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√
µ in HgTe. . . 30

S10 Fermi arc surface states of HgSe in the shifted equilibrium position

by the nonlinear phononic interaction. a-c, Fermi arc surface states in

(a) (100), (b) (010), and (c) (001) surface with Qind = 0.5 Å
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Computational details

We used the Vienna Ab initio Simulation Package (VASP) to evaluate the lattice pa-

rameters, the electronic structure, and nonlinear phononics [1]. The plane-wave basis up to

400 eV was employed to describe the Kohn-Sham wavefunctions with spin-orbit coupling.

The core level states were considered by the projector augmented wave method. We sampled

the Brillouin zone with 10× 10× 10 and 6× 6× 6 grid points for primitive lattice and cubic

cell geometries of HgTe, respectively. For the electron-electron exchange and correlation,

we used Perdew-Zunger-type (PZ) local density approximation (LDA) functional [2]. The

eigenvectors of the IR phonon modes were achieved in primitive lattice and converted into

cubic geometry. To evaluate the topological properties of HgTe with the Wannier interpo-

lation technique, we used Wannier90 and WannierTools packages [3, 4]. The Bloch states

with 200× 200 sampled grid points in the Brillouin zone were considered for the Fermi arc

surface plot. The Berry curvature dipole was evaluated using in-house code with 80×80×80

Bloch vector sampling [5].

To investigate the effect of the time-dependent THz field on the HgTe, we modified

the AIMD simulation code to include the direct force from the applied laser pulse to the

charged ion in the Quantum Espresso package [6]. We verified that the electronic structure

and nonlinear phononics in the HgTe family are consistently evaluated in both VASP and

Quantum Espresso. The effect of the time-dependent electric field on the ion under the pe-

riodic boundary condition was described by Lorentz force between the Born effective charge

(Zτ ) for each atom and electric field (E(t)) at a given time t as follows; Fτ (t) = ZτE(t).

With this implementation, the Verlet algorithm in the 3× 3× 3 supercell geometry of HgTe

was used to include enough dissipation channels via phonon-phonon scatterings without a

thermostat for the AIMD simulation. We considered a single gamma k-point sampling and

the spin-unpolarized state. The projector augmented wave method and plane-wave basis

up to 680 eV were employed to describe the Kohn-Sham states. We calculated the Born

effective charges that are Hg (3.18 e) and Te (−3.18 e) atoms through the density functional

perturbation theory calculation [7]. In the previous studies, the classical model Hamiltonian

was employed to investigate the nonlinear phonon interactions that heavily relied on the

limited fitting parameters for few phonon modes and frictional dissipation [8]. However, our

new approach allows a simulation with realistic dynamics by including anharmonicity and
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various phonon-phonon scatterings at the accuracy level of ab initio calculations. Overall,

conventional AIMD simulations were carried out up to the 6 fs time step to investigate the

nonlinear phonon interaction between IR modes. To evaluate the collective motions for the

IR mode during conventional AIMD simulation, we evaluated the average displacements

of Hg and Te atoms as follows: QIR =
∑Ncell

i d(Qi
Hg − Qi

Te)/Ncell , when Ncell = 27 and

d = 0.714 are the number of repeated cell and a factor for the conversion between normal

and Cartesian coordinates, respectively. In addition, we neglect the plasmon-phonon interac-

tion and non-adiabatic dynamic effect for electronic structures under the Born-Oppenheimer

approximation, because the frequency of the THz pulse (2.6 THz ∼ 0.01eV) is far from the

3D plasmon frequency (0.53 THz) in n-type doped HgTe at low temperature [9].

Lattice parameter and Phonon eigen vectors of IR modes

We optimized the lattice parameters of HgTe, HgSe, and HgS and their inner atomic

positions using DFT stress and force calculations. The calculated lattice parameters for

primitive unit cell are a = 4.559 Å for HgTe, a = 4.301 Å for HgSe and a = 4.122 Å for HgS

with LDA functional. The eigenvectors of IR phonon modes (e) and their frequencies (ω)

are evaluated with these lattice parameters through the diagonalization of the dynamical

matrix (D) with density functional perturbation theory as follows:

∑
j′β

Dα,β,qeβ(j
′,q, ν) = mj[ω(q, ν)]

2eα(j,q, ν), (1)

when j, α(β), q, and ν are the indexes for atoms, the direction in the Cartesian coordi-

nate, momentum, and phonon mode, respectively. The eigenvector of IR phonon mode

at q = Γ is eα(Hg,Γ, IRα) and eα(X,Γ, IRα) for Hg and X atoms (X=Te, Se, and, S),

while eα(Hg,Γ, IRβ) = 0 and eα(X,Γ, IRβ) = 0 for α ̸= β. For example, the eigen-

vectors of IRx mode are ex(Hg,Γ, IRx) = 0.79 and ex(Te,Γ, IRx) = −0.60 for HgTe,

ex(Hg,Γ, IRx) = 0.37 and ex(Se,Γ, IRx) = −0.93 for HgSe, and ex(Hg,Γ, IRx) = 0.16 and

ex(S,Γ, IRx) = −0.99 for HgS. We estimated the Born effective charge of HgX in its in-

sulating phase under the epitaxial strain [10]. The detailed parameters for the model

Hamiltonian, achieved from DFT calculation, are summarized in Table S1.

In the main text, we investigated the nonlinear phonon interaction in the primitive unit
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cell and topological properties in the cubic cell. Figure S1(a) shows the lattice vectors in the

primitive unit cell (blue arrows) and related Cartesian vectors (red arrows, x̂p, ŷp, and ẑp).

Figure S1(b) reveals the lattice vectors (blue arrows) in cubic cell and the corresponding

Cartesian vectors of the primitive unit cell (red arrows, x̂′
p = x̂p, ŷ

′
p = ŷp, and ẑ′p = ẑp) as

shown in Fig. S1(a). These Cartesian vectors of primitive cell converted into cubic cell can be

expressed in terms of the lattice vectors in the cubic cell, as follows: x̂′
p = 1/

√
2âc+1/

√
2b̂c,

ŷ′p = −1/
√
6âc + 1/

√
6b̂c − 2

√
6ĉc, and ẑ′p = −1/

√
3âc + 1/

√
3b̂c + 1/

√
3ĉc when âc, and

x̂′
p are the lattice vectors in the cubic cell and the Cartesian vector of the primitive cell

into the cubic cell, respectively. The conversion could be verified by comparing primitive

and cubic geometries. For example, x̂p, and x̂′
p are the directions along with the Hg atom

and its nearest neighbor Hg atom that is bound with the same Te atom, and ẑp and ẑ′p is

the direction along with the Hg-Te bond. Once we decided the Cartesian vector x̂′
p in the

cubic cell, the orthogonal condition between Cartesian vectors provides the ŷ′p and ẑ′p. This

conversion makes it possible to transform the motion of IR phonon modes in the primitive

cell into the cubic cell.

Electronic structure of optimized geometry in bulk HgTe, HgSe, and HgS

We investigated the electronic structure of bulk HgTe, HgSe, and β-HgS through the

density functional theory calculation using the VASP package. As shown in Fig. S2, with the

PBE functional, HgTe and HgSe exhibit the metallic band structure with four degenerated

states at Γ, while β-HgS has a small energy gap (0.1 eV) at Γ point [11]. Through the AIMD

simulation in β-HgS, HgSe, and HgTe, we found that the nonlinear phonon interaction and

emergence of Weyl points in these structures are robust regardless of the bandgap at the Γ

point.

Plasmon frequency in bulk HgTe

We estimated the plasmon frequency in bulk HgTe using the Drude model. The fre-

quency of plasmon in the Drude model is defined as ωp =
√

ne2

ϵ0me
, when n, e, ϵ0 and me are

carrier density, electron charge, vacuum permittivity and mass of electron, respectively. In

the study of M. Grynberg etal., they reported the carrier density and effect of plasmon on
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the reflectivity in bulk HgTe at various temperature [9]. At the low temperature (4.2 K),

the lowest electron carrier concentration 6 × 1015 cm−3 is observed from the Hall measure-

ment. This electron carrier concentration in bulk HgTe leads to the plasmon frequency

0.53 THz. As a result, negligible hybridization between plasmon and longitudinal optical

mode is expected. This report indicates that plasmon’s contribution can be neglected at

low temperatures.

Meta-stable geometry induced by THz pulse and role of dissipation

In Fig. S3, THz field-induced atomic displacement along the IR mode is evaluated for

Hg and Te atoms with various field strengths. With light pulse with ω = 2.6 THz, the

dynamics of HgTe were achieved with various conditions, as shown in Fig. S3. The meta-

stable state in HgTe, which shows atomic distortion along the Qind mode, was evaluated

within a few picoseconds. Notably, the amplitude of this displacement relies on the ap-

plied field strength. On the other hand, the fast decay of meta-stable state was found in

HgSe and β−HgS as shown in Figs. S3b and S3c. This behavior originates from the fre-

quent phonon-phonon scattering with the larger displaced Qx and Qind modes in HgSe and

β−HgS. Because the normal coordinate contains the factor of effective mass (Meff), the same

amplitude of normal coordinate in β-HgS is the longer atomic displacement with factor of

MHgTe
eff /Mβ−HgS

eff comparing with HgTe case. In other words, the lighter atom shows the

larger atomic displacement under a given electric field strength that can lead to the higher

anharmonic coupling. Through the Model simulation, we verified the HgSe and β-HgS have

higher nonlinear phonon coupling strength, as shown in Table 2. Figure S4 shows the time-

dependent profile of atomic displacement from their equilibrium position in the Cartesian

coordinate. The atomic displacement of the S atom shows a much larger amplitude with

E = 700 kV/cm than those of Te and Se atoms under the same pumping strength.

Nonlinear Phonon interaction in the simplified model

We investigated the simplified model for the nonlinear phonon interaction in HgTe, HgSe,

and β-HgS. The equation of motion for the Qx and Qind modes are given as follows:
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Q̈x + γQ̇x + Ω2Qx = −2knlQxQind + Z∗E(t),

Q̈ind + γQ̇ind + Ω2Qind = −knlQ
2
x,

(2)

when Ω, knl, and Z∗ are phonon frequency, nonlinear phonon coupling coefficient, and Born

effective charge, respectively [12]. These parameters for the HgTe, HgSe, and β-HgS are

summarized in Table S2. We found that this effective classic model provides consistent

dynamics between Qx and Qind modes without dissipation (γ = 0.0 THz) as that from our

AIMD simulation shown in the main text (see Fig. 2). By applying the THz field pulse, the

initially displaced Qx mode excites the Qind mode through the nonlinear phonon interaction.

As shown in Fig. S5, an effective classic model with nonlinear phonon interactions provides

consistent results about the excitation of Qind with that from the AIMD simulation.

The model simulations reproduce the THz field-induced meta-stable geometries in the

family of HgTe that are simulated from AIMD calculations. We applied the same THz

field pulse in our model simulation as follows: E(t) = E0 sin(ω(t − t0))e
−(t−t0)2/σ2

x̂. It

describes that the THz field pulse excites the Qx directly and Qind through the nonlinear

phonon interaction without dissipation (γ = 0.0 THz), as shown in Fig. S6. Overall, the Qx

oscillates around the equilibrium position, and its amplitude is increased with the increase

of THz field strength. The oscillation of Qind shifts its time-average position, and this

displacement relies on the THz field strength. We found that the maximum amplitudes

of Qx and Qind induced by THz field pumping are consistent with that from our AIMD

simulation at the low intensity (E < 1.0 MV/cm) as shown in Fig. S3 and Fig. 2d in the

main text. This result indicates that our newly developed AIMD methods complemented

the model simulations at a low field strength range.

However, with high field strength (E = 1.5 MV/cm), the meta-stable state from the model

simulation shows faster divergence than that from AIMD simulation, as depicted in Fig. S3.

It originates from the absence of a dissipation channel in the model simulations. As shown in

Fig. S7, we investigated the time-dependent Qx and Qind induced by E = 1.0 MV/cm THz

pulse with various dissipation ratios. For the dissipation effect in the system, we considered

a fractional damping term (γQ̇). The higher dissipation ratio decreases the amplitudes of

Qx and Qind. For instance, the higher dissipation ratio (γ = 0.06 THz) leads to a quick
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decay into the ground state within a few picoseconds. Compared with AIMD results, the

model simulation with the dissipation ratio γ = 0.005 THz provides similar dynamics for the

HgTe. These results reveal that our AIMD simulation describes effective dissipation during

the THz field-induced dynamics as the model simulation with fractional dissipation.

In addition, we also investigated light-induced dynamics AIMD simulation with a thermo-

stat. We found that the ionic motion constrained by the thermostat degrades the formation

of meta-stable geometry in HgTe. Without a thermostat, the THz-induced averaged atomic

displacement is evaluated with E = 1.5 MV/cm, as shown in Fig. S8a. The oscillating field

induces the oscillation of Hg and Te with amplitude of 0.1 Åand 0.2 Å, respectively. With

the thermostat at 100 K, on the other hand, the amplitude of excited atomic displacement

degraded significantly, as shown in Fig. S8b. This suppressed THz-induced excitation of IR

mode leads to the negligible meta-stable geometry. This result indicates that the AIMD

with a thermostat is inappropriate for light-induced non-equilibrium dynamics.

Weyl points in the Fermi arc surface states

The distorted geometry along theQind results in the emergency of the Weyl points in bulk

HgTe. The Fermi arc surface states for the distorted lattice with Qind = 0.5 Å
√
µ are shown

in Fig. S8. The Weyl points induced by THz field pumping locate at W+
1 = (kx, ky, kz),

W+
2 = (−kx,−ky,−kz), W

−
1 = (−ky,−kx, kz), and W−

2 = (ky, kx,−kz), but in which kx =

−33.6 mÅ−1, ky = 22.4 mÅ−1, and kz = 35.3 mÅ−1. We also evaluated the Fermi arc

surface states for HgSe and HgS under THz field pumping. The results are shown in Fig. S9

and S10. Due to the same crystal symmetries, the Weyl points in HgSe and β-HgS driven

by the THz light still stay at W+
1 , W+

2 , W−
1 , and W−

2 but with different k values. For the

HgSe with Qind = 0.5 Å
√
µ, kx = −0.49 mÅ−1, ky = 31.1 mÅ−1, and kz = 36.9 mÅ−1. And

for β-HgS with Qind = 0.5 Å
√
µ, kx = 26.4 mÅ−1, ky = −1.75 mÅ−1, and kz = 31.1 mÅ−1.

Symmetry analysis and Berry curvature dipole

Our study evaluated the Berry curvature and Berry curvature dipole from the tight-

binding model constructed from the maximally localized Wannier functions [5]. As shown

in Fig. S11, the non-zero Berry curvature at the Fermi level is found near the Weyl points.
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The Berry curvature can be evaluated from derivative of Berry connection as follows: Ωk =

ϵijk(∂iAj − ∂jAi), where Ai is the Berry connection. The Berry curvature dipole (Dab) can

be written in terms of Berry curvature as follows: Dab = −
´

d3k
(2π)3

∑
n v

nkΩb
nk

∂f0nk

∂Enk
when

va, f
0 and Enk are the Fermi velocity, the Fermi-Dirac occupation and the eigenvalue of the

nth Bloch state at the k point, respectively [13]. Without any symmetric conditions, the

trace of the Berry curvature dipole should be zero (Dxx +Dyy +Dzz = 0).

Here, we analyzed the components of the Berry curvature dipole under the symmetry

analysis. First, we investigated the Berry curvature dipole of geometrically optimized bulk

HgTe (F 4̄3m) in terms of symmetry analysis. In the symmetric operation Group F 4̄3m

No.216, we had the three operations C2z, C2x, C2y for two-fold symmetry, and single opera-

tions C3 for three-fold symmetry. The C2z operator gives the transformation as follows:

C2z : (x, y, z) → (−x,−y, z)

C2z : (vx, vy, vz) → (−vx,−vy, vz)

C2z : Ω
i = ϵijk(∂jAk − ∂kAj) → −Ωi = ϵijk(−∂jAk + ∂kAj)

C2z : (Ω
x,Ωy,Ωz) → (−Ωx,−Ωy,Ωz)

(3)

This symmetry operation on the Berry curvature guarantees the symmetry relation of the

Berry curvature dipole as follows:

C2z : (Dxx, Dyy, Dzz) → (Dxx, Dyy, Dzz)

C2z : (Dxy, Dyz) → (Dxy, Dyz)

C2z : (Dxz, Dyz, Dzy) → (−Dxz,−Dyz,−Dzy) = 0

(4)

Similar to the analysis under the C2z operator, we could get the same results for C2x and

C2y operators, we find that only diagonal terms survive.

In the C3 rotation symmetry, the position, Fermi velocity, and the Berry curvature con-
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strained by the symmetry operation of C3 become

C3 : (x, y, z) → (z, x, y)

C3 : (vx, vy, vz) → (vz, vx, vy)

C3 : Ω
i = ϵijk(∂jAk − ∂kAj) → Ωk = ϵijk(−∂iAj + ∂jAi)

C3 : (Ω
x,Ωy,Ωz) → (Ωz,Ωx,Ωy)

(5)

Furthermore, we could also derive the C3 symmetry operation on the Berry curvature dipole

as follows:

C3 : (Dxx, Dyy, Dzz) → (Dzz, Dxx, Dyy) (6)

Guaranteed by these symmetry conditions, we find the zero Berry curvature dipole (Dxx =

Dyy = Dzz = 0).

We investigated the Berry curvature dipole constrained by the crystal symmetry in the

bulk HgTe with the THz light-induced distortion. In the distorted geometry of HgTe, there

is only one mirror symmetry m(110), which guarantees:

m(110) : (x, y, z) → (−y,−x, z)

m(110) : (vx, vy, vz) → (−vy,−vx, vz)

m(110) : Ω
x = ∂yAz − ∂zAy → Ωy = −∂xAz + ∂zAx

m(110) : Ω
z = ∂xAy − ∂yAz → −Ωz = ∂yAz − ∂xAy

m(110) : (Ω
x,Ωy,Ωz) → (Ωz,Ωx,Ωy)

m(110) : (Ω
x,Ωy,Ωz) → (Ωy,Ωx,−Ωz)

(7)

Then we could find the Berry curvature dipole under mirror symmetry:

m(110) : (Dxx, Dyy, Dzz) → (−Dyy,−Dxx,−Dzz) (8)

Due to the zero trace of Berry curvature dipole (
∑

i=x,y,z Dii = 0), we could find:

Dxx +Dyy +Dzz = −Dyy +Dyy +Dzz = Dzz = 0 (9)
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and

Dxx = −Dyy (10)

The results from the symmetry analysis are consistent with the calculated results shown in

Fig. 4 of the main text.

Screening effect by static electric field on HgTe

In our proposal shown in the main text, we need to account for the time-dependent

external electric field E(t) in three-dimensional periodic boundary conditions. This means

we can use the Lorentz force with Born effective charge of bulk HgTe to describe how

the external electric field affects the system. To obtain the Born effective charge Zbec
τ ,

we applied the linear response perturbation theory to bulk HgTe system with the ground

geometry. Then we calculated the forces FLor
τ = −dEKS

0 /dτ +Zbec
τ E(t) with a given electric

field E(t), where −dEKS
0 /dτ is Hellman-Feynman forces from the Kohn-Sham total energy

EKS
0 without the contribution from the external electric field. In HgTe, the Born effective

charges of the Hg atom and Te atom are with opposite signs (Zbec
Hg ∼ −Zbec

Te ), so the force

direction is opposite for Hg atom and Te atom as shown in Fig. S13(a). This approach is

usually employed in ab initio-based molecular dynamics simulation [8, 14]. In this approach,

the screening effect induced by the external electric field is not considered. The screening

effect from the intrinsic semi-metallic HgTe has been fully taken into account.

On the other hand, because the bulk HgTe is a semimetal, the screening effect induced by

the external electric field could affect the dynamics in principle. To estimate the screening

effect in HgTe, we applied the static electric field to the thin film of HgTe, and then directly

calculated the induced force from the ab initio DFT calculations. We named this approach as

the length gauge (LG) method. Because the calculated force is obtained from self-consistent

DFT calculations, including the external electric field, the corresponding screening effect is

fully considered here.

In detail, as shown in Fig. S13(a) and (b), we use a (001) slab model of HgTe with the

thickness of 16.8 Å to simulate the case under an external electric field. A vacuum layer

with 23.2 Å is added along the z direction between the neighboring HgTe slabs. The three-

dimensional periodic boundary conditions are still used in our calculations. The length gauge

method allows for the description of electron and ion interactions under the external electric
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fields by transforming the static constant electric field E into a scalar potential term V (r).

This potential along the z-axis can be expressed as V (z) = −Ezẑ, then the Kohn-Sham

Hamiltonian becomes HKS = HKS
0 +V (z), where HKS

0 is Kohn-Sham Hamiltonian without

a static electric field with the energy of EKS
0 . We could do the self-consistent calculation to

obtain the Kohn-Sham energy. Then the force can be calculated by FLG
τ = −dEKS/dτ where

EKS in length gauge is the energy of Kohn-Sham Hamiltonian HKS. Due to the periodic

boundary conditions, the scalar potential must also have periodicity, which can be achieved

using a saw-tooth-type scalar potential, as shown in Fig. S13(b). The scalar potential for

+E field is employed in the range of 0.0 < z < 0.9c0 while a decreasing scalar potential

for −E field is used in the range of 0.9c0 < z < c0, in which c0 is the lattice value along z

direction in the slab model [15]. This approach directly evaluates electron-ion interactions

under the external static electric field, including the screening effect.

To apply the saw-tooth-type electric field, we utilize the (001) HgTe slab with the Te

termination, which is displayed in Fig. S13(c). We first compare the electronic structures

between the (001) HgTe slab with Te termination and bulk HgTe and determine if the slab

geometry is thick enough to reproduce the electronic structure for the bulk state. The slab

model has been fully relaxed without including the external electric field. As shown in

Fig. S13(d), the density of states between the slab and bulk HgTe exhibit similar trends,

such as a lower density of states at the Fermi level and peak states near energy levels of

−2 and 2 eV. This result suggests that the (001) HgTe slab with Te termination is thick

enough to simulate the electronic structure of bulk HgTe. We also found that the Born

effective charges of Hg atom and Te atom for the z-direction are reduced in the slab model

as Zbec
Hg = 0.35e and Zbec

Te = −0.35e.

We evaluate the screening effect on the slab geometry by comparing the Lorentz-type force

with that calculated from the length gauge method. Here, Figure S13(e) shows the average

and deviation values for the calculated forces on two types of ions in the slab geometry. If

the applied electric field strength is below 0.5 MV/cm, the calculated forces on Hg atom

and Te atom are almost the same for the two methods. This result suggests that under

the electric field E < 0.5 MV/cm, the induced screening effect is not significant. On the

other hand, once the electric field strength is extremely large, such as E > 1.3 MV/cm, we

can observe the difference between the calculated forces from Lorentz-type and length gauge

methods. Even under the maximal value for the used electric field strength in our paper
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(see Fig. 2 in the main text), the difference ratio (FLor
τ − FLG

τ )/FLor
τ is about 12.2%. To

conclude, we believe that the force calculated from Lorentz-type is good enough to describe

the effect induced by the external electric field for bulk HgTe. The screening effect induced

by the external electric field does exist, but its influence is limited for bulk HgTe, the main

conclusions shown in our paper will not be changed once we consider the screening effect.

Nonlinear phonon interaction; detail and examples

The nonlinear phonon interaction has recently been highlighted as a key mechanism

for various light-induced phenomena [5, 16–20]. When the strong THz-field pulse with a

given frequency is applied to the material, the infrared active (IR) phonon mode could

be resonantly excited, and the oscillation amplitude QIR will be largely enhanced. At

this condition, the excited IR phonon mode in the anharmonic range can affect the other

phonon modes via the nonlinear phonon interaction. As an example, if the nonlinear phonon

interaction between the IR phonon and a Raman phonon has the form of k′Q2
IRQR in which

QR is its oscillation amplitude for Raman phonon mode and k′ is the coupling coefficient, the

largely displaced IR-active phonon mode can modify the potential energy surface for Raman

phonon mode as (ω2
RQ

2
R+k

′
Q2

IRQR), where ωR is the frequency of the Raman phonon mode.

In such a case, the minimum position around which the Raman phonon is oscillating will be

shifted, and the displacement is proportional to the value of Q2
IR that can be enhanced with

increasing the strength of THz lase field. The lattice distortion resulting from nonlinear

phonon interactions has a comparable impact to internally applied strain on the lattice,

enabling the alteration of material properties, such as inducing a phase transition.

Effect of static electric field on HgTe

Our study demonstrates the topological phase transition in HgTe via nonlinear phononics

by applying an external THz laser field. Unlike the light-driven case in which the THz pulse

can be applied to the bulk sample effectively, the large static electric field can only be applied

to the thin-film sample or can affect the surface of the bulk sample in the experiment. If

the thickness of the HgTe thin film is small enough, the two-dimensional (2D) quantum well

states will dominate the electronic properties around the Fermi level. With the change of

15



the thickness for HgTe, a topological phase transition can be achieved and the 2D quantum

spin Hall (QSH) effect can be observed. In fact, the first QSH effect is proposed and realized

in the strained HgTe thin film with a suitable thickness [21, 22]. In such case, if a static

electric field is applied, the quantum well states around the Fermi level will be modified,

and we expect to observe a topological phase transition for HgTe thin film [23].

If the thickness of the HgTe film is not too small and its electronic property is close to

that of the bulk state, the applied static electric field should not be too large. To estimate

the effect of the static field on the lattice distortion for the HgTe thin film, we relaxed the

atomic positions of (001) HgTe thin film under the static electric field. We performed the

same method that is used in length gauge calculation as shown in Fig. S13. For example,

the static electric field with the value of 0.5 MV/cm displaces the atomic positions of Hg

and Te atoms as QHg = 0.22mÅ and QTe = −0.26mÅ, respectively. These values are much

smaller than those induced by nonlinear phononic with the same field strength. Such small

atomic displacement could break the intrinsic lattice symmetry of HgTe, but because the

shiftiness is too small, we expect the negligible separation of Weyl points for the observation,

as shown in Fig. 3(b) in the main text.

On the other hand, applying the static electric field with the magnitude of MV/cm on

the semi-metallic bulk HgTe causes a large current flow because of the induced asymmetric

carrier distribution near the Fermi level, which should dominate the physical measurement

in such a condition. While, in our proposed light-induced dynamics via nonlinear phononics,

the direct interaction for the THz light with the electron degree of freedom in HgTe bulk

is not important because of a large difference between the frequency of THz light and the

Drude frequency in HgTe bulk. Even if we do not consider the screening effect and treat

the HgTe as a dielectric material, a few MV/cm static field is large enough to break down

the bulk sample [24]. Such a side effect might limit the observation of any physical effect

proposed in HgTe induced by the static electric field.

For the application of the extended ab initio molecular dynamics (AIMD) method that

is proposed in this work, we believe it is only suitable for the insulating system or the

semimetal with almost zero density of state (DOS) at the Fermi level, such as bulk HgTe.

For a metallic system with a large DOS at the Fermi level, we must seriously consider the

screening effect induced by the external electric field. To demonstrate such an effect, we

add the electron and hole to HgTe slab model artificially, apply a saw-tooth-type potential
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to the sample (see Fig. R1(d) for details), and calculate the field-induced force on Hg and

Te atoms in the framework of DFT. As shown in Fig. S13 of the supplementary material

in the revised manuscript and the previous response letter, the Lorentz-type force is almost

the same as that calculated from the length gauge field method for the intrinsic HgTe slab.

Thus, herein, we just apply the length gauge field method to these slab models with different

electron and hole doping.

We additionally investigate the calculated forces on each atom in the HgTe slab model

with electron doping and hole doping to demonstrate that the screening effect induced by

an external electric field is important for metallic systems. The length gauge field method

is applied to HgTe slab models. The calculated results are shown in Fig. S14. Once we

dope more electrons or holes to make the HgTe slab metallic, the calculated forces are

very different from the case without doping. The pristine HgTe slab has asymmetric DOS

distribution around the Fermi level as shown in Fig. S14(b). When the same value of

charges is added artificially, the HgTe slab with hole doping has a much higher DOS at the

Fermi level compared with the case with electron doping as shown in Figs. S14(a) and (e).

Correspondingly, we can find a more noteworthy change in the calculated force induced by

hole doping in contrast to the case with electron doping as shown in Figs. S14(c) and (f).

Our calculated results clearly show that if a system is more metallic, the forces induced by

the external electric field exhibit a more dramatic reduction compared with the calculated

Lorentz force based on the Born-effective charges.

Phonon dispersion in bulk HgTe family

We evaluated the phonon dispersion for bulk HgTe and highlighted the TO modes with

red lines as shown in Fig. S15(a). At the Γ point, the frequencies for TO and LO modes are

evaluated as 3.5 THz and 3.96 THz, such difference originates from the LO-TO splitting [25].

Our calculated values are exactly the same as the experimental observations [9]. We also

evaluate the phonon dispersion for bulk HgSe, and β-HgS as shown in Fig. S15(b) and (c).
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TABLE S1. Computed parameters of HgTe, HgSe, and HgS structure from DFT calculations.

HgTe HgSe HgS

Lattice parameter (Å)
LDA 4.559 4.301 4.122

Atomic mass M (µ=amu)
for Hg 200.59 200.59 200.59

for Te, Se, and S 127.6 78.96 32.065

Born effective charge Z (e)
for Hg 3.18 3.24 3.23

for Te, Se, and S -3.18 -3.24 -3.23

Phonon frequency for IR mode (THz) 3.5 4.55 5.4
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TABLE S2. Parameters for the model simulation in HgTe, HgSe, and β-HgS.

HgTe HgSe HgS

Ω (THz/(2π)) 3.5 4.0 5.6

knl (THz
2 Å−1 µ−1/2) 93 159 439

Z∗ (e µ−1/2) 0.35 0.44 0.50
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FIG. S11. Fermi arc surface states of HgS in the shifted equilibrium position by the

nonlinear phononic interaction. a-c, Fermi arc surface states in (a) (100), (b) (010), and (c)

(001) surface with Qind = 0.5 Å
√
µ in HgS.
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FIG. S12. Berry curvature near Weyl points in the atomic distorted HgTe. a-c, Berry

curvature (a) Ωx, (b) Ωy, and (c) Ωz at kz = 35.3 mÅ−1 plane.
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FIG. S13. Field-induced forces in the HgTe slab. Schematics of electric field-induced forces via

(a) Lorentz-type force and (b) length gauge field. The red arrows in (a) demonstrate the force

directions on each atom obtained from Lorentz-type force. The saw-tooth-type potential is marked

by red lines in (b). (c) Atomic geometry of the HgTe slab model. (d) The calculated density of

state for (upper) the HgTe slab model and (bottom) the bulk HgTe. (e) Average and deviation

values for calculated forces on each atom in HgTe thin film with the change of applied static electric

field by using different methods. The deviation value is calculated for all Hg and Te atoms in the

slab model.
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FIG. S14. The influence of screening effect on field-induced forces for the HgTe slab with charge

doping. The calculated density of state for (a) the HgTe slab model with hole doping, (b) the

pristine HgTe slab model, and (c) the HgTe slab model with electron doping. (d) Schematics of

the saw-tooth-type potential applied to the HgTe slab model. The average values for calculated

forces on each atom in the HgTe thin film with (e) hole doping and (f) electron doping under the

saw-tooth-type electric potential, the force on each atom is calculated by using the length gauge

field method. The dashed red lines indicate the Fermi level in (a)-(c). e is the absolute value of

electron charge.
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