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Local fluctuations in cavity control of ferroelectricity
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Control of quantum matter through resonant electromagnetic cavities is a promising route towards establishing
control over material phases and functionalities. Quantum paraelectric insulators—materials that are nearly
ferroelectric—are particularly promising candidate systems for this purpose since they have strongly fluctuating
collective modes that directly couple to the electric field. In this work, we explore this possibility in a system
comprised of a quantum paraelectric sandwiched between two high-quality metal mirrors, realizing a Fabry-
Perot-type cavity. By developing a full multimode, continuum description we are able to study the effect of the
cavity in a spatially resolved way for a variety of system sizes and temperatures. Surprisingly, we find that once a
continuum of transverse modes is included the cavity ends up suppressing ferroelectric correlations. This effect
arises from the screening out of transverse photons at the cavity boundaries and, as a result, is confined to the
surface of the paraelectric sample. We also explore the temperature dependence of this effect and find it vanishes
at high temperatures, indicating it is a purely quantum mechanical effect. We connect our result to calculations of
Casimir and Van der Waals forces, which we argue are closely related to the dipolar fluctuations in the quantum
paraelectric. Our results are based on a general formalism and are expected to be widely applicable, paving
the way towards studies of the quantum electrodynamics of heterostructures featuring multiple materials and
phases.
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I. INTRODUCTION

Optically engineering properties of quantum materials may
potentially allow for the design and development of novel
technologies and the creation of phases of matter that are
otherwise difficult to obtain and study. Ideally, one would
like to think of this as adding a new “control knob” to the
toolbox of solid-state physics just like temperature, pressure,
external field, and twist angle, allowing for new explorations
of physical systems and device structures [1]. For instance,
intense electromagnetic radiation can induce nonequilibrium
phases of matter and generate new phase diagrams, with
sometimes no counterpart in equilibrium [2–13]. However, the
nonequilibrium route towards optical control has a number
of drawbacks, which impede its practical application, chief
among them are problems related to heating, optical access,
and complicated theoretical modeling. Therefore it would
be desirable to obtain a similar degree of optical control
without leaving thermal equilibrium. Recently, it has been
argued that this may be done by instead shaping the en-
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vironment of electromagnetic fluctuations through the use
of optical cavities, resonators, and metamaterials [14,15].
Many systems have recently been proposed to be amenable to
control in this way, including superconductors [6,16–18], ex-
citonic insulators [19], antiferromagnets [20,21], spin-liquids
[22], semiconductors [23], quantum Hall fluids [24], and
ferroelectrics [25–29], with a great deal more proposed to ex-
hibit strong coupling between material and optical excitations
[30,31]. Recent experiments on the metal-insulator transition
in 1T -TaS2 even seem to have seen promising signatures of
cavity control on the transition temperature [32]. Experiments
have also seen fascinating phenomena occur when unconven-
tional superconductors are strongly coupled to the quantum
electromagnetic bath [33,34].

Ferroelectrics are particularly promising candidates since
the relevant fluctuations—phonon polaritons—directly couple
strongly to the electromagnetic field via the electric dipole
transition even down to atomic scale [31,35–37]. Further-
more, there are a number of appealing candidate systems,
such as SrTiO3 [38–42] and various moiré and Van der
Waals materials [43–47] that may be suitable for proof-of-
principle experiments. Intrinsic SrTiO3 is believed a quantum
paraelectric (QPE) [38–42], lying right at the border of
the ferroelectric phase, with long-range order suppressed by
quantum fluctuations. Strain, chemical, and isotope substi-
tution have all been shown to tip the system over the edge
in to the ordered phase [39], and recently resonant optical
excitation of the lattice [40,48] have also been shown to
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seemingly induce a transition into the ordered phase [49,50],
making this a prime candidate for demonstrating cavity
control over the phase diagram [25,26,28]. Previous theoret-
ical investigations have largely been limited to single-mode,
dipole coupling, and translationally invariant approximations.
In this paper, we show that going beyond these simplifying
assumptions can lead to a qualitatively different behavior
making our approach necessary in order to describe realistic
experiments [51].

In this work, we extend our analysis of fluctuating quantum
paraelectric to a fully multimode [23], spatially resolved sys-
tem beyond the standard dipole approximation—the standard
optical approximation that treats the electromagnetic field as
homogeneous across the sample. In fact, this is a crucial tech-
nical development, giving a number of predictions that starkly
differ from previous simplified models. By making use of
connections to the study of Casimir-Polder and Van der Waals
forces, we are able to efficiently solve the full multimode
problem including a continuum of electromagnetic modes. In
doing so, we find that in fact the presence of the cavity sup-
presses ferroelectric fluctuations in the system—the opposite
of what is expected based on a single- or few-mode calcu-
lations. This surprising result then has important implications
for future experiments on cavity control of ferroelectricity and
potentially other phases of matter [32–34].

The key insight is using the fluctuation dissipation rela-
tion to reformulate the problem in terms of the dielectric
response and its variational dependence on material param-
eters, thereby encapsulating the effect of electromagnetic
fluctuations in terms of the well-known frequency-dependent
electric-field correlation function. The behavior of this corre-
lations function is very well studied, dating back to seminal
work on the Casimir force [52–55] and is by now well doc-
umented and experimentally verified. In fact, cavity control
over the QPE fluctuations in a material is closely related to
the problem of using the cavity to modify the Van-der Waals
forces between virtual dipolar excitations in the cavity [56].
Furthermore, we argue our technique can be easily extended to
include phonon loss, anisotropy, and mode couplings provided
the dielectric constant dispersion ε(ω) is known well enough,
and may even be extended to include more complicated het-
erostructure geometries such as interfaces between quantum
paraelectrics and metals, air, or more exotic two-dimensional
systems via characterization in terms of the reflection coef-
ficients at interfaces [55]. In a rough sense, the problem is
similar to calculating the Casimir force but instead of com-
puting the energy as a function of the boundary separation,
we keep the boundary conditions fixed and directly compute
the photon and phonon fluctuations inside the cavity.

After obtaining these general relations, we use our method
to compute the local behavior of the QPE fluctuations by
considering a Fabry-Perot-type system with perfect metallic
boundaries sandwiching a QPE, illustrated in Fig. 1 in a
cross-sectional view. We find as our key result that actually
towards the boundaries of the sample the phonon fluctuations
〈Q2(r, t )〉 increase, resulting in a blueshift of the soft-mode
transverse frequency �T due to the anharmonic coupling of
the phonon mode, characterized by the local displacement
field Q(r, t ). This leads to an overall thickness dependence
that may be pronounced for thinner cavities and results in a
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FIG. 1. Schematic depiction of cavity. Two perfect metal plates
are located in the xy plane at z = ±L/2, and the electromagnetic
field and phonon modes coexist within the interior. The system has
translational symmetry in the xy plane, which leads to a conserved in-
plane momentum q, which can be taken along q ‖ êx , and obeys ideal
metallic boundary conditions at z = ±L/2. Due to metallic boundary
conditions, the photonic part of the wavefunction is suppressed near
the boundary, leading to enhanced phonon fluctuations.

diminished low-frequency dielectric constant ε(0), signaling
a hardening of the soft polar mode.

We also find that this effect—the difference between the
surface and bulk fluctuations—vanishes at higher tempera-
tures, indicating the origin of this effect is of a truly quantum
origin, and should drop off once T � h̄�T /KB. For materials
such as SrTiO3, with �T ∼ 2 THz, this provides an important
ceiling on the temperature of experiments which is roughly of
order 100 K.

The remainder of our Paper is structured as follows. In
Sec. II, we use the fluctuation-dissipation theorem to con-
nect the phonon fluctuations to the dielectric response of
the material. We first do this in real-time formalism in
Sec. II A, followed by a reformulation on the Matsubara axis
for finite-temperature calculations in Sec. II B. In Sec. III,
we demonstrate how our results connect to the more familiar
method based on phonon-polaritons in the case of a bulk
translationally invariant system. In particular, in Sec. III A, we
show how at high-temperatures the photons decouple high-
lighting that the cavity control is a manifestation of quantum
effects. In Sec. IV, we apply this technique to derive the local
QPE fluctuations in a Fabry-Perot geometry that does not
preserve translational symmetry. We then conclude by dis-
cussing general aspects of our results beyond our cavity-QPE
model and highlighting potential directions for future study in
Sec. V.

II. FLUCTUATION-DISSIPATION THEOREM

In the following, we will focus on the case of a local
[57] isotropic, polar phonon mode. In particular, since the
phonon group velocity is much slower than the photon, the
approximation of a nondispersion phonon mode should be
suitable for studying electrodynamic effects. Going beyond
this approximation to include the phonon dispersion would
be an interesting direction for future studies and may be im-
portant very close to the ferroelectric critical point or in the
ordered phase, which we will not study in this work.
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We thus consider a model of a local polar phonon mode
Q(r) with transverse optical (TO) mode frequency �T and
effective charge η coupled to the electromagnetic field, de-
scribed by E and B. This system is most simply described in
terms of a Lagrangian that generates the equations of motion.
We have

L = LEM + Lph + Lint. (1)

The Maxwell Lagrangian is

LEM = 1
2 E2 − 1

2 B2. (2)

In terms of the gauge potentials, the electromagnetic fields are
expressed as

E = −∇A0 − ∂t A, (3a)

B = ∇ × A. (3b)

Here and throughout we use units where h̄ = c = kB =
ε0 = 1.

The phonon Lagrangian, in the absence of dispersion, is
purely local and is simply given by

Lph = 1

2

[
(∂t Q)2 − �2

0Q2
] − λ

4
(Q2)2, (4)

where �0 is the bare TO mode frequency, and λ is the phonon-
phonon interaction strength. Due to symmetry, these are the
only local terms allowed at up to quartic order and second
order in time derivatives.

Finally, we have the dipole coupling between the phonons
and the electric field. The phonon displacement field Q gener-
ates a polarization which then couples to E, via

Lint = +ηQ · [−∇A0 − ∂t A]. (5)

Here, η is the light-matter interaction constant and it sets,
among other things, the size of the splitting between the longi-
tudinal optical (LO) and transverse optical frequency splitting
due to the Coulomb part of the electromagnetic interaction
(the so-called LO-TO splitting). Before proceeding, in order
to perform calculations we must fix a gauge. In this work, we
will employ the “Weyl gauge,” which is obtained by demand-
ing A0 = 0.

We proceed by treating the phonon nonlinearity in the
Hartree approximation, such that the system is essentially
linear, albeit with a renormalized phonon frequency of

�2
T = �2

0 + λ〈Q2(r, t )〉. (6)

In general, we allow for spatially varying fluctuations of Q,
and therefore the phonon frequency may be renormalized in
an inhomogeneous way, which is the subject of this investiga-
tion.

Therefore our primary objective is to compute the spatially
resolved phonon fluctuations, 〈Q2(r, t )〉. We do this by the
familiar linear-response formalism, obtaining the equilibrium
fluctuations of Q by solving for the causal response to an
external perturbation. We thus introduce a source field F(x)
which couples to the phonon mode via

Lsource = F(r, t ) · Q(r, t ), (7)

such that

D̂R(x, x′) = −δ〈Q(x)〉
δF(x′)

∣∣∣∣
F=0

= −iθ (t − t ′)〈[Q(x), Q(x′)]〉
(8)

for causal response function. Here and throughout, when
confusion is not likely, we will use x = (r, t ) to represent
a space-time 4-coordinate, while r as a spatial 3-coordinate.
From this, we can apply the fluctuation-dissipation relation
[58] to obtain

〈Q(x) · Q(x)〉 = −
∫

dω

2π
coth

βω

2
�[trD̂R(r, r; ω)]. (9)

This then allows to characterize the local density of phonon
fluctuations.

A. Real-time equations of motion

The relevant equations of motion can be written down,
including the source term which acts on the phonon field. This
gives us the equations in the frequency domain[− ω2 + �2

T

]
Q(r, ω) = ηE(r, ω) + F(r, ω) (10a)

+iωB(r, ω) = ∇ × E(r, ω) (10b)

−iω[E(r, ω) + ηQ(r, ω)] = ∇ × B(r, ω). (10c)

We compute the response function of Q as follows. Let us first
introduce the bare response function for Q(r, ω) of

χ0(ω) = 1

−ω2 + �2
T

, (11)

such that we can obtain the response of Q as

Q(r, ω) = χ0(ω)[ηE(r, ω) + F(r, ω)]. (12)

Our job is not done because we need the response of the
phonon not to the total force, which is ηE + F, but only to
the external force F, which is partly screened by the electro-
magnetic field.

This screening is found by solving the equations of motion
for the electromagnetic field. We have

+iωB(r, ω) = ∇ × E(r, ω), (13a)

−iω(E(r, ω) + ηχ0(ω)[ηE(r, ω) + F(r, ω)])

= ∇ × B(r, ω). (13b)

The second equation contains the dependence on the forcing
field; we can eliminate the magnetic field to derive a closed
equation for the response of E, which we use to find the
depolarizing field, from which we find the effective force
acting on the phonon mode due to the external force.

We get

ω2ε(ω)E(r, ω) − ∇ × ∇ × E(r, ω) = −ω2ηχ0(ω)F(r, ω).

(14)

Here we have introduced the dielectric constant

ε(ω) = 1 + η2χ0(ω). (15)

We now can use this to eliminate the electric field formally as

E(r, ω) =
∫

d3r′ĜR(r, r′; ω)[−ηω2χ0(ω)F(r′, ω)], (16)
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where

ĜR(r, r′; ω) = [ω2ε(ω)1 − ∇ × ∇×]−1. (17)

We can evaluate this Greens’s function in a manner of our
choosing; in a bulk system, it makes sense to use momentum
space functions.

The full response of the phonons, dressed by the photons,

Q(r, ω) =
∫

d3r′D̂R(r, r′; ω)F(r′, ω), (18)

is given as a function of the photon Green’s function:

D̂R(r, r′; ω) = χ0(ω)[δ3(r − r′)1

− η2ω2χ0(ω)ĜR(r, r′; ω)]. (19)

In the absence of phonon dispersion, the first term is com-
pletely local, and exhibits a resonance at the bare TO mode
frequency, while the second term involves dispersion of the
phonon polaritons in the system, as it involves ε(ω), and
therefore is sensitive to the cavity geometry.

We note we can write this in an elegant way by using

−η2(χ0(ω))2 = δε(ω)

δ�2
T

(20)

to obtain

D̂R(r, r′; ω) = χ0(ω)δ3(r − r′)1 + ω2 δε(ω)

δ�2
T

ĜR(r, r′; ω).

(21)

B. Matsubara formalism

The result presented is derived using a real-time linear-
response formalism, which is the most transparent presenta-
tion. In Appendix A, we equivalently derive this result using
the equilibrium Matsubara frequency representation, as well
as yet a third way of deriving this result based on a varia-
tional procedure for the Matsubara free-energy functional in
Appendix B.

The Matsubara frequency representation is particularly
useful since it allows for a more efficient implementation of
the result in terms of a well-behaved, convergent sum over
Matsubara frequencies. For more details, we refer the reader
to the relevant Appendices. However, we present the end
formula here as it is relevant for the results to follow.

The dielectric function is analytically continued to bosonic
Matsubara frequencies ω → iωm = 2π imT as

ε(iωm; r) = 1 + η2

ω2
m + �2

T (r)
, (22)

allowing for a locally varying TO mode frequency. Likewise,
the unscreened phonon propagator becomes

D̂0(r, r′; ωm) = 1

ω2
m + �2

T (r)
δ3(r − r′), (23)

and the photon propagator becomes

Ĝ (r, r′; ωm) = [
ω2

mε(iωm, r) + ∇ × ∇ × ]−1
. (24)

The local phonon fluctuations as a function of temperature
are calculated by combining equations (9), (21), which is

conveniently expressed in terms of a Matsubara sum as

〈Q2(r, t )〉 = T
∑
ωm

tr
[
D̂0(r, r; ωm)

+ ω2
m

∂ε(iωm, r)

∂�2
T

Ĝ (r, r; ωm)

]
. (25)

Note that

∂ε(iωm, r)

∂�2
T

= − η2(
ω2

m + �2
T (r)

)2 (26)

is negative semidefinite, while the other terms in the equa-
tion are positive semidefinite. This leads to a natural
conclusion that the electric field actually has the effect of re-
ducing phonon fluctuations, since it subtracts spectral weight
away from the otherwise unscreened phonons. We also see
that the result can be implemented by a sum over terms which
are nonsingular, greatly aiding the numerical evaluation of this
expression. This is somewhat similar to the recent approach
of Ref. [28], though extended to the multimode formalism.
Nevertheless, the concept of a 1/N expansion would be useful
to apply in this context as well.

We can then ultimately express quantities in terms of the
effective frequency renormalization as compared to the bulk
value

δ�2
T (r) = λ[〈Q2(r)〉 − 〈Q2〉bulk]. (27)

For each configuration, this is done by extracting the bulk
value as the value computed as system size tends to infinity.
We can then visualize the predicted spatial deviations of the
frequency away from the bulk value. We now roughly estimate
the size of the coupling λ, the momentum space cutoff 
, and
other relevant parameters.

C. Parameters

Following Ref. [48], we first extract the value of the
anharmonic potential U (2) as a function of the ionic displace-
ment coordinate u, for the case of SrTiO3, estimated from
spectroscopy to give νT ∼ 35 THz2/pm2. This is obtained
from nonlinear terahertz spectroscopy by measuring �2

T (u) ∼
�2

T + νT u2 + O(u4). However, this is not directly related to
the long-wavelength order parameter [59], which in general
involves a complicated coarse-graining of the microscopic
degrees of freedom. By dimensional analysis, we see that
the long-wavelength coupling constant can be related to a
microscopic parameter through λ ∼ νT Veff/Meff where Meff

is an effective mass scale and Veff is an effective volume
scale. For the purposes of our crude model, we use a single
effective mass to characterize the mode, which we take to be
the titanium ionic mass Meff ∼ MTi ∼ 50.

Finally, in the spirit of a real-space renormalization group
procedure, we anticipate that the effective volume Veff which
appears in the relation between the order-parameter and the
microscopic degrees of freedom should be related to the
momentum space cutoff we place on our model, 
 ∼ 1/a
with a the size of the coarse-grained “blocks.” As a re-
sult, we estimate that Veff ∼ 1/
3 ∼ a3. We thus identify the
long-wavelength coupling as λ = a3νT /MTi. This leads to the
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cutoff-dependent estimate of

λ = 32 × 104 THz3a3, (28)

which we use in this work.
Finally, by ignoring the gradient terms ∼∇Q, our model

treats the phonon fluctuations as purely local. In reality, we
expect this approximation to breakdown below a length scale
a, roughly related to the correlation length of the ferroelec-
tric order parameter Q(r). On the one hand, near the critical
point this length scale may become large as correlations de-
velop across longer length scales. One the other hand, treating
physics at a length scale l < a requires a more complicated
theory than the one we develop here. In this work, we are
interested in macroscopic physics, with samples of order L ∼
50 µm or larger; as a result, we will consider a cutoff of
a = 5 µm.

In the future it would be particularly interesting to consider
going even closer to the critical point, so that a ∼ L, in which
case electrodynamic control may be even more important.
This is because the photon dispersion is much faster than the
phonon, and thus the region in reciprocal space amenable to
cavity control is roughly q3

QED ∼ (1 THz/c)3 ∼ (0.3 mm)−3,
which is to be compared against the volume of the Brillouin
zone which exhibits fluctuations, which goes roughly as 1/a3.
As such, we expect the physics we consider to be most impor-
tant materials which are close to the ferroelectric instability,
such that a−1 ∼ qQED. However, in this regime a more elab-
orate model which considers the role of phonon dispersion
and spatial gradients is required. Evidently, a more elaborate
scaling theory of the transition is needed in the future. We
elaborate on this slightly later, in Sec. V.

Finally, we must fix the phonon TO and LO mode frequen-
cies. For the bulk TO frequency �T and LO-TO splitting ∼η,
we take �T = 0.5 THz to emulate the ferroelectric soft mode,
and η = 10 THz, such that ε(0) ∼ η2/�2

T ∼ 400 is large, as is
the case for many incipient ferroelectrics. We also ignore the
temperature dependence of these parameters for simplicity,
though this could be accounted for more careful if we were
modeling a specific material.

Finally, for numerical purposes we take a Matsubara fre-
quency cutoff of ωc = 40 THz, well above all other frequency
scales; this is not expected to be an important parameter,
provided it is large enough. In order to make the cal-
culations simpler and more transparent we also relax the
self-consistency demand on the TO frequency, and instead
simply evaluate the perturbative correction to the bulk value.
In principle, this should be addressed though if the shift is
small it is likely to be qualitatively correct.

III. HOMOGENEOUS SYSTEM

Before proceeding on to our main calculation, we briefly
outline how the calculation works in the case of a system with
full translational symmetry. In this case, momentum is a good
quantum number in all directions. We can then go to the plane-
wave basis.

Using

∇ × ∇ → −q × q× = q21 − q ⊗ q, (29)

we find the electromagnetic correlation function splits into
two decoupled subspaces: the transverse modes and longitu-
dinal modes, with

ω2
mĜ (ωm, q)

= q ⊗ q
q2

1

ε(iωm)
+

(
1 − q ⊗ q

q2

)
ω2

m

ω2
mε(iωm) + q2

. (30)

We easily recognize the first term as the dynamical Coulomb
portion of the electric field, while the second term comes
from the transverse photon modes. The unscreened phonon
propagator is trivial in this case, with

D̂0(ωm, q) = 1

ω2
m + �2

T

. (31)

We find for the overall result, with UV cutoff on momen-
tum 
,

〈Q2〉 = T
∑
ωm

∫
|q|<


[
3

ω2
m + �2

T

+ ∂ε(iωm)

∂�2
T

(
1

ε(iωm)
+ 2ω2

m

ω2
mε(iωm) + q2

)]
. (32)

This simplifies into one longitudinal mode and d − 1 transverse modes (with d the spatial dimensionality), with the longitudinal
modes contributing (per momentum space mode)

T
∑
ωm

[
1

ω2
m + �2

T

+ ∂ε(iωm)

∂�2
T

1

ε(iωm)

]
= coth(β�L/2)

2�L
. (33)

The momentum space integral will then simply yield a factor of 
3/6π2, with the cubic divergence due to the dispersionless
nature of the model.

The transverse modes are more difficult to evaluate. Evaluating the Matsubara sums and performing the analytical continua-
tion to real frequencies reveals that the overall result including the longitudinal and two transverse modes is

〈Q2〉 =
∫

|q|<


[
coth(β�L/2)

2�L
+ 2 × coth(β�+,q/2)

2�+,q

�2
+,q − q2

�2+,q − �2−,q

+ 2 × coth(β�−,q/2)

2�−,q

�2
−,q − q2

�2−,q − �2+,q

]
. (34)
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The dispersion of the upper polariton branch (�+,q) and lower
polariton branch (�−,q) are found to be

�±,q =

√√√√�2
L + q2

2
±

√(
�2

L + q2

2

)2

− �2
T q2. (35)

This is in accordance with the result one would expect from
Bogoliubov transformation and diagonalizing the quasiparti-
cle Hamiltonian.

A. High-temperature limit

We also can look at the temperature dependence of this
effect, and in particular at high-temperatures we obtain, after
simplifying terms

〈Q2〉 = T
∫

|q|<


[
1

�2
L

+ 2

�2
T

]
. (36)

This is exact and independent of momentum q.
In this case, we see the electromagnetic field only serves to

split the longitudinal modes away from the transverse modes,
which then essentially decouple form the electromagnetic
field fluctuations. All the nontrivial electrodynamic effects
end up vanishing as 1/T , which can be interpreted as them
being a true manifestation of quantum effects. This is evident
from examining the relevant Matsubara sums, which end up
going as ω2

m/q2 at low frequencies, and therefore vanish in the
static ωm = 0 limit. The finite Matsubara frequencies are in
turn arising from dynamical quantum fluctuations of the field,
which are ultimately the source of the polaritonic splittings.

We emphasize that this does not mean that the fluctuations
of 〈Q2〉 diminish with increasing temperature, but rather that
the contribution from the electromagnetic field falls off. As a
result, if one performs a high-temperature expansion of 〈Q2〉
in the bulk one would get 〈Q2〉bulk ∼ abulkT + bbulk/T + . . . ,
with the leading term the classical equipartition result and
the subleading terms coming from the high-temperature ex-
pansion of coth(ωβ/2) (which is odd, so the series has only
odd powers of temperature). Performing the same expansion
for the fluctuations near the surface (which as we will show,
differs in that it doesn’t couple to the transverse photons due to
boundary conditions), we get 〈Q2〉surf ∼ asurf T + bsurf/T +
. . . and find that abulk = asurf , so that the effects of the bound-
ary conditions are subleading in T and due to truly quantum
effects. This is illustrated in Fig. 2 schematically, which shows
that at high temperatures, the classical result dominates and
only at low temperatures is the interaction with photons rele-
vant.

This is reminiscent of the Bohr-Van Leeuwen theorem
in classical mechanics, and can be heuristically understood
as a consequence of the current and displacement being
canonically conjugate for the phonon. This is explored more
technically in detail Appendix C; here we provide a simple
heuristic. Essentially, photons do not actually couple directly
to the phonon displacement Q, but rather couple to the
displacement current J ∼ ∂t Q associated to transverse oscil-
lations in the charge distribution. This current is canonically
conjugate to the object of interest, Q, via [Q(r), J(r′)] ∝
ih̄δ3(r − r′) and therefore in the quantum system (at low
temperatures), they are not independently fluctuating. Thus

FIG. 2. Schematic depiction of temperature dependence of
phonon fluctuations 〈Q2〉 as a function of temperature in the bulk
and near the surface of the sample-cavity boundary. At high tem-
peratures the fluctuations are independent of electrodynamic details
and therefore are ignorant of the proximity to the surface. At lower
temperatures, the electrodynamic contribution becomes important
and leads to a more pronounced fluctuations near the surface as
compared to the bulk.

modifying the fluctuations of the current J can in turn induce
changes in the fluctuations of Q. However, this coupling is
purely due to the canonical commutation relations between
the two fields, and therefore at high-temperatures (i.e., in
the classical limit), the two variables become independently
fluctuating, just as q and p are independent in a classical
system. Therefore the photon decouples from the fluctuations
of Q since this is now independent from the current. We
also see that this is not the case for the longitudinal part,
which instead directly couples the electrostatic potential to
the induced phonon charge ρ ∼ ∇ · Q, and indeed the LO-
TO splitting due to this interaction remains unaffected in the
high-temperature classical limit.

To summarize, we see directly from this calculation that
the coupling to the electric field reduces the fluctuations of
the phonons, both by dressing the eigenfrequencies, and also
by reducing the projection of the quasiparticle wave func-
tion onto the phononic subsystem. Therefore we uncover a
counter-intuitive heuristic that coupling to the quantum elec-
tromagnetic field actually facilitates ferroelectric order, by
virtue of reducing the fluctuation-induced shift of phonon
frequency. In the following section, we will apply this for-
malism to the case of an inhomogeneous slab structure and
demonstrate how this is potentially visible in terms of a local
shift in the phonon mode frequency.

IV. PLANAR GEOMETRY

We now evaluate the correlation functions needed to com-
pute the frequency shift. In particular, we focus on the
electromagnetic Green’s function since the phonon correlation
function is local and trivial to solve. More over, this term
will essentially be a bulk background contribution, and in this
work we are focused on the contribution from the degrees
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of freedom we can change by the boundary conditions (the
photons).

In the planar geometry, we can utilize in-plane translation
symmetry to reduce the problem to a one-dimensional differ-
ential equation in terms of the spatial coordinate z. It turns out
this can still be solved analytically utilizing the transfer matrix

method, at least in the case of a homogeneous dielectric con-
stant, as was originally done a long time ago for the purposes
of calculating Casimir-Polder forces (which turns out to be a
closely related problem) [53–55]. We can take the momentum
to lie in the x direction, such that the Green’s function for the
gauge potential G reads

⎡
⎣ω2

mε(iωm)1 +
⎛
⎝−∂2

z 0 iq∂z

0 q2 − ∂2
z 0

iq∂z 0 q2

⎞
⎠
⎤
⎦G (z, z′) = 1δ(z − z′). (37)

This system is depicted schematically in Fig. 1, illustrating the metal-paraelectric-metal geometry. In this work, we take the
physically reasonable limit of infinite plasma frequency in the metal, such that the metal mirrors can be modeled by Dirichlet
boundary conditions on the tangential components of E and normal component of B. We take the cavity plates to be located at
z = ±L/2 such that L is the total size of the cavity, and also the full extent of the paraelectric is all the way up to the boundaries.

This is solved in detail in Appendix D, we will only present the final result here. We find that the trace of the Green’s function
evaluated at coincident spatial points trG (z, z) is given in closed form as

trG (z, z) = sinh κ (L/2 − z) sinh κ (L/2 + z)

2κ sinh κL
+ 1

ω2
mε(iωm)

δ(0). (38)

Here κ = √
ω2

mε(iωm) + q2 governs the length scale for the recovery to the bulk value for a given frequency and in-plane
momentum. We see that this involves the divergent quantity δ(0), which is understood as limz′→z δ(z − z′). This quantity is in
fact independent of system-size and geometry and thus ends up getting renormalized away by the counter term �2

0. In particular,
we only compare this result to result obtained for L → ∞ (with z finite), which ultimately gives the closed-form formula for the
renormalization of the phonon-frequency shift due to the cavity, as a function of position, as

(��T (z))2
cav = λT

∑
ωm

∫ 
 d2q‖
(2π )2

∂ε(iωm)

∂�2
T

ω2
m

2κ

[
sinh κ (L/2 − z) sinh κ (L/2 + z)

sinh κL
− 1

2

]
. (39)

We note this expression does still depend on the cutoff 
 =
π/a. While this is much easier to evaluate than the full
Green’s function, it is still not completely trivial due to the
subtle behavior of the integrand at ωm → 0, which governs
to the high-temperature limit of the effect. For all nonzero
Matsubara frequencies, this is easily evaluated by numerically
summing, for ωm = 0, there is an issue about how the limit
of zero frequency is taken; on the one hand, the numerator
involves a power of ω2

m which then vanishes quadratically at
small frequency. On the other hand, the denominator involves
κ sinh κL, which for q‖ → 0 also vanishes quadratically as
|ωm| sinh |ωm|√ε(0)L.

Careful examination of the limit reveals that the numer-
ator ends up winning and thus, we are to discard altogether
the zeroth frequency contribution. This is again a manifes-
tation of the quantum mechanical origin of the effect, as
explained in Sec. III A and shown in greater detail in Ap-
pendix C. We are now able to efficiently evaluate this effect
in order to obtain not just the phonon frequency shift but
its entire spatial dependence. We also comment that this ex-
pression is clearly manifestly positive, owing to the inequality
sinh κ (L/2 − z) sinh κ (L/2 + z)/ sinh κL � 1

2 . As a result, we
find the frequency shift is always positive, with ��2

T (z) � 0,
such that the cavity in fact suppresses the ferroelectric order.
We will comment on this more later.

In particular, it is interesting to analyze the dependence of
the renormalized frequnecy on system size L and temperature
T (we consider the value in the midpoint of the cavity). This
is shown in Fig. 3. We indeed see that for “bulk systems”

with large system size L, there is no effect due to the bound-
ary conditions (which is expected on grounds of locality).
For smaller systems however, the typical phonon frequency
strongly blueshifts as the surface effects set in. For very small
systems, the entire system is essentially “surface” and thus

FIG. 3. First order correction to phonon frequency due to cavity
boundary conditions at z = ±L/2. We here fix the temperature to
T = 10 K, which is lower than the coherence temperature for the
phonon frequency of �T = 0.5 THz (we note the coherence fre-
quency involves a factor 2π so that 2πT � �T ). We explicitly note
that this is the correction to the phonon frequency due to the cavity
and in particular, this blueshifts at lower temperature, unlike the typ-
ical phonon anharmonicity which blueshifts at higher temperatures.
The blueshift due to the anharmonicity is renormalized away in this
treatment; here we only plot the additional shift observed between
the bulk and finite systems at the same temperature.

043118-7



CURTIS, MICHAEL, AND DEMLER PHYSICAL REVIEW RESEARCH 5, 043118 (2023)

FIG. 4. First-order correction to phonon frequency due to the
cavity as a function of temperature T . Here we consider two cases:
a small system with L = 50 µm (a) and a larger system with L =
70 µm (b). In the inset we depict schematic profiles of the renor-
malized frequency, illustrating how the effect is larger for smaller
systems since the surface effects are still dominant, whereas in a
larger system the frequency converges to the bulk value.

we see the first characteristic prediction which is a significant
blueshifting of the soft-mode frequency for thin samples.

We next confirm the temperature dependence of this effect;
namely, that at high-temperatures any signature of the cavity
should disappear. This is seen explicitly in Fig. 4. Indeed we
see that in all system sizes, the frequency shift vanishes at
high temperature irrespective of the system size L. At lower
temperatures, the phonon frequency shift sets in, but for larger
systems the effect is small since it ultimately must recover to
the bulk as L → ∞. For smaller systems however, the shift
may become sizable at the cavity midpoint.

These results are best understood by simply looking at the
spatial profile for the renormalized frequency �2

T (z), depicted
in Fig. 5. For a cavity size of 100 µm. we see that the phonon
frequency significantly blueshifts near the boundary at low
temperatures, while it remains essentially equal to the bulk
value at high temperatures and in the center of the cavity
z ∼ 0). This is inline with the previous arguments we have
given, namely, that the cavity renormalization is (i) a purely
quantum effect setting in once 2πT ∼ �T , and (ii) that it
is a surface effect in response to the boundary conditions at
z = ±L/2. We also always see that the frequency blueshifts—
this is in some tension with a number of previous theoretical
investigations [25,26,28,29], which all seem to find that cavi-
ties tend to enhance ferroelectric order. We now reconcile our
calculation with these previous studies.

We believe the origin of this tension is in the way that the
UV cutoff on the electromagnetic fluctuations is imposed, and
ultimately scaled to the continuum limit (or not). In particular,
in a real physical system (with an appropriate UV cutoff) the
number of electromagnetic modes is proportional to system
size, with a finite number of modes (e.g., lattice points) per

FIG. 5. Perturbatively renormalized phonon frequency �T (z)
including the electrodynamic correction due to cavity boundary con-
ditions as a function of spatial coordinate z. System size is fized at
L = 100 µm, with coordinate z referenced from the midpoint, as
shown in the inset. Temperature varies from high temperature of
T = 100 K (with little effect) down to low tmeperature of T = 10 K,
with a pronounced blueshift in the local phonon frequency occurring
at the boundary.

unit volume, albeit of potentially high frequency and thus far
from resonance. We again emphasize that it is qualitatively
important to take into account the multimode nature of the
electromagnetic fluctuations [23,60].

In our new formalism, which up to, and including Eq. (39)
is an analytically exact solution to the problem, the UV cutoff
is essentially scaled in this fashion, so that the density of
modes per unit volume is constant. This is also in congruence
with known and experimentally verified results on Casimir
forces [52–55]. In contrast, previous studies have essentially
imposed a cutoff on a number of cavity eigenfunctions taken,
selecting the lowest Nc modes to include in an eigenmode ex-
pansion for the Green’s function G regardless of system size.
This assumption leads to the unphysical result that number of
electromagnetic modes per unit volume ∼Nc/L3 is scaling to
zero for a bulk system! It turns out that unfortunately this has
exactly the opposite behavior as what we find using the more
complicated analytical solution [61].

While our approach draws upon parallels with Casimir
forces, it is, however, investigating a distinct phenomenon
and thus it still warrants experimental confirmation. We now
briefly discuss the prospects for this in the next section.

V. DISCUSSION

As we saw in the previous sections, the effect of the cavity
ends up being largely confined to surface of the material, with
the net result being a blueshift of the soft phonon mode near
the boundaries. This would result in an apparent diminishing
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of the dielectric constant ε(ω = 0) ∼ η2/�2
T for a small sam-

ple in comparison to the bulk value. In fact, this effect has
already been observed and known for quite some time as the
“dead-layer” effect [62]. Canonically, this effect was found in
exactly this sort of system, comprised of a thin layer of SrTiO3

sandwiched between two electrodes to form a capacitor [63].
Historically, the dead-layer effect has been attributed largely
to strain effects [64] between the two interfaces which also
acts to blueshift the soft mode, however it seems the matter
has not been entirely settled [65]. It is quite interesting then
in the light of this new work and interpretation to re-open
the investigation and determine if any effects due to quantum
electrodynamics may be relevant. To this end, experiments
may want to try experiments with different metallic interfaces
that induce varying levels of strain, to see how sensitive the
dead-layer is to the level of strain, as opposed to the dielectric
environment. Indeed, experiments investigating the interplay
between electromagnetic response and the surrounding dielec-
tric environment [66] have already shown promising results
[67–69]. Theoretically, this would also warrant further cal-
culations which have open (air) boundary conditions for the
SrTiO3 layer, rather than the metallic interface conditions.

Our results also point to another interesting connec-
tion which ties our results to studies of the Casimir force
[52,54,55]. This is most apparent if one returns to Eq. (39),
which closely mirrors the results for Casimir forces (see, e.g.,
Ref. [55]). This makes sense since our setup is very similar to
the one considered originally by Casimir except in this case
the fluctuation force does work on the dielectric constant of
the QPE (which is determined self-consistently) rather than
the plates of the cavity [41]. It may be interesting to turn this
around and try to utilize Casimir force spectroscopy to probe
incipient or critical ferroelectric fluctuations via the effect of
fluctuations on radiative forces.

A closely related phenomenon is that of the Van der
Waals force, which is also an entropic force due to virtual
electromagnetic fluctuations. Van der Waals forces typically
act between polarizeable molecules and is notably attrac-
tive, leading to the total energy being lowered as a result of
the coupling to electromagnetic fields [52–54]. Similarly, the
infrared-active phonon field can be thought of as a lattice of
polarizeable molecules undergoing virtual polar fluctuations.
The primary difference between the two cases is that in the
case of the phonon polaritons the molecules are arranged in a
regular lattice, whereas in a fluid the molecules are spatially
disordered. When placed in a cavity, the metallic boundary
serves to screen the electromagnetic field, leading to a net
increase in the free-energy as compared to the bulk system,
since the Van der Waals forces which get screened out are
attractive.

In fact, the extended many-mode nature of this problem is
paramount. This is seen by contrasting our results with the
simpler case of a single fluctuating dipole localized near a
metallic surface. In the localized case, the interaction between
the single dipole and its image charge (which is a manifesta-
tion of the cavity screening) is attractive and reduces the cost
of a fluctuating dipolar moment. However, when we consider
an extended distribution of dipoles (as realized by the bulk
paraelectric), the result is very different. In particular, one
can check that in the long-wavelength, longitudinally polar-

ized q → 0 modes remain unaffected by the screening. To
see this, consider an infinite line of longitudinally-polarized
dipoles interacting with its image, which is also an infinite
line with opposite in-plane component of the dipole moment.
In contrast to the localized case, now the overall interaction
is zero since the attractive tip-to-tail interaction for small
transverse separations is canceled by the interaction between
distant dipoles, which are essentially tip-to-tip oriented. This
naturally manifests in our calculations as the LO-TO splitting
of the long-wavelength modes remaining unchanged by the
boundary conditions. Transverse modes on the other hand, do
interact with the screening effect and this ends up most easily
diagnosed by recasting the problem as determining ε(ω, r)
rather than directly determining the dipole-dipole interactions,
which become very complicated once quantum dynamics are
included. Our result is also consistent with various recent no-
go theorems pertaining to superradiance in cavities [70,71].

One may alternatively view this renormalization of the
phonon stiffness as a realization of the concept of dynamical
localization [25,26,51]. This renormalization comes because
when the phonon mode oscillates it also linearly couples to
the electromagnetic vacuum, and thus the energy and inertia of
that mode receive contributions also from the cloud of photons
which are attached to the phonon. By using the cavity to sup-
press the electromagnetic field, we are essentially decoupling
the phonon from its photonic cloud, and this is reflected in the
evaluation of the correlation functions for the given geometry.
What is somewhat unanticipated is that this cloud of photons
actually makes the phonon mode “lighter,” delocalizing the
phonon coordinate.

We also can understand the purely quantum origin of the
effect in this way. Cavity photons directly couple to the trans-
verse component of the current, J ∼ ∂t Q and by using the
cavity one can change the radiative renormalization of the
current fluctuations. This can only influence the actual phonon
displacement 〈Q2〉 via the canonical commutation relations,
which couple the charge and current together. Therefore ob-
servation of this experimentally would truly demonstrate the
principle of “quantum control of quantum materials.”

As discussed earlier, in Sec. II C, we expect our theory to be
valid not too close to the critical point, due to the local nature
of the approximation we use for the phonon fluctuations. We
now elaborate slightly on how this may breakdown, and what
a more complete theory may look like. In particular, the key
approximation we made is that the phonon correlation func-
tion is purely local, so that 〈Q(x)Q(x′)〉 ∼ δ(r − r′). This then
allowed us to integrate the phonons out in favor of a theory
purely in terms of the local dielectric response, ε(iωm). This
approximation is motivated by the observation that since the
photon group velocity is much larger than the phonon velocity,
all phonon dispersion in the vicinity of the light-cone can be
ignored. Naively, this is a very good approximation, but we do
have reason to expect this to breakdown close to the critical
point, since at the critical point lattice fluctuations become
correlated over much larger length scales than the naive lattice
estimate indicates, as one expects from the general theory of
critical phenomena.

In order to properly accommodate these correlations, one
must introduce phonon dispersion in to the model, with the
simplest modification to our current theory given by the
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imaginary-time Lagrangian (using the same conventions, we
use in the rest of the paper)

Leff = 1

2

(
∂Q
∂τ

)2

+ 1

2
�2

0Q2 + λ

4
(Q2)2 + iηQ · ∂A

∂τ

+ 1

2

(
∂A
∂τ

)2

+ 1

2
(∇ × A)2

+ 1

2
v2

‖ (∇ · Q)2 + 1

2
v2

⊥(∇ × Q)2︸ ︷︷ ︸
spatial correlations

. (40)

We have emphasize the new terms to be added to accom-
modate the spatial correlations of the phonon field, which
by symmetry in an isotropic medium are characterized by
two sound velocities; a transverse mode velocity v⊥ and a
longitudinal mode velocity v‖. Unfortunately, including these
terms makes the solution technique we employ in this paper
more difficult to apply, since it relied on the local nature
of the phonon fluctuations. In principle, since this modifica-
tion is only needed near the critical point anyways, it then
also makes the mean-field treatment we use for the phonon
frequency shift somewhat inapplicable as well. Instead, in
order to proceed we propose employing a renormalization-
group (RG) type procedure to handle this theory. This would
then be able to quantitatively assess the degree to which the
phonon correlations become important and potentially search
for modifications to the critical phenomena due to the long-
wavelength modifications due to the cavity geometry, though
this is certainly beyond the scope of this paper. Physically
though, it may be interesting to look for modifications to
the lattice structure factor and diffuse x-ray scattering due to
the presence of the cavity near the critical point, since this
may reflect changes to the range of spatial correlations in the
incipient lattice distortion.

We also comment on the relation between what we propose
here and recent experiments which seem to indicate optically
induced ferroelectricity in SrTiO3 using strong terahertz driv-
ing [49,50]. It seems likely that in both the present paper and
in the terahertz driven experiments [49,50], it is important
that there be strong precursor fluctuations of a polar soft-
mode present in equilibrium. However, since a conclusive
theoretical explanation for the induced ferroelectricity in these
systems is still pending, it is difficult to draw a concrete
connection. In particular, owing to the larger magnitudes of
electric field accessible in an optically driven material, non-
linear phononic effects may become important [40] which can
complicate the picture by effectively inducing higher order
couplings between the electric field and the soft-mode fluc-
tuations. On the other hand, since the cavity fluctuations are
much weaker in amplitude, it is expected that these will more
selectively couple to the soft-mode directly, and do so through
a predominantly linear polaritonic interaction. Therefore it is
hard to say with certainty how the mechanism of driven tera-
hertz control is related to the mechanism of cavity control we
outline here, other than the fact that both require preexisting
fluctuations.

To summarize, we have developed an approach to study-
ing local phonon fluctuations in a QPE interacting with a
quantized cavity electromagnetic field. Rather than making

a single-mode approximation or invoking the dipole approx-
imation, we have included a complete continuum of modes
which all couple locally to the QPE material. This allowed us
to study the variation in the blueshift of the phonon modes in
a spatially resolved way, and we found that near to the cavity
walls the fluctuations increase due to the screening of the
electric field by the cavity. This approach was then connected
to the study of Casimir and Van-der Waals forces, both of
which are manifestations of forces induced by electromag-
netic fluctuations.

In the future it would be extremely interesting to extend
this approach to include more complex heterostructures which
feature multiple types material [72,73] including metals [74],
insulators [75], superconductors [76,77], semiconductors
[23], ferroelectrics [43–47], magnets [78–84], and multifer-
roics [85]—all of which are phases of matter which can be
characterized by their couplings to electromagnetic fields and
which are now realizeable down to the two-dimensional limit
[86]. In the future it would be very interesting to consider
the mutual coupling of different stacked phases through their
shared quantum electrodynamic environment. It is also in-
teresting to extend these calculations into the ordered phase,
where the order parameter as well as the fluctuations become
important. Finally, probably the most important direction for
future research are experimental realizations and confirma-
tions of this theory. To that end, it is likely necessary to
use more accurately obtained parameters and electromagnetic
solvers. We therefore would envision interfacing this frame-
work with ab initio calculations of microscopic parameters
[87–89], as well as finite-element Maxwell-equation solvers.
Conceptually, this is relatively straightforward but likely re-
quires a large degree of technical work before it can be widely
applied.

ACKNOWLEDGMENTS

We would like to acknowledge invaluable discussions with
Y. Ashida, A. Disa, U. Staub, P. Narang, A. İmamoğlu, D.
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APPENDIX A: MATSUBARA FORMALISM

In the Matsubara approach, we introduce the partition func-
tion via functional integral

Z =
∫

D[Q, A, χ ]e−S[Q,A,χ]. (A1)

The Matsubara action is written in the Weyl gauge with φ = 0.
In principle this gauge is not unique and requires a further
gauge fixing since the vector potential may still be shifted by
a static gradient of the form A → A + ∇χ where χ is time
independent. However, we believe this remaining ambiguity
does not cause problems in the treatment of the path integral.
Nevertheless, in the future, a more rigorous and sophisticated
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method such as the Fadeev-Popov method should be em-
ployed.

There is a subtlety about writing the electromagnetic field
in the Matsubara formalism, which is that since the electric
field E is in fact a canonical momentum (it is the time deriva-
tive of the coordinate A), it carries an additional factor of i
when coupling to the polarization. Thus the action is written
as the integral of the Lagrangian

L = 1

2

[(
∂A
∂τ

)2

+ (∇ × A)2 +
(

∂Q
∂τ

)2

+ �2
0Q2

]

+ iηQ · ∂A
∂τ

+ i
1

2
χ (x)Q2 + 1

4λ
χ2 (A2)

over space and imaginary time τ ∈ [0, β]. Here we see the
hybridization between the phonon and photon through the
electric dipole coupling Q · i∂τ A → Q · E upon returning to
real time. Since the electromagnetic field experiences dis-
persion (due to the magnetic induction), it must also be
subjected to boundary conditions which in this case are the
same perfect-metal conditions we used previously.

The last term is a Hubbard-Stratonovich term used to de-
couple the quartic phonon-phonon interaction in the Hartree
channel. Here the factor of i reflects the interaction is repul-
sive. Integration over χ can be performed, and this returns
the theory to its standard form in terms of A and Q with a
nonlinearity ∼λ(Q2)2. Qualitatively, χ represents the renor-
malization of the phonon frequency from bare value �0 to
the physical value �T , which is renormalized by the phonon-
phonon interactions.

We now show that up to one-loop order this also yields
the same result as the FDT calculation above. In particular,
we expect the saddle point in χ to correspond to the self-
consistent Hartree approximation. We can obtain this formally
exactly by integrating out the phonon and photon, which now
appear quadratically, to get

β

2λ
χ (x) + δW [χ ]

δχ (x)
= 0 (A3)

with functional determinant

W [χ ] = 1
2 Tr lnK[A], (A4)

where the kernel can be identified as the Gaussian part of the
Matsubara action.

This expression is simplified if we make an ansatz that the
self-energy χ is time-independent in the saddle point. Then,
we can perform a shift to “complete the square” for Q, writing
in the frequency domain

Q(x) = δQ(x) − ηωm

ω2
m + �2

0 + iχ (r)
A(x). (A5)

The first term characterizes the “unscreened” fluctuations, as
we argued in the first section, while the second term describes
the screening due to the electromagnetic field. By writing χ (r)
we have allowed for the possibility of an inhomogeneous shift
in the phonon self-energy, as we expect near the boundary of
the system.

With this transformation the kernel decouples into the part
due to δQ(x) and the part due to the dielectric energy. We also
see that the variation with respect to χ can be framed as a

variation with respect to the dressed phonon frequency, since
they are related by

�2
T (r) = �2

0 + iχ (r) ⇒ δ

δχ (r)
= i

δ

δ(�2
T (r))

. (A6)

We find, after performing the transformation that the func-
tional has two contributions;

W0[χ ] = 1

2

∑
ωm

Tr ln
[
1δ3(r′ − r)

(
ω2

m + �2
T (r)

)]
(A7)

from the unscreened response (in the absence of phonon dis-
persion this is purely local and diverges with UV cutoff as

d ), and

Wscr[χ ] = 1

2

∑
ωm

Tr ln
[
δ3(r′ − r)

(
ε(iωm, r)ω2

m1

− ∇2 + ∇∇ · )]−1
(A8)

from the dielectric screening. Now, all of the dependence on
χ is captured through

ε(iωm, r) = 1 + η2

ω2
m + �2

T (r)
. (A9)

We therefore can easily evaluate the derivative in terms of the
Matsubara Green’s functions (note the minus sign is different
than the usual definition here)

D0(r, r′; ωm) = [
1δ3(r′ − r)

(
ω2

m + �2
T (r)

)]−1
, (A10a)

G (r, r′; ωm) = [
δ3(r′ − r)

(
ε(iωm, r)ω2

m1 − ∇2 + ∇∇·)]−1

(A10b)

as

δW [χ ]

δχ (r)
= i

1

2

∑
ωm

tr
[
D0(r, r; ωm) + ω2

m

δε(iωm)

δ�2
T

G (r, r; ωm)

]
.

(A11)
We therefore find an equation for iχ (r) = �2

T (r) − �2
0 of

1

λ

(
�2

T (r) − �2
0

)
= T

∑
ωm

tr
[
D0(r, r; ωm) + ω2

m

δε(iωm, r)

δ�2
T

G (r, r; ωm)

]
.

(A12)

�2
0 is a counter term which is set by the renormalization con-

dition that �2
T (r) match the bulk value at a given temperature.

We now recover the result from the previous section if
we evaluate the right-hand side to lowest order (i.e., not
self-consistently) in λ, taking �2

T (r) = �2
T O to be the bulk

TO mode frequency. Then the right-hand side is nothing but
〈Q(r, t )2〉 evaluated as a Matsubara sum. This can now be
evaluated efficiently, and in an unbiased manner, provided one
can evaluate the Green’s functions.

APPENDIX B: VARIATIONAL APPROACH

As a final sanity check, we also provide a derivation based
on a variational approach for the thermodynamic free energy.
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We again work in Matsubara formalism, but instead of us-
ing a Hubbard-Stratonovich transformation we employ the
Feynman-Gibbs-Bogoliubov inequality. To this end, we write
the partition function as

Z =
∫

D[Q, A]e−S =
∫

D[Q, A]e−Seff e−(S−Seff ). (B1)

The effective action is then chosen to constitute the variational
ansatz. We use

Seff =
∫

d3r
∑
ωm

[
1

2
Q−ω

(
ω2

m+�2
T (r)

)
Qω + ηωmQ−ω · Aω

]

+ SMaxwell, (B2)

which essentially replaces the bare TO frequency and inter-
actions with a local, effective TO frequency. Note this differs
from the analysis of Ref. [25] so far only in the choice of a
local variational TO frequency as opposed to a single global
parameter. With respect to this ansatz, correlation functions
may be calculated easily using the above frameworks, since
the effective action used in the ansatz is quadratic and time
independent.

We then obtain an upper bound on the free energy as a
functional of our ansatz via the Feynman-Bogoliubov-Gibbs
inequality as

W
[
�2

T (r)
]

� Weff + 〈S − Seff〉eff . (B3)

The first term is simply the free energy of the noninteracting
ansatz, while the second term becomes

〈S − Seff〉eff

=
∫

d4x

[
λ

4
〈(Q2(x))2〉 + 1

2

(
�2

0 − �2
T (r)

)〈Q2(x)〉
]
.

(B4)

This can be evaluated using Wick’s theorem. We now vary
the parameter �2

T (r) to find the best approximation to the
free energy. The evaluation is aided by performing a canonical
transformation, as done in Appendix A. We shift Q = δQ −

ηωm

ω2
m+�2

T (r)
A. This then allows us to express the free energy

derivative as

δWeff

δ�2
T (r)

= 1

2

∑
ωm

trD̂0(r, r; ωm)

+ δε(iωm, r)

δ�2
T (r)

ω2
mtrĜ (r, r; ωm), (B5)

where the two Green’s functions are

D̂0(r, r′; ωm) = 〈δQ−ω(r)δQω(r′)〉eff (B6)

and

Ĝ (r, r′; ωm) = 〈A−ω(r)Aω(r′)〉eff (B7)

and the dielectric constant is found as

ε(iωm, r) = 1 + η2

ω2
m + �2

T (r)
. (B8)

We note as well that by direct examination, we have

δWeff

δ�2
T (r)

=
∫

dτ
1

2
〈Q2(r)〉eff = 1

2

∑
ωm

〈Q−ω(r) · Qω(r)〉eff ,

(B9)

which implies that the local TO frequency is a variational
parameter, which is conjugate to the local phonon fluctuations.

We can now prove that this is equivalent to the previous two
approaches. We first use Wick’s theorem to derive the quartic
term in terms of the quadratic propagator. In the isotropic,
paraelectric phase, we have

〈Qa(x)QaQb(x)Qb(x)〉 = (〈Q(x)2〉)2 + 2

d
(〈Q(x)2〉)2, (B10)

where d is the spatial dimension. In the large d limit this is
simply the Hartree term, with the Fock term being subleading
in that limit.

We can now write our variational functional, using the
expression for the interaction derived above and the relation
between 〈Q(x)2〉 and the derivative of Weff to get the exact
result

W = Weff +
∫

d3r′(�2
0 − �2

T (r)
) δWeff

δ�2
T (r′)

+ u

β

(
1 + 2

d

)(
δWeff

δ�2
T (r′)

)2

. (B11)

Now, we take a derivative with respect to the parameter �2
T (r).

After applying the chain rule, one finds

δW

δ�2
T (r)

= F − F + [
�2

0 − �2
T (r)

] δF

δ�2
T

+ 2
u

β

(
1 + 2

d

)
F

δF

δ�2
T

,

where F = δWeff

δ�2
T (r)

is the local phonon fluctuation density. The
first two terms cancel and the derivative of the phonon density
is in general dependent on the TO frequency, so this leaves the
variational equation simplified as

[
�2

0 − �2
T (r)

] + 2uT

(
1 + 2

d

)
δWeff

δ�2
T (r)

= 0. (B12)

We note that other than the factor of 2/d due to the Fock
correction at finite d , this exactly matches our condition from
the Hubbard-Stranovich method.

APPENDIX C: HIGH-TEMPERATURE BEHAVIOR

Here we provide another argument for why the trans-
verse electromagnetic modes decouple at high-temperature.
We begin with the quantum finite-temperature Lagrangian de-
scribing the phonons and their coupling to the electromagnetic
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field in a gauge independent form

L = 1

2

[(
∂Q
∂τ

)2

+ �2
0Q2

]
+ 1

2

[(
∇φ + ∂A

∂τ

)2

+ (∇ × A)2

]
+ iηQ ·

(
∂A
∂τ

+ ∇φ

)
. (C1)

We can make the argument more clear if we do partial integration on the coupling term, so express it directly in terms of the
gauge fields

L = 1

2

[(
∂Q
∂τ

)2

+ �2
0Q2

]
+ 1

2

[(
∇φ + ∂A

∂τ

)2

+ (∇ × A)2

]
− iη

[
φ∇ · Q + A · ∂Q

∂τ

]
. (C2)

We choose the Coulomb gauge, where ∇ · A = 0, such that
A clearly couples to the transverse currents induced by the
phonon modes, as these are the true radiative degrees of free-
dom.

We can then separate the longitudinal and transverse parts
of the radiation coupling as

L ‖
int = 1

2 (∇φ)2 − iηφ∇ · Q‖. (C3)

This clearly endows the LO phonon mode with the long-range
Coulomb interaction. It also clearly couples to the phonon
coordinate Q and makes perfect sense in the classical limit,
where Q and φ become “time-independent” and the integral
over Matsubara time becomes simply

∫ β

0 dτ → 1/T .
On the other hand, the transverse modes couple via

L ⊥
int = 1

2

(
∂A
∂τ

)2

+ 1

2
(∇ × A)2 − iηA · ∂Q⊥

∂τ
. (C4)

We note a number of important points. The first is that the
radiative electric field has both retardation (due to the first
term), and intrinsic dynamics due to the inductive response of
the second term. Second, we see that the field couples to the
transverse phonon current. In the classical high-temperature
limit, the retardation due to (∂τ A)2 goes away as the cost of a
thermal tunneling event ∼T becomes suppressed, and we are
left with

L ⊥
int = 1

2 (∇ × A)2 − iA · J⊥. (C5)

In this case, the current J⊥ = η∂τ Q is essentially the canoni-
cal momentum associated to the dielectric polarization, but at
high-temperatures this becomes uncorrelated with Q. There-
fore the photon field indeed dresses the expectation value for
the phonon current fluctuations 〈(J⊥)2〉, but this now is inde-
pendent of the phonon fluctuations 〈Q2〉. In this way, we see
that this is a quantum effect since the photons only couple to
the phonon displacement through the commutation relations
between the phonon displacement and current [Q, J] �= 0, and
at high-temperatures this vanishes.

APPENDIX D: EVALUATION OF GREEN’S
FUNCTION IN CAVITY

Here we elaborate on the details for the calculations of the
Green’s function in the slab geometry. This largely follows
Ref. [90], which calculates nearly the same quantity we need
but only evaluates at the boundary of the Fabry-Perot geome-
try; we want to evaluate it locally in the bulk. We must obtain
the Matsubara Green’s function for the vector potential in the

Weyl gauge. This satisfies the equation⎡
⎢⎣ω2

mε(iωm) +

⎛
⎜⎝

−∂2
z 0 iq∂z

0 q2 − ∂2
z 0

iq∂z 0 q2

⎞
⎟⎠
⎤
⎥⎦Ĝ(z, z′)

= δ(z − z′), (D1)

where q is the in-plane momentum, which we have taken to lie
along êx (this can be done provided there is in-plane isotropy).

Clearly, the problem decoules in to the transverse electric
(TE) modes, which solve[

ω2
mε(iωm) + q2 − ∂2

z

]
Gyy(z, z′) = δ(z − z′) (D2)

(they have the electric field polarized along êy which is trans-
verse to the momentum), and the transverse magnetic (TM)
and longitudinal (L) modes which are coupled and solve[

ω2
mε(iωm) +

(
−∂2

z iq∂z

iq∂z q2

)]
Ĝ(z, z′) = δ(z − z′). (D3)

We also have boundary conditions on the x, y components at
±L/2.

We begin with the TE modes. These can be solved for an-
alytically by the method of matching. We can write down the
solution almost immediately (after some deep introspection)

Gyy(z, z′) =
{

A sinh κ (L/2 − z) sinh κ (z′ + L/2) z > z′

A sinh κ (L/2 − z′) sinh κ (z + L/2) z < z′ .

(D4)
We have introduced κ = √

ω2
mε(iωm) + q2. What now re-

mains is to impose continuity of the derivative at z = z′.
Integrating across the singularity and utilizing hyperbolic trig
identities, we obtain the relation

Aκ sinh κL = 1. (D5)

We therefore obtain the TE mode Green’s function in analyti-
cal form of

Gyy(z, z′) = 1

κ sinh κL

×
{

sinh κ (L/2 − z) sinh κ (z′ + L/2) z > z′

sinh κ (L/2 − z′) sinh κ (z + L/2) z < z′ .

(D6)

The case of the remaining two modes is harder, in particu-
lar since the equations are second order and coupled, allowing
for the potential for a fourth order equation upon decoupling.
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Let us write out all the equations explicitly(
ω2

mε(iωm) − ∂2
z

)
Gxx(z, z′) + iq∂zGzx(z, z′) = δ(z − z′),

(D7a)

κ2Gzz(z, z′) + iq∂zGxz(z, z′) = δ(z − z′),

(D7b)(
ω2

mε(iωm) − ∂2
z

)
Gxz(z, z′) + iq∂zGzz(z, z′) = 0, (D7c)

iq∂zGxx(z, z′) + κ2Gzx(z, z′) = 0. (D7d)

We can locally eliminate Gzx to get

Gzx(z, z′) = − 1

κ2
iq∂zGxx(z, z′) (D8)

giving(
ω2

mε(iωm) − ∂2
z + q2

κ2
∂2

z

)
Gxx(z, z′) = δ(z − z′) (D9)

for the in-plane component. This simplifies slightly to produce

(
κ2 − ∂2

z

)
Gxx(z, z′) = κ2

ω2
mε(iωm)

δ(z − z′). (D10)

In fact, this can be solved just as trivially as the TE modes
since we need only replace the constant prefactor A. We obtain

Gxx(z, z′) = κ

ω2
mε(iωm) sinh κL

×
{

sinh κ (L/2 − z) sinh κ (z′ + L/2) z > z′

sinh κ (L/2 − z′) sinh κ (z + L/2) z < z′ .

(D11)

All in all we then obtain for the contributions Gxx(z, z) +
Gyy(z, z) together

trG‖(z, z)

= sinh κ (L/2 − z) sinh κ (L/2 + z)

sinh κL

[
1

κ
+ κ

ω2
mε(iωm)

]
.

(D12)

While this is not itself singular, we are reminded that we still
must perform the integral over q and this will in general incur
a cutoff dependence.

The last step is the most difficult; we must determine the
normal component of G. The normal component is found
following Ref. [90], whereby we first obtain the off-diagonal
component

Gzx(z, z′) = − iq

κ2
∂zGxx(z, z′). (D13)

It then seems that an assumption has been made in Ref. [90],
which seems we must make as well, which is that the Green’s
function is reciprocal in the sense that we can interchange
Gzx and Gxz, so as to close the equations. This seems valid
provided time-reversal, or more importantly, reciprocity of the
system is preserved.

If we make this simplification, then we can obtain Gzz from
Gzx, ultimately giving

κ2Gzz(z, z′) = (
ω2

mε(iωm) − ∂2
z

)
Gxx(z, z′). (D14)

We can in turn utilize the equation for Gxx to remove the
derivative, which is very singular acting on the Green’s func-
tion. We then instead recover an inhomogeneous equation of

κ2Gzz(z, z′) = −q2Gxx(z, z′) + κ2

ω2
mε(iωm)

δ(z − z′), (D15)

such that we have

Gzz(z, z′) = − q2

κ2
Gxx(z, z′) + 1

ω2
mε(iωm)

δ(z − z′). (D16)

In fact, the last term is the origin of the most severe singularity,
since the Green’s function itself is singular at z = z′, not
merely nondifferentiable. However, we are saved by the fact
that this term is essentially constant and independent of the
geometry. We therefore obtain the complete expression for the
local vector-potential fluctuations as

trG(z, z) = sinh κ (L/2 − z) sinh κ (L/2 + z)

sinh κL

×
[

1

κ
+ κ

ω2
mε(iωm)

− q2

κω2
mε(iωm)

]

+ 1

ω2
mε(iωm)

δ(0). (D17)

The quantity in brackets can be simplified as[
1

κ
+ κ

ω2
mε(iωm)

− q2

κω2
mε(iωm)

]
= 2

κ
. (D18)

We therefore obtain the result for the electric-field fluctua-
tions, which are weighted by an additional ω2

m factor. This
gives

ω2
mtrG(z, z)

= ω2
m

2κ

sinh κ (L/2 − z) sinh κ (L/2 + z)

sinh κL
+ 1

ε(iωm)
δ(0).

(D19)

We now must subtract the part which is independent of geom-
etry or system size. In particular, what matters for the Casimir
formula is

�〈EE〉 = ω2
m[trG(z, z) − trG(0, 0)|L→∞]. (D20)

We find a simple result of

�〈EE〉 = ω2
m

2κ

(
sinh κ (L/2 − z) sinh κ (L/2 + z)

sinh κL
− 1

2

)
.

(D21)

Therefore the result ends up being relatively simple (we still
do need to integrate over q and sum over ωm, to be clear).

We can already see however that this is going to be positive
comparing the bulk and surface. In particular, we have

�〈EE〉(L/2) − �〈EE〉(0) = −ω2
m

2κ
sinh2(κL/2)/ sinh κL.

(D22)
This is therefore manifestly negative; now if we recall that
the overall contribution goes as −〈E2〉 due to the change in
dielectric constant being inverse to the phonon frequency, we
find that this will lead to a mode hardening at the boundary.
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In total, we find that the final result including the Matsubara sum and momentum integral is

��2
T (z) = λT

∑
ωm

∫ 
 d2q

(2π )2

∂ε(iωm)

∂�2
T

ω2
m

2κ

(
sinh κ (L/2 − z) sinh κ (L/2 + z)

sinh κL
− 1

2

)
. (D23)

This is to be numerically evaluated. We do need to be careful since the integrand is singular in small q, ω.
We therefore numerically compute

��2
T (z) = λ

2π
T

ωc
2πT∑

m=1

[
− ω2

mη2(
ω2

m + �2
T

)2

]∫ √
ω2

mε(iωm )+
2

√
ω2

mε(iωm )
dκ

1

2κ

(
sinh κ (L/2 − z) sinh κ (L/2 + z)

sinh κL
− 1

2

)

+ λ

4πT

[
− η2

�4
T

]
lim
ω→0

ω2
∫ 


ω
√

ε(0)
dκ

1

2κ

(
sinh κ (L/2 − z) sinh κ (L/2 + z)

sinh κL
− 1

2

)
. (D24)

The first terms are the quantum corrections, which are evaluated by summing over the m = ±1,±2, . . . Matsubara frequencies,
and this can be evaluated relatively easily numerically. The last term is the classical contribution which is tricky to evaluate due
to the singular limit as ω → 0. the last term does indeed vanish in this limit. This is seen by first manipulating the integrand via
x = κL and utilizing trig identities to get

lim
ω→0

ω2
∫ 


ω
√

ε(0)
dκ

1

2κ

(
sinh κ (L/2 − z) sinh κ (L/2 + z)

sinh κL
− 1

2

)
= lim

ω→0

ω2

4

∫ L


Lω
√

ε(0)

dx

x

[
−1 + sinh x

(
1
2 − s

)
sinh x

(
1
2 + s

)
sinh x

]
.

(D25)

We can now apply L’Hôspital’s rule to this to determine the result. Applying this once, we find

lim
ω→0

ω2

4

∫ L


Lω
√

ε(0)

dx

x

[
−1 + sinh x

(
1
2 − s

)
sinh x

(
1
2 + s

)
sinh x

]
= lim

ω→0

1

2/ω3

1

4

1

x

[
−1 + sinh x

(
1
2 − s

)
sinh x

(
1
2 + s

)
sinh x

]∣∣∣∣∣
x=L

√
ε(0)ω

.

(D26)

The first term in the brackets is nonsingular so we find

lim
ω→0

ω2

4

∫ L


Lω
√

ε(0)

dx

x

[
−1 + sinh x

(
1
2 − s

)
sinh x

(
1
2 + s

)
sinh x

]
= lim

ω→0

ω2

8

1

L
√

ε(0)

[
sinh x

(
1
2 − s

)
sinh x

(
1
2 + s

)
sinh x

]∣∣∣∣∣
x=L

√
ε(0)ω

.

(D27)

To proceed further, we write

sinh x
(

1
2 − s

)
sinh x

(
1
2 + s

) = 1
2 (cosh x − cosh 2xs).

Once again, the first term is not singular enough to possibly cancel the ω2 numerator. so we find the only possible way out is
from evaluating

lim
ω→0

ω2

4

∫ L


Lω
√

ε(0)

dx

x

[
−1 + sinh x

(
1
2 − s

)
sinh x

(
1
2 + s

)
sinh x

]
= lim

ω→0

ω2

16

1

L
√

ε(0)

cosh 2ω
√

ε(0)z

sinh L
√

ε(0)ω
. (D28)

Since z is ultimately bounded by L/2 this also cannot scale with z fast enough to possibly yield a singular limit, so we see that
applying L’Hôspitals rule once more we will find this limit vanishes. Thus we can disregard the classical component altogether,
since it does not contribute to this quantity.

This establishes that the electrostatic fluctuations do not end up contributing, and we find that the result is simply due to the
quantum fluctuations vis a vis

��2
T (z) = λ

2π
T

ωc
2πT∑

m=1

[
− ω2

mη2(
ω2

m + �2
T

)2

]∫ √
ω2

mε(iωm )+
2

√
ω2

mε(iωm )
dκ

1

2κ

(
sinh κ (L/2 − z) sinh κ (L/2 + z)

sinh κL
− 1

2

)
. (D29)
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