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Introduction: Various herbivorous insects prefer toxic plants as their hosts,

although this may appear paradoxical. They have evolved specific adaptations

(called counter-defenses) against the toxins. For example, the two-component

chemical defense system of plants of the Brassicaceae family against herbivores

consists of glucosinolates (GLSs) and the activating enzyme myrosinase. GLS

hydrolysis by myrosinase leads to isothiocyanates (ITCs), which are toxic and

deterrent to many insect herbivores. Two different types of counter-defenses

can be distinguished: a preemptive counter-defense that prevents the GLSs from

being hydrolyzed to ITCs due to metabolic redirection and direct counter-

defense, where the ITCs are formed but then metabolized to non-toxic

conjugates. In general, preemptive counter-defense is only a possibility if the

plant stores a precursor of the toxin, which is activated upon attack. Preemptive

counter-defense is believed to be more efficient due to the lower exposure to

ITCs, but this has not been satisfactorily demonstrated experimentally.

Methods: Here, we derive on theoretical grounds the conditions under which

preemptive counter-defense reduces exposure to ITCs compared to direct

counter-defense by studying the dynamics of GLS defense and counter-defense

with two separate ordinary differential equation models. We model how herbivory

transfers theGLSs to the insect gut with the leafmaterial. Thereafter, we describe the

insects’ exposure to toxins by deriving the dynamics of ITCs in the gut during feeding

with the two types of counter-defenses.

Results and discussion: By calculating the area under the curve (AUC) of the ITC

concentrations, we show, based on empirical data, that herbivoreswith a preemptive

detoxification system are usually less exposed to ITCs. In addition, our models

explain how the decline in the level of ITCs is achieved by both counter-defenses,

which helps to understand the overall mechanisms and benefits of these techniques.

Our results may also apply to plant defenses by inactive toxin precursors other than

GLSs as well as to insects that sequester such precursors for their own defense.

KEYWORDS

preemptive counter-defense, direct counter-defense, glucosinolates (GLSs), isothiocyanates
(ITCs), mathematical model, defense chemicals, plant defense, area under the curve
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1 Introduction

One of the best-studied plant chemical defenses is based on the

glucosinolates (GLSs), found principally in the Brassicaceae and

related families. GLSs are accompanied by a glucohydrolase called

myrosinase that upon herbivory converts GLSs into active forms,

which are toxic and deterrent to herbivores (Wittstock et al., 2003;

Halkier and Gershenzon, 2006). The most widespread active forms

of GLSs are isothiocyanates (ITCs), which have been demonstrated

to be toxic to many insect herbivores (Wittstock and Burow, 2010;

Sun et al., 2019) (Figure 1). Despite the GLS–myrosinase defense

system, some insects are observed to feed on GLS-containing plants.

In several cases, these insects have been demonstrated to possess

different types of detoxification enzymes (Schramm et al., 2012;

Jeschke et al., 2016; Zou et al., 2016) (Figure 1).

Specialist insects that feed on GLS-containing plants often prevent

the GLSs from being hydrolyzed to ITCs by metabolic redirection. This

detoxification scheme can be referred to as a preemptive counter-

defense because it avoids the formation of toxic ITCs. For example,

larvae of the large cabbage white (Pieris rapae) redirect GLS hydrolysis

to form less toxic nitriles by using a nitrile-specifier protein (NSP)

(Wittstock et al., 2004). Another example is provided by the larvae of

the diamondback moth (Plutella xylostella) that desulfate GLSs before

they can be hydrolyzed (Ratzka et al., 2002). However, a portion of

GLSs can escape being metabolized by these preemptive mechanisms

and produce ITC products via myrosinase-catalyzed hydrolysis

(Jeschke et al., 2017).

Another adaption of some specialists is to absorb or accumulate

GLSs in their bodies for their own defense (Petschenka and

Agrawal, 2016; Beran et al., 2019; Yang et al., 2020; Sporer et al.,

2021). For example, larvae of the turnip sawfly (Athalia rosae L.)

and horseradish flea beetles (Phyllotreta armoraciae) absorb

ingested GLSs from their gut (Müller et al., 2001; Sporer et al.,

2021). Hydrolysis of GLSs by myrosinase is avoided by rapid

absorption after ingestion and by partial inhibition of myrosinase

activity (Sporer et al., 2021). This adaptation can also be considered
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a type of preemptive counter-defense. However, a portion of GLSs

can escape the sequestration process and produce ITCs through

myrosinase-catalyzed hydrolysis (Yang et al., 2020; Sporer

et al., 2021).

In contrast to specialists, generalists feed only occasionally on

GLS-containing plants and typically do not possess preemptive

detoxification systems. Once ITCs have been formed, parts of these

are detoxified directly via conjugation to the tripeptide glutathione

(GSH) (Yu, 1987; Wadleigh and Yu, 1988; Schramm et al., 2012).

Therefore, we call this adaptation direct counter-defense.

Experimental studies have reported that lepidopteran generalists

(e.g., Spodoptera littoralis, Spodoptera exigua, Trichoplusia ni,

Mamestra brassicae, and Helicoverpa armigera) employ this

detoxification strategy. In this case, a major portion of the ITCs is

not conjugated to GSH but is released in the feces (Schramm et al.,

2012; Jeschke et al., 2017).

Experimental studies show that specialist insects generally

perform significantly better on GLS-containing plants than

generalists (Li et al., 2000; Hopkins et al., 2009; Sarosh et al.,

2010; Rohr et al., 2011) presumably due to lower exposure to

ITCs. For example, when the preemptive desulfation

detoxification system of P. xylostella was knocked down by RNA

interference, the level of ITCs present in the gut increased by over

10-fold (Sun et al., 2019). Also, the published data (Jeschke et al.,

2017) shown in Table 1 point to an advantage of preemptive

counter-defense over direct counter-defense.

However, it remains unclear if this is a general phenomenon or

under which conditions this might change, all the more as ITC

concentrations are difficult to measure experimentally in a time

course. Therefore, it is very helpful to establish a mathematical

model to compare the two different counter-defense strategies

(preemptive and direct) against GLSs (Figure 1) and to derive a

relation among the parameters under which one strategy is superior

to the other one.

Here, we attempt to model the metabolism of GLSs in insect

herbivores to determine the theoretical exposure to ITCs during
FIGURE 1

Schematic diagram for glucosinolate (GLS) defense of plants, together with preemptive and direct counter-defense in insect herbivores.
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preemptive vs. direct detoxification. Mathematical modeling using

ordinary differential equations (ODEs) helps to understand the

change in substrate concentration (plant defense compounds in our

case) over time (Knoke et al., 2009; Johnson and Goody, 2011; Schuster

et al., 2019; Srinivasan, 2022). Moreover, food intake by organisms can

also be modeled by ODEs (Dawes and Souza, 2013). Systems of ODEs

are widely used in mathematical biology because they are well-suited to

describe dynamical processes provided that the variables are

(approximately) continuous (Kot, 2001; Murray, 2002). By

developing two different ODE models for the two different types of

counter-defenses, we simulate the dynamics of ITC concentrations in

the insect gut. Using the concept of the area under the curve (Wagner

et al., 1985; Schuster et al., 2019), we quantify the total exposure to

ITCs. We analyze under which conditions preemptive counter-defense

is superior to direct counter-defense. Then, we check, based on

empirical data, whether these conditions are fulfilled. Our models

also help to explain how both counter-defenses may entirely degrade

the host plant defense.
2 Models and results

We develop two different deterministic models, one for

preemptive counter-defense and the other for direct counter-

defense. For the model formulation, we assume ingestion and

degradation of plant GLSs (by insects) are simultaneous processes

because free GLSs are usually not found in the insect gut (Schramm

et al., 2012; Jeschke et al., 2016; Jeschke et al., 2017).
2.1 Preemptive counter-defense

In the case of insects with a preemptive detoxification system,

let a be the rate constant of plant GLS degradation by the

preemptive detoxification enzyme and b the rate constant of ITC

formation by the hydrolysis of plant GLSs that escape preemptive

detoxification. Further, the free ITCs in the insect gut are released in

the feces with a rate constant, g. Based on mass-action kinetics, the

rate equations are as follows:

dS
dt

= −(a + b)S (1a)
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dTp
dt

= bS − g Tp (1b)

where S is the plant GLS concentration and TP is the ITC

concentration at time t for insects with preemptive counter-defense.

Model Eq. 1 has an equilibrium point (S∗, TP
∗) equal to (0, 0), which

is asymptotically stable (a stable node). Therefore, without a doubt,

the preemptive counter-defense can degrade the ITC concentration

to 0. Since model Eq. 1 is a simple linear ODE system, the equations

can be solved analytically:

S = S0e
−(a+b)t (2a)

TP =
bS0

g − (a + b)
e−(a+b)t − e−g t

� �
(2b)

The time-course of model Eq. 1 is shown in Figure 2A. It can be

seen that there is an initial increase and then a decrease in the

ITC concentration.
2.2 Direct counter-defense

In the case of insects with a direct detoxification system, let d
be the rate constant at which plant GLSs are hydrolyzed to ITCs by

myrosinase, μ the rate constant at which ITCs are reacting to

produce ITC conjugates, and g the rate constant of releasing ITCs
in the feces. Eventually, the active portion of ITCs is decreased

with an overall rate constant μ + g. The rate equations are as

follows:

dS
dt

= −dS (3a)

dTD

dt
= dS − (m + g )TD (3b)

where S has been defined before and TD refers to the ITC

concentration at time t for direct counter-defense. The only

equilibrium point of model Eq. 3 is (0, 0), which is also

asymptotically stable. Similar to the preemptive counter-defense,

direct counter-defense can also degrade the ITC concentration to 0.

The time course of model Eq. 3 is shown in Figure 2B. Due to its

simplicity, model Eq. 3 can also be solved analytically:
TABLE 1 Mean percentage of toxic and non-toxic products of GLSs excreted by various insects as measured by radioactivity (Jeschke et al., 2017).

Insects Counter-defense type ITCs (%) Non-toxic products (%) Unknown (%)

Plutella xylostella Preemptive 4 89 7

Pieris rapae Preemptive 1 92 7

Spodoptera littoralis Direct 66 23 11

Helicoverpa armigera Direct 63 14 23

Mamestra brassicae Direct 78 9 13

Trichoplusia ni Direct 62 13 25
GLSs, glucosinolates; ITCs, isothiocyanates.
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S = S0e
−d t (4a)

TD =
dS0

m + g − d
e−d t − e−(m+g )t

� �
(4b)

We assumed that the excretion is independent of the type of

counter-defense and similar for all insects. Therefore, the rate

constant g is the same for both preemptive and direct

detoxification systems in model Eqs 1 and 3.

Note 1. Since the equilibrium points of both models (Eqs 1 and 3)

are stable nodes (0, 0), they are reached for t → ∞. The proof is

given below:

S0e
−(a+b)t* = 0,   bS0

g −(a+b) (e
−(a+b)t* − e−g t*) = 0, 

(S(t*),Tp(t*)) is the equillibrium point

⇒ e−(a+b)t* = 0,  ⇒ e−(a+b)t* − e−g t*
� �

= 0,  

where g ≠ a + b  and S0 ≠ 0

Note that both the exponential functions tend to zero as t∗ → ∞.

A similar proof can be given for model Eq. 3 by equating (S(t∗), TD
(t∗)) = (0, 0).
2.3 Quantifying the ITC exposure

Using Haber’s rule in both model Eqs 1 and 3, we integrate TP
and TD with respect to time (t) within the time range 0 to ∞. The

reason for taking the upper limit of the integral ∞ is explained in

Note 1. The definite integral gives the area enclosed by the ITC

curves (TP and TD), called the area under the curve (AUC) (Wagner

et al., 1985; Lappin et al., 2006; Connell et al., 2016; Schuster et al.,

2019). Literally, AUC gives the entire amount of ITCs that the

feeding insects are exposed to during the period of herbivory, as

shown in Figure 3. The AUC is often used in pharmacology (Lappin

et al., 2006) and toxicology (Connell et al., 2016) to quantify the

total dose of a drug or toxin that an organism is exposed to

over time.

Let AUCP and AUCD be the ITC exposure of the insect

population with preemptive and direct counter-defense,

respectively. Integrating Eqs 2b and 4b, we obtain the following:
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AUCP =
Z ∞

0
TPdt =

bS0
(a + b)g

(5a)

AUCD =
Z ∞

0
TDdt =

S0
(m + g )

(5b)

It is worth noting that the parameter d does not appear in the

formula for AUCD.
2.4 Comparison

To make a comparison of the two types of counter-defenses

under equal situations, we assumed that insects with preemptive

and direct detoxification systems feed on plants or patches of plants

that are identical in GLS concentration. That is why S0 and S are the

same for both model Eqs 1 and 3. By comparing the ITC exposure,

Eqs 5a and 5b, it is proved that AUCP < AUCD is enough to explain

why the negative effects of ITCs are higher in insects with direct

rather than preemptive detoxification. However, we have to

investigate whether or not the inequality AUCP < AUCD is always

true or conditional (i.e., depends on the parameters).
A B

FIGURE 2

Degradation of plant glucosinolate (GLS) and isothiocyanate (ITC) exposure. Parameter values were chosen in accordance with Inequality 7. (A) In
the case of preemptive counter-defense, as computed by model Eq. 1, the parameters are as follows: S0 = 100, a = 0.2, b = 0.1, and g = 0.75. (B) In
the case of direct counter-defense, obtained from model Eq. 3, the parameters are as follows: S0 = 100, d = 0.3, µ = 0.1, and g = 0.75.
FIGURE 3

Area enclosed by isothiocyanate (ITC) concentrations during the
herbivory period for preemptive and direct counter-defenses,
obtained from model Eq. 1 and model Eq. 3, respectively. Parameter
values are the same as in Figure 2.
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Hence, to verify,

b
a + b

<
g

m + g
(6)

By considering the reciprocals, we can simplify Inequality 6 to

the following:

b
a
<
g
m

(7)

From the data shown in Table 1, we can establish relationships

among the parameters in Inequality 7.

Property 1. For an insect with a preemptive detoxification

system, only a small amount of GLSs escape to form ITCs, whereas

most of the GLSs are detoxified preemptively, as shown in Table 1.

The mean percentages of products were determined by gas

chromatography–mass spectrometry (GC‐MS) analysis (Wittstock

et al., 2004), liquid chromatography–mass spectrometry (LC‐MS)

analysis, and direct radioactivity measurement (Jeschke et al., 2017).

Thus, we obtain b < a.
Property 2. In direct detoxification, the major portion of free

ITCs is excreted unmetabolized, whereas a minor portion is

converted to non-toxic conjugates, as shown in Table 1. The mean

percentages of products were measured by LC-MS analysis and flux

measurements with radioactive labeling (Jeschke et al., 2016; Jeschke

et al., 2017). Hence, we obtain μ < g.
Statement 1. AUCP < AUCD or Inequality 6 is always true if the

parameters fulfill Properties 1 and 2.

Proof. Since μ < g (Prop. 2), the right-hand side (r.h.s.) of

Inequality 7 is >1. However, the left-hand side (l.h.s.) of Inequality 7

is <1 because b < a (Prop. 1). Therefore, Inequality 6 is obvious for

empirical studies, meaning preemptive detoxification performs

always better; see Figure 3.

In Figure 2, the parameter values were chosen in accordance

with Inequality 7. It can be seen that the ITC concentration is lower

for preemptive counter-defense than for direct counter-defense in

the entire time course.

Remark 1. If preemptive detoxification is too rapid, i.e., b <a  (or
b
a → 0) , then AUCP → 0; otherwise, not. Therefore, insects may not

escape ITC exposure entirely by preemptive counter-defense.

It is of interest to find out under which conditions direct

counter-defense would be superior. That is the case whenever the

opposite order relation in Inequality 7 holds. Thus, inequality is the

relevant criterion. For example, Inequality 7 is not satisfied if b > a
(ITC formation is faster than preemptive GLS degradation) and μ >

g (ITC inactivation is faster than ITC excretion) because the l.h.s. of

Inequality 7 then is >1, whereas the r.h.s. is <1; see Figure 4. Note

that ITC excretion (rate constant g) occurs in both types of counter-

defenses but that low g values are especially disadvantageous for the

preemptive type.

Remark 2. We did not make a direct comparison between the

dynamic ITC concentrations TP and TD because to verify whether or

not TD − TP > 0, we need to establish relations among the parameters

a, b, and d. It can be assumed that d < a + b because insects with

direct counter-defense feed slowly on toxic hosts (Jeschke et al., 2021;

Zalucki et al., 2021). However, we have to be more specific to make
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such parameter comparisons. Fortunately, AUCD in Eq. 5b is free of

d. Therefore, we do not require a relation between a, b, and d to

compare the quantified toxin exposures AUCP and AUCD (Eq. 6).

By our model, we were able to generate time curves for the

concentrations of activated toxins. It would be ideal to validate the

model by comparing these curves with experimental data. However,

no time-resolved data about ITC concentrations are available in the

literature. Nevertheless, the model is useful for better understanding

the different types of defense and counter-defense and for making

testable predictions.
3 Discussion

Insect herbivores employ two different strategies to detoxify

activated plant defenses like GLSs: preemptive and direct

detoxification. Our work shows that a preemptive counter-defense

always outcompetes a direct counter-defense if Inequality 7 among the

rate constants of plant GLS degradation by the preemptive

detoxification enzyme (a), rate constant of ITC formation by the

hydrolysis of plant GLSs (b), rate constant of releasing ITCs in the feces
(g), and rate constant of production of ITC conjugates (μ) is fulfilled.

Empirical data suggest that Inequality 7 is always satisfied.

Theoretically, if the order relation opposite to Inequality 7 holds, a

direct counter-defense would outcompete preemptive detoxification,

but we are unaware of such cases.

We built our model on the basis of experimental data concerning

the concentrations of ITCs and products of direct and preemptive

counter-defenses (Jeschke et al., 2017). This allowed us to make testable

predictions on the time courses of the relevant substances, which can be

checked in experimental studies in the future. For the purpose of this

paper, notably the comparison between two types of counter-defenses,

we do not need such exact, time-resolved data because the (qualitative)

order relations are sufficient to reach conclusions about the preemptive

vs. direct counter-defense. In future applications, it is desirable to use

experimentally determined data such as transcript levels to assign

values to the rate constants.

The superiority of preemptive counter-defense in Statement 1

(based on experimental studies) guarantees that herbivores
FIGURE 4

Direct counter-defense performs better than preemptive counter-
defense if b > a and µ > g, with the following parameters: a = 0.05,
b = 0.25, g = 0.4, d = 0.3, and µ = 0.45.
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possessing this strategy have an advantage over other herbivores on

toxic host plants because they minimize contact with toxins. The

toxic effects of ITCs on feeding insects exposed to this toxin (AUCP

or AUCD) cause reductions in feeding rate, growth, and survival

(Sun et al., 2019; Jeschke et al., 2021; Zalucki et al., 2021). Thus, low

ITC exposure (AUCP) implies only minor effects on insect feeding

behavior, growth, and mortality (Li et al., 2000; Hopkins et al., 2009;

Rohr et al., 2011), whereas a high AUCD value leads to poor feeding

behavior, slow growth, and a high mortality rate (Jeschke et al.,

2021; Zalucki et al., 2021).

The effectiveness of preemptive detoxification does not

necessarily mean that insects employing this strategy completely

escape the adverse effects of ITCs. As described in Remark 1,

negative effects occur as long as b < a does not hold. That could

explain why some experimental studies report that insect species

known to be preemptive detoxifiers of GLSs are affected by ITCs

(Mewis et al., 2005; Mewis et al., 2006; Gols et al., 2007; Gols et al.,

2008). For the preemptively detoxifying P. xylostella, larvae feeding

on plants without any GLSs at all perform significantly better than

those on GLS-containing plants, suggesting that some exposure to

ITCs occurs despite an effective detoxification strategy (Sun et al.,

2019). However, preemptive detoxification has also been

documented to be very effective, with many studies reporting that

species with this strategy are only marginally affected by the GLS–

myrosinase defense system of their host plants (Slansky and Feeny,

1977; Blau et al., 1978; Broadway, 1995; Li et al., 2000; Sarosh et al.,

2010; Rohr et al., 2011). In such cases, b is likely to be much less

than a.
Our results may also apply to insects that sequester GLSs in

their own defense, as these are also reported to avoid the negative

effects of ITCs (Müller and Sieling, 2006; Müller, 2009; Beran et al.,

2019; Sporer et al., 2021). This phenomenon is explainable from

model Eq. 1 by assuming a to be the absorption or sequestration

rate of GLSs, where b remains the rate of GLS hydrolysis. In fact,

quick sequestration certainly leads to the situation b < a, a
conclusion supported experimentally by the rapid absorption of

GLSs measured in insect guts of sequestering herbivores

(Abdalsamee et al., 2014; Petschenka and Agrawal, 2016; Sporer

et al., 2021).

In natural systems, many plants of the Brassicaceae that

produce GLSs constitutively have also been found to accumulate

higher concentrations after herbivore damage (van Dam et al., 1993;

Agrawal, 1998; Textor and Gershenzon, 2009). Experimental

studies report that such GLS induction has noticeable adverse

effects on insect herbivores (Agrawal, 2000; Agrawal and

Kurashige, 2003) (van Dam et al., 2000). In our model Eq. 1 or 3,

we considered an immediate induction of GLSs in plants, resulting

in an increased initial plant GLS concentration (S0). This

assumption is relevant because plants increase GLS levels to a

certain high limit as soon as they recognize the attack by insect

herbivores (Textor and Gershenzon, 2009). The immediate

induction of GLSs causes a drastic increase in ITC exposure (i.e.,

AUCP and AUCD) due to high S0 value, which raises the toxic effect

of ITCs on the herbivores.

The lower exposure to ITCs in preemptive detoxification

(AUCP) versus direct detoxification (AUCD) may have an
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empirical basis due to the location of these reactions in the insect.

The preemptive detoxification reactions of GLSs, such as

desulfation, are known to occur extracellularly in the insect gut

lumen by acting on GLSs in the plant tissue being digested (Sun

et al., 2019). In contrast, once ITCs are formed by GLS breakdown

in the gut, the direct detoxification reaction, conjugation with

glutathione, occurs intracellularly. The ITCs formed thus need to

cross through a membrane and enter a cell before being detoxified

(Jeschke et al., 2016). This longer path to the site of detoxification in

direct counter-defense allows more opportunities for the ITCs to

react with target sites than in preemptive detoxification.

Our study adds to experimental results indicating that herbivore

feeding on GLS-containing plants can be costly, even those with

preemptive detoxification. Thus, it may seem puzzling that

specialist herbivores with such detoxification systems use plant

GLS or ITC content as a cue for their oviposition and feeding

preference (Mewis et al., 2002; Renwick, 2002; Miles et al., 2005;

Badenes-Perez et al., 2020) and thus prefer GLS-containing plants

compared to plants without GLS despite the costs. A possible

explanation is the reduced competition enjoyed on GLS-

containing plants because of their generally toxic nature to most

herbivores. From an evolutionary perspective, feeding on plants

with GLSs or other toxins must benefit herbivores. Otherwise, the

evolutionary origin of detoxification traits (Darwin, 1859;

Dobzhansky, 1968) is hard to understand. Comparative fitness

studies on toxic vs. non-toxic plants, both with and without

competition, may help explain the shift to toxic plants.
4 Conclusion

Our major objective was to compare the two different counter-

defenses of insect herbivores against chemical defenses in

Brassicaceae plants. Employing a minimal, analytical model for

better comprehension and tractability, we showed that preemptive

counter-defense is more effective than direct counter-defense in

light of the assumptions, based on Table 1. The model can be

extended to accommodate more complexity in defense and counter-

defense mechanisms. There is no a priori reason why herbivores

could not possess both strategies, except for the potentially high

metabolic costs. It is worth considering that case in future

extensions of the model.

Although preemptive detoxification is only a useful strategy if

the host plant(s) stores an inactive toxin precursor of the toxins that

can be enzymatically activated, this situation is found not only for

the GLSs of the Brassicaceae but also for cyanogenic glycosides,

found commonly in the Rosaceae, Passifloraceae, Leguminosae,

Sapindaceae, and Poaceae plant families, which can be hydrolyzed

to toxic hydrogen cyanide (HCN) by enzyme catalysis, when the

plant is damaged or under attack by herbivores (Vickery, 2010). In

addition, various Poaceae families produce benzoxazinoid

glucosides, which are also activated by hydrolysis upon plant

damage (Vassão et al., 2018); the legume plant Medicago

truncatula has a two-component defense system of b-glucosidase
and triterpene saponins, which can be activated by damage or

herbivory (Lacchini et al., 2023). Thus, our models may be valuable
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to understand and compare the counter-defense mechanisms used

by insect herbivores of many plant species.
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