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In this Supplemental Material, we present some additional information concerning the quartic interaction of the
Ginzburg-Landau potentials and on the mean-field calculation discussed in the main text.

1. Quartic interaction of the Ginzburg-Landau potential

The full expression for the quartic part of the Ginzburg-Landau potentials in Eqs. (1),(4)-(5) of the main text reads:

Fquart =
β1
4

∑
j

ψ4
j +

β2
2

∑
j

ψ4
j cos(4φj) +

β3
4

∑
j,j′>j

ψ2
jψ

2
j′ +

β4
2

∑
j

ψ4
j cos(2φj)

+
β5
2

∑
j,j′>j

ψ2
jψ

2
j′ cos[2(φj + φj′)] +

β6
2

∑
j,j′>j

ψ2
jψ

2
j′ cos[2(φj − φj′)] +

β7
2

∑
j,j′ 6=j

ψ2
jψ

2
j′ cos(2φj′). (1.1)

The quartic potential that appears, e.g., in Eq. (1) of the main text can be obtained from Eq. (1.1) assuming β1 = β,
β2 = β3 = β4 = β5 = β6 = β7 = 0. This way, it is possible to obtain an analytical expression for the solutions of
Eq. (1) of the main text. One can easily derive the full expressions for the potentials in Eqs. (6)-(9) of the main text,
even if they are more involved. For brevity, we do not report them here.

2. Mean-field analysis

We study the Hamiltonian Eq. (2) of the main text on the kagome lattice in the presence of the field patterns shown
in Figs. 1-4. We perform a mean-field decoupling of the interaction [1–3]:
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having assumed the symmetry breaking to occur along the spin z direction. We consider two possibilities for the unit
cell of the problem depending by the specific pattern for the CBO we analyze, one with 9 atoms (

√
3×
√

3 unit cell)
and one with 12 atoms (2× 2 unit cell). The number of variation parameters is 54 (of which 36 are complex) in the
former and 72 (of which 48 are complex) in the latter case.

After the mean-field decoupling, the Hamiltonian of the problem becomes quadratic, thus it can be easily diag-
onalized in reciprocal space at each k point. Starting from an initial guess for the variational parameters, we can
write:

HMF =
∑
k,σ

ψ†k,σHk,σ[〈ni,σ′〉, 〈c†i,σ′cj,σ′〉]ψk,σ =
∑
k,σ

φ†k,σH
d
k,σ[〈ni,σ′〉, 〈c†i,σ′cj,σ′〉]φk,σ, (2.3)

where Hk,σ[〈ni,σ′〉, 〈c†i,σ′cj,σ′〉] is the Bloch Hamiltonian of the problem that depends by all the variational parameters

〈ni,σ′〉 and 〈c†i,σ′cj,σ′〉, while ψk,σ is the reciprocal space spinor with the dimension of the unit cell containing the

annihilation operators. Hdk,σ[〈ni,σ′〉, 〈c†i,σ′cj,σ′〉] is the diagonal form of the Bloch Hamiltonian with eigenvalues Ek,σ,m

on the diagonal and

φk,σ = Uk,σ[〈ni,σ′〉, 〈c†i,σ′cj,σ′〉]ψk,σ, (2.4)
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is the spinor containing the eigenoperators at point k and spin σ, with Uk,σ the unitary transformation that transforms
ψk,σ into φk,σ (here and in the following, we omit the functional dependence of Uk,σ by the variational parameters
for conciseness). We compute the expectation value:
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Ri and Rj are the real space positions of the sites i and j, respectively, ABZ is the area of the Brillouin zone and
f(Ek,σ,m − µ) is the Fermi distribution function computed at the eigenvalue of the problem shifted by the chemical
potential µ. µ is determined by fixing the number of particles on the unit cell to the desired value (2.5 electrons every
three sites at the p-type van Hove singularity).

Eq. (2.5) permits to compute a new value of the variational parameters given the initial guess. By iterating this
procedure, we can reach a self consistent solution that generally depends by the original guess. This procedure is
analogous to minimizing the free-energy:
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with N the total number of electrons on the unit cell and FMF the mean-field free energy:
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where the summation over the nearest neighbors has to count each bond once.
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