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Cellular membrane lipid composition is implicated in diseases and major biological functions in cells, but membranes are difficult
to study experimentally due to their intrinsic disorder and complex phase behaviour. Molecular dynamics (MD) simulations
have been useful in understanding membrane systems, but they require significant computational resources and often suffer
inaccuracies in model parameters. Applications of data-driven and machine learning methods, currently revolutionising many
fields, are limited to membrane systems due to the lack of suitable training sets. Here we present the NMRlipids Databank—a
community-driven, open-for-all database featuring programmatic access to quality evaluated atom-resolution MD simulations of
lipid bilayers. The NMRlipids databank will benefit scientists in different disciplines by providing automatic ranking of simulations
based on their quality against experiments, flexible implementations of data-driven and machine learning applications, and rapid
access to simulation data via graphical user interface. To demonstrate the unlocked possibilities beyond current MD simulation
studies, we analyzed how anisotropic diffusion of water and cholesterol flip–flop rates depend on membrane properties.

Introduction

Cellular membranes contain hundreds of different types of lipid molecules that regulate the membrane properties, morphology,
and biological functions1–3. Membrane lipid composition is implicated in diseases, such as cancer and neurodegenerative
disorders, and therapeutics that affect membrane compositions are emerging4. However, biomembranes are often difficult to
study experimentally because at biological conditions they are in disordered fluid state, and sample preparation can be arduous
due to the complicated phase behaviour and rich interactions between lipids and other biomolecules. For those reasons, the
detailed connections between complex lipid interactions and biological functions taking place in or around membranes remain
poorly understood. Molecular dynamics (MD) simulations have been particularly useful in understanding membrane systems,
although their accuracy has often been compromised by artefacts such as the quality of model parameters5, 6. Presently, the
accuracy of models is becoming increasingly important as researches are progressing from simulations of individual molecules
to simulating whole organelles or even cells using interdisciplinary approaches6–8. Such systems exhibit complex emergent
behaviour making inaccuracies more difficult to detect and accumulation of even modest errors may have major impact on the
conclusions.

In contrast to experimental structural biology, where standard protocols to share and quality-evaluate the resolved structures
are firmly established via the Protein Data Bank (PDB)9, the equivalent best practices are yet to be defined for MD simu-
lations. The importance of such approaches is widely recognized10–17 and data-sharing solutions are emerging for proteins
in solution18, 19, proteins in membranes17, 20, 21, nucleic acids22, nucleic acids and proteins23, cyclodextrins24, COVID-19–
involved macromolecules (bioexcel-cv19.bsc.es). However, automatic quality evaluation of simulation data18, 22 and
programmatic access is still rare. In particular, tools for automatic quality evaluation of membrane simulations, or training
sets for machine learning models of membrane-containing systems, are not yet available. Recent advances using machine
learning approaches utilizing publicly available databanks, for example to solve protein structures25, emphasize the increasing
importance of such resources.

Here we present the NMRlipids Databank—a community-driven, open-for-all database featuring programmatic access to
atom-resolution MD simulations of lipid bilayers. The programmatic access enables users to apply data-driven approaches on
the Databank, thus facilitating the creation of new tools for (and by) researchers in a wide range of fields covering academia and
industry, from cell membrane biology and lipid nanoparticle formulations to computational chemistry and machine learning.
As two usage examples of what is already possible, we demonstrate here (i) how data-driven analysis of water anisotropic
diffusion in all the membrane systems available in the Databank can extend the scope of MD simulations to magnetic resonance
imaging (MRI) and pharmacokinetics, and (ii) how the Databank allows its users to analyse rare phenomena that are beyond the
scope of standard MD simulation investigations. Wider adaptation of the NMRlipids Databank will open even more possibities.
Furthermore, the Databank performs automatic quality evaluation of membrane simulations, which facilitates the selection of
best models for specific applications and accelerates the development of simulation parameters and methodology.

While the NMRlipids Databank currently contains only lipid bilayer systems, it can readily be expanded to contain
other molecules, such as disordered proteins or sugars. The powerful combination of the overlay databank structure and a
community-wide open collaboration can be applied also when building databases in other fields, particularly when storage
of raw data requires significant resources, best practices in the field are not defined, and incentives to share data do not exist.
Therefore, the approach introduced here opens up possibilities to create databases enabling data-driven and machine learning
applications in new fields.
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Figure 1. a) Schematic presentation of the overlay structure used in the NMRlipids databank. A more detailed structure of the
databank layer is shown in Fig. S6 in the SI. b) Distribution of the lengths of the trajectories, total number of trajectories and
total length of the simulations in the NMRlipids databank. c) Distribution of lipids present in the trajectories in the NMRlipids
databank. Lipids occuring in five or fewer simulations (’others’) are listed on the right. d) Currently available binary mixtures
in the NMRlipids databank. e) Distribution of force fields in the simulations in the NMRlipids databank.

Results

Programmatic access to MD simulations of membranes composed of most common biologically abundant
lipids

NMRlipids Databank is a community-driven database containing atomistic MD simulations of biologically relevant lipid mem-
branes emerging from the NMRlipids open collaboration26–30. It has been designed to improve data Findability, Accessibility,
Interoperability, and Reuse (FAIR)31 using the NMRlipids project protocol where all the content is openly accessible from the
beginning of the project26. Currently the NMRlipids databank contains nearly thousand simulation trajectories with the total
length approaching half a millisecond. The distribution of available simulations containing a specific lipid in Fig. 1C roughly
resembles the biological abundance of different lipid types with phosphatidylcholine (PC) being the most common followed by
cholesterol, phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), and
other lipids depending on organism and organelle1. Currently available single component lipid membranes and binary mixtures
in the NMRlipids databank are illustrated in Fig. 1D. While these comprise the majority of available trajectories, mixtures with
up to five lipid types are available. Force fields used in simulations cover all the essential parameters commonly used in lipid
simulations, see Fig. 1E, including also united atom and polarizable force fields. Therefore, the averages calculated over the
databank can be considered as mean predictions from available lipid models for an average cell membrane.

The overlay structure, illustrated in Fig. 1A, is designed to enable efficient upcycling of MD simulations for data-driven
and machine learning applications using The NMRlipids databank. Raw simulation data in the data layer can be stored in
any publicly available location with long term stability, such as Zenodo (zenodo.org), and with permanent links to the
data, such as digital object identifiers (DOIs). The Databank layer is the core of the databank containing all the relevant
information about the simulations, including links to the raw data, relevant metadata describing the systems, universal naming
conventions for lipids and their atoms, computer programs to create and analyse the entries, basic properties calculated from
all simulations (area per lipid, C–H bond order parameters, X-ray scattering form factors and membrane thickness), and
quality evaluation of simulations against experimental data. In practise, this information is stored in the git repository which is
available at https://github.com/NMRLipids/Databank. The application layer contains outputs from the databank,
such as graphical user interface (http://www.databank.nmrlipids.fi/) and results from analyses described in
sections below which are available at https://github.com/NMRLipids/DataBankManuscript. A more detailed
description on the NMRlipids databank structure is available the supplementary information.
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Accessing NMRlipids databank
The content of the NMRlipids databank is easily searchable and browsable via graphical user interface (GUI) (http:
//www.databank.nmrlipids.fi/), which can be also used to visualize the systems, compare basic properties between
diffent systems and experiments, and rank simulations based on their quality evaluated against experimental data.

More flexible analyses that enable wide range of novel applications can be performed by the Python application programming
interface (API) available at https://github.com/NMRLipids/Databank. The API can be used to automatically
analyse virtually any property from all simulations in the NMRlipids databank following the flowchart demonstrated in Fig. 2A.
Iteration through the README.yaml files in the databank layer enables the access to raw simulation data via the links stored in
these files. Affiliation of universal molecule and atom names to the simulation specific names in README.yaml and mapping
files enable automatic analyses independently on the specific naming convention used in a simulation. Analysis codes and
results for membrane area per lipid, C–H bond order parameters, X-ray scattering form factors and thickness are included in the
Databank layer. Further analysis codes can be implemented by users and the results can be stored to the application layer
in the same format that is used in the Databank layer. The results from analyses can be then programmatically accessed and
furhter analyzed using the NMRlipids databank API following the flowchart demonstrated in Fig. 2B.

These tools offer open programmatic access to unprecedented amount of simulation trajectories for all, which enables
possibilities for wide range of novel analyses. This is particularly useful for scientist without access to resources to perform
large scale MD simulations and for analyses of rare phenomena that require exceptional amounts of simulation data. On
the other hand, universal naming convention enables systematic comparisons between simulations having different model
parameters and thereby different naming conventions. This will guide the development of more accurate simulation parameters
and usage of atomistic models to train coarse grained simulations.

Applications of the NMRlipids databank

Selection of simulation parameters using the NMRlipids databank: Best models for most abundant neutral membrane
lipids

Understanding of how closely simulations resemble the reality is crucial for selecting best models for specific applications,
assessing the reliability and significance of MD simulation results, and using atomistic simulations in parametrization of coarse
grained models. However, undefined universal quality measures for MD simulations and the lack of a prevailing force field
that would perform best in all simulations has led to many controversial results in membrane simulations5. For example,
Fig. 2C illustrates divergent predictions from different force fields for the lateral packing of POPC and POPE membranes
that are the two most biologically abundant neutral membrane lipids1. We have previously resolved such controversies for
membrane structures and ion binding affinities for neutral26, 28 and charged lipids29, 30 by comparing simulations with C-H
bond order parameters from NMR, yet this requires manual comparisons between large number of simulations. To streamline
this process, we have defined quantitative quality measures, based on C–H bond order parameters from NMR and X-ray
scattering form factors, for lipid bilayer simulations in the NMRlipids databank. The C–H bond order parameters are sensitive
to conformational ensembles of individual lipid molecules27, while correlating well also with the membrane thickness and
lateral packing as shown in Fig. 3F. The X-ray scattering form factors are related to membrane dimensions via the electron
density profile. In particular, locations of minima in these form factors are correlated with the membrane lateral packing and
thickness as shown in Figs. 3F, S1, and S2. For quantitative quality measures, probabilities for each order parameter to locate
within experimental error, and the distance of the first form factor minimum from the experimental value are calculated from
a simulation. Together with the API, these enable rapid and automatic quality evaluation of simulations in the NMRlipids
databank, thereby promoting the selection of best simulations for specific applications without laborious force field evaluation,
and automatic parametrization procedures for atomistic and coarse grained simulations.

To select the best models for POPC and POPE among simulations compared in Fig. 2C, we show the ranking based on
C–H bond order parameter quality in Fig. 3A for the best performing simulations in the NMRlipids databank, and for the best
performing POPE lipid bilayer simulations in Fig. 3B. Direct comparisons with experiments are shown for selected simulations
in Figs. 3C–E and S3. Because the area per lipid correlates with the average order parameter of the sn-1 chain (Fig. 3 F), quality
evaluation in Fig. 3 and direct comparison in Fig. S3 can be used to select the simulations that best capture area per lipids
for POPE and POPC lipids in Fig. 2C. In these results, simulations with Slipids parameters ranks 1st for POPC with a clear
difference to others, and 2nd for POPE with only marginally lower quality than GROMOS-CKP. Simulations with CHARMM36
and GROMOS-CKP parameters predict overly packed bilayer for POPC (overestimated order in Fig. S3), while the area per
lipid for POPC is overestimated in Lipid17. For POPE, CHARMM36 and Lipid17 predict membranes that are too packed.
In conclusion, the quality evalution based on the NMRlipids databank suggests that Slipids parameters are the best available
choice for simulations with PC and PE lipids, at least for the cases were membrane packing is relevant.
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Figure 2. A) Flowchart for performing an analysis of properties through all MD simulations in the NMRlipids databank using
the API. B) Flowchart for accessing results calculated from the NMRlipids databank and stored to the application layer. C)
Area per lipids of POPC and POPE lipid bilayers predicted by different force fields at 310 K in simulations that are available in
the NMRlipids databank. The points from the best performing simulations in the NMRlipids databank quality evaluation for
each lipid (Figs. 3 and S3) are surrounded by black circles.

Detecting rare phenomena using NMRlipids databank: Cholesterol flip–flops
Lipid flip–flops from one bilayer leaflet to another play an important role in lipid trafficking and regulating membrane
properties1. Phospholipid flip–flops are slow when not facilitated by proteins, occurring spontaneously on the timescale of
hours or days, while cholesterol, diacylglycerol and ceramide flip-flops are faster. Still, the reported timescales range from
minutes to sub-millisecods1, 32–34. These timescales were previously accessible only by coarse-grained simulations or free
energy calculations33, yet atomistic simulations reporting cholesterol flip–flop events have been published only recently34–36.
These studies report an increase in cholesterol flip–flop rates with increasing acyl chain unsaturation level and decreasing
cholesterol concentration34, 35, but the amount of data in these individual studies was not sufficient to systematically assess
correlations between cholesterol flip–flop rates and membrane properties. Here, we demonstrate that the NMRlipids databank
API makes analyses of such rare phenomena accessible to everyone by enabling the access to large amount of MD simulation
data as described in section 2.2. This is particularly useful for scientists in different fields of science and industry who do not
have the access to required computational resources and expertise to produce the large amounts of MD simulation data.

Using workflow depicted in Fig. 2A, we first calculated the cholesterol flip–flop rates from all the simulations available in
the NMRlipids databank. Flip–flops were observed for cholesterol, DCHOL (18,19-di-nor-cholesterol), DOG (1,2-dioleoyl-sn-
glycerol), and SDG (1-stearoyl-2-docosahexaenoyl-sn-glycerol). The observed cholesterol flip–flop rates, ranging between
0.001–1.6 µs−1 with the mean of 0.16 µs−1 and median of 0.07 µs−1, are in line with the previously reported values from
atomistic MD simulations34–36. The flip–flop rate of DCHOL, 0.2 µs−1, was close to the average value of cholesterol, while
average rates for diacylglycerols DOG and SDG were higher than for cholesterol, 0.4 µs−1 and 0.5 µs−1, respectively. Flip–
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Figure 3. A) Best simulations ranked based on overall order parameter quality. B) Best simulations ranked based on the
overall order parameter quality of POPE lipid. C)–E) Evaluation against experimental (NMR order parameters and X-ray
scattering ) data exemplified for a simulation with the best overall order parameter quality (C), the best quality for POPE lipid
(D), and the headgroup quality for POPE (E). F) Scatter plots and Pearson correlation coefficients, r, for the membrane area per
lipid, thickness, first minimum of X-ray scattering form factor and average order parameter of the sn-1 acyl chain extracted
from the NMRlipids databank. All correlation coefficients have p-value below 0.001 as indicated by ∗∗∗. For more correlations
see Fig. S1.

flops were not observed for other lipids, giving the upper limits for PC lipid flip–flop rate of 9·10−6 µs−1 and for ceramide
(N-palmitoyl-D-erythro-sphingosine) of 0.002 µs−1. Thus, available data in the NMRlipids databank suggests that the lipid
flip–flip rate decreases in the order of diacylglycerols > cholesterol > other lipids including ceramides. However, the amount
of data for diacylgycerols (8 simulations with Lipid17 force field) and ceramide (3 simulations with CHARMM36 force field)
is less than for cholesterol (83 simulations), thus we cannot fully exclude the effect of force field or composition on this
comparison.

Nevertheless, we used the workflow depicted in Fig. 2B to analyse how flip–flop rates calculated from the NMRlipids
databank depend on membrane properties. Cholesterol flip–flop rates and their histograms are plotted as a function of membrane
thickness, lateral density and order in Figs. 4 B–D. The results reveal a non-linear correlation between cholesterol flip–flop
rate and membrane packing which is depicted as area per lipid. Flip–flop rates increase by an order of magnitude when
membrane packing density decreases and a major jump is observed at low membrane packing. The order of magnitude changes
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in cholesterol flip–flop rate with the membrane composition may have major implications in understanding lipid trafficking and
membrane biochemistry34, 36. Because the results from the NMRlipids databank are averaged over large range of membrane
compositions and force fields, they show that the strong dependence of cholesterol flip–flop rate on membrane properties is not
limited to certain lipid compositions or force fields used in previous studies34–36.
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Figure 4. A Illustration of cholesterol flip–flop. B–D Cholesterol flip–flops analyzed from the databank as a function of
membrane thickness, area per lipid, and acyl chain order. Values from simulations with non-zero flip–flop rates are shown with
blue dots. Histogrammed values are shown with black dots.

Extending the scope of MD simulations to new fields using the NMRlipids databank: Water diffusion anisotropy in
membrane systems

The anisotropy in water diffusion in parallel and perpendicular directions with respect to membranes can be related to the
translocation of drugs through biological material, particularly in skin37–40, and to the formation of signals in diffusion tensor
MRI imaging41. MD simulations are rarely used to analyze the anisotropic diffusion of water since only few membrane
permeation events for water are typically observed in a single MD simulation trajectory42, 43, thereby making the collection of
sufficient amount of data challenging. Here, we show that the API access to the data in NMRlipids databank enables systematic
analyses on how the anisotropic diffusion of water depends on membrane properties in multilamellar membrane systems,
thereby extending the applications of MD simulations to new fields.

To this end, we first calculated the water permeability through membranes from all simulations in the NMRlipids databank
using the workflow depicted in Fig. 2A. The resulting non-zero values range between 0.3 and 322 µm/s with the mean and
median of 14 µm/s and 8 µm/s, respectively. These values agree with the previously reported simulation results42, 43, but are on
average slightly larger than experimental values reported for PC lipids in the liquid crystalline phase, 0.19–0.33 µm/s45. Using
the workflow depicted in Fig. 2B, we then plotted the observed permeabilities and their histogrammed values in Figs. 5B–E as a
function of temperature, membrane thickness, area per lipid, and acyl chain order. As expected, the permeability increases with
the temperature, giving an average energy barrier of 17± 4 kBT for the water permeation from the Arrhenius plot in Fig. 5B.
On the other hand, the permeability of water decreases on average when membranes become more packed, i.e., with decreasing
area per lipid and increasing thickness and acyl chain order (Figs. 5 C–E). Permeation of water through bilayers depends
on membrane properties also according to previous studies, but there is no established consensus on whether the area per
lipid46 or bilayer thickness47 is the main parameter determining the permeability. Our analysis over the NMRlipids databank,
containing significantly more data than what was available in previous studies, suggest non-linear dependencies on both of
these parameters, yet the linear correlation would be a good approximation for thicknesses above ∼ 3.9 nm and area per lipids
below ∼69 Å2 (insets in Figs. 5 C–D). Clear dependencies of permeability on charged lipids, cholesterol, POPE, or hydration
level were not observed in Fig. S4 in the supplementary information.

To analyze how water diffusion anisotropy depends on membrane properties in a multi-lamellar lipid bilayer system, we
calculated the water diffusion parallel to the membrane surface from all simulations in the NMRlipids databank using the
workflow depicted in Fig. 2A. The parallel diffusion coefficient of water, D||, decreases with reduced hydration and increases
with the temperature, but dependencies on membrane area per lipid, thickness, or fraction of charged lipids were not observed
in Figs. 5 and S5 when the workflow depicted in Fig. 2B was used. Simulation results are close to the experimental values
with low hydration levels in Fig. 5 F, but increase to approximately two times higher than the experimental value for bulk
water diffusion value (3.1· 10−9 m2/s at 313 K48) with high hydration levels. This is not surprising as the most common water
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Figure 5. A Water diffusion, Dperp, and permeability, P, through membranes, and lateral diffusion along the membrane, D||,
illustrated in a multilamellar stack of lipid bilayers. B–E Water permeation through membranes analyzed from the databank as
a function of temperature, thickness, area per lipid, and acyl chain order. Values from simulations with non-zero permeation
values are shown with blue dots. Histogrammed values are shown with black dots. Inset in B) shows the Arrhenius plot of
permeation (ln(P) vs. 1/T ) that gives 17± 4 kBT for the average activation energy for water permeation through lipid bilayer.
Insets in C) and D) show the region where the dependence could be considered approximately linear. F Lateral diffusion of
water as a function of hydration level. Experimental points for DMPC bilayers at 313 K at different hydration levels are
shown44. G–H Diffusion anistoropy of water as a function of thickness and area per lipid.

model used in membrane simulations, TIP3P, overestimates the bulk water diffusion49. To estimate the diffusion anisotropy of
water, D⊥/D||, in multilamellar membrane system, the permeability coefficients of water through membranes were translated to
perpendicular diffusion coefficients, D⊥, using the Tanner equation50, 51. The resulting perpendicular diffusion coefficients
are approximately five orders of magnitude smaller than lateral diffusion coefficients of water (Figs. 5 G and H), which is at
the upper limit of the anisotropy estimated from the experimental data39. Significant increase in the diffusion anisotropy with
membrane packing is observed, as D⊥/D|| drifts away from one with decreasing area per lipid and increasing thickness in
Figs. 5 G and H. This follows from decreasing water permeability with membrane packing (Figs. 5 C and D), while lateral
diffusion remains approximately constant (Figs. S5 A and C).

In summary, our results suggest that the bilayer packing has a substantial effect on anisotropic water diffusion in multi-
membrane lipid systems. Several folds larger anisotropy in membranes with higher lateral density is expected to play a
role in pharmacokinetic models not only for water but also for other hydrophilic molecules39. Furthermore, the enhanced
understanding of this anisotropy may help in developing new diffusion tensor based MRI imaging methods where signals
originate from anisotropic diffusion of water in biological material41.
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Discussion
The focus of biomolecular simulations is moving from studies of individual molecules to larger complexes and even whole
cells and organelles6–8. Simultaneously, machine learning based models predicting behaviour of biomolecules and automatic
approaches to parametrize models are emerging5, 25. The NMRlipids databank will support the development in both of these
directions. The automatic quality evaluation and ranking of simulations in the NMRlipids databank guides the optimization of
new force field parameters and the selection of best parameters for large biomolecular complexes where simulation quality
becomes increasingly important due the accumulation of small errors in large simulations. Furthermore, the NMRlipids
databank serves as a training set for diverse machine learning applications. For example, a machine learning model predicting
electron density profiles from form factors would be highly useful in interpretation of scattering experiments. In addition,
the data contained in the NMRlipids databank will enable training of more elaborated models to predict arbitrary membrane
properties.

The programmatic access in the NMRlipids databank enables automatic analyses of structural and dynamic properties over
larger sets of simulation data in terms of quantity (e.g., simulation length and number of conformations) and content (e.g., lipid
compositions and ion concentrations) than is currently possible by a single research group. The added value of such analyses is
demonstrated here by analysing the anisotropic diffusion of water in membrane systems (Fig. 5) and cholesterol flip–flop events
(Fig. 4). By enabling these analyses for everyone, the NMRlipids databank can lead to applications in unprecedented directions
in fields where MD simulations are less commonly utilized, such as pharmacokinetic modeling and in MRI imaging where
anisotropic diffusion of water play important roles39, 41. Different types of applications enabled by the NMRlipids databank
across a wide range of fields are exemplified in Table 1. The ever growing amount of data is expected to further increase the
scope of potential applications of the NMRlipids databank in biology, biotechnology, material science, biomolecular imaging
and beyond.

The main practical limitations in building open access databanks of molecular dynamics simulations have been the required
commitment in long term support for hardware and software maintenance, and the lack of incentives for researchers to share the
data. The NMRlipids databank circumvents these challenges with the overlay databank design and open collaboration approach
developed in the NMRlipids project26. In this model, the file storage is distributed to publicly available stable repositories
(Data layer in Fig. 1 A) and maintenance of the databank does not depend on individual scientists or groups because all its
version controlled content is available with an open access licence (Databank layer in Fig. 1 A). Incentive to share the data
is created in the NMRlipids open collaboration by offering authorship in published articles to the contributors following the
NMRlipids project protocol26. The current NMRlipids databank contains only lipid bilayer simulations, but the concept can
also be applied to other biomolecules, such as disordered proteins and membrane-protein systems, or other fields where similar
barriers to establish publicly accessible databanks exist.
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Type of application Practical examples Target group
Analyses of rare phenomena Lipid flip–flops, water permeation

(Figs. 4 and 5)
Membrane scientists

Correlations between membrane
properties

Membrane structural properties, wa-
ter dynamics (Figs. 3 and 5)

Membrane scientists

Applications that are outside typical
scope of MD simulations

Anisotropic water diffusion for phar-
macokinetics and MRI imaging ap-
plications (Fig. 5)

Scientist in fields where MD
simulations are not usually
applied

Selection of the best simulation
model for a specific application

Best model for POPC lipids (Fig. 3),
headgroup conformations30, pack-
ing of PS5 and PE (Fig. 2) contain-
ing membranes.

Scientists using MD simula-
tions

Guidance for force field develop-
ment

Improvements in ion binding to
lipids52, 53 and lipid headgroup con-
formational ensembles54–56

Scientists developing param-
eters for MD simulations

Training and target data for coarse
grained models

Optimizing parameters of coarse
grained models against NMRlipids
databank, extracting continuum pa-
rameters for membranes.

Scientists developing and us-
ing coarse grained MD simu-
lations

Training set for machine learning ap-
plicatons

Programmatic access to the data and
results enables training of machine
learning type of models for various
applications, such as predictions of
membrane properties from composi-
tion

Scientists building and us-
ing machine learning appli-
cations for biomolecules.

Table 1. Examples on applications of the NMRlipids databank.

Methods

Structure of the databank
Structure of the NMRlipids databank is illustrated more detailed in Fig. S6 in the supplementary information. The core content of
the databank (Databank layer in Fig. 1) locates as a git repository at https://github.com/NMRLipids/Databank/
and is permanently stored in Zenodo repository (www.zenodo.org). Whenever a specific file is referred here, the file path
within the NMRlipids databank repository is given. The scripts in the NMRlipids databank are mainly written in Python and
many of them utilize the MDAnalysis module57, 58.

Essential information of each simulation in the NMRlipids databank is stored in a human and machine readable README.yaml
file located at /Data/Simulations in the NMRlipids databank repository. These files contain access to all information that
are needed for further analyses of simulations. The content of these files is described in detail in Table S1 in the supplementary
information. Raw MD simulation data are stored in external publicly available and stable repositories (Data layer in Fig. 1),
such as Zenodo (www.zenodo.org), from where it can be downloaded whenever needed using the links in README.yaml
files.

Molecule and atom naming convention
When analysing simulations, atoms and molecules needs to be often called by their names defined in the simulation tra-
jectory. However, these names typically vary between force fields because the universal naming convention has not been
defined for lipids. To enable automatic analyses over simulations with different atom and molecule names in the NMRlipids
databank, we have defined unique naming conventions for molecules and atoms therein. Unique abbreviations used in the
NMRlipids databank for each molecule are listed in table S3 in the supplementary information. Atom names used in sim-
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ulation trajectories are connected to unique atom names using mapping files that are defined in the NMRlipids project
(https://nmrlipids.blogspot.com/2022/04/new-yaml-format-of-mapping-files.html). These
files are located at /Scripts/BuildDatabank/mapping_files in the NMRlipids databank repository. These files
also define whether an atom belongs to headgroup, glycerol backbone, or acyl chain region in a lipid. In practise, force field
specific molecule names and mapping files names are given in the COMPOSITION dictionary in README.yaml files for each
molecule in each simulation in the NMRlipids databank.

Adding data into the NMRlipids databank
The NMRlipids databank is open for additions of simulation data by anyone. The first step is to create an info.yaml
file containing the information that needs to be manually entered as listed in Table S1. This file can be then added into
/Scripts/BuildDatabank/info_files folder in the NMRlipids databank repository via pull requests. After the pull
request is manually accepted, the rest of the information for the README.yaml file, listed in Table S1, will be automatically
extracted using the /Scripts/BuildDatabank/AddData.py script. Currently, the NMRlipids databank is composed
of simulations found from Zenodo repository with an appropriate licence. Most, but not all, of these trajectories originate from
previous NMRlipids projects26, 28–30.

Experimental data
Experimental data used in the quality evaluation, currently composed of C–H bond order parameters and X-ray scattering
form factors, are stored in /Data/experiments in the NMRlipids databank repository. Similarly to simulations, each
experimental data set has a README.yaml file containing all the relevant information about the experiment. The keys and
their descriptions for the experimental data are given in Table S2. NMR data currently in the NMRlipids databank are taken
from Refs. 29, 30, 53, 59, 60 and X-ray scattering data from Refs. 61–65. In addition, some previously unpublished NMR and
X-ray scattering data are used. These are measured with previously established methods as described in the supplementary
information.

Calculation of C–H bond order parameters
The C–H bond order parameters were calculated directly from the carbon and hydrogen positions using the definition

SCH =
1
2
〈
3cos2

θ −1
〉
, (1)

where angular brackets denote the ensemble average, i.e., average over all sampled configurations of all lipids in a simulation,
and θ is the angle between the C–H bond and the membrane normal. As in previous NMRlipids publications, the order
parameters were first calculated separately for each lipid and the standard error of the mean over different lipids was used as
the error estimate26. The script that calculates C–H bond order parameters from all simulations in the NMRlipids databank
is available at /Scripts/AnalyzeDatabank/calcOrderParameters.py in the NMRlipids databank repository.
The resulting order parameters are stored for all simulations in files named [lipid_name]OrderParameters.json at
folders in /Data/Simulations in the NMRlipids databank repository.

Calculation of X-ray scattering form factors
X-ray scattering form factors were calculated with the standard equation for symmetric lipid bilayers27

F(q) =
∫ D/2

−D/2
∆ρe(z)cos(zqz)dz, (2)

where ∆ρe(z) is the difference between total and solvent electron densities, and D is the simulation box size in the z-direction
(normal to the membrane). For the calculation of density profiles, atom coordinates were first centred around the centre of mass
of lipid molecules for every time frame, and a histogram of these centred positions, weighted with the number of electrons in
each atom, was then calculated with the bin width of 1/3 Å. Electron density profiles were then calculated as an average of
these histograms over the time frames in simulations. The script to calculate form factors for all simulations in the NMRlipids
databank is available at Scripts/AnalyzeDatabank/calc_FormFactors.py. The resulting form factors are stored
for all simulations in files named FormFactor.json at folders in /Data/Simulations in the NMRlipids databank
repository.

Calculation of a bilayer area per lipid and thickness
Area per lipids of bilayers were calculated by dividing the time-averaged area of the simulation box with the total number
of lipid and surfactant molecules (see the list in table S3) in the simulation. The script that calculates area per lipids from
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all simulations in the NMRlipids databank repository is available at Scripts/AnalyzeDatabank/calcAPL.py in the
NMRlipids databank repository. The resulting area per lipids are stored for all simulations in files named apl.json at folders
in /Data/Simulations.

Thicknesses of lipid bilayers were calculated from the intersections of lipid and water electron densities. The script that calcu-
lates thickness of all simulations in the NMRlipids databank is available at Scripts/AnalyzeDatabank/calc_thickness.py
in the NMRlipids databank repository. The resulting thicknesses are stored in files named thickness.json at folders in
/Data/Simulations in the NMRlipids databank repository.

Principal Components Analysis of equilibration of simulations
To estimate how well the provided trajectories are converged, the Principal Components Analysis (PCA) was used66, 67.
Following the PCALipids67 protocol, the lipids of a specific type were first selected, and trajectories of individual lipids were
concatenated. Next, each lipid configuration was aligned to the average lipid structure. Afterwards, the PCA was applied on
the cartesian coordinates of all heavy atoms of the lipid. Since it was shown before, that the motions along the first, major,
principal component (PC) are the slowest ones66, the equilibration of individual lipids was estimated based on the dynamics of
the first PC. The suggested way to estimate the characteristic timescales needed to adequately sample the configurational space
of individual lipids is to calculate the distribution convergence of the trajectories projected on the first PC66. However, due to
the linear dependence between autocorrelation decay times and distribution convergence times, faster calculation times and
higher computational stability of autocorrelation decay times66, 67, the distribution convergence timescales were calculated from
autocorrelation decay times:

τconvergence = k ∗ τautocorrelation (3)

The empirical coefficient k is equal to k = 49 and was calculated based on the analysis of 8 trajectories from the Databank
and included simulations of POPC, POPS, POPE, POPG, and DPPC with CHARMM36 force fields. All simulations, used for k
calculation, were at least 200 ns long. As was shown previously66, the coefficient does not depend on the force field, thus only
CHARMM36 simulations, as the most frequent in the Databank, were used.

As a measure of equilibration quality for each trajectory, the ratio between the convergence time of first PC and the trajectory
length was calculated for each lipid type individually. Sterols were excluded from the analysis. The script that calculates the
equilibration of lipids is available at Scripts/BuildDatabank/NMRPCA_timerelax.py in the NMRlipids databank
repository. The resulting values are stored in files named eq_times.json at folders in /Data/Simulations in the
NMRlipids databank repository.

Quality evaluation of C–H bond order parameters
As the first step to evaluate simulation qualities against experimental data, each simulation is connected to an experimen-
tal data if molar concentrations of all molecules are within ±3 percentage units, charged lipids have the same counteri-
ons, and temperatures are within ±2 K. For molar concentrations of water, the exact hydration level is considered only
for systems with molar water to lipid ratio below 25, otherwise the systems are considered as fully hydrated. In prac-
tise, this is implemented by adding the path of the experimental data into the simulation README.yaml file using the
/Scripts/BuildDatabank/searchDATABANK.py script in the NMRlipids databank repository.

The quality of each C–H bond order parameter is estimated by calculating the probability for a simulated value to locate
within the error bars of the experimental value. Because conformational ensembles of individual lipids are assumed to be
independent in a fluid lipid bilayer, SCH−µ

s/
√

n has a Student’s t-distribution with n−1 degrees of freedom and µ representing the
real mean of the order parameter. The probability for an order parameter from simulation to locate within experimental error
bars can be estimated from equation

P = f
(

SCH− (Sexp +∆Sexp)

s/
√

n

)
− f

(
SCH− (Sexp−∆Sexp)

s/
√

n

)
, (4)

where f (t) is the Student’s t-distribution, n is the number of independent sample points for each C–H bond which equals
the number of lipids in a simulation, SCH is the sample mean from Eq. 1, s is the variance of SCH calculated over individual
lipids, Sexp is the experimental value, and ∆Sexp its error. The error of ∆Sexp = 0.02 is currently assumed for all experimental
order parameters27, yet more accurate ones may be available in the future68. Because a lipid bilayer simulation contains at
least dozens of lipids, the Student’s t-distribution could be safely approximated with a normal distribution. However, the
normal distribution gives probability values that are below the numerical accuracy of computers when simulation values are far
from experiments. To avoid such numerical instabilities, we use the first order Student’s t-distribution having slightly higher
probabilities for values far away from the mean. On the other hand, some force fields exhibit too slow dynamics which leads
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to large error bars in order parameter values69. Such artificially slow dynamics widens the Student’s t-distribution in Eq. 4,
thereby increasing the probability to find the simulated value within experimental error bars. Therefore, the order parameters
with simulation error bars above the experimental error 0.02 are not included in the quality evaluation.

To streamline the comparison between simulations, we define the qualities for different fragments (frag = sn-1, sn-2,
headgroup or total referring to all order parameters within a molecule) within each lipid type in a simulation as

Pfrag[lipid] = 〈P[lipid]〉fragFfrag[lipid], (5)

where 〈P[lipid]〉frag is the average of individual C-H bond order parameters qualities within the fragment, and Ffrag[lipid] is the
percentage of order parameters for which the quality is available within the fragment. The overall quality of different fragments
in a simulation are then defined as a molar fraction weighted average over different lipid components

Pfrag = ∑
lipid

χlipidPfrag[lipid], (6)

where χlipid is the molar fraction of a lipid in the bilayer.
The quality evaluation of order parameters is implemented in /Scripts/BuildDatabank/QualityEvaluation.py

in the NMRlipids databank repository. The resulting qualities for each order parameters are stored in files named [lipid_name]
_OrderParameters_quality.json, for individual lipids in files named [lipid_name]_FragmentQuality.json,
and for overall quality for fragments in files named system_quality.json at folders in /Data/Simulations in the
NMRlipids databank repository.

Quality evaluation of X-ray scattering form factors
Because experiments give form factors only in relative intensity scale, they should be scaled before comparing with the
simulation data. Here we use the scaling coefficient for experimental intensities defined in the SIMtoEXP program70

ke =
∑

Nq
i=1
|Fs(qi)||Fe(qi)|
(∆Fe(qi))2

∑
Nq
i=1

|Fe(qi)|2
(∆Fe(qi))2

, (7)

where Fs(q) and Fe(q) are form factors from a simulation and experiment, respectively, ∆Fe(q) is the error of the experimental
form factor, and summation goes over the experimentally available Nq points.

Also, a quality measure based on differences in simulated and experimental form factors across available q-range is defined
in the SIMtoEXP program70. However, the lobe heights in simulated form factors depend on the simulation box size as shown
in Fig. S2. Therefore, the quality measure defined in SIMtoEXP would also depend on the simulation box size. In contrast,
locations of form factor minima are independent on simulation box size in Fig. S2. Here we use the location of the first form
factor minima for the quality evaluation because automatic detection of the location of second minima is inaccurate for some
experimental data due to fluctuations, such as for the POPE data in Figs. 3 D and E. The first minimum correlates well with
the thickness of a membrane (Fig. 3 F), although the correlation of the second minima would be even stronger (Fig. S1). In
practise, we first filter the fluctuations from the form factor data using Savitzky–Golay filter (window length 30 and polynomial
order 1) and locate the first minima above 0.1 Å−1 from both simulation and experimental data. The quality of a form factor is
then defined as Euclidean distance between the minima in simulated and experimental form factors, FFq = |FFsim

min −FFexp
min |.

The quality evaluation of form factors is implemented in /Scripts/BuildDatabank/QualityEvaluation.py
in the NMRlipids databank repository. The resulting form factor qualities are stored in files named FormFactorQuality.json
at folders in /Data/Simulations in the NMRlipids databank repository.

Calculation of lipid flip–flops
Flip–flop rates were calculated using AssignLeaflets and FlipFlop tools from LiPyphilic package71. Headgroup
atoms of each molecule as defined in the mapping file were used to determine in which leaflet the molecule locates. The
midplane cut-off defining the region between leaflets was 1 nm and frame cutoff was 100. This means that if the headgroup of a
molecule entered within the distance of 1 nm from the bilayer midplane and was found from the opposing leaflet after 100
steps, this event was considered as a successful flip–flop event. The code that finds flip–flop events from all simulations in
the NMRlipids databank is available at scripts/FlipFlop.py and the results at Data/Flipflops/ in the repository
at https://github.com/NMRLipids/DataBankManuscript/.
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Analysing anisotropic diffusion of water in membrane environment from the NMRlipids databank
Water permeability through membranes was calculated from equation P = r/2cw, where r is the rate of permeation events
per time and area, and cw=33.3679 (nm)−3 is the concentration of water in bulk42. The number of permeation events in each
trajectory was calculated using the code by Camilo et al.43, available at https://github.com/crobertocamilo/
MD-permeation. The code that calculates permeabilities for all simulations in the NMRlipids databank is available at
/scripts/calcMD-PERMEATION.py and the resulting permeabilities are stored at /Data/MD-PERMEATION in the
repository containing all analyses specific for this publication at https://github.com/NMRLipids/DataBankManuscript/.
This repository is organized similarly to the NMRlipids databank repository, enabling the upcycling of also the analyzed data
without overloading the main NMRlipids databank repository.

The lateral diffusion of water along the membrane surface, D||, was calculated with Einstein’s equation using -lateral
option in gmx msd program within the Gromacs software package72. The code that calculates D|| for water from all
simulations in the NMRlipids databank is available at /scripts/calcWATERdiffusion.py, and the resulting diffu-
sion coefficients are stored at /Data/WATERdiffusion in the repository at https://github.com/NMRLipids/
DataBankManuscript/.

Water diffusion in the perpendicular direction of lipid bilayers in a multilamellar stack was estimated from the Tanner
equation Dperp =

D||Pzw
D||+Pzw

50, 51, where the water layer thickness, zw, was estimated by subtracting bilayer thickness from the size
of the simulation box in membrane normal direction.
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