arık et al., 2018):

Lreconstruction = Fðy; byÞ ;

Fðy; byÞ = [ 1ðjjFðyÞjj � jjFðbyÞjjÞ

+plog,[ 1ðlnjjFðyÞjj � lnjjFðbyÞjjÞ

+ pphase , [ 1

� ����F�y����� , ����F�by�����

� jjReðFðyÞÞjj,jjReðFðbyÞÞjj

� jjImðFðyÞÞjj , jjImðFðbyÞÞjj Þ

Here, y and by are the original and predicted image. The operator F denotes the Discrete Fourier Transform, jjFðyÞjj denotes the

Fourier magnitude, and [1 denotes the L1-norm across all frequencies.

Content loss was also defined in the Fourier domain, taking as input the cth AN activation in the lth layer activations of the VGG-16

network:

Lcontent =
X
c

X
l

Fð4l;cðyÞ;4l;cðbyÞÞ
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Finally, style loss is the difference between the Gramian matrices of the Fourier amplitude of the predicted and the original images,

where the Gramian matrices contain the covariance matrix across AN activations:

Lstyle =
X
l
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Averages of layers conv1_2, conv2_2, conv3_3, conv4_3 of VGG-16 network were used for content and style loss.

Training and Hyperparameter Optimization
We initialized the weights of the encoder as VGG-16 model weights that were pre-trained on ImageNet. The remaining weights were

initialized using He-initialization (He et al., 2015) and bias terms as 0. The network weights were optimized using the Adam optimizer

with a learning rate of 5e�5, b1 = 0:9, b2 = 0:999, ε = 1e�7, (Kingma and Ba, 2014). All hyperparameters were defined as continuous

variables where the search space was [1e-5, 1e3] sampled in logarithmic scale (Lindauer et al., 2019). We optimized the hyperpara-

meters using a method that combines Bayesian optimization with Hyperband as described in Falkner et al. (2018). We ran the opti-

mization for 50 iterations with a minimum budget of 8 and a max budget of 16. For hyperparameter optimization, we used a subset of

the image dataset for training (16384 images) and validation (1024 images) of the network. We used SSIM based reconstruction loss

as the evaluation metric for the hyperparameter optimization. To analyze the hyperparameter space and the importance of individual

hyperparameters, we used fANOVA (Hutter et al., 2014). The importance of a hyperparameter is the fraction of explained variance

(mean across 100 repetitions ± SEM) of the validation SSIM-loss across the entire hyperparameter space. The resulting hyperpara-

meters and their importances were:
Name Value Importance

pstyle 0.18 0.13 ± 0.002

pcontent 36.90 0.22 ± 0.002

plog 5.54 0.14 ± 0.002

pphase 3.02e-05 0.29 ± 0.003

plr 4.48e-05 0.14 ± 0.002
Image Statistics
Spatial Predictability

For a given image, predictability was computed bymasking out the central 1 degree patch (similar in size to previous studies studying

contextual modulation, Coen-Cagli et al. (2015)). The RF image-patch was then predicted by the inpainting algorithm described

above. The to-be-predicted image patch is denoted I, a matrix of N3N pixels.

Structural predictability

Structural predictability was defined as the squared Pearson correlation of two images or average correlation across VGG-16 AN

activations. This was defined for each layer l of the VGG-16 separately:

rl =
1

Cl

X
c

covð4l;cðyÞ;4l;cðbyÞÞ
s4l;cðyÞs4l;cðbyÞ

Content predictability

Content loss was defined as the L2-norm of the difference between the VGG-16 l layer AN activations of two images. This was

defined for each layer of the VGG-16 separately:

Ll =
1

IlJlCl

X
i;j;c

[ 2

�
4l;c

�
yi;j
��4l;c

�byi;j

��
Learned Perceptual Image Patch Similarity (LPIPS)

LPIPS is computed as the average content loss of layers conv1_2, conv2_2, conv3_3, conv4_3 conv5_3. Please note that we used

the VGG-16 net-lin model without the learned weights as described in Zhang et al. (2018).

Luminance-contrast

Luminance-contrast was measured as the Root-mean-square (RMS) contrast:

RMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

X
ij

ðIij � IÞ2
s

;

where I is the mean value of I. RMS was defined to range between 0 (minimum) and 1 (maximum) luminance-contrast.
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Spectral Centroid

The center of mass of the power spectrum is the mean spatial frequency in the image patch, fk , weighted by the total power, rk in the

frequency bands.

R =

P
krkfkP
krk

:

Orientation

Mean orientation in the RF was computed weighted by the total power in the orientation band [0:5:180] degrees, across spatial fre-

quencies 1.0, 2.8284, 8.0 cycles per degree, similar to the orientation selectivity of the receptive field. We estimated the orientation

selectivity of the RF as the weighted circular mean across different orientations as described in Ringach et al. (2002).

R =

P
krke

i2qkP
krk

:

R is the population resultant vector, rk is the peak MU response for the orientation qk . Orientation selectivity magnitude is given by

jRj and the mean angle is given by argðRÞ.
Compressibility

Compressibility was defined as the negative bits per pixel (bpp) which is commonly used to benchmark image compressionmethods.

For image compression, we used a context-adaptive, entropy-based deep neural network model that outperforms the traditional im-

age codecs such as BPG or JPEG, as well as other previous DNN based approaches (Lee et al., 2018). For each RF image patch and

its surround (224x224 pixels), we compressed the image using the MS-SSIM optimized model with the quality level set to 5 to get a

bits-per-pixel (bpp) measure of the compression. For the same image patches we computed the average predictability across 52x52

pixel non-overlapping sub-regions of the whole patch.

Dimensionality

Dimensionality was determined by first taking the two-dimensional fast Fourier transform of the RF image-patch, taking the

rotational average, and ranking the spectral components bymagnitude. Dimensionality was then defined as the slope of the resulting

spectrum.

Homogeneity

We computed P(homogeneity) using the inference model described in Coen-Cagli et al. (2012) similar to Coen-Cagli et al. (2009,

2015). This model consisted of 72 filters with 4 orientations (0, 45, 90, 135 degrees) and 2 phases (even, odd-symmetric quadrature

pairs) each, at 9 locations (center and 8 surround locations circular around the center RF with a radius of 6 pixels). Center and sur-

round RFs had a diameter of 9 pixels and peak spatial frequency of 1/6 cycles/pixel. We trained the model with our natural image

dataset, downsampled by a factor of 0.22 to match the model RF size (9 pixels) using the code provided by the authors (Coen-Cagli

et al., 2016). P(homogeneity) was computed as 1-P(heterogeneity), where P(heterogeneity) is the average inferred probability of het-

erogeneity of 4 center units which was the output of the inference model.

Orientation Variance

We filtered RF image patches of 224 x 224 pixels by gabor filters as described in Hermes et al. (2019) using the code provided. Model

parameters x,y were set to the RF center of the respective recording site, sigmawas set to 1 dva, gain(g) was set to 1 and exponent (n)

was set to 2.

Visual Saliency
We used SalGAN, a state-of-the art generative adversarial network trained for visual saliency prediction of the 2243 224 RF image

patch (Pan et al., 2017; Wagatsuma et al., 2021) (see Figure S4I). We quantified salience as the average visual saliency prediction

value within the RF center.

Human perceptual similarity
We used the Berkeley Adobe Perceptual Patch Similarity Just Noticeable Distance (JND) dataset to evaluate content and structure

losses as human perceptual similarity metrics. In the JND experiments, participants were presented two image patches for 1 second

each, with a 250 millisecond gap in between. They were asked if the patches were the same or not. In order to evaluate content and

structure perceptual similarity metrics, we used the layer specific VGG-16 AN activations of the original and distorted image as pre-

dictors for a logistic regression classifier to predict human perceptual similarity judgments. We calculated the Area Under Curve

(AUC) to quantify howwell the different VGG-16 layers and similarity metrics (LPIPS, LPIPS structure, SSIM, structure) explain human

perceptual similarity judgments.

Predicting neural activity from VGG-16 activations
In Figure 5, we predicted neural activity from the VGG-16 AN activations. If VGG-16 ANs had a smaller RF than 1 dva, then only

VGG-16 ANs were used with a RF center within the 1 degree region around the multi-unit’s RF center. If VGG-16 ANs had a larger

RF than 1 dva, then only VGG-16 ANs were used that fully covered the central 1 degree.
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For each location in the VGG-16, we predicted the neural responses from a vector of VGG-16 ANs with different feature selectiv-

ities. For this, we used 10% of the stimuli as a test set and used the rest as the training set. We used L1-constrained linear regression

and 10-fold cross validation to select the L1-constraint parameter l. Regression coefficients that best explain the training set were

then used to predict the neural signals for the test set. The correlation values (r) were averaged across VGG-16 locations. Receptive

field sizes in the VGG-16 are shown in Table S1. We calculated the receptive fields for VGG-16 ANs as described in Araujo et al.

(2019). The receptive field sizes of the neural network in the middle layers were comparable to the receptive field sizes in V1, which

has been previously described in Cadena et al. (2019).

Prediction from VGG-16 activations: gamma-net
In Figures S5C–S5E, we used a convolutional neural network to predict g-peaks based on the input image. In total, training data con-

sisted of 31988 image patches, by pooling acrossmonkeys, channels and sessions.We used all image patches from a unique%10 of

the stimuli as a test set and used the rest for training. We resized the 224x224 image patches to 84x84 in order to reduce the number

of parameters in the network. We used the VGG-16 model from keras applications, with frozen weights pre-trained on ImageNet for

transfer learning. The VGG-16 activations were the input to a network that consisted of 2 convolutional layers and a readout layer. We

compared predictions from different VGG-16 input layers as input (Figure S5D). Convolutional layers consisted of (3x3) filters with

bias, stride (2), valid padding, L1-norm kernel regularization (0.001), leaky ReLU activation (0.1), and dropout (0.5). The final two con-

volutional layers had 32 and 16 ANs. The readout layer consisted of (4x4) filters with bias and leaky ReLU activation (0.1).
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